When are surjective algebra homomorphisms of $\mathscr{B}(X)$ automatically injective?

Bence Horváth (partially joint work with Tomasz Kania)

Uniwersytetu Jagiellońskiego, Geometry of Banach Spaces Seminar horvath@math.cas.cz
Institute of Mathematics of the Czech Academy of Sciences
November 18, 2020

Some notation \& motivation

If X is a complex Banach space, then $\mathscr{B}(X)$ denotes the unital Banach algebra of bounded, linear operators on X.

Some notation \& motivation

If X is a complex Banach space, then $\mathscr{B}(X)$ denotes the unital Banach algebra of bounded, linear operators on X.

Theorem (Eidelheit)
Let X and Y be Banach spaces. Then $X \cong Y$

$$
\text { if and only if } \mathscr{B}(X) \cong \mathscr{B}(Y)
$$

Some notation \& motivation

If X is a complex Banach space, then $\mathscr{B}(X)$ denotes the unital Banach algebra of bounded, linear operators on X.

Theorem (Eidelheit)
Let X and Y be Banach spaces. Then $X \cong Y(X$ and Y are linearly homeomorphic) if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y) .(\mathscr{B}(X)$ and $\mathscr{B}(Y)$ are homomorphically homeomorphic.)

Some notation \& motivation

If X is a complex Banach space, then $\mathscr{B}(X)$ denotes the unital Banach algebra of bounded, linear operators on X.

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y(X$ and Y are linearly homeomorphic) if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y)$. $(\mathscr{B}(X)$ and $\mathscr{B}(Y)$ are homomorphically homeomorphic.)

Can we drop the injectivity assumption in Eidelheit's Theorem?...

Some notation \& motivation

If X is a complex Banach space, then $\mathscr{B}(X)$ denotes the unital Banach algebra of bounded, linear operators on X.

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y(X$ and Y are linearly homeomorphic) if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y) .(\mathscr{B}(X)$ and $\mathscr{B}(Y)$ are homomorphically homeomorphic.)

Can we drop the injectivity assumption in Eidelheit's Theorem?...

Question

Let X and Y be Banach spaces, let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective (continuous) algebra homomorphism. Is ψ automatically injective?

In general the answer is NO.

In general the answer is NO.
Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\Longleftrightarrow \exists \varphi: \mathscr{B}(X) \rightarrow \mathbb{C}$ unital (surjective, continuous) algebra homomorphism.

In general the answer is NO.
Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\Longleftrightarrow \exists \varphi: \mathscr{B}(X) \rightarrow \mathbb{C}$ unital (surjective, continuous) algebra homomorphism. As $\mathbb{C} \simeq \mathscr{B}(\mathbb{C})$, the surjective homomorphism φ cannot be injective.

In general the answer is NO.
Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\Longleftrightarrow \exists \varphi: \mathscr{B}(X) \rightarrow \mathbb{C}$ unital (surjective, continuous) algebra homomorphism. As $\mathbb{C} \simeq \mathscr{B}(\mathbb{C})$, the surjective homomorphism φ cannot be injective.

Example

The following Banach spaces X are such that $\mathscr{B}(X)$ has a character:

- The James space J_{p} (where $1<p<\infty$), the Semadeni space $C\left[0, \omega_{1}\right]$, any hereditarily indecomposable space (Gowers-Maurey, Argyros-Haydon, ...);

In general the answer is NO.
Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\Longleftrightarrow \exists \varphi: \mathscr{B}(X) \rightarrow \mathbb{C}$ unital (surjective, continuous) algebra homomorphism. As $\mathbb{C} \simeq \mathscr{B}(\mathbb{C})$, the surjective homomorphism φ cannot be injective.

Example

The following Banach spaces X are such that $\mathscr{B}(X)$ has a character:

- The James space J_{p} (where $1<p<\infty$), the Semadeni space $C\left[0, \omega_{1}\right]$, any hereditarily indecomposable space (Gowers-Maurey, Argyros-Haydon, ...);
- Mankiewicz's separable and superreflexive space X_{M}, Gowers' space \mathcal{G}, Tarbard's indecomposable but not H.I. space X_{∞}, the space $C\left(K_{0}\right)$ where K_{0} is a connected "Koszmider" space, the Motakis-Puglisi-Zisimopoulou space X_{K}.
In examples of the second type the character is obtained from a commutative quotient of $\mathscr{B}(X)$.

For some classical spaces the answer to the question is YES.

For some classical spaces the answer to the question is YES.

Example

Let \mathcal{H} be a separable Hilbert space.

For some classical spaces the answer to the question is YES.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi: \mathscr{B}(\mathcal{H}) \rightarrow \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism.

