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The language of arithmetic

Arithmetical theories (e.g., Peano arithmetic):

I in theory, the only objects are natural numbers
I in practice, we discuss all kinds of other stuff:

I sequences, strings, syntactic objects
I alorithms: recursive functions, Turing machines
I graphs, finite structures
I sets

This talk:
we focus on finite sets and their cardinality (“counting”)
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Finite sets in PA

Ways to represent sets in PA:

I encode sequences (e.g., Gödel’s β-function),
represents sets by sequences that enumerate them

I define the graph of exponentiation,
use binary expansion

u ∈ x ⇐⇒ u’th bit of x is 1 ⇐⇒
⌊

x
2u

⌋
is odd

I indirectly: bounded definable sets

X = {u < a : ϕ(u, z)}
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Choice of representation

Each has its merits

I bounded definable sets: most flexible
I binary expansion: 1–1 representation

In PA: all three representations are equivalent

Caveat:

I bounded definable sets 7→ encoded sets
≡ bounded comprehension schema
≡ induction
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Working with finite sets

What can we do with these sets in PA?

I intersection, union, relative complement
I Cartesian product, projection, . . .
I in fact: ZFfin

Counting the size:

I if a sequence w is an increasing enumeration of X
(“counting function”), put |X | := lh(w)

I PA proves |X ∪̇ Y | = |X |+ |Y |, |X × Y | = |X | · |Y |, . . .
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Below PA

The full power of PA is not needed

Everything works smoothly in I∆0 + EXP aka EA aka EFA:

I induction for bounded formulas + totality of 2x

I theory of Kalmár elementary recursive functions
I proves equivalence of representation of finite sets by

binary expansion, by sequences, and by bounded
∆0(exp)-definable sets (≈ elementary recursive)

I the definition of |X | by counting functions works
I all the expected basic properties hold
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Weaker theories?

Without exponentiation, things become interesting

Distinction between

I arbitrary numbers x : LARGE/long/binary
I numbers x s.t. 2x exists: small/short/unary/lengths

Notation: Log = {x : ∃y (2x = y)}

Sequence encoding works, with

I elements: LARGE
I length: small
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Sets without exponentiation

Representation matters now!

I sets by binary expansion: small sets of small numbers
I sets as sequences: small sets of LARGE numbers
I bounded definable sets: LARGE sets of LARGE numbers

We are primarily interested in bounded definable sets:

I want simple things like {0, . . . , b} to be sets
I most of useful sets are not logarithmically sparse
I NB: we may only allow sets definable by a very restrictive

class of formulas
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Counting without exponentiation?

Trouble: counting sets by enumeration only works
for sets encoded by sequences!

Challenge: Design a method of counting definable sets in
theories without exponentiation
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Theories of bounded arithmetic

Bounded formulas: only bounded quantifiers

∃x ≤ t ϕ(x) ⇐⇒ ∃x (x ≤ t ∧ ϕ(x))

∀x ≤ t ϕ(x) ⇐⇒ ∀x (x ≤ t → ϕ(x))

Þe oldest one [Par’71]: I∆0

I induction for ∆0 formulas = bounded formulas in LPA

I ∆0(N) = LinH (linear-time hierarchy)
I Parikh’s theorem: I∆0 ` ∀x ∃y θ(x , y), θ ∈ ∆0

=⇒ I∆0 ` ∀x ∃y ≤ t(x) θ(x , y) for some term t
I provably total recursive functions

are bounded by a polynomial
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Arithmetic for the polynomial hierarchy

Polynomial time bounds are more interesting than linear time!

I I∆0 + Ω1: ∀x ∃y (y = x |x |), |x | = dlog2(x + 1)e
I Buss’s theories: language 〈0, 1,+, ·,≤, bx/2c, |x |, x # y〉,

where x # y = 2|x | |y |

I T2 = induction for all bounded (Σb
∞) formulas:

conservative extension of I∆0 + Ω1
I Σb

i : i alternating blocks of bounded quantifiers, ignoring
sharply bounded quantifiers ∃x ≤ |t|, ∀x ≤ |t|

I T i
2 = Σb

i -IND
I Σb

1(N) = NP, Σb
i (N) = ΣP

i (i > 0)
I provably total Σb

i+1-definable functions of T i
2 are FPΣP

i
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Bigger picture

Proof complexity: (loose) 3-way correspondence between

I theories of arithmetic T
I complexity classes C
I propositional proof systems P

(we mostly ignore P in this talk)

I FC -functions are provably total in T
I T has induction (comprehension, etc.) only for

C -predicates
I “feasible reasoning”

Are basic properties of C provable while reasoning only with
C -concepts?
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Exact counting in bounded arithmetic

Enumeration by sequences =⇒ I∆0 can count sets up to
logarithmic size

[PW’87]: It can also do polylogarithmic size

In I∆0 + Ω1 and Buss’s theories, this makes no difference

We likely can’t do better

I Toda’s theorem: PH ⊆ P#P

if we can count ptime sets by Σb
∞ formulas, PH collapses

I Relativization: we cannot count Σb
0(α)-sets of more than

polylogarithmic size by Σb
∞(α) formulas

I translate to subexponential constant-depth circuits for
Majority
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Application of counting

What do we want to count in bounded arithmetic for, anyway?

