# Measure-valued solutions and their applications in numerical analysis

#### **Eduard Feireisl**

based on joint work with P. Gwiazda, A. Świerczewska-Gwiazda (Warsaw), M. Medvidová/Lukáčová (Mainz), E.Wiedemann (Hannover)

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

SIAM PDE conference, Baltimore, 9-12 December 2017

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078

### Measure-valued solutions revisited

#### Motto: The larger the better

Measure valued solutions  $\equiv$  the largest class of objects in which the smooth (classical) solutions of a given problem are uniquely determined by the data

#### **Advantages**

- Limits of approximate problems (low viscosity, low Mach number limit)
- Limits of approximate solutions obtained via numerical schemes

# Compressible Navier-Stokes system

#### Field equations

$$\begin{split} \partial_t \varrho + \mathrm{div}_{\mathsf{x}}(\varrho \mathbf{u}) &= 0 \\ \partial_t(\varrho \mathbf{u}) + \mathrm{div}_{\mathsf{x}}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_{\mathsf{x}} \rho(\varrho) &= \mathrm{div}_{\mathsf{x}} \mathbb{S}(\nabla_{\mathsf{x}} \mathbf{u}) \end{split}$$

#### Isentropic EOS, Newton's rheological law

$$p(\varrho) = a\varrho^{\gamma}$$

$$\mathbb{S}(\nabla_{\mathbf{x}}\mathbf{u}) = \mu\left(\nabla_{\mathbf{x}}\mathbf{u} + \nabla_{\mathbf{x}}^{t}\mathbf{u} - \frac{2}{3}\mathrm{div}_{\mathbf{x}}\mathbf{u}\mathbb{I}\right) + \eta\mathrm{div}_{\mathbf{x}}\mathbf{u}\mathbb{I}, \ \mu > 0, \ \eta \geq 0$$

#### No-slip boundary conditions

$$\mathbf{u}|_{\partial\Omega}=0$$

### **Dissipative solutions**

#### Energy (entropy) inequality

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \left( \frac{1}{2} \varrho |\mathbf{u}|^2 + P(\varrho) \right) \, \mathrm{d}x + \int_{\Omega} \mathbb{S}(\nabla_x \mathbf{u}) : \nabla_x \mathbf{u} \, \mathrm{d}x \leq 0$$

$$P(\varrho) = \varrho \int_{1}^{\varrho} \frac{p(z)}{z^2} \, \mathrm{d}z$$

#### Known results

- Local strong solution for any data and global weak solutions for small data. Matsumura and Nishida [1983], Valli and Zajaczkowski [1986], among others
- Global-in-time weak solutions.  $p(\varrho)=\varrho^{\gamma},\ \gamma\geq 9/5,\ N=3,\ \gamma\geq 3/2,\ N=2$  P.L. Lions [1998],  $\gamma>3/2,\ N=3,\ \gamma>1,\ N=2$  EF, Novotný, Petzeltová [2000],  $\gamma=1,\ N=2$  Plotnikov and Vaigant [2014]
- Measure-valued solutions. Neustupa [1993], related results Málek, Nečas, Rokyta, Růžička, Nečasová Novotný



# Numerical method [T. Karper]

#### **FV** framework

regular tetrahedral mesh,  $Q_h = \{v \mid v = \text{piece-wise constant}\}$ 

#### FE framework - Crouzeix - Raviart

$$V_h = \left\{ v \;\middle|\; v = \mathsf{piece\text{-}wise} \; \mathsf{affine}, \; \widetilde{v}_\Gamma \; \mathsf{continuous} \; \mathsf{on} \; \mathsf{face} \; \Gamma 
ight\}$$

$$\tilde{v_{\Gamma}} \equiv \frac{1}{|\Gamma|} \int_{\Gamma} v \, dS_{x}$$

#### Upwind discretization of convective terms

$$\langle h\mathbf{u}; \nabla_{\mathbf{x}}\varphi \rangle_{\mathcal{E}} \approx \sum_{\mathbf{r}} \int_{\Gamma} \operatorname{Up}[h, \mathbf{u}][[\varphi]] \ \mathrm{dS}_{\mathbf{x}}$$