For some classical spaces the answer to the question is YES.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi: \mathscr{B}(\mathcal{H}) \rightarrow \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

$$
\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H})
$$

For some classical spaces the answer to the question is YES.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi: \mathscr{B}(\mathcal{H}) \rightarrow \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

$$
\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}) .
$$

As the kernel $\operatorname{Ker}(\psi)$ is a closed, two-sided ideal in $\mathscr{B}(\mathcal{H})$, one of the following must hold:

For some classical spaces the answer to the question is YES.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi: \mathscr{B}(\mathcal{H}) \rightarrow \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

$$
\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}) .
$$

As the kernel $\operatorname{Ker}(\psi)$ is a closed, two-sided ideal in $\mathscr{B}(\mathcal{H})$, one of the following must hold:
(1) $\operatorname{Ker}(\psi)=\{0\}$;

For some classical spaces the answer to the question is YES.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi: \mathscr{B}(\mathcal{H}) \rightarrow \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

$$
\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}) .
$$

As the kernel $\operatorname{Ker}(\psi)$ is a closed, two-sided ideal in $\mathscr{B}(\mathcal{H})$, one of the following must hold:
(1) $\operatorname{Ker}(\psi)=\{0\}$;
(2) $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$;

For some classical spaces the answer to the question is YES.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi: \mathscr{B}(\mathcal{H}) \rightarrow \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

$$
\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}) .
$$

As the kernel $\operatorname{Ker}(\psi)$ is a closed, two-sided ideal in $\mathscr{B}(\mathcal{H})$, one of the following must hold:
(1) $\operatorname{Ker}(\psi)=\{0\}$;
(2) $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$;
(3) $\operatorname{Ker}(\psi)=\mathscr{B}(\mathcal{H})$.

Clearly (3) is impossible.

Clearly (3) is impossible. We show that (2) cannot hold either.

Clearly (3) is impossible. We show that (2) cannot hold either. For assume towards a contradiction that $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$. Thus $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H}) \cong \mathscr{B}(Y)$.

Clearly (3) is impossible. We show that (2) cannot hold either. For assume towards a contradiction that $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$. Thus $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H}) \cong \mathscr{B}(Y)$.

- Assume Y is infinite-dimensional.

Clearly (3) is impossible. We show that (2) cannot hold either. For assume towards a contradiction that $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$. Thus $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H}) \cong \mathscr{B}(Y)$.

- Assume Y is infinite-dimensional. Then $\mathscr{B}(Y)$ is not simple, as $\mathscr{A}(Y)=\overline{\mathscr{F}(Y)}$ is a proper, closed, two-sided ideal.

Clearly (3) is impossible. We show that (2) cannot hold either. For assume towards a contradiction that $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$. Thus $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H}) \cong \mathscr{B}(Y)$.

- Assume Y is infinite-dimensional. Then $\mathscr{B}(Y)$ is not simple, as $\mathscr{A}(Y)=\overline{\mathscr{F}}(Y)$ is a proper, closed, two-sided ideal. But $\mathscr{K}(\mathcal{H})$ is a maximal ideal in $\mathscr{B}(\mathcal{H}) \Longleftrightarrow \mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is simple, a contradiction.

Clearly (3) is impossible. We show that (2) cannot hold either. For assume towards a contradiction that $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$. Thus $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H}) \cong \mathscr{B}(Y)$.

- Assume Y is infinite-dimensional. Then $\mathscr{B}(Y)$ is not simple, as $\mathscr{A}(Y)=\overline{\mathscr{F}}(Y)$ is a proper, closed, two-sided ideal. But $\mathscr{K}(\mathcal{H})$ is a maximal ideal in $\mathscr{B}(\mathcal{H}) \Longleftrightarrow \mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is simple, a contradiction.
- Assume Y is finite-dimensional.

Clearly (3) is impossible. We show that (2) cannot hold either. For assume towards a contradiction that $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$. Thus $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H}) \cong \mathscr{B}(Y)$.

- Assume Y is infinite-dimensional. Then $\mathscr{B}(Y)$ is not simple, as $\mathscr{A}(Y)=\overline{\mathscr{F}}(Y)$ is a proper, closed, two-sided ideal. But $\mathscr{K}(\mathcal{H})$ is a maximal ideal in $\mathscr{B}(\mathcal{H}) \Longleftrightarrow \mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is simple, a contradiction.
- Assume Y is finite-dimensional. Then $\mathscr{B}(Y)$ is finite-dimensional, but $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is not, a contradiction.

Clearly (3) is impossible. We show that (2) cannot hold either. For assume towards a contradiction that $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$. Thus $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H}) \cong \mathscr{B}(Y)$.

- Assume Y is infinite-dimensional. Then $\mathscr{B}(Y)$ is not simple, as $\mathscr{A}(Y)=\overline{\mathscr{F}}(Y)$ is a proper, closed, two-sided ideal. But $\mathscr{K}(\mathcal{H})$ is a maximal ideal in $\mathscr{B}(\mathcal{H}) \Longleftrightarrow \mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is simple, a contradiction.
- Assume Y is finite-dimensional. Then $\mathscr{B}(Y)$ is finite-dimensional, but $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is not, a contradiction.
Thus (1) must hold $\Longleftrightarrow \operatorname{Ker}(\psi)=\{0\} \Longleftrightarrow \psi$ is injective.

Clearly (3) is impossible. We show that (2) cannot hold either. For assume towards a contradiction that $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$. Thus $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H}) \cong \mathscr{B}(Y)$.

