Galois connection for multiple-output operations

Emil Jeřábek

jerabek@math.cas.cz

http://math.cas.cz/~jerabek/

Institute of Mathematics of the Czech Academy of Sciences, Prague

96. Arbeitstagung Allgemeine Algebra, June 2018, Darmstadt

Clones and coclones: the classical case

1 Clones and coclones: the classical case

2 Interlude: reversible computing

3 Clones and coclones revamped

Clones

Fix a base set B

Definition

A clone is a set C of functions $f: B^n \to B$, $n \ge 0$, s.t.

- ▶ the projections $\pi_{n,i}: B^n \to B$, $\pi_{n,i}(\vec{x}) = x_i$, are in C
- $ightharpoonup \mathcal{C}$ is closed under composition:

if $g: B^m \to B$ and $f_i: B^n \to B$ are in C, then

$$h(\vec{x}) = g(f_0(\vec{x}), \ldots, f_{m-1}(\vec{x})) \colon B^n \to B$$

is in \mathcal{C}

Clones (cont'd)

- lacktriangleright Clone generated by a set of functions ${\mathcal F}$
 - = term functions of the algebra (B, \mathcal{F})
 - = functions computable by circuits over B using \mathcal{F} -gates
 - ► Classical computing: clones on $B = \{0, 1\}$ completely classified by [Post41]
- ▶ Clones can be studied by means of relations they preserve

Preservation

 $f: B^n \to B$ preserves $r \subseteq B^k$:

Galois connection

 ${\mathcal F}$ set of functions, ${\mathcal R}$ set of relations

Invariants and polymorphisms:

$$Inv(\mathcal{F}) = \{r : \forall f \in \mathcal{F} \ f \text{ preserves } r\}$$
$$Pol(\mathcal{R}) = \{f : \forall r \in \mathcal{R} \ f \text{ preserves } r\}$$

- \implies Galois connection: $\mathcal{R} \subseteq \mathsf{Inv}(\mathcal{F}) \iff \mathcal{F} \subseteq \mathsf{Pol}(\mathcal{R})$
 - ▶ $Pol(Inv(\mathcal{F}))$, $Inv(Pol(\mathcal{R}))$ closure operators closed sets = range of Pol, Inv(resp.)
 - ▶ Inv, Pol are mutually inverse dual isomorphisms of the complete lattices of closed sets

Basic correspondence

Theorem [Gei68, BKKR69]

If B is finite:

- ► Galois-closed sets of functions = clones
- ► Galois-closed sets of relations = coclones

Definition

Coclone = set of relations closed under definitions by primitive positive FO formulas:

$$R(x^0,\ldots,x^{k-1}) \Leftrightarrow \exists x^k,\ldots,x^l \bigwedge_{i\leq m} \varphi_i(x^0,\ldots,x^l)$$

where each φ_i is atomic

Coclones (cont'd)

Equivalently: a set of relations is a coclone if it contains the identity $x_0 = x_1$, and is closed under

- variable permutation and identification
- ▶ finite Cartesian products and intersections
- projection on a subset of variables

Closely related to constraint satisfaction problems

Variants

A host of generalizations of this Galois connection appear in the literature (e.g., [lsk71,Ros71,Pös80,Ros83,Cou05,Ker12]):

- ▶ infinite base set
- partial functions, multifunctions
- functions $A^n \to B$
- categorial setting
- **.**..

Interlude: reversible computing

1 Clones and coclones: the classical case

2 Interlude: reversible computing

3 Clones and coclones revamped

Computation in the physical world

Conventional models:

computation can destroy the input on a whim

$$(x,y)\mapsto x+y$$

Reality check:

Landauer's principle

Erasure of n bits of information incurs an $n kT \log 2$ increase of entropy elsewhere in the system

⇒ dissipates energy as heat

Time-evolution operators in quantum mechanics are reversible

Reversible computing

Reversible computation models:

only allow operations that can be inverted

$$(x,y)\mapsto (x,x+y)$$

Typical formalisms: circuits using reversible gates

- Classical computing:
 - motivated by energy efficiency
 - ▶ *n*-bit reversible gate = permutation $\{0,1\}^n \to \{0,1\}^n$
- Quantum computing:
 - ▶ *n* qubits of memory = Hilbert space \mathbb{C}^{2^n}
 - quantum gate = unitary linear operator
 inherently reversible

