The Stokes system with boundary condition involving a pressure

Dagmar Medková

Institute of Mathematics
Czech Academy of Sciences
Czech Republic

$$
\begin{gathered}
-\Delta \mathbf{u}+\nabla \pi=\mathbf{F}, \quad \nabla \cdot \mathbf{u}=G \quad \text { in } \Omega, \\
\pi=h, \quad \mathbf{u} \cdot \tau=g \quad \text { on } \partial \Omega
\end{gathered}
$$

$\Omega \subset R^{2}$ is a bounded simply connected domain. τ is the tangential vector on $\partial \Omega$.

Ch. Amrouche, P. Penel, N. Seloula, Some remarks on the boundary conditions in the theory of Navier-Stokes equations, Ann. Math. Blaise Pascal 20 (2013), 37-73.
in $W^{1, p}\left(\Omega, R^{3}\right) \times W^{1, p}(\Omega)$ for $\Omega \subset R^{3}, \partial \Omega \in$ $C^{1,1}$

Theorem.

Let $\Omega \subset R^{2}$ be a bounded domain with connected boundary of class $\mathcal{C}^{k, 1}, k \in N, 1<$ $p, q<\infty, 1 / q<s<k+1, s-1 / q \notin N_{0}$, $1 / p<t<k, t-1 / p \notin N_{0}$, and $t \leq s+1$, $p \leq q$. If $t=s+1$ suppose moreover that $p=q$. If $g \in W^{t-1 / p, p}(\partial \Omega), h \in W^{s-1 / q, q}(\partial \Omega)$, $\mathbf{F} \in W^{s-1, q}\left(\Omega, R^{2}\right), G \in W^{s, q}(\Omega)$, then there exists a unique solution $(\mathbf{u}, \pi) \in W^{t, p}\left(\Omega, R^{2}\right) \times$ $W^{s, q}(\Omega)$ of the problem

$$
\begin{gathered}
-\Delta \mathbf{u}+\nabla \pi=\mathbf{F}, \quad \nabla \cdot \mathbf{u}=G \quad \text { in } \Omega, \\
\mathbf{u} \cdot \tau=g, \quad \pi=h \quad \text { on } \partial \Omega .
\end{gathered}
$$

Theorem.

Let $\Omega \subset R^{2}$ be a bounded domain with connected boundary of class $\mathcal{C}^{k, 1}, k \in N, 1<$ $p, q, r, \beta<\infty, 1 / q<s<k+1,1 / p<t<k$, and $t \leq s+1, p \leq q$. If $t=s+1$ suppose moreover that $p=q$ and $r \leq \beta$. If $g \in B_{t-1 / p}^{p, \beta}(\partial \Omega)$, $h \in B_{s-1 / q}^{q, r}(\partial \Omega), \mathbf{F} \in B_{s-1}^{q, r}\left(\Omega, R^{2}\right), G \in B_{s}^{q, r}(\Omega)$, then there exists a unique solution $(\mathbf{u}, \pi) \in$ $B_{t}^{p, \beta}\left(\Omega, R^{2}\right) \times B_{s}^{q, r}(\Omega)$ of the problem

$$
\begin{gathered}
-\Delta \mathbf{u}+\nabla \pi=\mathbf{F}, \quad \nabla \cdot \mathbf{u}=G \quad \text { in } \Omega, \\
\mathbf{u} \cdot \tau=g, \quad \pi=h \quad \text { on } \partial \Omega .
\end{gathered}
$$

Theorem.

Let $k \in N, 0<\gamma<1, \Omega \subset R^{2}$ be a bounded domain with connected boundary of class $\mathcal{C}^{k+2, \gamma}$. Suppose that $\mathbf{F} \in \mathcal{C}^{k-1, \gamma}\left(\bar{\Omega}, R^{2}\right), G \in \mathcal{C}^{k, \gamma}(\bar{\Omega})$, $h \in \mathcal{C}^{k, \gamma}(\partial \Omega), g \in \mathcal{C}^{k+1, \gamma}(\partial \Omega)$. Then there exists a unique solution $(\mathbf{u}, \pi) \in \mathcal{C}^{k+1, \gamma}\left(\bar{\Omega}, R^{2}\right) \times$ $\mathcal{C}^{k, \gamma}(\bar{\Omega})$ of the problem

$$
\begin{gathered}
-\Delta \mathbf{u}+\nabla \pi=\mathbf{F}, \quad \nabla \cdot \mathbf{u}=G \quad \text { in } \Omega \\
\mathbf{u} \cdot \tau=g, \quad \pi=h \quad \text { on } \partial \Omega
\end{gathered}
$$

$a>0$ fixed

The nontangential approach regions of opening a at the point $\mathrm{x} \in \partial \Omega$

$$
\Gamma_{a}(\mathrm{x})=\{\mathbf{y} \in \Omega ;|\mathbf{x}-\mathbf{y}|<(1+a) \operatorname{dist}(\mathbf{y}, \partial \Omega)\} .
$$

The nontangential maximal function of \mathbf{v} on $\partial \Omega$

$$
M_{a}(\mathrm{v})(\mathrm{x})=\sup \left\{|\mathrm{v}(\mathrm{y})| ; \mathrm{y} \in \Gamma_{a}(\mathrm{x})\right\} .
$$

The nontangential limit of \mathbf{v} at $\mathrm{x} \in \partial \Omega$

$$
\mathrm{v}(\mathrm{x})=\lim _{\Gamma(\mathrm{x}) \ni \mathrm{y} \rightarrow \mathrm{x}} \mathrm{v}(\mathrm{y})
$$

Theorem.

Let $\Omega \subset R^{2}$ be a bounded domain with connected Lipschitz boundary. Let $1<p \leq 2 \leq$ $q<\infty, h \in L^{q}(\partial \Omega), g \in L^{p}(\partial \Omega)$. Then there exists a unique (\mathbf{u}, π) such that

$$
-\Delta \mathbf{u}+\nabla \pi=0, \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \Omega,
$$

the nontangential maximal function of \mathbf{u} is in $L^{q}(\partial \Omega)$ (and therefore $\mathbf{u} \in B_{1 / q}^{q, q}\left(\Omega, R^{2}\right)$ i.e $\mathbf{u} \in$ $W^{1 / q, q}\left(\Omega, R^{2}\right)$), the nontangential maximal function of π is in $L^{p}(\partial \Omega)$ (and therefore $\pi \in B_{1 / p}^{2, p}(\Omega)$) and the boundary conditions

$$
\mathbf{u} \cdot \tau=g, \quad \pi=h \quad \text { on } \partial \Omega
$$

are satisfiesd in the sense of nontangential limits.