- Assume Y is infinite-dimensional. Then $\mathscr{B}(Y)$ is not simple, as $\mathscr{A}(Y)=\overline{\mathscr{F}(Y)}$ is a proper, closed, two-sided ideal. But $\mathscr{K}(\mathcal{H})$ is a maximal ideal in $\mathscr{B}(\mathcal{H}) \Longleftrightarrow \mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is simple, a contradiction.
- Assume Y is finite-dimensional. Then $\mathscr{B}(Y)$ is finite-dimensional, but $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is not, a contradiction.
Thus (1) must hold $\Longleftrightarrow \operatorname{Ker}(\psi)=\{0\} \Longleftrightarrow \psi$ is injective.

Remark

The same argument works if we replace \mathcal{H} with c_{0} or ℓ_{p}, where $1 \leqslant p<\infty$.

Clearly (3) is impossible. We show that (2) cannot hold either. For assume towards a contradiction that $\operatorname{Ker}(\psi)=\mathscr{K}(\mathcal{H})$. Thus $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H}) \cong \mathscr{B}(Y)$.

- Assume Y is infinite-dimensional. Then $\mathscr{B}(Y)$ is not simple, as $\mathscr{A}(Y)=\overline{\mathscr{F}(Y)}$ is a proper, closed, two-sided ideal. But $\mathscr{K}(\mathcal{H})$ is a maximal ideal in $\mathscr{B}(\mathcal{H}) \Longleftrightarrow \mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is simple, a contradiction.
- Assume Y is finite-dimensional. Then $\mathscr{B}(Y)$ is finite-dimensional, but $\mathscr{B}(\mathcal{H}) / \mathscr{K}(\mathcal{H})$ is not, a contradiction.
Thus (1) must hold $\Longleftrightarrow \operatorname{Ker}(\psi)=\{0\} \Longleftrightarrow \psi$ is injective.

Remark

The same argument works if we replace \mathcal{H} with c_{0} or ℓ_{p}, where $1 \leqslant p<\infty$. Indeed if X is one of the above, then by the Gohberg-Markus-Feldman Theorem the ideal lattice of $\mathscr{B}(X)$ is given by

$$
\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{B}(X) .
$$

Definition

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is injective.

Definition

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is injective.
...But what about the continuity assumption?

Definition

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is injective.
...But what about the continuity assumption?

A word on automatic continuity

Let \mathcal{A} be a Banach algebra, let Y be a Banach space and let $\psi: \mathcal{A} \rightarrow \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then ψ is automatically continuous.

Definition

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is injective.
...But what about the continuity assumption?

A word on automatic continuity

Let \mathcal{A} be a Banach algebra, let Y be a Banach space and let $\psi: \mathcal{A} \rightarrow \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then ψ is automatically continuous.
This follows from a much more general result of B. E. Johnson.

Definition

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is injective.
...But what about the continuity assumption?

A word on automatic continuity

Let \mathcal{A} be a Banach algebra, let Y be a Banach space and let $\psi: \mathcal{A} \rightarrow \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then ψ is automatically continuous.
This follows from a much more general result of B. E. Johnson.
Consequently, if X has the SHAI property, Y is non-zero and there is a surjective algebra homomorphism $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$, then

$$
\mathscr{B}(X) \cong \mathscr{B}(Y) \Longleftrightarrow X \cong Y
$$

We know that c_{0} and ℓ_{p} have the SHAI for $1 \leqslant p<\infty$.

We know that c_{0} and ℓ_{p} have the SHAI for $1 \leqslant p<\infty$.
Question
Does ℓ_{∞} have the SHAI property?

We know that c_{0} and ℓ_{p} have the SHAI for $1 \leqslant p<\infty$.
Question
Does ℓ_{∞} have the SHAI property?

Theorem (W. B. Johnson - G. Pisier - G. Schechtman, 2018)

$\mathscr{B}\left(\ell_{\infty}\right)$ has a continuum of closed, two-sided ideals.

We know that c_{0} and ℓ_{p} have the SHAI for $1 \leqslant p<\infty$.
Question
Does ℓ_{∞} have the SHAI property?

Theorem (W. B. Johnson - G. Pisier - G. Schechtman, 2018)

$\mathscr{B}\left(\ell_{\infty}\right)$ has a continuum of closed, two-sided ideals.
(The answer to the question is YES, but a different approach is needed.)

The method of large kernels I.
Recall that if X, Y are non-zero Banach spaces, and $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

The method of large kernels I.
Recall that if X, Y are non-zero Banach spaces, and $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or

The method of large kernels I.
Recall that if X, Y are non-zero Banach spaces, and $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \operatorname{Ker}(\psi)$.

Recall that if X, Y are non-zero Banach spaces, and $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \operatorname{Ker}(\psi)$.

We can say something more if ψ is surjective.

The method of large kernels I.
Recall that if X, Y are non-zero Banach spaces, and $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \operatorname{Ker}(\psi)$.

We can say something more if ψ is surjective.

