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Motivation: Wild data for the (incompressible) Euler system
Incompressible Euler system

Field equations

divxv = 0, ∂tv + divx(v ⊗ v) +∇xP = 0, (t, x) ∈ (0,T )× Ω

v · n|∂Ω = 0, v(0, ·) = v0

Energy inequality
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Wild initial data

v0 ∈ L2(Ω)

the Euler system admits infinitely many (weak) solutions

in (0,T ) for any T > 0

Density of wild initial data

Székelyhidi, Wiedemann ARMA 2012:
Wild initial data are dense in L2(Ω) (periodic b.c.)



Full Euler system

Field equations

∂t% + divxm = 0

∂tm + divx
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Thermodynamic stability – entropy

S = S(%,m,E) concave function of (%,m,E)

Entropy inequality
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Reformulation

Helmholtz decomposition

m = H[m] + H⊥[m], divxH[m] = 0, H⊥ = ∇xΦ

Euler system revisited

v = H[m], E =
|v +∇xΦ|2

%
+ %e(%, ϑ), p = p(%, ϑ)

Field equations
∂t% + ∆xΦ = 0
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Convex integration ansatz

Acoustic system

∂tv + H
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Convex integration ansatz (Extended Euler system)

∂tv + divx

(
(v +∇xΦ)⊗ (v +∇xΦ)

%
− 1

N

|(v +∇xΦ)|2

%
I
)

= 0

divxv = 0
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∂t% + ∆xΦ = 0



Infinitely many solutions – wild initial data

Wild solutions by convex integration (EF, Klingenberg, Kreml, Markfelder
JDE 2019

Theorem. For any given piecewise constant initial density %0 and ϑ0, there
exist (infinitely many) initial momenta m0 = v0 such that the Extended Euler
system admits infinitely many weak solutions satisfying the entropy balance
as equality. In particular, these are admissible weak solutions to the Euler
system

Wild initial data

Any (weak) solution of the Euler system satisfying Extended Euler system is
called wild solution. The corresponding initial data are wild data



W (wild) convergence
Data space

L
1
+,s0

(Ω;RN+2)

=
{

[%,m,E ] ∈ L1(Ω;RN+2)
∣∣∣ % ≥ 0, E ≥ 0, s(%,m,E) ≥ s0 > −∞

}
.

W–convergence [%0,n,m0,n,E0,n]→ [%0,m0,E0]

%0,n > 0, s(%0,n,m0,n,E0,n) ≥ s0 > −∞

[%0,n,m0,n,E0,n]→ [%0,m0,E0] in L1(Ω;RN+2)

the initial data [%0,n,m0,n,E0,n] give rise to a sequence of admissible
weak solutions [%n,mn,En] satisfying∫ T
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: ∇2
xϕ dxdt → 0 as n→∞

for any ϕ ∈ C∞
c ((0,T )× Ω)

The last condition is automatically satisfied for wild initial data!



Main result

Reachable set
We say that a trio [%0,m0,E0] is reachable if there exists a sequence of initial
data {%0,n,m0,n,E0,n}∞n=1 such that

[%0,n,m0,n,E0,n]
(W )→ [%0,m0,E0].

Theorem (EF, Klingenberg, Markfelder Calc. Variations PDE 2020)

Let s0 ∈ R be given. Let Ω ⊂ RN , N = 2, 3 be a bounded smooth domain.
Then the complement of the set of reachable data is an open dense set in
L1

+,s0
(Ω;RN+2).

Corollary

The complement of the set of wild initial data (the data that give rise to solu-
tion of Extended Euler system) contains an open dense set in L1

+,s0
(Ω;RN+2).



Localization
Domain partition

Q open Q ⊂ (0,T )× Ω, Q = [0,T ]× Ω

Closed partition
Family of partitions Q closed with respect to Hausdorff complementary
topology

W - convergence [%0,n,m0,n,E0,n]
(W [Q])→ [%0,m0,E0]

%0,n > 0, s(%0,n,m0,n,E0,n) ≥ s0 > −∞;

[%0,n,m0,n,E0,n]→ [%0,m0,E0] in L1(Ω;RN+2);

the initial data [%0,n,m0,n,E0,n] give rise to a sequence of admissible
weak solutions [%n,mn,En] satisfying∫ T
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for any ϕ ∈ C∞
c (Q)

for some Q ∈ Q



Localization – main result

Theorem (EF, Klingenberg, Markfelder Calc. Variations PDE 2020)

Let s0 ∈ R be given and Ω ⊂ RN , N = 2, 3 be a bounded smooth domain.
Let Q be a closed partition set in (0,T )× Ω.
Then the complement of the set of Q−reachable data is an open dense set
in L1

+,s0
(Ω;RN+2).

Example of Q

Q =
{
Q ⊂ (0,T )× Ω

∣∣∣
Q = ((0,T )× Ω) \ (∪M

i=1Hi ), Hi − a hyperplane in RN+1
}
,



Method of proof, I

Step 1

[%0,m0,E0] regular reachable data

[%0,n,m0,n,E0,n]
(W )→ [%0,m0,E0]

Step 2
[%n,mn,En] generates a dissipative measure valued solution of the Euler
system (Březina, EF 2018)

Step 3

[%0,m0,E0] regular ⇒ existence of local smooth solution [%,m,E ]

Step 4
Weak strong uniqueness principle (Březina, EF 2018)

[%n,mn,En]→ [%,m,E ] strongly on [0,Tmax)



Method of proof, II

Step 5
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Step 6

continuity of strong solution up to t = 0 ⇒

⇒

divxdivx
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)
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N
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(
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Step 7
Identify the class of functions satisfying the limit elliptic PDE



Elliptic problem

divxdivx
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)
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Weak formulation∫
Ω

(
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)
: ∇2

xϕ−
1

N

|m0|2

%0
∆xϕ dx = 0 (1)

Solution set

w = m0
%0

The set
S =

{
w ∈ L2(Ω;RN)

∣∣∣ w solves (1)
}

S is closed in L2

S is nowhere dense


