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Setting of the problem

Let us first consider the compressible isentropic Euler system in the
whole 2D space

∂tρ+ divx(ρv) = 0
∂t(ρv) + divx (ρv ⊗ v) +∇x [p(ρ)] = 0
ρ(·, 0) = ρ0

v(·, 0) = v0 .

(1)

The pressure p(ρ) is given. Let ε(ρ) be such that p(ρ) = ρ2ε′(ρ).

Entropy inequality:

∂t

(
ρε(ρ) +

ρ|v |2

2

)
+ divx

((
ρε(ρ) +

ρ|v |2

2
+ p(ρ)

)
v

)
≤ 0

(2)
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Riemann problem

Denote x = (x1, x2) ∈ R2 and consider the special initial data

(ρ0(x), v0(x)) :=


(ρ−, v−) if x2 < 0

(ρ+, v+) if x2 > 0,
(3)

where ρ±, v± are constants.
In particular the initial data are ”1D” and there is a classical theory
about self-similar solutions to the Riemann problem in 1D (they
are unique in the class of BV functions).
In the case of system (1), the initial singularity can resolve to at
most 3 structures (rarefaction wave, admissible shock or contact
discontinuity) connected by constant states.
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First observation

If v−1 = v+1, then any self-similar solution to (1), (3) has to
satisfy v1(t, x) = v−1 = v+1 and in particular there is no contact
discontinuity in the self-similar solution.
The initial singularity then resolves into at most 2 structures
(rarefaction waves or admissible shocks) connected by constant
states.
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Classification of self-similar solutions I

1) If

v+2 − v−2 ≥
∫ ρ−

0

√
p′(τ)

τ
dτ +

∫ ρ+

0

√
p′(τ)

τ
dτ,

then the self-similar solution consists of a 1−rarefaction wave
and a 3−rarefaction wave. The intermediate state is vacuum,
i.e. ρm = 0.

2) If∣∣∣∣∣
∫ ρ+

ρ−

√
p′(τ)

τ
dτ

∣∣∣∣∣ < v+2−v−2 <

∫ ρ−

0

√
p′(τ)

τ
dτ+

∫ ρ+

0

√
p′(τ)

τ
dτ,

then the self-similar solution consists of a 1−rarefaction wave
and a 3−rarefaction wave. The intermediate state has ρm > 0.
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Classification of self-similar solutions II

3) If ρ− > ρ+ and

−

√
(ρ− − ρ+)(p(ρ−)− p(ρ+))

ρ−ρ+
< v+2−v−2 <

∫ ρ−

ρ+

√
p′(τ)

τ
dτ,

then the self-similar solution consists of a 1−rarefaction wave
and an admissible 3−shock.

4) If ρ− < ρ+ and

−

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−
< v+2−v−2 <

∫ ρ+

ρ−

√
p′(τ)

τ
dτ,

then the self-similar solution consists of an admissible
1−shock and a 3−rarefaction wave.
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Classification of self-similar solutions III

5) If

v+2 − v−2 < −

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−

then the self-similar solution consists of an admissible
1−shock and an admissible 3−shock.
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Nonuniqueness results

Theorem 1 (Chiodaroli, De Lellis, K.)

There exist Riemann initial data of the case 3) for which there
exist infinitely many admissible weak solutions of the isentropic
Euler system. Moreover such Riemann data are generated by a
compression wave (backwards rarefaction wave), in particular this
implies nonuniqueness for Lipschitz initial data.

Theorem 2 (Chiodaroli, K.)

For any Riemann initial data of the case 5) there exist infinitely
many admissible weak solutions of the isentropic Euler system.
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Specification of the problem I

First we define the appropriate class of weak solutions. Consider

Ω = T 1 × (−a, a),

with a > 0 sufficiently large and T 1 is a 1D torus. We will consider
weak solutions periodic in x1 and having the same boundary fluxes
on x2 = ±a as has the self-similar solution.
We consider Riemann data satisfying v±1 = 0.
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Specification of the problem II

More specifically we work with weak solutions satisfying:

ρv2(t, x1,−a) = ρ−v−2, ρv2(t, x1, a) = ρ+v+2;

(ρvjv2 + p(ρ)) (t, x1,−a) = (ρ−v−jv−2 + p(ρ−))

(
1

2
ρ|v |2 + ρε(ρ) + p(ρ)

)
v2(t, x1,−a) =(

1

2
ρ−|v−|2 + ρ−ε(ρ−) + p(ρ−)

)
v−2

and similarly for x2 = a.
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Specification of the problem III

This means in particular that in the weak formulation of the Euler
system appear additional boundary integrals on x2 = ±a, for
example the equation of continuity in the weak formulation looks
as follows:

∫
Ω

[ρ(τ, x)ϕ(τ, x)− ρ0(x)ϕ(0, x)]dx

+

∫ τ

0

∫
T 1

ρ+v+2ϕ(t, x1, a) dx1dt

−
∫ τ

0

∫
T 1

ρ−v−2ϕ(t, x1,−a) dx2dt

=

∫ τ

0

∫
Ω

[ρ(t, x)∂tϕ(t, x) + ρv(t, x) · ∇ϕ(t, x)]dxdt
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Main Theorem in the isentropic case

Theorem 3 (Feireisl, K.)