Definition

$T \in \mathscr{B}(X)$ is inessential if $I_{X}-S T$ is Fredholm, or equivalently

$$
\operatorname{dim}\left(\operatorname{Ker}\left(I_{X}-S T\right)\right)<\infty, \quad \operatorname{codim}\left(\operatorname{Ran}\left(I_{X}-S T\right)\right)<\infty
$$

for all $S \in \mathscr{B}(X)$.

The method of large kernels I.

Recall that if X, Y are non-zero Banach spaces, and $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \operatorname{Ker}(\psi)$.

We can say something more if ψ is surjective.

Definition

$T \in \mathscr{B}(X)$ is inessential if $I_{X}-S T$ is Fredholm, or equivalently

$$
\operatorname{dim}\left(\operatorname{Ker}\left(I_{X}-S T\right)\right)<\infty, \quad \operatorname{codim}\left(\operatorname{Ran}\left(I_{X}-S T\right)\right)<\infty
$$

for all $S \in \mathscr{B}(X)$.

Fact

The set $\mathscr{E}(X)$ of inessential operators is a proper, closed, two-sided ideal of $\mathscr{B}(X)$ if X is infinite-dimensional.

For an infinite-dimensional X the chain

$$
\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)
$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

For an infinite-dimensional X the chain

$$
\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)
$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.
(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V . Ferenczi that there is no largest proper closed operator ideal.)

For an infinite-dimensional X the chain

$$
\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)
$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.
(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V . Ferenczi that there is no largest proper closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X, Y be non-zero Banach spaces and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjectice algebra homomorphism.

For an infinite-dimensional X the chain

$$
\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)
$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.
(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V . Ferenczi that there is no largest proper closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X, Y be non-zero Banach spaces and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjectice algebra homomorphism. Then either

- ψ is injective; or

For an infinite-dimensional X the chain

$$
\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)
$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.
(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V . Ferenczi that there is no largest proper closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X, Y be non-zero Banach spaces and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjectice algebra homomorphism. Then either

- ψ is injective; or
- $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$.

Theorem (H.)

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space \mathbf{S}. Then X has the SHAI property.

Theorem (H.)

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space \mathbf{S}. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:

Theorem (H.)

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space \mathbf{S}. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:
(1) X has the SHAI property,

Theorem (H.)

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space \mathbf{S}. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:
(1) X has the SHAI property,
(2) for any infinite-dimensional Banach space Y any surjective algebra homomorphism $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is automatically injective.

Theorem (H.)

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space \mathbf{S}. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:
(1) X has the SHAI property,
(2) for any infinite-dimensional Banach space Y any surjective algebra homomorphism $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is automatically injective.

Proof.

(Sketch.) Under the hypothesis $\mathscr{B}(X)$ cannot have finite-codimensional proper two-sided ideals.

Proof of Theorem.
Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom.

Proof of Theorem.
Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim.

Proof of Theorem.
Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective.

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$.

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$. By a result of Laustsen \& Loy, we know that

$$
\mathscr{E}(X)=\mathscr{S}(X)=\mathscr{W}(X)=\mathscr{X}(X)
$$

is the unique maximal ideal in $\mathscr{B}(X)$

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$. By a result of Laustsen \& Loy, we know that

$$
\mathscr{E}(X)=\mathscr{S}(X)=\mathscr{W}(X)=\mathscr{X}(X)
$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi)=\mathscr{E}(X)$.

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$. By a result of Laustsen \& Loy, we know that

$$
\mathscr{E}(X)=\mathscr{S}(X)=\mathscr{W}(X)=\mathscr{X}(X)
$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi)=\mathscr{E}(X)$.

- The case $X=\mathbf{S}$.

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$. By a result of Laustsen \& Loy, we know that

$$
\mathscr{E}(X)=\mathscr{S}(X)=\mathscr{W}(X)=\mathscr{X}(X)
$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi)=\mathscr{E}(X)$.

- The case $X=\mathbf{S}$. Recall: X is complementably minimal

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$. By a result of Laustsen \& Loy, we know that

$$
\mathscr{E}(X)=\mathscr{S}(X)=\mathscr{W}(X)=\mathscr{X}(X)
$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi)=\mathscr{E}(X)$.

- The case $X=\mathbf{S}$. Recall: X is complementably minimal $(\Longleftrightarrow$ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X)

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$. By a result of Laustsen \& Loy, we know that

$$
\mathscr{E}(X)=\mathscr{S}(X)=\mathscr{W}(X)=\mathscr{X}(X)
$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi)=\mathscr{E}(X)$.

- The case $X=\mathbf{S}$. Recall: X is complementably minimal $(\Longleftrightarrow$ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem $\mathscr{S}(X)$ is the unique maximal ideal in $\mathscr{B}(X)$.

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$. By a result of Laustsen \& Loy, we know that

$$
\mathscr{E}(X)=\mathscr{S}(X)=\mathscr{W}(X)=\mathscr{X}(X)
$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi)=\mathscr{E}(X)$.

- The case $X=\mathbf{S}$. Recall: X is complementably minimal $(\Longleftrightarrow$ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem $\mathscr{S}(X)$ is the unique maximal ideal in $\mathscr{B}(X)$. Thus $\mathscr{S}(X)=\mathscr{E}(X)=\operatorname{Ker}(\psi)$.

