When are surjective algebra homomorphisms of $\mathcal{B}(X)$ automatically injective?

Bence Horváth (partially joint work with Tomasz Kania)

Institute of Mathematics of the Czech Academy of Sciences

horvath@math.cas.cz

September 11, 2020

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y$ if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y)$.

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y$ (X and Y are linearly homeomorphic) if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y)$. ($\mathscr{B}(X)$ and $\mathscr{B}(Y)$ are homomorphically homeomorphic.)

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y$ (X and Y are linearly homeomorphic) if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y)$. ($\mathscr{B}(X)$ and $\mathscr{B}(Y)$ are homomorphically homeomorphic.)

Can we drop the injectivity assumption in Eidelheit's Theorem?...

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y$ (X and Y are linearly homeomorphic) if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y)$. ($\mathscr{B}(X)$ and $\mathscr{B}(Y)$ are homomorphically homeomorphic.)

Can we drop the injectivity assumption in Eidelheit's Theorem?...

Question

Let X and Y be Banach spaces, let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective (continuous) algebra homomorphism. Is ψ automatically injective?

э

Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\iff \exists \varphi \colon \mathscr{B}(X) \to \mathbb{C}$ unital (surjective, continuous) algebra homomorphism.

Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\iff \exists \varphi \colon \mathscr{B}(X) \to \mathbb{C}$ unital (surjective, continuous) algebra homomorphism. As $\mathbb{C} \simeq \mathscr{B}(\mathbb{C})$, the surjective homomorphism φ cannot be injective.

Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\iff \exists \varphi \colon \mathscr{B}(X) \to \mathbb{C}$ unital (surjective, continuous) algebra homomorphism. As $\mathbb{C} \simeq \mathscr{B}(\mathbb{C})$, the surjective homomorphism φ cannot be injective.

Example

The following Banach spaces X are such that $\mathscr{B}(X)$ has a character:

The James space J_p (where 1 1</sub>], any hereditarily indecomposable space (Gowers–Maurey, Argyros–Haydon, ...);

Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\iff \exists \varphi \colon \mathscr{B}(X) \to \mathbb{C}$ unital (surjective, continuous) algebra homomorphism. As $\mathbb{C} \simeq \mathscr{B}(\mathbb{C})$, the surjective homomorphism φ cannot be injective.

Example

The following Banach spaces X are such that $\mathscr{B}(X)$ has a character:

- The James space J_p (where $1), the Semadeni space <math>C[0, \omega_1]$, any hereditarily indecomposable space (Gowers–Maurey, Argyros–Haydon, ...);
- Mankiewicz's separable and superreflexive space X_M, Gowers' space G, Tarbard's indecomposable but not H.I. space X_∞, the space C(K₀) where K₀ is a connected "Koszmider" space, the Motakis–Puglisi–Zisimopoulou space X_K.

In examples of the second type the character is obtained from a commutative quotient of $\mathscr{B}(X)$.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Example

Let ${\mathcal H}$ be a separable Hilbert space.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

• ker
$$(\psi) = \{0\};$$

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

- ker $(\psi) = \{0\};$
- 2 ker $(\psi) = \mathscr{K}(\mathcal{H});$

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

- ker $(\psi) = \{0\};$
- 2 ker $(\psi) = \mathscr{K}(\mathcal{H});$

$${f 0} \hspace{0.1 cm} {
m ker}(\psi) = \mathscr{B}(\mathcal{H}).$$

Clearly (3) is impossible.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

æ

< 🗇 > <

Clearly (3) is impossible. We show that (2) cannot hold either.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

э

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

• Assume Y is infinite-dimensional.

• Assume Y is infinite-dimensional. Then $\mathscr{B}(Y)$ is not simple, as $\mathscr{A}(Y) = \overline{\mathscr{F}(Y)}$ is a proper, closed, two-sided ideal.

Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as 𝔐(Y) = ℱ(Y) is a proper, closed, two-sided ideal. But ℋ(ℋ) is a maximal ideal in ℬ(ℋ) ⇔ ℬ(ℋ)/ℋ(ℋ) is simple, a contradiction.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as 𝔐(Y) = 𝔐(Y) is a proper, closed, two-sided ideal. But 𝔐(𝔑) is a maximal ideal in 𝔅(𝔑) ⇐⇒ 𝔅(𝔑)/𝔐(𝔑) is simple, a contradiction.
- Assume Y is finite-dimensional.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as 𝔐(Y) = 𝔐(Y) is a proper, closed, two-sided ideal. But 𝔐(𝔑) is a maximal ideal in 𝔅(𝔑) ⇐⇒ 𝔅(𝔑)/𝔐(𝔑) is simple, a contradiction.
- Assume Y is finite-dimensional. Then B(Y) is finite-dimensional, but B(H)/K(H) is not, a contradiction.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as ℬ(Y) = ℱ(Y) is a proper, closed, two-sided ideal. But ℋ(ℋ) is a maximal ideal in ℬ(ℋ) ⇔ ℬ(ℋ)/ℋ(ℋ) is simple, a contradiction.
- Assume Y is finite-dimensional. Then ℬ(Y) is finite-dimensional, but ℬ(ℋ)/ℋ(ℋ) is not, a contradiction.