Let p(ρ) = ργ , γ > 1. Let ρ̃(t, x) = R(x2/t),
ṽ(t, x) = (0,V (x2/t)) be the self-similar solution to the Riemann
problem consisting of rarefaction waves (locally Lipschitz for t > 0)
and such that

ess inf(0,t)×Ω ρ̃ > 0. (4)

Let (ρ, v) be a bounded admissible weak solution such that

ρ ≥ 0 a.a. in (0,T )× Ω.

Then
ρ ≡ ρ̃, v ≡ ṽ in (0,T )× Ω.

Onďrej Kreml Uniqueness of rarefaction waves 12/29



Main Theorem in the isentropic case II

Note that according to our earlier study the self-similar solution to
the Riemann problem consists only of rarefaction waves and
satisfies (4) if and only if the initial Riemann data satisfy∣∣∣∣∣
∫ ρ+

ρ−

√
p′(τ)

τ
dτ

∣∣∣∣∣ ≤ v+2−v−2 <

∫ ρ−

0

√
p′(τ)

τ
dτ+

∫ ρ+

0

√
p′(τ)

τ
dτ.
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Relative entropy inequality

The proof is based on the relative entropy inequality. Define the
relative entropy functional

E
(
ρ, v
∣∣∣r ,V) =

1

2
ρ|v − V |2 +

(
H(ρ)− H ′(r)(ρ− r)− H(r)

)
,

where H(s) = sε(s).
Concept of relative entropies goes back to DiPerna and Dafermos.
Similarly as in papers by Feireisl, Novotný and others in the case of
Navier-Stokes equations we first prove that any bounded
admissible weak solution satisfies the relative entropy inequality
with any couple of functions (r ,V ) such that

r ∈ C 1([0,T ]× Ω), V ∈ C 1([0,T ]× Ω), r > 0.
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Relative entropy inequality II

∫
Ω
E
(
ρ, v
∣∣∣r ,V) (τ, x)dx −

∫
Ω
E
(
ρ0, v0

∣∣∣r(0, x),V (0, x)
)
dx

+ boundary terms ≤∫ τ

0

∫
Ω

[
ρ (∂tV + v · ∇V ) · (V − v) +

(
p(r)− p(ρ)

)
divV

]
dxdt

+

∫ τ

0

∫
Ω

[
(r − ρ)∂tH

′(r) + (rV − ρv) · ∇H ′(r)
]
(t, x)dxdt
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Relative entropy inequality III

Observe that the rarefaction wave solution (ρ̃, ṽ) may be taken as
the test couple (r ,V ) in the relative entropy inequality as

ρ, ρ̃, v , Ṽ bounded,

∂t ρ̃, ∂t ṽ2, ∂x2 ρ̃, ∂x2 ṽ2 ∈ L∞(0,T ; L1(Ω))

and such step thus can be justified by a density argument and
Lebesgue dominated convergence theorem.
Therefore the initial term and the boundary terms in the relative
entropy inequality vanish.
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Relative entropy inequality IV

Thus we get∫
Ω
E
(
ρ, v
∣∣∣ρ̃, ṽ) (τ, x)dx ≤∫ τ

0

∫
Ω

[
ρ (∂t ṽ2 + v2∂x2 ṽ2) (ṽ2 − v2) +

(
p(ρ̃)− p(ρ)

)
∂x2 ṽ2

]
(t, x)dxdt

+

∫ τ

0

∫
Ω

[
(ρ̃− ρ)∂tH

′(ρ̃) + (ρ̃ṽ2 − ρv2)∂x2H
′(ρ̃)
]
(t, x)dxdt
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Some calculations

We rewrite the terms as follows. First:

ρ (∂t ṽ2 + v2∂x2 ṽ2) (ṽ2 − v2) =

ρ(∂t ṽ2 + ṽ2∂x2 ṽ2)(ṽ2 − v2)− ρ∂x2 ṽ2(ṽ2 − v2)2 =

− (ρ/ρ̃)∂x2p(ρ̃)(ṽ2 − v2)− ρ∂x2 ṽ2(ṽ2 − v2)2.

Next:(
p(ρ̃)− p(ρ)

)
∂x2 ṽ2 =

−
(
p(ρ)− p′(ρ̃)(ρ− ρ̃)− p(ρ̃)

)
∂x2 ṽ2 − p′(ρ̃)(ρ− ρ̃)∂x2 ṽ2

Finally just using the property ∂zH
′(ρ̃) = (p′(ρ̃)/ρ̃)∂z ρ̃ we have

(ρ̃− ρ)∂tH
′(ρ̃) + (ρ̃ṽ2 − ρv2)∂x2H

′(ρ̃) =

ρ̃− ρ
ρ̃

p′(ρ̃)∂t ρ̃+
ρ̃ṽ2 − ρv2

ρ̃
p′(ρ̃)∂x2 ρ̃
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Final step

Summing up all the terms and using again the fact that ρ̃, ṽ2 solve
the continuity equation we end up with∫

