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Measure—valued solutions revisited

Motto: The larger the better

Measure valued solutions = the largest class of objects in which the
smooth (classical) solutions of a given problem are uniquely
determined by the data

Advantages

m Limits of approximate problems (low viscosity, low Mach
number limit)

m Limits of approximate solutions obtained via

numerical schemes ‘




Compressible Navier-Stokes system

Field equations

Oro + divy(ou) =0
Ot(ou) + divy(ou @ u) + V,p(p) = div,S(Vu)

Isentropic EOS, Newton’s rheological law

2
S(Vxu) = u (qu + Viu-— 3divXuH> + ndiv,ul, >0, n >0

No-slip boundary conditions
ulpn =0




Dissipative solutions

Energy (entropy) inequality
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Known results

m Local strong solution for any data and global weak
solutions for small data. Matsumura and Nishida [1983], Valli
and Zajaczkowski [1986], among others

m Global-in-time weak solutions. p(g) = ¢”, v >9/5,N = 3,
v >3/2,N=2P.L. Lions [1998], v > 3/2, N =3, v > 1,
N = 2 EF, Novotny, Petzeltovd [2000], v = 1, N = 2 Plotnikov
and Vaigant [2014]

m Measure-valued solutions. Neustupa [1993], related results

Malek, Necas, Rokyta, Rdzi¢ka, Necasova - Novotny
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Numerical method [T. Karper]

FV framework

regular tetrahedral mesh, Q, = {v | v = piece-wise constant}

FE framework - Crouzeix - Raviart

Vy, = {v v = piece-wise affine, ¥ continuous on face F}

Upwind discretization of convective terms

(hu; Vo) e ~ zrj /r Uplh, ul[[]] dS,




Dissipative upwind operator

Upwind operator

Upl[ra, un] = {rn} (up - n)¢ —% max{h®; [ (up - n)¢ [} [[rs]]

convective part dissipative part

=l el (50

standard upwind

Auxilliary function

0 for z < —1,
z+1if —1<z<0
1-zif0<z<1
Oforz>1




Numerical scheme

Discrete time derivative - implicit scheme

Continuity method
/ Dy ofipdx —
Qp

Momentum method

/ Uplok, uf] [[6]] dSy = 0

Feling

/Qh D (o (uk)) - delx -

/ Uplak (u)  uf] - [(#)]] S,

IFelint

- / p(op)divapdx
Qy

+u thh Vhpdx + (H + 77) / divhuﬁdivhqﬁdx =0
Qh 3 Qh



Convergence results for Karper’'s scheme

Convergence to weak solutions

Karper [2013]: Convergence to a weak solution if

Error estimates
Gallouet, Herbin, Maltese, Novotny [2015]

Convergence to smooth solutions + error estimates if |y > 3/2|, Q a

polyhedral domain




Convergence for general adiabatic coefficient

EF, M. Lukatova/Medvidova [2016]
Let Q € R3 be a smooth bounded domain. Let

1<y<2, Atmh, 0<a<2(y-—1).

Suppose that the initial data are smooth and that the compressible
Navier-Stokes system admits a smooth solution in [0, T] in the class

0, Vx0, u,Vyiu € C([Ov T] X ﬁ)

o € 20, T; C(A R®), 0> 0, ulgpg =0.

on — o (strongly) in L7((0, T) x K)
up, — u (strongly) in L2((0, T) x K; R®)

for any compact K C Q.




General strategy

Basic properties of numerical scheme

Show stability, consistency, discrete energy inequality

Measure valued solutions

Show convergence of the scheme to a
dissipative measure — valued solution

Weak-strong uniqueness

Use the weak-strong uniqueness principle in the class of
measure-valued solutions. Strong and measure valued solutions
emanating from the same initial data coincide as long as the latter
exists




Measure-valued solutions

Parameterized (Young) measure
Vex € L22.,((0, T) x Q;P([0, 00) x RN), [s,v] € [0, 00) x RV
o(t,x) = (Wrx;8), u= {ve;v) € 20, T; Wol’z(Q; RMY)
Field equations revisited