I formalize randomized algorithms &
randomized complexity classes: ZPP, BPP, MA, . . .

I formalize probabilistic and counting arguments to prove
combinatorial statements

I Ramsey’s theorem: a graph of order n has a clique or
independent set of size ≥ 1

2 log n
I the tournament principle: a tournament with n players

has a dominating set of size ≤ log(n + 1)
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Example: BPP

A language L is in BPP if there is a randomized poly-time
algorithm P(w , r) such that

w ∈ L =⇒ Prr [P(w , r) accepts] ≥ 3
4

w /∈ L =⇒ Prr [P(w , r) accepts] ≤ 1
4

Examples:

I Rabin–Miller primality test
I polynomial identity testing
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Example: Tournament principle

Theorem: A tournament with n players has a dominating set
of size ≤ log(n + 1)

Proof:

I The expected number of wins of a random player is n/2
=⇒ fix a player x0 that wins all but ≤ n/2 matches

I In the remaining subtournament of size ≤ n/2,
fix a player x1 that wins all but ≤ n/4 matches

I . . .
I We reach zero after k ≤ log n steps. Then {x0, . . . , xk} is

a dominating set
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Example: Ramsey’s theorem

Theorem: An edge labelling of the complete graph Kn by two
colours has a homogeneous set of size ≥ 1

2 log n.

Proof: Let C :
(

[n]
2

)
→ {0, 1} be the labelling:

I Fix a vertex v0. There is c0 ∈ {0, 1} s.t. |G1| ≥ n/2,
where G1 = {v : C ({v0, v}) = c0}.

I Fix a vertex v1 ∈ G1. There is c1 ∈ {0, 1} s.t. |G2| ≥ n/4,
where G2 = {v ∈ G1 : C ({v1, v}) = c1}.

I . . .
I Carry on for k = log n steps: find vertices v0, . . . , vk and

c0, . . . , ck ∈ {0, 1} s.t. C ({vi , vj}) = ci for i < j
I One colour c ∈ {0, 1} occurs ≥ k/2 times among

c0, . . . , ck . Then {vi : ci = c} is a homogeneous set.
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Lower the expectations

We can’t count exactly.

But the examples do not need it:
an approximation will be good enough
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PHP

Pigeonhole principle:
a pigeonholes cannot accommodate b > a pigeons
(unless some of them share)

Formalization with relations (multifunctions):

mPHPb
a(R) = ∀y < b ∃x < a R(y , x)

→ ∃y < y ′ < b ∃x < a
(
R(y , x) ∧ R(y ′, x)

)
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Variants of PHP

Special cases:

I R is a function: injective PHP

iPHPb
a(g) = ∀y < b g(y) < a→ ∃y < y ′ < b g(y) = g(y ′)

I R−1 is a function: surjective (“dual”) PHP

sPHPb
a(f ) = ∃y < b ∀x < a f (x) 6= y

I both are functions: retraction-pair PHP

rPHPb
a(f , g) = ∀y < b g(y) < a→ ∃y < b f (g(y)) 6= y

Emil Jeřábek Counting in weak theories LC 2017 19:33



Weak PHP

I mPHPa+1
a is an exact counting principle

not available in bounded arithmetic
I Weak PHP: b � a, typically: mPHP2a

a , mPHPa2

a

Theorem [PWW’88, MPW’02]:

T 2
2 ` mWPHP(Σb

1)

We can employ variants of WPHP as convenience axioms

For various reasons, the useful variant is sWPHP (or rWPHP)
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Counting with WPHP

Basic idea: witness that |X | ≤ a by exhibiting a function f
such that f : a� X (for sWPHP) or f : X ↪→ a (for iWPHP)

Trouble: Where shall we get these functions from?

Ostensibly, WPHP is a passive counting principle:
it says something is impossible, it does not supply any
counting functions
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Counting with WPHP: examples

Ad hoc counting arguments using WPHP:

I [PWW’88]: T2 proves the existence of ∞ many primes
I if there are no primes in [a, a11], conjure up an injection

9a log a ↪→ 8a log a by manipulating prime factorizations
I [Pud’90]: T2 proves Ramsey’s theorem

I manipulations of sets in the proof above can be
witnessed by explicit counting functions

I Tournament principle? no obvious way how to do it

Can we generalize the method?
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Two general setups

Approximate probabilities:

I estimate the size of X ⊆ 2n within error 2n/ poly(m)
= estimate Prx<a[x ∈ X ] within error 1/ poly(m)

I ∆b
1 sets can be counted in

APC 1 := T 0
2 + sWPHP(FP) ⊆ T 2

2

I based on pseudorandom generators

Proper approximate counting:

I estimate the size of X ⊆ 2n within error |X |/ poly(m)