Thus (1) must hold $\iff \ker(\psi) = \{0\} \iff \psi$ is injective.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as ℬ(Y) = ℱ(Y) is a proper, closed, two-sided ideal. But ℋ(ℋ) is a maximal ideal in ℬ(ℋ) ⇔ ℬ(ℋ)/ℋ(ℋ) is simple, a contradiction.
- Assume Y is finite-dimensional. Then B(Y) is finite-dimensional, but B(H)/K(H) is not, a contradiction.

Thus (1) must hold $\iff \ker(\psi) = \{0\} \iff \psi$ is injective.

Remark

The same argument works if we replace \mathcal{H} with c_0 or ℓ_p , where $1 \leq p < \infty$.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as ℬ(Y) = ℱ(Y) is a proper, closed, two-sided ideal. But ℋ(ℋ) is a maximal ideal in ℬ(ℋ) ⇔ ℬ(ℋ)/ℋ(ℋ) is simple, a contradiction.
- Assume Y is finite-dimensional. Then ℬ(Y) is finite-dimensional, but ℬ(ℋ)/ℋ(ℋ) is not, a contradiction.

Thus (1) must hold $\iff \ker(\psi) = \{0\} \iff \psi$ is injective.

Remark

The same argument works if we replace \mathcal{H} with c_0 or ℓ_p , where $1 \leq p < \infty$. Indeed if X is one of the above, then by the Gohberg–Markus–Feldman Theorem the ideal lattice of $\mathscr{B}(X)$ is given by

$$\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{B}(X).$$

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi: \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

...But what about the continuity assumption?

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

...But what about the continuity assumption?

A word on automatic continuity

Let \mathcal{A} be a Banach algebra, let Y be a Banach space and let $\psi \colon \mathcal{A} \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then ψ is automatically continuous.

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

...But what about the continuity assumption?

A word on automatic continuity

Let \mathcal{A} be a Banach algebra, let Y be a Banach space and let $\psi \colon \mathcal{A} \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then ψ is automatically continuous.

This follows from a much more general result of B. E. Johnson.

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

...But what about the continuity assumption?

A word on automatic continuity

Let \mathcal{A} be a Banach algebra, let Y be a Banach space and let $\psi \colon \mathcal{A} \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then ψ is automatically continuous.

This follows from a much more general result of B. E. Johnson.

Consequently, if X has the SHAI property, Y is non-zero and there is a surjective algebra homomorphism $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$, then

$$\mathscr{B}(X)\cong\mathscr{B}(Y)\Longleftrightarrow X\cong Y.$$

We know that c_0 and ℓ_p have the SHAI for $1 \leq p < \infty$.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

- (E

We know that c_0 and ℓ_p have the SHAI for $1 \leq p < \infty$.

Question Does ℓ_{∞} have the SHAI property?

We know that c_0 and ℓ_p have the SHAI for $1 \leq p < \infty$.

QuestionDoes ℓ_{∞} have the SHAI property?

Theorem (W. B. Johnson – G. Pisier – G. Schechtman, 2018)

 $\mathscr{B}(\ell_{\infty})$ has a continuum of closed, two-sided ideals.

We know that c_0 and ℓ_p have the SHAI for $1 \leqslant p < \infty$.

Question Does ℓ_{∞} have the SHAI property?

Theorem (W. B. Johnson – G. Pisier – G. Schechtman, 2018)

 $\mathscr{B}(\ell_{\infty})$ has a continuum of closed, two-sided ideals.

(The answer to the question is YES, but a different approach is needed.)

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

 $\bullet \ \psi$ is injective; or

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \ker(\psi).$

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \ker(\psi).$

We can say something more if $\boldsymbol{\psi}$ is surjective.

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \ker(\psi)$.

We can say something more if ψ is surjective.

Definition

 $T \in \mathscr{B}(X)$ is *inessential* if $I_X - ST$ is Fredholm, or equivalently

 $\dim(\ker(I_X - ST)) < \infty, \quad \operatorname{codim}(\operatorname{Ran}(I_X - ST)) < \infty$

for all $S \in \mathscr{B}(X)$.

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \ker(\psi)$.

We can say something more if ψ is surjective.

Definition

 $T \in \mathscr{B}(X)$ is *inessential* if $I_X - ST$ is Fredholm, or equivalently

 $\dim(\ker(I_X - ST)) < \infty, \quad \operatorname{codim}(\operatorname{Ran}(I_X - ST)) < \infty$

for all $S \in \mathscr{B}(X)$.

Fact

The set $\mathscr{E}(X)$ of inessential operators is a proper, closed, two-sided ideal of $\mathscr{B}(X)$ if X is infinite-dimensional.

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V. Ferenczi that there is no largest proper closed operator ideal.)