# Dissipative upwind operator

#### **Upwind operator**

$$\begin{aligned} \operatorname{Up}[r_{h}, \mathbf{u}_{h}] &= \underbrace{\{r_{h}\} \langle \mathbf{u}_{h} \cdot \mathbf{n} \rangle_{\Gamma}}_{\text{convective part}} - \frac{1}{2} \underbrace{\max\{h^{\alpha}; |\langle \mathbf{u}_{h} \cdot \mathbf{n} \rangle_{\Gamma}|\} [[r_{h}]]}_{\text{dissipative part}} \\ &= \underbrace{r_{h}^{\text{out}}[\langle \mathbf{u}_{h} \cdot \mathbf{n} \rangle_{\Gamma}]^{-} + r_{h}^{\text{in}}[\langle \mathbf{u}_{h} \cdot \mathbf{n} \rangle_{\Gamma}]^{+}}_{\text{standard upwind}} - \frac{h^{\alpha}}{2} [[r_{h}]] \chi \left(\frac{\langle \mathbf{u}_{h} \cdot \mathbf{n} \rangle_{\Gamma}}{h^{\alpha}}\right) \end{aligned}$$

#### **Auxilliary function**

$$\chi(z) = \begin{cases} 0 \text{ for } z < -1, \\ z+1 \text{ if } -1 \le z \le 0 \\ 1-z \text{ if } 0 < z \le 1 \\ 0 \text{ for } z > 1 \end{cases}$$

### Numerical scheme

### Discrete time derivative - implicit scheme

$$D_t v_h^k = \frac{v_h^k - v_h^{k-1}}{\Delta t}$$

### Continuity method

$$\int_{\Omega_h} D_t \varrho_h^k \phi \mathrm{d} x - \sum_{\Gamma \in \Gamma_{t-1}} \int_{\Gamma} \mathrm{Up}[\varrho_h^k, \mathbf{u}_h^k] \left[ [\phi] \right] \mathrm{d} S_x = 0$$

#### Momentum method

$$\begin{split} \int_{\Omega_h} D_t \left( \varrho_h^k \left\langle \mathbf{u}_h^k \right\rangle \right) \cdot \boldsymbol{\phi} \mathrm{d}x &- \sum_{\Gamma \in \Gamma_{\mathrm{int}}} \int_{\Gamma} \mathrm{Up}[\varrho_h^k \left\langle \mathbf{u}_h^k \right\rangle, \mathbf{u}_h^k] \cdot \left[ \left[ \left\langle \boldsymbol{\phi} \right\rangle \right] \right] \mathrm{dS}_x \\ &- \int_{\Omega_h} \boldsymbol{p}(\varrho_h^k) \mathrm{div}_h \boldsymbol{\phi} \mathrm{d}x \\ &+ \mu \int_{\Omega} \left. \nabla_h \mathbf{u}_h^k : \nabla_h \boldsymbol{\phi} \mathrm{d}x + \left( \frac{\mu}{3} + \eta \right) \int_{\Omega} \mathrm{div}_h \mathbf{u}_h^k \mathrm{div}_h \boldsymbol{\phi} \mathrm{d}x = 0 \end{split}$$





# Convergence results for Karper's scheme

Convergence to weak solutions

**Karper [2013]:** Convergence to a weak solution if  $\gamma > 3$ 

**Error** estimates

Gallouet, Herbin, Maltese, Novotný [2015]

Convergence to smooth solutions + error estimates if  $\gamma > 3/2$ ,  $\Omega$  a polyhedral domain

# Convergence for general adiabatic coefficient

### EF, M. Lukáčová/Medviďová [2016]

Let  $\Omega \subset \mathbb{R}^3$  be a smooth bounded domain. Let

$$1 < \gamma < 2$$
,  $\Delta t \approx h$ ,  $0 < \alpha < 2(\gamma - 1)$ .

Suppose that the initial data are smooth and that the compressible Navier-Stokes system admits a smooth solution in [0, T] in the class

$$\varrho, \ \nabla_{\mathsf{x}}\varrho, \ \mathbf{u}, \nabla_{\mathsf{x}}\mathbf{u} \in C([0,T] \times \overline{\Omega})$$

$$\partial_t \textbf{u} \in L^2(0,\, T;\, C(\overline{\Omega}; R^3)), \,\, \varrho > 0, \,\, \textbf{u}|_{\partial\Omega} = 0.$$

Then

$$\varrho_h \to \varrho$$
 (strongly) in  $L^{\gamma}((0,T) \times K)$ 

$$\mathbf{u}_h \to \mathbf{u}$$
 (strongly) in  $L^2((0,T) \times K; R^3)$ 

for any compact  $K \subset \Omega$ .