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$. By a result of Laustsen \& Loy, we know that

$$
\mathscr{E}(X)=\mathscr{S}(X)=\mathscr{W}(X)=\mathscr{X}(X)
$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi)=\mathscr{E}(X)$.

- The case $X=\mathbf{S}$. Recall: X is complementably minimal $(\Longleftrightarrow$ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem $\mathscr{S}(X)$ is the unique maximal ideal in $\mathscr{B}(X)$. Thus $\mathscr{S}(X)=\mathscr{E}(X)=\operatorname{Ker}(\psi)$.
In both cases $\operatorname{Ker}(\psi)=\mathscr{E}(X)$ thus $\mathscr{B}(X) / \mathscr{E}(X) \cong \mathscr{B}(Y)$.

Proof of Theorem.

Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

- The case $X=\ell_{\infty}$. By a result of Laustsen \& Loy, we know that

$$
\mathscr{E}(X)=\mathscr{S}(X)=\mathscr{W}(X)=\mathscr{X}(X)
$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi)=\mathscr{E}(X)$.

- The case $X=\mathbf{S}$. Recall: X is complementably minimal $(\Longleftrightarrow$ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem $\mathscr{S}(X)$ is the unique maximal ideal in $\mathscr{B}(X)$. Thus $\mathscr{S}(X)=\mathscr{E}(X)=\operatorname{Ker}(\psi)$.
In both cases $\operatorname{Ker}(\psi)=\mathscr{E}(X)$ thus $\mathscr{B}(X) / \mathscr{E}(X) \cong \mathscr{B}(Y)$. Note that LHS is simple because $\mathscr{E}(X)$ is maximal, but RHS is not simple as Y is infinite-dimensional. A contradiction.

Our goal is to show that the Banach spaces

$$
\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{c_{0}}, \quad\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{\ell_{1}}
$$

have the SHAI property.

Our goal is to show that the Banach spaces

$$
\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{c_{0}}, \quad\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{\ell_{1}}
$$

and

$$
c_{0}(\lambda), \quad \ell_{\infty}^{c}(\lambda), \quad \ell_{p}(\lambda)
$$

(where $1 \leqslant p<\infty$ and λ is an infinite cardinal)
have the SHAI property.

Our goal is to show that the Banach spaces

$$
\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{c_{0}}, \quad\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{\ell_{1}}
$$

and

$$
c_{0}(\lambda), \quad \ell_{\infty}^{c}(\lambda), \quad \ell_{p}(\lambda)
$$

(where $1 \leqslant p<\infty$ and λ is an infinite cardinal)
have the SHAI property.
Recall that

$$
\ell_{\infty}^{c}(\lambda):=\left\{x \in \ell_{\infty}(\lambda): \operatorname{supp}(x) \text { is countable }\right\}
$$

Our goal is to show that the Banach spaces

$$
\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{c_{0}}, \quad\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{\ell_{1}}
$$

and

$$
c_{0}(\lambda), \quad \ell_{\infty}^{c}(\lambda), \quad \ell_{p}(\lambda)
$$

(where $1 \leqslant p<\infty$ and λ is an infinite cardinal)
have the SHAI property.
Recall that

$$
\ell_{\infty}^{c}(\lambda):=\left\{x \in \ell_{\infty}(\lambda): \operatorname{supp}(x) \text { is countable }\right\} .
$$

Note that $\ell_{\infty}^{c}(\lambda)$ is a sub-C*-algebra of the commutative C^{*}-algebra $\ell_{\infty}(\lambda)$. Moreover $\ell_{\infty}^{c}(\lambda)$ is a $C(K)$-space, as observed by Johnson \& Kania \& Schechtman.

The method of large kernels II.
Let X and W be Banach spaces. Define

$$
\overline{\mathscr{G}}_{W}(X):=\overline{\operatorname{span}}\{S T: T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X)\} .
$$

The method of large kernels II.
Let X and W be Banach spaces. Define

$$
\overline{\mathscr{G}}_{W}(X):=\overline{\operatorname{span}}\{S T: T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X)\} .
$$

Then $\overline{\mathscr{G}}_{W}(X) \unlhd \mathscr{B}(X)$, and it is called the ideal of operators that approximately factor through W.

The method of large kernels II.
Let X and W be Banach spaces. Define

$$
\overline{\mathscr{G}}_{W}(X):=\overline{\operatorname{span}}\{S T: T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X)\} .
$$

Then $\overline{\mathscr{G}}_{W}(X) \unlhd \mathscr{B}(X)$, and it is called the ideal of operators that approximately factor through W.
If X has a complemented subspace isomorphic to W, and
$P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_{W}(X)$ coincides with $\overline{\langle P\rangle}$, the closed, two-sided ideal generated by P.

The method of large kernels II.