Clones of reversible transformations

Reversible operations computable from a fixed set of gates:

- variable permutations, dummy variables
- composition
- ancilla bits: preset constant inputs, required to return to the original state at the end

⇒ notion of "reversible clones"

Recently: [AGS15] gave complete classification for $B = \{0, 1\}$ (\approx Post's lattice for reversible operations)

Clones and coclones revamped

1 Clones and coclones: the classical case

2 Interlude: reversible computing

3 Clones and coclones revamped

Goal

Generalize the clone–coclone Galois connection to encompass reversible clones

Let's first have a look at some simple reversible clones on $\{0,1\}$

Examples

Conservative operations $f: \{0,1\}^n \to \{0,1\}^n$ preserve Hamming weight

$$f(\vec{a}) = \vec{b} \implies \sum_{i < n} a_i = \sum_{i < n} b_i$$

► Mod-*k* preserving operations: Hamming weight modulo *k*

$$f(\vec{a}) = \vec{b} \implies \sum_{i \le n} a_i \equiv \sum_{i \le n} b_i \pmod{k}$$

Permutations "can count": invariants can't be just relations

Examples (cont'd)

- Affine operations $f: \{0,1\}^n \to \{0,1\}^n$ $f(\vec{x}) = A\vec{x} + \vec{c}$, where $\vec{c} \in \mathbb{F}_2^n$, $A \in \mathbb{F}_2^{n \times n}$ non-singular
 - \iff each component $f_i: \{0,1\}^n \to \{0,1\}$ affine
 - ▶ classical invariant: f_i affine \iff preserves the relation a+b+c+d=0 on \mathbb{F}_2^4
 - ▶ let $w: \mathbb{F}_2^4 \to \mathbb{F}_2$, $w(a^0, a^1, a^2, a^3) = a^0 + a^1 + a^2 + a^3$
 - identify $\mathbb{F}_2 = \{0,1\} = (\{0,1\},0,\vee)$
 - ▶ $f: \{0,1\}^n \to \{0,1\}^m \text{ affine } \iff$ $f(a_0^0, \dots, a_{n-1}^0) = (b_0^0, \dots, b_{m-1}^0), \dots,$ $f(a_0^3, \dots, a_{n-1}^3) = (b_0^3, \dots, b_{m-1}^3)$ implies

$$\bigvee_{i < n} w(a_i^0, a_i^1, a_i^2, a_i^3) \ge \bigvee_{i < m} w(b_i^0, b_i^1, b_i^2, b_i^3)$$

General case

We consider a preservation relation between

- ▶ partial multifunctions $f: B^n \Rightarrow B^m$
 - formally: $f \subseteq B^n \times B^m$, $n, m \ge 0$
 - $f(\vec{x}) \approx \vec{y}$ denotes $(\vec{x}, \vec{y}) \in f$
 - ▶ $Pmf = \bigcup_{n,m} Pmf_{n,m}$
- "weight functions" $w: B^k \to M$
 - $(M, 1, \cdot, \leq)$ partially ordered monoid, $k \geq 0$
 - Wgt = $\bigcup_k \text{Wgt}_k$

Preservation

 $f: B^n \Rightarrow B^m$ preserves $w: B^k \rightarrow M$:

$$a_{0}^{0} \cdots a_{j}^{0} \cdots a_{n-1}^{0} \qquad b_{0}^{0} \cdots b_{m-1}^{0}$$
 $\vdots \qquad \vdots \qquad \vdots \qquad f \qquad \vdots$
 $a_{0}^{i} \cdots a_{j}^{i} \cdots a_{n-1}^{i} \longrightarrow b_{0}^{i} \cdots b_{m-1}^{i}$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $a_{0}^{k-1} \cdots a_{j}^{k-1} \cdots a_{n-1}^{k-1} \longrightarrow b_{0}^{k-1} \cdots b_{m-1}^{k-1}$
 $\downarrow w$
 $\downarrow w$