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V. Ferenczi that there is no largest proper closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X, Y be non-zero Banach spaces and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjectice algebra homomorphism.

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V. Ferenczi that there is no largest proper closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X, Y be non-zero Banach spaces and let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjectice algebra homomorphism. Then either

• ψ is injective; or

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V. Ferenczi that there is no largest proper closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X, Y be non-zero Banach spaces and let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjectice algebra homomorphism. Then either

• ψ is injective; or

•
$$\mathscr{E}(X) \subseteq \ker(\psi)$$
.

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:

• X has the SHAI property,

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:

- X has the SHAI property,
- If or any infinite-dimensional Banach space Y any surjective algebra homomorphism ψ: B(X) → B(Y) is automatically injective.

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:

- X has the SHAI property,
- If or any infinite-dimensional Banach space Y any surjective algebra homomorphism ψ: B(X) → B(Y) is automatically injective.

Proof.

(Sketch.) Under the hypothesis $\mathscr{B}(X)$ cannot have finite-codimensional proper two-sided ideals.

Let Y be a Banach space and let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom.

Let Y be a Banach space and let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case
$$X = \ell_{\infty}$$
.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence ker $(\psi) = \mathscr{E}(X)$.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence ker $(\psi) = \mathscr{E}(X)$. • The case $X = \mathbf{S}$.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence ker $(\psi) = \mathscr{E}(X)$.

• The case $X = \mathbf{S}$. Recall: X is complementably minimal

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence ker $(\psi) = \mathscr{E}(X)$.

 The case X = S. Recall: X is complementably minimal (↔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X)

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence ker $(\psi) = \mathscr{E}(X)$.

The case X = S. Recall: X is complementably minimal (↔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem S(X) is the unique maximal ideal in B(X).

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence ker $(\psi) = \mathscr{E}(X)$.

The case X = S. Recall: X is complementably minimal (↔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem 𝒴(X) is the unique maximal ideal in 𝔅(X). Thus 𝒴(X) = 𝔅(X) = ker(ψ).

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence ker $(\psi) = \mathscr{E}(X)$.

The case X = S. Recall: X is complementably minimal (↔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem S(X) is the unique maximal ideal in B(X). Thus S(X) = E(X) = ker(ψ).

In both cases $\ker(\psi) = \mathscr{E}(X)$ thus $\mathscr{B}(X)/\mathscr{E}(X) \cong \mathscr{B}(Y)$.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \ker(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence ker $(\psi) = \mathscr{E}(X)$.

The case X = S. Recall: X is complementably minimal (↔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem S(X) is the unique maximal ideal in B(X). Thus S(X) = E(X) = ker(ψ).

In both cases ker $(\psi) = \mathscr{E}(X)$ thus $\mathscr{B}(X)/\mathscr{E}(X) \cong \mathscr{B}(Y)$. Note that LHS is simple because $\mathscr{E}(X)$ is maximal, but RHS is not simple as Y is infinite-dimensional. A contradiction.

Our goal is to show that the Banach spaces

$$\left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{c_0},\quad \left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{\ell_1};$$

have the SHAI property.

Our goal is to show that the Banach spaces

$$\left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{c_0},\quad \left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{\ell_1};$$

and

 $c_0(\lambda), \quad \ell^c_\infty(\lambda), \quad \ell_p(\lambda)$ (where $1 \leqslant p < \infty$ and λ is an infinite cardinal)

have the SHAI property.

Our goal is to show that the Banach spaces

$$\left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{c_0},\quad \left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{\ell_1};$$

and

$$c_0(\lambda), \quad \ell^c_\infty(\lambda), \quad \ell_p(\lambda)$$

where $1 \leqslant p < \infty$ and λ is an infinite cardinal)

have the SHAI property.

Recall that

 $\ell^{c}_{\infty}(\lambda) := \{x \in \ell_{\infty}(\lambda) \colon \operatorname{supp}(x) \text{ is countable}\}.$

∄ ▶ ∢ ∋

Our goal is to show that the Banach spaces

$$\left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{c_0},\quad \left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{\ell_1};$$

and

$$c_0(\lambda), \quad \ell^c_\infty(\lambda), \quad \ell_p(\lambda)$$
 where $1 \leqslant p < \infty$ and λ is an infinite cardinal)

have the SHAI property.

Recall that

$$\ell^{c}_{\infty}(\lambda) := \left\{ x \in \ell_{\infty}(\lambda) \colon \operatorname{supp}(x) \text{ is countable} \right\}.$$

Note that $\ell_{\infty}^{c}(\lambda)$ is a sub-C*-algebra of the commutative C*-algebra. Moreover $\ell_{\infty}^{c}(\lambda)$ is a C(K)-space, as observed by Johnson & Kania & Schechtman.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_{W}(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_{W}(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.–Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.–Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property. Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective algebra homomorphism.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.–Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property. Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then either

• ψ is injective; or

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.–Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property. Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then either

• ψ is injective; or

•
$$\overline{\mathscr{G}}_W(X) \subseteq \operatorname{Ker}(\psi).$$

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

/⊒ ► < ∃ ►

э

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$.