Let X and W be Banach spaces. Define

$$
\overline{\mathscr{G}}_{W}(X):=\overline{\operatorname{span}}\{S T: T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X)\} .
$$

Then $\overline{\mathscr{G}}_{W}(X) \unlhd \mathscr{B}(X)$, and it is called the ideal of operators that approximately factor through W.
If X has a complemented subspace isomorphic to W, and
$P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_{w}(X)$ coincides with $\overline{\langle P\rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.-Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property.

The method of large kernels II.

Let X and W be Banach spaces. Define

$$
\overline{\mathscr{G}}_{W}(X):=\overline{\operatorname{span}}\{S T: T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X)\} .
$$

Then $\overline{\mathscr{G}}_{W}(X) \unlhd \mathscr{B}(X)$, and it is called the ideal of operators that approximately factor through W.
If X has a complemented subspace isomorphic to W, and
$P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_{w}(X)$ coincides with $\overline{\langle P\rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.-Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property. Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective algebra homomorphism.

The method of large kernels II.

Let X and W be Banach spaces. Define

$$
\overline{\mathscr{G}}_{W}(X):=\overline{\operatorname{span}}\{S T: T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X)\} .
$$

Then $\overline{\mathscr{G}}_{W}(X) \unlhd \mathscr{B}(X)$, and it is called the ideal of operators that approximately factor through W.
If X has a complemented subspace isomorphic to W, and
$P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_{w}(X)$ coincides with $\overline{\langle P\rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.-Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property. Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then either

- ψ is injective; or

The method of large kernels II.

Let X and W be Banach spaces. Define

$$
\overline{\mathscr{G}}_{W}(X):=\overline{\operatorname{span}}\{S T: T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X)\} .
$$

Then $\overline{\mathscr{G}}_{W}(X) \unlhd \mathscr{B}(X)$, and it is called the ideal of operators that approximately factor through W.
If X has a complemented subspace isomorphic to W, and
$P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_{w}(X)$ coincides with $\overline{\langle P\rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.-Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property. Let Y be a Banach space and let $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then either

- ψ is injective; or
- $\bar{G}_{W}(X) \subseteq \operatorname{Ker}(\psi)$.

Sketch proof of Dichotomy Result II.
 Let $P \in \mathscr{B}(X)$ be an idempotent with $W=\operatorname{Ran}(P)$.

Sketch proof of Dichotomy Result II.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W=\operatorname{Ran}(P)$.
Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$.

Sketch proof of Dichotomy Result II.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W=\operatorname{Ran}(P)$.
Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_{W}(X)=\overline{\langle P\rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \unlhd \mathscr{B}(X)$.

Sketch proof of Dichotomy Result II.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W=\operatorname{Ran}(P)$.
Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\bar{G}_{W}(X)=\overline{\langle P\rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \unlhd \mathscr{B}(X)$.
Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z:=\operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y.

Sketch proof of Dichotomy Result II.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W=\operatorname{Ran}(P)$.
Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\bar{G}_{W}(X)=\overline{\langle P\rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \unlhd \mathscr{B}(X)$.
Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z:=\operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$
\theta: \mathscr{B}(W) \rightarrow \mathscr{B}(Z) ;\left.\quad T \mapsto \psi\left(\left.\left.P\right|_{W} \circ T \circ P\right|^{W}\right)\right|_{Z} ^{Z}
$$

is well-defined.

Sketch proof of Dichotomy Result II.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W=\operatorname{Ran}(P)$.
Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\bar{G}_{W}(X)=\overline{\langle P\rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \unlhd \mathscr{B}(X)$.
Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z:=\operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$
\theta: \mathscr{B}(W) \rightarrow \mathscr{B}(Z) ;\left.\quad T \mapsto \psi\left(\left.\left.P\right|_{W} \circ T \circ P\right|^{W}\right)\right|_{Z} ^{Z}
$$

is well-defined. It is also an algebra homomorphism.

Sketch proof of Dichotomy Result II.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W=\operatorname{Ran}(P)$.
Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then
$\bar{G}_{W}(X)=\overline{\langle P\rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \unlhd \mathscr{B}(X)$.
Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z:=\operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of
Y. The map

$$
\theta: \mathscr{B}(W) \rightarrow \mathscr{B}(Z) ;\left.\quad T \mapsto \psi\left(\left.\left.P\right|_{W} \circ T \circ P\right|^{W}\right)\right|_{Z} ^{Z}
$$

is well-defined. It is also an algebra homomorphism.
Bit less obvious: θ is surjective.

Sketch proof of Dichotomy Result II.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W=\operatorname{Ran}(P)$.
Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then
$\bar{G}_{W}(X)=\overline{\langle P\rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \unlhd \mathscr{B}(X)$.
Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z:=\operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$
\theta: \mathscr{B}(W) \rightarrow \mathscr{B}(Z) ;\left.\quad T \mapsto \psi\left(\left.\left.P\right|_{W} \circ T \circ P\right|^{W}\right)\right|_{Z} ^{Z}
$$

is well-defined. It is also an algebra homomorphism.
Bit less obvious: θ is surjective. Since Z is non-zero, from the SHAI property of W it follows that θ is injective.

Sketch proof of Dichotomy Result II con't.
Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$.