# **General strategy**

#### Basic properties of numerical scheme

Show stability, consistency, discrete energy inequality

#### Measure valued solutions

Show convergence of the scheme to a

dissipative measure – valued solution

#### Weak-strong uniqueness

Use the weak-strong uniqueness principle in the class of measure-valued solutions. Strong and measure valued solutions emanating from the same initial data coincide as long as the latter exists

### Measure-valued solutions

### Parameterized (Young) measure

$$\begin{split} \nu_{t,x} \in L^{\infty}_{\text{weak}}((0,T) \times \Omega; \mathcal{P}([0,\infty) \times R^N), \ [s,\mathbf{v}] \in [0,\infty) \times R^N \\ \varrho(t,x) = \langle \nu_{t,x}; \mathbf{s} \rangle, \ \mathbf{u} = \langle \nu_{t,x}; \mathbf{v} \rangle \in L^2(0,T; W_0^{1,2}(\Omega; R^N)) \end{split}$$

#### Field equations revisited

$$\int_{0}^{T} \int_{\Omega} \langle \nu_{t,x}; s \rangle \, \partial_{t} \varphi + \langle \nu_{t,x}; s \mathbf{v} \rangle \cdot \nabla_{x} \varphi \, dx \, dt = \langle R_{1}; \nabla_{x} \varphi \rangle$$

$$\int_0^T \int_{\Omega} \langle \nu_{t,x}; s\mathbf{v} \rangle \cdot \partial_t \varphi + \langle \nu_{t,x}; s\mathbf{v} \otimes \mathbf{v} \rangle \cdot \nabla_x \varphi + \langle \nu_{t,x}; p(s) \rangle \operatorname{div}_x \varphi \, dx \, dt$$
$$= \int_0^T \int_{\Omega} \mathbb{S}(\nabla_x \mathbf{u}) : \nabla_x \varphi \, dx \, dt + \langle R_2; \nabla_x \varphi \rangle$$

# Dissipativity

#### **Energy inequality**

$$\int_{\Omega} \left\langle \nu_{\tau,x}; \left( \frac{1}{2} s |\mathbf{v}|^2 + P(s) \right) \right\rangle \, \mathrm{d}x + \int_{0}^{\tau} \int_{\Omega} \mathbb{S}(\nabla_{x} \mathbf{u}) : \nabla_{x} \mathbf{u} \, \mathrm{d}x \, \mathrm{d}t + \boxed{\mathcal{D}(\tau)}$$

$$\leq \int_{\Omega} \left\langle \nu_{0}; \left( \frac{1}{2} s |\mathbf{v}|^2 + P(s) \right) \right\rangle \, \mathrm{d}x$$

#### Compatibility

$$\begin{aligned} \left| R_1[0,\tau] \times \overline{\Omega} \right| + \left| R_2[0,\tau] \times \overline{\Omega} \right| &\leq \xi(\tau) \mathcal{D}(\tau), \ \xi \in L^1(0,T) \\ \int_0^\tau \int_{\Omega} \left\langle \nu_{t,x}; |\mathbf{v} - \mathbf{u}|^2 \right\rangle \ \mathrm{d}x \ \mathrm{d}t &\leq c_P \mathcal{D}(\tau) \end{aligned}$$

### Truly measure-valued solutions

Truly measure-valued solutions for the Euler system (with E.Chiodaroli, O.Kreml, E. Wiedemann)

There is a measure-valued solution to the compressible Euler system (without viscosity) that *is not* a limit of bounded  $L^p$  weak solutions to the Euler system.

### Do we need measure valued solutions?

### Limits of problems with higher order viscosities

Multipolar fluids with complex rheologies (Nečas - Šilhavý)

$$\begin{split} &\mathbb{T}(\mathbf{u}, \nabla_{x}\mathbf{u}, \ \nabla_{x}^{2}\mathbf{u}, \dots) \\ &= \mathbb{S}(\nabla_{x}\mathbf{u}) + \delta \sum_{j=1}^{k-1} \left( (-1)^{j} \mu_{j} \Delta^{j} (\nabla_{x}\mathbf{u} + \nabla_{x}^{t}\mathbf{u}) + \lambda_{j} \Delta^{j} \mathrm{div}_{x}\mathbf{u} \ \mathbb{I} \right) \\ &+ \text{non-linear terms} \end{split}$$

Limit for  $\delta \to 0$ 

#### Limits of numerical solutions

Numerical solutions resulting from Karlsen-Karper and other schemes

#### Sub-critical parameters

$$p(\varrho) = a\varrho^{\gamma}, \ \gamma < \gamma_{\text{critical}}$$

# Weak (mv) - strong uniqueness

Theorem - EF, P.Gwiazda, A.Świerczewska-Gwiazda, E. Wiedemann [2015]

A measure valued and a strong solution emanating from the same initial data coincide as long as the latter exists