Suppose ψ is not injective. To show the claim it is enough to see that $P \in \text{Ker}(\psi)$.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$.

Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$.

Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$. Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$\theta \colon \mathscr{B}(W) \to \mathscr{B}(Z); \quad T \mapsto \psi(P|_W \circ T \circ P|^W)|_Z^Z$$

is well-defined.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$. Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$\theta \colon \mathscr{B}(W) \to \mathscr{B}(Z); \quad T \mapsto \psi(P|_W \circ T \circ P|^W)|_Z^Z$$

is well-defined. It is also an algebra homomorphism.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$. Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$\theta \colon \mathscr{B}(W) \to \mathscr{B}(Z); \quad T \mapsto \psi(P|_W \circ T \circ P|^W)|_Z^Z$$

is well-defined. It is also an algebra homomorphism. Bit less obvious: θ is surjective.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$. Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$\theta \colon \mathscr{B}(W) \to \mathscr{B}(Z); \quad T \mapsto \psi(P|_W \circ T \circ P|^W)|_Z^Z$$

is well-defined. It is also an algebra homomorphism.

Bit less obvious: θ is surjective. Since Z is non-zero, from the SHAI property of W it follows that θ is injective.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \text{Ker}(\psi)$. Then

 $\theta(P|^W \circ A \circ P|_W) =$

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Since θ is injective it follows that $P|^W A P|_W = 0$ or equivalently PAP = 0.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \text{Ker}(\psi)$. Then

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Since θ is injective it follows that $P|^W A P|_W = 0$ or equivalently PAP = 0.

We apply this in the following specific situation: We choose $x \in W = \operatorname{Ran}(P) \subseteq X$ and $\xi \in X^*$ norm one vectors with $\langle x, \xi \rangle = 1$.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \text{Ker}(\psi)$. Then

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Since θ is injective it follows that $P|^W A P|_W = 0$ or equivalently PAP = 0.

We apply this in the following specific situation: We choose $x \in W = \operatorname{Ran}(P) \subseteq X$ and $\xi \in X^*$ norm one vectors with $\langle x, \xi \rangle = 1$. As ψ is not injective, in particular we have $x \otimes \xi \in \mathscr{F}(X) \subseteq \operatorname{Ker}(\psi)$, consequently $P(x \otimes \xi)P = 0$.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \text{Ker}(\psi)$. Then

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Since θ is injective it follows that $P|^W A P|_W = 0$ or equivalently PAP = 0.

We apply this in the following specific situation: We choose $x \in W = \operatorname{Ran}(P) \subseteq X$ and $\xi \in X^*$ norm one vectors with $\langle x, \xi \rangle = 1$. As ψ is not injective, in particular we have $x \otimes \xi \in \mathscr{F}(X) \subseteq \operatorname{Ker}(\psi)$, consequently $P(x \otimes \xi)P = 0$. Thus

$$0 = (P(x \otimes \xi)P)x = \langle Px, \xi \rangle Px = \langle x, \xi \rangle x = x,$$

a contradiction. Consequently $P \in \text{Ker}(\psi)$ must hold.

Bence Horváth (partially joint work with Tomasz Kania)

The SHAI property

Let $X := (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$, where Y is c_0 or ℓ_1 . Then X has the SHAI property.

э

∍⊳

▲ 伊 ▶ ▲ 王 ▶

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Let $X := (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$, where Y is c_0 or ℓ_1 . Then X has the SHAI property.

Proof.

Main ingredient:

Theorem (Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák)

Let $X = (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$ where Y is c_0 or ℓ_1 . Then the lattice of closed, two-sided ideals in $\mathscr{B}(X)$ is given by

$$\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \overline{\mathscr{G}}_Y(X) \hookrightarrow \mathscr{B}(X).$$

Let $X := (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$, where Y is c_0 or ℓ_1 . Then X has the SHAI property.

Proof.

Main ingredient:

Theorem (Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák)

Let $X = (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$ where Y is c_0 or ℓ_1 . Then the lattice of closed, two-sided ideals in $\mathscr{B}(X)$ is given by

$$\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \overline{\mathscr{G}}_Y(X) \hookrightarrow \mathscr{B}(X).$$

Apply that c_0 and ℓ_1 have the SHAI property with Dichotomy Result II and the fact that $X \oplus X \cong X$.

Let $X := (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$, where Y is c_0 or ℓ_1 . Then X has the SHAI property.

Proof.

Main ingredient:

Theorem (Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák)

Let $X = (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$ where Y is c_0 or ℓ_1 . Then the lattice of closed, two-sided ideals in $\mathscr{B}(X)$ is given by

$$\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \overline{\mathscr{G}}_Y(X) \hookrightarrow \mathscr{B}(X).$$

< 🗇 🕨 < 🖻 🕨

Apply that c_0 and ℓ_1 have the SHAI property with Dichotomy Result II and the fact that $X \oplus X \cong X$.