Sketch proof of Dichotomy Result II con't.
Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$
\theta\left(\left.P\right|^{W} \circ A \circ P \mid W\right)=
$$

Sketch proof of Dichotomy Result II con't.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$
\theta\left(\left.\left.P\right|^{W} \circ A \circ P\right|_{W}\right)=\left.\psi\left(\left.\left.\left.\left.P\right|_{W} \circ P\right|^{W} \circ A \circ P\right|_{W} \circ P\right|^{W}\right)\right|_{Z} ^{Z}
$$

Sketch proof of Dichotomy Result II con't.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$
\begin{aligned}
\theta\left(\left.\left.P\right|^{W} \circ A \circ P\right|_{W}\right) & =\left.\psi\left(\left.\left.\left.\left.P\right|_{W} \circ P\right|^{W} \circ A \circ P\right|_{W} \circ P\right|^{W}\right)\right|_{Z} ^{Z} \\
& =\left.\psi(P \circ A \circ P)\right|_{Z} ^{Z}
\end{aligned}
$$

Sketch proof of Dichotomy Result II con't.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$
\begin{aligned}
\theta\left(\left.P\right|^{W} \circ A \circ P \mid w\right) & =\left.\psi\left(\left.\left.\left.\left.P\right|_{w} \circ P\right|^{W} \circ A \circ P\right|_{W} \circ P\right|^{W}\right)\right|_{Z} ^{Z} \\
& =\left.\psi(P \circ A \circ P)\right|_{Z} ^{Z} \\
& =\left.(\psi(P) \circ \psi(A) \circ \psi(P))\right|_{Z} ^{Z}
\end{aligned}
$$

Sketch proof of Dichotomy Result II con't.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$
\begin{aligned}
\theta\left(\left.\left.P\right|^{W} \circ A \circ P\right|_{W}\right) & =\left.\psi\left(\left.\left.\left.\left.P\right|_{W} \circ P\right|^{W} \circ A \circ P\right|_{W} \circ P\right|^{W}\right)\right|_{Z} ^{Z} \\
& =\left.\psi(P \circ A \circ P)\right|_{Z} ^{Z} \\
& =\left.(\psi(P) \circ \psi(A) \circ \psi(P))\right|_{Z} ^{Z} \\
& =0 .
\end{aligned}
$$

Sketch proof of Dichotomy Result II con't.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$
\begin{aligned}
\theta\left(\left.\left.P\right|^{W} \circ A \circ P\right|_{W}\right) & =\left.\psi\left(\left.\left.\left.\left.P\right|_{W} \circ P\right|^{W} \circ A \circ P\right|_{W} \circ P\right|^{W}\right)\right|_{Z} ^{Z} \\
& =\left.\psi(P \circ A \circ P)\right|_{Z} ^{Z} \\
& =\left.(\psi(P) \circ \psi(A) \circ \psi(P))\right|_{Z} ^{Z} \\
& =0 .
\end{aligned}
$$

Since θ is injective it follows that $\left.\left.P\right|^{W} A P\right|_{W}=0$ or equivalently $P A P=0$.

Sketch proof of Dichotomy Result II con't.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$
\begin{aligned}
\theta\left(\left.\left.P\right|^{W} \circ A \circ P\right|_{W}\right) & =\left.\psi\left(\left.\left.\left.\left.P\right|_{W} \circ P\right|^{W} \circ A \circ P\right|_{W} \circ P\right|^{W}\right)\right|_{Z} ^{Z} \\
& =\left.\psi(P \circ A \circ P)\right|_{Z} ^{Z} \\
& =\left.(\psi(P) \circ \psi(A) \circ \psi(P))\right|_{Z} ^{Z} \\
& =0 .
\end{aligned}
$$

Since θ is injective it follows that $\left.\left.P\right|^{W} A P\right|_{w}=0$ or equivalently $P A P=0$.

We apply this in the following specific situation: We choose $x \in W=\operatorname{Ran}(P) \subseteq X$ and $\xi \in X^{*}$ norm one vectors with $\langle x, \xi\rangle=1$.

Sketch proof of Dichotomy Result II con't.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$
\begin{aligned}
\theta\left(\left.\left.P\right|^{W} \circ A \circ P\right|_{W}\right) & =\left.\psi\left(\left.\left.\left.\left.P\right|_{W} \circ P\right|^{W} \circ A \circ P\right|_{W} \circ P\right|^{W}\right)\right|_{Z} ^{Z} \\
& =\left.\psi(P \circ A \circ P)\right|_{Z} ^{Z} \\
& =\left.(\psi(P) \circ \psi(A) \circ \psi(P))\right|_{Z} ^{Z} \\
& =0 .
\end{aligned}
$$

Since θ is injective it follows that $\left.\left.P\right|^{W} A P\right|_{W}=0$ or equivalently $P A P=0$.

We apply this in the following specific situation: We choose $x \in W=\operatorname{Ran}(P) \subseteq X$ and $\xi \in X^{*}$ norm one vectors with $\langle x, \xi\rangle=1$. As ψ is not injective, in particular we have $x \otimes \xi \in \mathscr{F}(X) \subseteq \operatorname{Ker}(\psi)$, consequently $P(x \otimes \xi) P=0$.