Invariants and polymorphisms

The preservation relation induces a Galois connection

Definition

If
$$\mathcal{F} \subseteq \mathsf{Pmf}$$
, $\mathcal{W} \subseteq \mathsf{Wgt}$:
$$\mathsf{Inv}(\mathcal{F}) = \{ w \in \mathsf{Wgt} : \forall f \in \mathcal{F} \ f \ \mathsf{preserves} \ w \}$$

$$\mathsf{Pol}(\mathcal{W}) = \{ f \in \mathsf{Pmf} : \forall w \in \mathcal{W} \ f \ \mathsf{preserves} \ w \}$$

What are the closed classes?

Clones

Pol(W) has the following properties:

Definition

 $\mathcal{C} \subseteq \mathsf{Pmf}$ is a pmf clone if

- ▶ (identity) $id_n: B^n \to B^n$ is in C
- ► (composition) $f: B^n \Rightarrow B^m, g: B^m \Rightarrow B^r \text{ in } C$ $\implies g \circ f: B^n \Rightarrow B^r \text{ in } C$
- ▶ (products) $f: B^n \Rightarrow B^m, g: B^{n'} \Rightarrow B^{m'}$ in C $\implies f \times g: B^{n+n'} \Rightarrow B^{m+m'}$ in C $(f \times g)(x, x') \approx (y, y') \iff f(x) \approx y, g(x') \approx y'$
- ▶ (topology) $\mathcal{C} \cap \mathsf{Pmf}_{n,m}$ is topologically closed . . .

Topological/local closure

Two interesting topologies on $\{0,1\}$:

- ▶ 2_H discrete (Hausdorff)
- ▶ **2**_S Sierpiński: {0} closed, but {1} not

Lemma

Let $C \subseteq \mathcal{P}(X) \approx \mathbf{2}^X$. TFAE:

- ightharpoonup C is closed in 2_S^X
- ightharpoonup C is closed in $\mathbf{2}_{H}^{X}$ and under subsets
- ▶ C is closed under directed unions and subsets
- ▶ $Y \in C$ iff all finite $Y' \subseteq Y$ are in C

Previous slide: apply to $Pmf_{n,m} = \mathcal{P}(B^n \times B^m)$

Coclones

 $Inv(\mathcal{F})$ has the following properties:

Definition

 $\mathcal{D} \subseteq \mathsf{Wgt}$ is a weight coclone if

- ▶ (variable manipulation) $w: B^k \to M$ in \mathcal{D} , $\varrho: k \to I$ $\implies w(x^{\varrho(0)}, \dots, x^{\varrho(k-1)}): B^I \to M$ in \mathcal{D}
- ► (homomorphisms) $w: B^k \to M \text{ in } \mathcal{D}, \varphi: M \to N$ ⇒ $\varphi \circ w: B^k \to N \text{ in } \mathcal{D}$
- $\begin{array}{ccc} \bullet & \text{(direct products)} & w_{\alpha} \colon B^{k} \to M_{\alpha} \text{ in } \mathcal{D} & (\alpha \in I) \\ \\ \Longrightarrow & (w_{\alpha}(x))_{\alpha \in I} \colon B^{k} \to \prod_{\alpha \in I} M_{\alpha} \text{ in } \mathcal{D} \end{array}$
- (submonoids) $w: B^k \to M \text{ in } \mathcal{D}, w[B^k] \subseteq N \subseteq M$ $\implies w: B^k \to N \text{ in } \mathcal{D}$

Galois connection

Main theorem

For any B:

- ► Galois-closed sets of pmf = pmf clones
- ► Galois-closed classes of weights = weight coclones

Smaller invariants

Invariants of a pmf clone ${\cal C}$ form a proper class

Better: C = Pol(W) s.t. for each $w: B^k \to M$ in W:

- ▶ M is generated by $w[B^k]$
 - ► call such weights tight
 - ► *M* finitely generated if *B* finite
- M is subdirectly irreducible (as a pomonoid)

Interesting case: (unordered) commutative monoids

- ► f.g. subdirectly irreducible are finite [Mal58]
- known structure [Sch66,Gri77]

Variants

We might want to restrict Pmf or Wgt, or impose additional closure conditions, e.g.