Alternative proof: $\mathscr{B}(X)/\mathscr{K}(X)$ does not have minimal idempotents.

c_0 and ℓ_p have the SHAI property for all $p\in [1,\infty]$

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

白ト・モト

 c_0 and ℓ_p have the SHAI property for all $p\in [1,\infty]$

Theorem (H.)

 $\ell_2(\lambda)$ has the SHAI property for every infinite cardinal λ .

< /₽ > < E >

 c_0 and ℓ_p have the SHAI property for all $p\in [1,\infty]$

Theorem (H.)

 $\ell_2(\lambda)$ has the SHAI property for every infinite cardinal λ .

The proof uses Spectral Theory to show that idempotents from $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ can be lifted to idempotents in $\mathscr{B}(\ell_2(\lambda))$, where $\mathscr{J} \trianglelefteq \mathscr{B}(\ell_2(\lambda))$.

・ 一 マ ト ・ 日 ト ・

 c_0 and ℓ_p have the SHAI property for all $p\in [1,\infty]$

Theorem (H.)

 $\ell_2(\lambda)$ has the SHAI property for every infinite cardinal λ .

The proof uses Spectral Theory to show that idempotents from $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ can be lifted to idempotents in $\mathscr{B}(\ell_2(\lambda))$, where $\mathscr{J} \trianglelefteq \mathscr{B}(\ell_2(\lambda))$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Hence $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ has no minimal idempotents.

 c_0 and ℓ_p have the SHAI property for all $p \in [1,\infty]$

Theorem (H.)

 $\ell_2(\lambda)$ has the SHAI property for every infinite cardinal λ .

The proof uses Spectral Theory to show that idempotents from $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ can be lifted to idempotents in $\mathscr{B}(\ell_2(\lambda))$, where $\mathscr{J} \trianglelefteq \mathscr{B}(\ell_2(\lambda))$.

Hence $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ has no minimal idempotents.

Thus there is no Banach space Y with $\mathscr{B}(\ell_2(\lambda))/\mathscr{J} \cong \mathscr{B}(Y)$, as minimal idempotents in $\mathscr{B}(Y)$ are precisely the rank one idempotents.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem (H.–Kania)

Let λ be an infinite cardinal. Then $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (for $1 \leq p < \infty$) have the SHAI property.

Theorem (H.–Kania)

Let λ be an infinite cardinal. Then $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (for $1 \leq p < \infty$) have the SHAI property.

Ingredients of the proof.

Definition

Let X and Y be Banach spaces. Let $\mathscr{S}_{Y}(X)$ be a subset of $\mathscr{B}(X)$ defined by

 $T \notin \mathscr{S}_Y(X) \iff \exists W \subseteq X$ subspace with $W \cong Y$ such that $T|_W$ is bounded below.

Theorem (H.–Kania)

Let λ be an infinite cardinal. Then $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (for $1 \leq p < \infty$) have the SHAI property.

Ingredients of the proof.

Definition

Let X and Y be Banach spaces. Let $\mathscr{S}_{Y}(X)$ be a subset of $\mathscr{B}(X)$ defined by

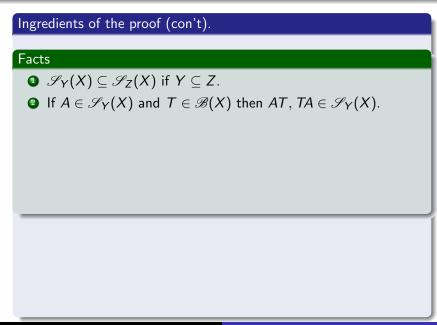
 $T \notin \mathscr{S}_Y(X) \iff \exists W \subseteq X$ subspace with $W \cong Y$ such that $T|_W$ is bounded below.

 $\mathscr{S}_{Y}(X)$ is called the set of *Y*-singular operators on *X*.

Ingredients of the proof (con't).

Facts

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property



Ingredients of the proof (con't).

Facts

- **②** If $A \in \mathscr{S}_Y(X)$ and $T \in \mathscr{B}(X)$ then $AT, TA \in \mathscr{S}_Y(X)$.
- $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).

Ingredients of the proof (con't).

Facts

- **②** If $A \in \mathscr{S}_Y(X)$ and $T \in \mathscr{B}(X)$ then $AT, TA \in \mathscr{S}_Y(X)$.
- $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).
- If S_X(X) is closed under addition and X is complementably homogeneous then S_X(X) is the unique maximal ideal in B(X). [folk, H.- Kania]

Ingredients of the proof (con't).

Facts

② If $A \in \mathscr{S}_Y(X)$ and $T \in \mathscr{B}(X)$ then $AT, TA \in \mathscr{S}_Y(X)$.

• $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).

If S_X(X) is closed under addition and X is complementably homogeneous then S_X(X) is the unique maximal ideal in B(X). [folk, H.- Kania]

(X is complementably homogeneous if whenever Y is a subspace of X with $Y \cong X$ then there is $Z \subseteq Y$ subspace which is complemented in X and $Z \cong X$.)