I Σb
1 sets can be counted in

APC 2 := T 1
2 + sWPHP(FPNP) ⊆ T 3

2

I based on hashing

Emil Jeřábek Counting in weak theories LC 2017 23:33



Approximate probabilities

1 Finite sets in arithmetic

2 Bounded arithmetic

3 Weak pigeonhole principle

4 Approximate probabilities

5 Approximate counting



Size comparison with error

Basic idea: |X | ≤ |Y | if there is a surjection Y � X

Definition:
X ,Y ⊆ 2n definable sets, ε ≥ 0

I X �ε Y iff there exist v > 0 and a circuit

C : v × (Y ∪̇ ε2n)� v × X

I X ≈ε Y iff X �ε Y ∧ Y �ε X
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It works

Theorem [J’07]: APC 1 proves: If X is defined by a circuit and
ε−1 ∈ Log, there exists s such that X ≈ε s.

I we can estimate Prx<a[x ∈ X ] with error ε by drawing
O(1/ε) independent random samples
=⇒ randomized poly-time algorithm

I derandomize using the Nisan–Wigderson pseudorandom
generator

I analysis of the generator can be carried out in T 0
2 , it

provides explicit “counting functions” for X
I sWPHP supplies “hard functions” needed by the

NW generator
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Properties of approximate probabilities

APC 1 also proves:

I �ε behaves well wrt X ∪ Y , X r Y , X × Y , . . .
I averaging principle

(“if Prx ,y [A(x , y)] ≥ p, there is x s.t. Pry [A(x , y)] ≥ p”)
I Chernoff–Hoeffding inequality
I inclusion-exclusion principle
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Applications

Formalization of classes of randomized algorithms
(TFRP, BPP, APP, MA, AM, . . . )

I straightforward to define using approximate probabilities
I can’t expect all of them to be “provably total”:

mostly semantic classes, no known complete problems
I instead, show that the definitions are “well-behaved”:

I amplification of probability of success
I closure properties (e.g., composition)
I trading randomness for nonuniformity
I inclusions between randomized classes and levels of PH
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Applications (cont’d)

Formalization of specific randomized algorithms:

I Rabin–Miller primality testing algorithm
I [LC’12]: Edmonds’s algorithm (testing existence of

perfect matchings)
Mulmuley–Vazirani–Vazirani (finding perfect matchings)

Another application:
[Pich’14] formalization of the PCP theorem
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Approximate counting: overview

Proper approximate counting:
error relative to size of X , not of the ambient universe

I witness that |X | ≤ s using linear hash functions
(Sipser’s coding lemma)

I equivalent to existence of suitable surjective “counting
functions”

I asymmetric: no witness for |X | ≥ s!
I can count “sparse” sets

=⇒ useful for inductive counting arguments
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Formalization

For X ⊆ 2n a definable set, ε−1 ∈ Log:
X -ε s iff there is {Ai : i < t}, Ai ∈ Ft×n

2 , which isolates a
suitable Cartesian power X d

I A ∈ Ft×n
2 separates x from X ⊆ Fn

2
if Ax 6= Ay for every y ∈ X r {x}

I {Ai : i < k} isolates X
if every x ∈ X is separated from X by some Ai

Key result [J’09]:
APC 2 proves, roughly speaking:
If X is Σb

1, then up to small error, X - s is equivalent to the
existence of a FPNP surjection sd � X d
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Properties of approximate counting

APC 2 proves:

I -ε agrees with exact counting and �ε as much as possible
I -ε behaves well wrt X ∪ Y , X × Y
I averaging principles
I approximate increasing enumeration:

There are t, s s.t. s ≤ t ≤ bs(1 + ε)c, and non-decreasing
FPNP-retraction pairs

t
f

−−−−−�←−−−−−↩
f ′

X
g

−−−−−�←−−−−−↩
g ′

s

s.t. f , g are almost 1-to-1, and
⌊

s
t x
⌋
≤ g(f (x)) ≤

⌈
s
t x
⌉
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Applications

I APC 2 can formalize proofs of Ramsey’s theorem,
tournament principle, . . .

I improved collapse of hierarchies:
if T i

2 = S i+1
2 , then T i

2 = T2 proves Σb
i+1 ⊆ ∆b

i+1/ poly
and Σb

∞ = B(Σb
i+1)

I [BKT’14] APC 2 proves the ordering principle
separations between relativized fragments of APC 2

I [BKZ’15] collapse of constant-depth proofs with
modular-counting gates
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Proofs with modular counting gates

AC 0[p]-Frege:

I propositional proof system operating with constant-depth
formulas using

∧
,
∨
, ¬, and mod-p connectives

I major open problem: superpolynomial lower bounds?
I Razborov, Smolensky: exponential circuit complexity

lower bound
I [BKZ’15]: quasipolynomial simulation by depth-3 proofs

I formalize Valiant–Vazirani and Toda’s theorem in
APC⊕pP

2
I Paris–Wilkie translation of bounded arithmetic to

propositional logic
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Thank you for attention!
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