- ▶ dimensions of $f: B^n \Rightarrow B^m$:
 - ▶ $n, m \ge 1, m = 1, n = m$
- ▶ "kind" of *f*:
 - (partial/total) functions, permutations
- constraints on monoids:
 - commutative, unordered
- constants, ancillas

Monoid restrictions

Classes of weights $w: B^k \to M$ with M commutative \iff clones containing variable permutations

$$(x_0,\ldots,x_{n-1})\mapsto (x_{\pi(0)},\ldots,x_{\pi(n-1)})$$

generated by swap $(x, y) \mapsto (y, x)$

Classes of weights $w: B^k \to (M, 1, \cdot, =)$ (i.e., unordered monoids)

 \iff clones closed under inverse

$$f: B^n \Rightarrow B^m \text{ in } \mathcal{C} \implies f^{-1}: B^m \Rightarrow B^n \text{ in } \mathcal{C}$$

Dimension constraints

 $f: B^n \Rightarrow B^m$ with simple restrictions on n, m form clones \leftarrow is \rightarrow correspond to inclusion of particular weights:

- ▶ $n, m \ge 1$: constant weight $c_1: B^0 \to (2, 1, \land, =)$
- ▶ n = m: $c_1: B^0 \to (\mathbb{N}, 0, +, =)$

m=1: clone $\mathcal C$ determined by $f\colon B^n\Rightarrow B$ iff contains swap & diagonal maps $\Delta_n\colon B\to B^n$, $\Delta_n(x)=(x,\ldots,x)$

On the dual side:

- ▶ tight $w: B^k \to M$ in Inv(C) are $\{\land, \top\}$ -semilattices
- ▶ subdirectly irreducible: $M = (2, 1, \land, \leq)$
 - ⇒ weight functions = relations
 - ⇒ agrees with the classical description

Uniqueness conditions

Partial functions form a clone ⇒

 $\mathcal C$ consists of partial functions iff $Inv(\mathcal C)$ includes a particular weight:

▶ Kronecker delta $\delta \colon B^2 \to (\mathbf{2}, 1, \land, \leq)$

Symmetrically:

 ${\mathcal C}$ consists of injective pmf iff ${\sf Inv}({\mathcal C})$ includes

$$\delta \colon B^2 \to (\{0,1\},1,\wedge,\geq)$$

Totality conditions

In the classical case:

- ▶ totality of functions in $\mathcal{C} \iff$ closure of Inv(\mathcal{C}) under existential quantification
- ▶ doesn't work well over infinite (uncountable) B

Definition

$$w \colon B^{k+1} o (M,1,\cdot,\leq)$$
 weight, $(M,1,\cdot,0,+)$ semiring Define $w^+ \colon B^k o (M,1,\cdot,\leq)$ by
$$w^+(x^0,\dots,x^{k-1}) = \sum_{n \in \mathbb{N}} w(x^0,\dots,x^{k-1},u)$$

Orders on semirings

Definition

- ▶ posemiring = $(M, 1, \cdot, 0, +, \leq)$ s.t.
 - $(M, 1, \cdot, \leq)$ and $(M, 0, +, \leq)$ pomonoids
 - $(M, 1, \cdot, 0, +)$ semiring
- ▶ positive semiring = posemiring s.t. $0 \le 1$ negative semiring = posemiring s.t. $1 \le 0$
- ▶ idempotent semiring: x + x = x semilattice ⇒ can be ordered in two ways:
 - ▶ ∨-semiring: + is ∨
 - = idempotent positive semiring
 - $ightharpoonup \land$ -semiring: + is \land
 - = idempotent negative semiring

Completeness of posemirings

Definition

- ► complete idempotent semiring (V-semiring, ∧-semiring):
 - complete lattice
- ► continuous idempotent semiring (∨-semiring, ∧-semiring):
 - complete
 - infinite distributive laws

$$\left(\sum_{i\in I} x_i\right) y = \sum_{i\in I} x_i y \qquad y \sum_{i\in I} x_i = \sum_{i\in I} y x_i$$