Ingredients of the proof (con't).

Facts

② If $A \in \mathscr{S}_Y(X)$ and $T \in \mathscr{B}(X)$ then $AT, TA \in \mathscr{S}_Y(X)$.

- $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).
- If S_X(X) is closed under addition and X is complementably homogeneous then S_X(X) is the unique maximal ideal in B(X). [folk, H.- Kania]

(X is complementably homogeneous if whenever Y is a subspace of X with $Y \cong X$ then there is $Z \subseteq Y$ subspace which is complemented in X and $Z \cong X$.) The spaces $c_0(\lambda)$, $\ell_{\infty}^c(\lambda)$ and $\ell_p(\lambda)$ (where $1 \leq p < \infty$) are complementably homogeneous.

Let E_{λ} be one of the Banach spaces $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ or $\ell_{p}(\lambda)$ where $1 \leq p < \infty$.

< □ > <

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Let E_{λ} be one of the Banach spaces $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ or $\ell_{p}(\lambda)$ where $1 \leq p < \infty$.

Theorem (Johnson – Kania – Schechtman)

The set $\mathscr{S}_{E_{\kappa}}(E_{\lambda})$ is a closed, non-zero, proper two-sided ideal in $\mathscr{B}(E_{\lambda})$ for every infinite cardinal $\kappa \leq \lambda$. In particular $\mathscr{S}_{E_{\lambda}}(E_{\lambda})$ is maximal.

Let E_{λ} be one of the Banach spaces $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ or $\ell_{p}(\lambda)$ where $1 \leq p < \infty$.

Theorem (Johnson – Kania – Schechtman)

The set $\mathscr{S}_{E_{\kappa}}(E_{\lambda})$ is a closed, non-zero, proper two-sided ideal in $\mathscr{B}(E_{\lambda})$ for every infinite cardinal $\kappa \leq \lambda$. In particular $\mathscr{S}_{E_{\lambda}}(E_{\lambda})$ is maximal.

Theorem (Johnson – Kania – Schechtman)

Let λ and κ be uncountable cardinals with $\lambda \ge \kappa$, and suppose that κ is not a successor of any cardinal number. Then

$$\mathscr{S}_{E_{\kappa}}(E_{\lambda}) = \overline{\bigcup_{\alpha \leq \kappa} \mathscr{S}_{E_{\alpha}}(E_{\lambda})}.$$

Ingredients of the proof (con't).
Theorem (H. – Kania, Johnson – Kania – Schechtman for $\ell^{c}_{\infty}(\lambda)$)
Let λ and κ be infinite cardinals with $\lambda \ge \kappa$. Let $T \in \mathscr{B}(E_{\lambda})$ be such that $T \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$. Then
$\mathscr{S}_{\mathcal{E}_{\kappa^+}}(\mathcal{E}_{\lambda})\subseteq\overline{\langle T angle}.$

Theorem (H. – Kania, Johnson – Kania – Schechtman for $\ell_{\infty}^{c}(\lambda)$) Let λ and κ be infinite cardinals with $\lambda \ge \kappa$. Let $T \in \mathscr{B}(E_{\lambda})$ be

such that $T \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$. Then

$$\mathscr{S}_{\mathcal{E}_{\kappa^+}}(\mathcal{E}_{\lambda})\subseteq\overline{\langle T\rangle}.$$

The proof that E_{λ} has SHAI uses:

- Transfinite induction on the cardinals $\kappa \leq \lambda$;
- the above 3 theorems;
- and the Dichotomy Result II.

Theorem (H. – Kania, Johnson – Kania – Schechtman for $\ell_{\infty}^{c}(\lambda)$) Let λ and κ be infinite cardinals with $\lambda \ge \kappa$. Let $T \in \mathscr{B}(E_{\lambda})$ be

such that $T \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$. Then

$$\mathscr{S}_{\mathcal{E}_{\kappa^+}}(\mathcal{E}_{\lambda})\subseteq\overline{\langle T\rangle}.$$

The proof that E_{λ} has SHAI uses:

- Transfinite induction on the cardinals $\kappa \leq \lambda$;
- the above 3 theorems;
- and the Dichotomy Result II. In this context,