Ω
E
(
ρ, v
∣∣∣ρ̃, ṽ) (τ, x)dx ≤

−
∫ τ

0

∫
Ω

[
ρ (ṽ2 − v2)2 +

(
p(ρ)− p′(ρ̃)(ρ− ρ̃)− p(ρ̃)

)]
∂x2 ṽ2(t, x)dxdt

Since p(ρ) is convex the theorem follows from the fact that
∂x2 ṽ2(t, x) ≥ 0 which is a consequence of the classical theory of
the self-similar solutions in the case of rarefaction waves.
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Full Euler system

Now we consider the full compressible Euler system in the whole
2D space



∂tρ+ divx(ρv) = 0
∂t(ρv) + divx (ρv ⊗ v) +∇x(ρθ) = 0

∂t(
1
2ρ |v |

2 + cvρθ) + divx(( 1
2ρ |v |

2 + cvρθ + ρθ)v) = 0
ρ(·, 0) = ρ0

v(·, 0) = v0

θ(·, 0) = θ0 .

(5)

Here θ is the temperature of the gas and cv > 0 is constant called
specific heat at constant volume
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Entropy inequality

The associated entropy inequality to the system reads as follows

∂t(ρs) + divx(ρsv) ≥ 0,

where

s(ρ, θ) = log
(θcv
ρ

)
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Domain and weak solutions

Similarly as in the isentropic case we consider the domain

Ω = T 1 × R1, where T 1 ≡ [0, 1]{0,1} is the “flat” sphere,

Again we consider solutions periodic with respect to x1.
In the variable x2 we will prescribe far field conditions in order to
prove uniqueness of solutions to the Riemann problem.
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Riemann Problem

The Riemann initial data are as follows

(ρ0(x), v0(x), θ0(x)) :=


(ρ−, v−, θ−) if x2 < 0

(ρ+, v+, θ+) if x2 > 0,
(6)

and again we avoid the contact discontinuity formed by the higher
dimension by assuming

v± = (0, v±2).

Of course ρ±, θ± and v±2 are constants.
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General form of self-similar solutions

The Riemann problem admits a solution

ρ(t, x) = R(t, x2) = R(ξ), θ(t, x) = Θ(t, x2) = Θ(ξ),

v(t, x) = (0,V (t, x2)) = (0,V (ξ))

depending solely on the self-similar variable ξ = x2
t . Such a

solution is unique in the class of BV solutions of the 1-D problem.
The initial singularity resolves to at most 3 structures connected by
constant states, where the first and the last structures are always
either admissible shocks or rarefaction waves, whereas the middle
structure is always a contact discontinuity. In special cases some of
the structures can disappear.
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Shock-free solutions

We consider special Riemann initial data such that the contact
discontinuity does not appear and both remaining structures are
rarefaction waves, more precisely:

the entropy S is constant in [0,T ]× Ω;

the density R and the temperature Θ components of the
Riemann solutions are interrelated through

Θ = R
1
cv exp

(
1

cv
S

)
;

the density R = R(t, x2) and the velocity V = V (t, x2)
represent a rarefaction wave solution of the 1-D isentropic
system

∂tR+∂x2(RV ) = 0, R [∂tV + V ∂x2V ]+exp

(
1

cv
S

)
∂x2R

cv +1
cv = 0,
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Far field conditions I

We consider weak solutions satisfying the following far field
conditions

lim
x2→−∞

∫ T

0

∫
T 1

|ρ(t, x1, x2)− ρ−| dx1 dt = 0,

lim
x2→∞

∫ T

0

∫
T 1

|ρ(t, x1, x2)− ρ+| dx1 dt = 0,

lim
x2→−∞

∫ T

0

∫
T 1

|θ(t, x1, x2)− θ−| dx1 dt = 0,

lim
x2→∞

∫ T

0

∫
T 1

|θ(t, x1, x2)− θ+| dx1 dt = 0,
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Far field conditions II

and similarly

lim
x2→−∞

∫ T

0

∫
T 1

|v1(t, x1, x2)| dx1 dt = 0,

lim
x2→−∞

∫ T

0

∫
T 1

|v2(t, x1, x2)− v−2| dx1 dt = 0,

lim
x2→∞

∫ T

0

∫
T 1

|v1(t, x1, x2)| dx1 dt = 0,

lim
x2→∞

∫ T

0

∫
T 1

|v2(t, x1, x2)− v+2| dx1 dt = 0.
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Main theorem

Theorem 4 (Feireisl, K., Vasseur)

Let [ρ, θ, v ] be a weak solution of the Euler system in (0,T )× Ω
originating from the Riemann data and satisfying the far field
conditions. Suppose in addition that the Riemann data give rise to
the shock-free solution [R,Θ,V ] of the 1-D Riemann problem
specified above.
Then

ρ = R, θ = Θ, v = (0,V ) a.a. in (0,T )× Ω.
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Thank you

Thank you for your attention.

Onďrej Kreml Uniqueness of rarefaction waves 29/29