Continuous ∨-semirings = unital quantales

Total clones

$$\mathcal{C} = \mathsf{Pol}(\mathcal{D}), \ \mathcal{D} = \mathsf{Inv}(\mathcal{C})$$

For *B* countable, the following are equivalent:

- $ightharpoonup \mathcal{C}$ is generated by total multifunctions
- ▶ $w: B^{k+1} \to M$ is in \mathcal{D} , M is a continuous \vee -semiring $\implies w^+: B^k \to M$ is in \mathcal{D}

Symmetrically: clones of surjective pmf characterized using continuous \(-\semirings \)

For B finite, TFAE:

- $ightharpoonup \mathcal{C}$ is generated by mf extending a bijective function
- ▶ $w: B^{k+1} \to M$ is in \mathcal{D} , M is a posemiring $\implies w^+: B^k \to M$ is in \mathcal{D}

Ancillas

$$\mathcal{C} = \mathsf{Pol}(\mathcal{D}), \ \mathcal{D} = \mathsf{Inv}(\mathcal{C})$$

The following are equivalent:

C supports ancillas

$$c \in B$$
, $f: B^{n+1} \Rightarrow B^{m+1}$ in $C \implies f_c: B^n \Rightarrow B^m$ in C

$$f_c(\vec{x}) \approx \vec{y} \iff f(\vec{x}, c) \approx (\vec{y}, c)$$

▶ \mathcal{D} is generated by $w: B^k \to M$ s.t. the diagonal weights z = w(u, ..., u) for $u \in B$ are right-order-cancellative

$$xz \le yz \implies x \le y$$

Warning: Interferes badly with totality

Summary

- ▶ The standard clone—coclone duality extends to a Galois connection between partial multifunctions $B^n \Rightarrow B^m$ and pomonoid-valued functions $B^k \rightarrow M$
- ▶ Gracefully restricts to natural subclasses, such as total functions $B^n \to B^m$

Thank you for attention!

References

- ▶ S. Aaronson: Classifying reversible gates, Th. Comp. Sci. SE, 2014, http://cstheory.stackexchange.com/q/25730
- ► S. Aaronson, D. Grier, L. Schaeffer: The classification of reversible bit operations, 2015, arXiv:1504.05155 [quant-ph]
- ► V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, B. A. Romov: Galois theory for Post algebras I & II, Cybernetics 5 (1969), no. 3, 243–252, and no. 5, 531–539
- M. Couceiro: Galois connections for generalized functions and relational constraints, in: Contributions to General Algebra 16, Heyn, Klagenfurt 2005, 35–54
- D. Geiger: Closed systems of functions and predicates, Pacific J. Math. 27 (1968), 95–100
- ▶ P. A. Grillet: On subdirectly irreducible commutative semigroups, Pacific J. Math. 69 (1977), 55–71

References (cont'd)

- ▶ A. A. Iskander: Subalgebra systems of powers of partial universal algebras, Pacific J. Math. 38 (1971), 457–463
- ► E. Jeřábek: Galois connection for multiple-output operations, Algebra Universalis 79 (2018), art. no. 17
- ► S. Kerkhoff: A general Galois theory for operations and relations in arbitrary categories, Algebra Universalis 68 (2012), 325–352
- ► A. I. Mal'cev: On homomorphisms onto finite groups, Uchen. Zap. Ivanov. Gos. Ped. Inst. 18 (1958), 49–60, in Russian
- ► E. L. Post: The two-valued iterative systems of mathematical logic, Princeton University Press, 1941
- ▶ R. Pöschel: A general Galois theory for operations and relations and concrete characterization of related algebraic structures, Tech. Rep. R-01/80, Akademie der Wissenschaften der DDR, Zentralinstitut für Mathematik und Mechanik, 1980

References (cont'd)

- ▶ I. G. Rosenberg: A classification of universal algebras by infinitary relations, Algebra Universalis 1 (1971), 350–354
- Galois theory for partial algebras, in: Universal Algebra and Lattice Theory, LNM 1004, Springer, 1983, 257–272
- ▶ B. M. Schein: Homomorphisms and subdirect decompositions of semigroups, Pacific J. Math. 17 (1966), 529–547