 *G*_{E_κ}(E_λ) ⊆ ker(ψ), where ψ: ℬ(E_λ) → ℬ(Y) is some surjective, non-injective algebra hom.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi \colon \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi \colon \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ} , there is an idempotent $P_{(\kappa)} \in \mathscr{B}(E_{\lambda})$ with $\operatorname{Ran}(P_{(\kappa)}) \cong E_{\kappa}$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi \colon \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ} , there is an idempotent $P_{(\kappa)} \in \mathscr{B}(E_{\lambda})$ with $\operatorname{Ran}(P_{(\kappa)}) \cong E_{\kappa}$. Clearly $P_{(\kappa)} \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$, hence by Theorem above it follows that $\mathscr{S}_{E_{\kappa+}}(E_{\lambda}) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}(E_{\lambda})$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi: \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ} , there is an idempotent $P_{(\kappa)} \in \mathscr{B}(E_{\lambda})$ with $\operatorname{Ran}(P_{(\kappa)}) \cong E_{\kappa}$. Clearly $P_{(\kappa)} \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$, hence by Theorem above it follows that $\mathscr{S}_{E_{\kappa^+}}(E_{\lambda}) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}(E_{\lambda})$. As E_{κ} has the SHAI property by the inductive hypothesis, we conclude from Dichotomy Result II that

$$\mathscr{S}_{\mathsf{E}_{\kappa^+}}(\mathsf{E}_{\lambda}) \subseteq \overline{\mathscr{G}}_{\mathsf{E}_{\kappa}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi \colon \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ} , there is an idempotent $P_{(\kappa)} \in \mathscr{B}(E_{\lambda})$ with $\operatorname{Ran}(P_{(\kappa)}) \cong E_{\kappa}$. Clearly $P_{(\kappa)} \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$, hence by Theorem above it follows that $\mathscr{S}_{E_{\kappa^+}}(E_{\lambda}) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}(E_{\lambda})$. As E_{κ} has the SHAI property by the inductive hypothesis, we conclude from Dichotomy Result II that

$$\mathscr{S}_{E_{\kappa^+}}(E_{\lambda}) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}(E_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

We *claim* that $\mathscr{S}_{\mathcal{E}_{\lambda}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi)$. We consider three cases:

 $1 \lambda = \omega;$

- 2) λ is a successor cardinal;
- ${f 0}$ λ is uncountable and not a successor cardinal, a, is in the solution of λ

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(2) If λ is a successor cardinal then $\lambda = \kappa^+$ for some cardinal $\kappa < \lambda$. Thus we conclude

$$\mathscr{S}_{\mathcal{E}_{\lambda}}(\mathcal{E}_{\lambda}) = \mathscr{S}_{\mathcal{E}_{\kappa^{+}}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(2) If λ is a successor cardinal then $\lambda = \kappa^+$ for some cardinal $\kappa < \lambda$. Thus we conclude

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{S}_{\mathsf{E}_{\kappa^{+}}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(3) Let λ be an uncountable cardinal which is not a successor of any cardinal. We clearly have $\mathscr{S}_{\mathcal{E}_{\kappa}}(\mathcal{E}_{\lambda}) \subseteq \mathscr{S}_{\mathcal{E}_{\kappa^{+}}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi)$ for each $\kappa < \lambda$. As $\operatorname{Ker}(\psi)$ is closed, in view of Theorem we obtain

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \bigcup_{\kappa < \lambda} \mathscr{S}_{\mathsf{E}_{\kappa}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(2) If λ is a successor cardinal then $\lambda = \kappa^+$ for some cardinal $\kappa < \lambda$. Thus we conclude

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{S}_{\mathsf{E}_{\kappa^{+}}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(3) Let λ be an uncountable cardinal which is not a successor of any cardinal. We clearly have $\mathscr{S}_{\mathcal{E}_{\kappa}}(\mathcal{E}_{\lambda}) \subseteq \mathscr{S}_{\mathcal{E}_{\kappa^{+}}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi)$ for each $\kappa < \lambda$. As $\operatorname{Ker}(\psi)$ is closed, in view of Theorem we obtain

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \bigcup_{\kappa < \lambda} \mathscr{S}_{\mathsf{E}_{\kappa}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

Since $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(E_{\lambda})$ is proper and $\mathscr{S}_{E_{\lambda}}(E_{\lambda})$ is maximal by Theorem, we must have $\mathscr{S}_{E_{\lambda}}(E_{\lambda}) = \operatorname{Ker}(\psi)$.

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(2) If λ is a successor cardinal then $\lambda = \kappa^+$ for some cardinal $\kappa < \lambda$. Thus we conclude

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{S}_{\mathsf{E}_{\kappa^{+}}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(3) Let λ be an uncountable cardinal which is not a successor of any cardinal. We clearly have $\mathscr{S}_{\mathcal{E}_{\kappa}}(\mathcal{E}_{\lambda}) \subseteq \mathscr{S}_{\mathcal{E}_{\kappa^{+}}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi)$ for each $\kappa < \lambda$. As $\operatorname{Ker}(\psi)$ is closed, in view of Theorem we obtain

$$\mathscr{S}_{\mathcal{E}_{\lambda}}(\mathcal{E}_{\lambda}) = \bigcup_{\kappa < \lambda} \mathscr{S}_{\mathcal{E}_{\kappa}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

Since $\operatorname{Ker}(\psi) \leq \mathscr{B}(E_{\lambda})$ is proper and $\mathscr{S}_{E_{\lambda}}(E_{\lambda})$ is maximal by Theorem, we must have $\mathscr{S}_{E_{\lambda}}(E_{\lambda}) = \operatorname{Ker}(\psi)$. This is equivalent to $\mathscr{B}(E_{\lambda})/\mathscr{S}_{E_{\lambda}}(E_{\lambda}) \cong \mathscr{B}(Y)$, which is impossible. Thus ψ must be injective.