T
/ / (Ve.x: S) Orp + (Ve xi SV) - Vi dx dt = (Ry; V)
o Ja

.
/ / (Ve x: SV) - Orp + (Vr 5 SV Q V) - Vo + (Ve i p(S)) divep dx dt
0o Ja

.
= / / S(Vxu) : Vo dx dt + (Ra; Vi)
o Ja




Dissipativity

Energy inequality

[ (i (3o + ) ) es [ 590 Vawaxaes D)
S/Q<uo; (;sv2+P(s)>> dx

Compatibility
|R1[0,7'] X §| + ’Rz[O,T] X §| <&(7)D(7), &£ € Ll(O7 T)

/ / <1/t,x; |V - u|2> dx dt < CPD(T)
o Ja




Truly measure-valued solutions

Truly measure-valued solutions for the Euler system (with
E.Chiodaroli, O.Kreml, E. Wiedemann)

There is a measure-valued solution to the compressible Euler system
(without viscosity) that is not a limit of bounded LP weak solutions
to the Euler system.




Do we need measure valued solutions?

Limits of problems with higher order viscosities

Multipolar fluids with complex rheologies (Ne&as - gilhavy)

T(u, Veu, V2u,...)

Vxu +5Z —1Y ;N (Viu + Viu) + A A div,u I)

+ non-linear terms

Limit for § — 0

Limits of numerical solutions

Numerical solutions resulting from Karlsen-Karper and other schemes

Sub-critical parameters

p(o) = a0”, v < Yeritical




Weak (mv) - strong uniqueness

Theorem - EF, P.Gwiazda, A.Swierczewska-Gwiazda, E.
Wiedemann [2015]

A measure valued and a strong solution emanating from the same
initial data coincide as long as the latter exists




Relative energy (entropy)

Relative energy functional

& (g,u r, U) ()
- /Q <VT,X; Sslv = UP 4 P(s) — P/(r)(s 1) - P(r)> dx

1
:/ Vr i =S|V|> 4 P(s) dxf/<1/TX;sv>~de
o\ 2 Q

1
+/ = (Urx: S) |U|2 dx
Q2

—/Q<Vr,x;s> P'(r) dx—l—/P(r) dx

Q




Relative energy (entropy) inequality

Relative energy inequality

£ (Q,u r, U) +/ S(Viu) : (Vxu — V,U) dx dt + D(r)
0

< /Q <VO,X; %s\v — Uo|2 + P(s) — P'(r0)(5 — o) — P(r0)> dx

+/OTR<Q,U ‘r,U) dt




Remainder

R(g,u ‘r,U)
:_/T/ (Ve x,sv) - 0:U dx dt
o Ja

[ eisv@v) s V.U (i pls) divU] de d
0 Q

//[1/ 1)U - 09U+ (v s sv) - U- VU] dx dt

/ / [ 1 o — (Vexisv) - plﬁr)vxr} dx dt

+/0 <R1 ; < (U= P(r ))> df—/OT<R2;VXU>dt




Regularity

Theorem - EF, P.Gwiazda, A. Swierczewska-Gwiazda, E.
Wiedemann

Suppose that the initial data are smooth and satisfy the relevant
compatibility conditions. Let v; . be a measure-valued solution to
the compressible Navier-Stokes system with a dissipation defect D
such that

supp vi x C {(s,v) ‘ 0<s<p ve RN}

for a.a. (t,x) € (0, T) x Q.
Then D =0 and

Vi x = 5Q(t,x),u(t,x)

where o, u is a smooth solution.




Sketch of the proof

The Navier-Stokes system admits a local-in-time smooth
solution

The measure-valued solution coincides with the smooth solution
on its life-span

The smooth solution density component remains bounded by @
as long as the solution exists

m Y. Sun, C. Wang, and Z. Zhang [2011]: The strong solution can
be extended as long as the density component remains bounded




Corollary

Convergence of numerical solutions

Bounded numerical solutions emanating from smooth data that

converge to a measure-valued solution converge, in fact,
unconditionally to the unique strong solution