# Relative energy (entropy)

#### Relative energy functional

$$\mathcal{E}\left(\varrho, \mathbf{u} \middle| r, \mathbf{U}\right)(\tau)$$

$$= \int_{\Omega} \left\langle \nu_{\tau, x}; \frac{1}{2} s |\mathbf{v} - \mathbf{U}|^2 + P(s) - P'(r)(s - r) - P(r) \right\rangle dx$$

$$= \int_{\Omega} \left\langle \nu_{\tau, x}; \frac{1}{2} s |\mathbf{v}|^2 + P(s) \right\rangle dx - \int_{\Omega} \left\langle \nu_{\tau, x}; s \mathbf{v} \right\rangle \cdot \mathbf{U} dx$$

$$+ \int_{\Omega} \frac{1}{2} \left\langle \nu_{\tau, x}; s \right\rangle |\mathbf{U}|^2 dx$$

$$- \int_{\Omega} \left\langle \nu_{\tau, x}; s \right\rangle P'(r) dx + \int_{\Omega} p(r) dx$$

# Relative energy (entropy) inequality

#### Relative energy inequality

$$\mathcal{E}\left(\varrho, \mathbf{u} \mid r, \mathbf{U}\right) + \int_0^{\tau} \mathbb{S}(\nabla_x \mathbf{u}) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) \, dx \, dt + \mathcal{D}(\tau)$$

$$\leq \int_{\Omega} \left\langle \nu_{0,x}; \frac{1}{2} s |\mathbf{v} - \mathbf{U}_0|^2 + P(s) - P'(r_0)(s - r_0) - P(r_0) \right\rangle \, dx$$

$$+ \int_0^{\tau} \mathcal{R}\left(\varrho, \mathbf{u} \mid r, \mathbf{U}\right) \, dt$$

### Remainder

$$\mathcal{R}\left(\varrho,\mathbf{u}\ \middle|\ r,\mathbf{U}\right)$$

$$= -\int_{0}^{\tau} \int_{\Omega} \left\langle \nu_{t,x}, s\mathbf{v} \right\rangle \cdot \partial_{t}\mathbf{U} \ \mathrm{d}x \ \mathrm{d}t$$

$$-\int_{0}^{\tau} \int_{\overline{\Omega}} \left[ \left\langle \nu_{t,x}; s\mathbf{v} \otimes \mathbf{v} \right\rangle : \nabla_{x}\mathbf{U} + \left\langle \nu_{t,x}; p(s) \right\rangle \mathrm{div}_{x}\mathbf{U} \right] \mathrm{d}x \ \mathrm{d}t$$

$$+ \int_{0}^{\tau} \int_{\Omega} \left[ \left\langle \nu_{t,x}; s \right\rangle \mathbf{U} \cdot \partial_{t}\mathbf{U} + \left\langle \nu_{t,x}; s\mathbf{v} \right\rangle \cdot \mathbf{U} \cdot \nabla_{x}\mathbf{U} \right] \ \mathrm{d}x \ \mathrm{d}t$$

$$+ \int_{0}^{\tau} \int_{\Omega} \left[ \left\langle \nu_{t,x}; \left(1 - \frac{s}{r}\right) \right\rangle p'(r) \partial_{t}r - \left\langle \nu_{t,x}; s\mathbf{v} \right\rangle \cdot \frac{p'(r)}{r} \nabla_{x}r \right] \ \mathrm{d}x \ \mathrm{d}t$$

$$+ \int_{0}^{\tau} \left\langle R_{1}; \frac{1}{2} \nabla_{x} \left( |\mathbf{U}|^{2} - P'(r) \right) \right\rangle \ \mathrm{d}t - \int_{0}^{\tau} \left\langle R_{2}; \nabla_{x}\mathbf{U} \right\rangle \mathrm{d}t$$

# Regularity

# Theorem - EF, P.Gwiazda, A. Świerczewska-Gwiazda, E. Wiedemann

Suppose that the initial data are smooth and satisfy the relevant compatibility conditions. Let  $\nu_{t,x}$  be a measure-valued solution to the compressible Navier-Stokes system with a dissipation defect  $\mathcal D$  such that

$$\mathrm{supp}\ \nu_{t,x}\subset \Big\{(s,\boldsymbol{v})\ \Big|\ 0\leq s\leq \overline{\varrho},\ \boldsymbol{v}\in R^N\Big\}$$

for a.a.  $(t,x) \in (0,T) \times \Omega$ .

Then  $\mathcal{D}=0$  and

$$\nu_{t,x} = \delta_{\varrho(t,x),\mathbf{u}(t,x)}$$

where  $\varrho$ , **u** is a smooth solution.

### Sketch of the proof

- The Navier-Stokes system admits a local-in-time smooth solution
- The measure-valued solution coincides with the smooth solution on its life-span
- The smooth solution density component remains bounded by  $\overline{\varrho}$  as long as the solution exists
- Y. Sun, C. Wang, and Z. Zhang [2011]: The strong solution can be extended as long as the density component remains bounded

### Corollary

#### Convergence of numerical solutions

Bounded numerical solutions emanating from smooth data that converge to a measure-valued solution converge, in fact, unconditionally to the unique strong solution