L_p[0,1] has the SHAI property for 1 Phillips – Schechtman, 2020+].

• $L_{\rho}[0,1]$ has the SHAI property for 1 [Johnson –Phillips – Schechtman, 2020+]. The "non-classical" $complemented subspace <math>X_{\rho}$ constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].

- L_p[0,1] has the SHAI property for 1 Phillips Schechtman, 2020+]. The "non-classical" complemented subspace X_p constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]

- L_p[0,1] has the SHAI property for 1 Phillips Schechtman, 2020+]. The "non-classical" complemented subspace X_p constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]

- $L_p[0,1]$ has the SHAI property for 1 [Johnson –Phillips – Schechtman, 2020+]. The "non-classical" $complemented subspace <math>X_p$ constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]
- SHAI is not a three-space property [H. Kania].

- L_p[0,1] has the SHAI property for 1 Phillips Schechtman, 2020+]. The "non-classical" complemented subspace X_p constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]
- SHAI is not a three-space property [H. Kania].
 - There exists an uncountable AD family A ⊆ [ℕ]^ω and an Isbell–Mrówka space K_A such that ℬ(C₀(K_A)) has a character [Koszmider–Laustsen, 2020+];

- $L_p[0,1]$ has the SHAI property for 1 [Johnson –Phillips – Schechtman, 2020+]. The "non-classical" $complemented subspace <math>X_p$ constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]
- SHAI is not a three-space property [H. Kania].
 - There exists an uncountable AD family A ⊆ [ℕ]^ω and an Isbell–Mrówka space K_A such that ℬ(C₀(K_A)) has a character [Koszmider–Laustsen, 2020+];

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

C₀(K_A) is a twisted sum of c₀ and c₀(c) [follows from the construction of Koszmider & Laustsen];

- $L_p[0,1]$ has the SHAI property for 1 [Johnson –Phillips – Schechtman, 2020+]. The "non-classical" $complemented subspace <math>X_p$ constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]
- SHAI is not a three-space property [H. Kania].
 - There exists an uncountable AD family $\mathcal{A} \subseteq [\mathbb{N}]^{\omega}$ and an Isbell–Mrówka space $\mathcal{K}_{\mathcal{A}}$ such that $\mathscr{B}(\mathcal{C}_0(\mathcal{K}_{\mathcal{A}}))$ has a character [Koszmider–Laustsen, 2020+];
 - C₀(K_A) is a twisted sum of c₀ and c₀(c) [follows from the construction of Koszmider & Laustsen];
 - Both c_0 and $c_0(c)$ have SHAI but $C_0(K_A)$ does not.

Recall that so far that all examples of Banach spaces X which lack SHAI have the property that there exists a character $\varphi \colon \mathscr{B}(X) \to \mathbb{C}$. (Or finite sums thereof, we can quotient to $M_n(\mathbb{C})$.) Recall that so far that all examples of Banach spaces X which lack SHAI have the property that there exists a character $\varphi \colon \mathscr{B}(X) \to \mathbb{C}$. (Or finite sums thereof, we can quotient to $M_n(\mathbb{C})$.)

We can have infinite-dimensional targets for surjective, non-injective algebra homomorphisms:

Recall that so far that all examples of Banach spaces X which lack SHAI have the property that there exists a character $\varphi \colon \mathscr{B}(X) \to \mathbb{C}$. (Or finite sums thereof, we can quotient to $M_n(\mathbb{C})$.)

We can have infinite-dimensional targets for surjective, non-injective algebra homomorphisms:

Theorem (H.)

Let Y be a separable, reflexive Banach space. Let

$$X_{\mathsf{Y}} := C_0[0,\omega_1) \hat{\otimes}_{\varepsilon} \mathsf{Y} \stackrel{(1)}{\cong} \left\{ f \in C\big([0,\omega_1]; \mathsf{Y}\big) \colon f(\omega_1) = \mathsf{0}_{\mathsf{Y}} \right\}.$$

There exists a surjective, non-injective algebra homomorphism

$$\psi \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y).$$

OK, the very last slide, really

Thank you for your attention :)

OK, the very last slide, really

Thank you for your attention :)

Sources

- B. Horváth, "When are full representations of algebras of operators on Banach spaces automatically faithful?", Studia Mathematica (2020), available on the arXiv;
- B. Horváth and T. Kania, "Surjective homomorphisms from algebras of operators on long sequence spaces automatically injective", submitted, available on the arXiv;
- W. B. Johnson, T. Kania and G. Schechtman, "Closed ideals of operators on and complemented subspaces of Banach spaces of functions with countable support", Proceedinds of the AMS (2016), available on the arXiv;
- P. Koszmider and N. J. Laustsen, "A Banach space induced by an almost disjoint family, admitting only few operators and decompositions", available on the arXiv.