Sketch proof of Dichotomy Result II con't.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$
\begin{aligned}
\theta\left(\left.\left.P\right|^{W} \circ A \circ P\right|_{W}\right) & =\left.\psi\left(\left.\left.\left.\left.P\right|_{W} \circ P\right|^{W} \circ A \circ P\right|_{W} \circ P\right|^{W}\right)\right|_{Z} ^{Z} \\
& =\left.\psi(P \circ A \circ P)\right|_{Z} ^{Z} \\
& =\left.(\psi(P) \circ \psi(A) \circ \psi(P))\right|_{Z} ^{Z} \\
& =0 .
\end{aligned}
$$

Since θ is injective it follows that $\left.\left.P\right|^{W} A P\right|_{W}=0$ or equivalently $P A P=0$.

We apply this in the following specific situation: We choose $x \in W=\operatorname{Ran}(P) \subseteq X$ and $\xi \in X^{*}$ norm one vectors with $\langle x, \xi\rangle=1$. As ψ is not injective, in particular we have $x \otimes \xi \in \mathscr{F}(X) \subseteq \operatorname{Ker}(\psi)$, consequently $P(x \otimes \xi) P=0$. Thus

$$
0=(P(x \otimes \xi) P) x=\langle P x, \xi\rangle P x=\langle x, \xi\rangle x=x
$$

a contradiction. Consequently $P \in \operatorname{Ker}(\psi)$ must hold.

Theorem (H.)
 Let $X:=\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{Y}$, where Y is c_{0} or ℓ_{1}. Then X has the SHAI property.

Theorem (H.)

Let $X:=\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{Y}$, where Y is c_{0} or ℓ_{1}. Then X has the SHAI property.

Proof.

Main ingredient:

Theorem (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák)

Let $X=\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{Y}$ where Y is c_{0} or ℓ_{1}. Then the lattice of closed, two-sided ideals in $\mathscr{B}(X)$ is given by

$$
\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \overline{\mathscr{G}}_{Y}(X) \hookrightarrow \mathscr{B}(X) .
$$

Theorem (H.)

Let $X:=\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{Y}$, where Y is c_{0} or ℓ_{1}. Then X has the SHAI property.

Proof.

Main ingredient:

Theorem (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák)

Let $X=\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{Y}$ where Y is c_{0} or ℓ_{1}. Then the lattice of closed, two-sided ideals in $\mathscr{B}(X)$ is given by

$$
\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \overline{\mathscr{G}}_{Y}(X) \hookrightarrow \mathscr{B}(X) .
$$

Apply that c_{0} and ℓ_{1} have the SHAI property with Dichotomy Result II and the fact that $X \oplus X \cong X$.

Theorem (H.)

Let $X:=\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{Y}$, where Y is c_{0} or ℓ_{1}. Then X has the SHAI property.

Proof.

Main ingredient:

Theorem (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák)

Let $X=\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{Y}$ where Y is c_{0} or ℓ_{1}. Then the lattice of closed, two-sided ideals in $\mathscr{B}(X)$ is given by

$$
\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \overline{\mathscr{G}}_{Y}(X) \hookrightarrow \mathscr{B}(X) .
$$

Apply that c_{0} and ℓ_{1} have the SHAI property with Dichotomy Result II and the fact that $X \oplus X \cong X$.

Alternative proof: $\mathscr{B}(X) / \mathscr{K}(X)$ does not have minimal idempotents.

The long sequence spaces

Recall

c_{0} and ℓ_{p} have the SHAI property for all $p \in[1, \infty]$

The long sequence spaces

Recall

c_{0} and ℓ_{p} have the SHAI property for all $p \in[1, \infty]$

Theorem (H.)

$\ell_{2}(\lambda)$ has the SHAI property for every infinite cardinal λ.

The long sequence spaces

Recall

c_{0} and ℓ_{p} have the SHAI property for all $p \in[1, \infty]$

Theorem (H.)

$\ell_{2}(\lambda)$ has the SHAI property for every infinite cardinal λ.
The proof uses Spectral Theory to show that idempotents from $\mathscr{B}\left(\ell_{2}(\lambda)\right) / \mathscr{J}$ can be lifted to idempotents in $\mathscr{B}\left(\ell_{2}(\lambda)\right)$, where $\mathscr{J} \unlhd \mathscr{B}\left(\ell_{2}(\lambda)\right)$.

The long sequence spaces

Recall

c_{0} and ℓ_{p} have the SHAI property for all $p \in[1, \infty]$

Theorem (H.)

$\ell_{2}(\lambda)$ has the SHAI property for every infinite cardinal λ.
The proof uses Spectral Theory to show that idempotents from $\mathscr{B}\left(\ell_{2}(\lambda)\right) / \mathscr{J}$ can be lifted to idempotents in $\mathscr{B}\left(\ell_{2}(\lambda)\right)$, where $\mathscr{J} \unlhd \mathscr{B}\left(\ell_{2}(\lambda)\right)$.
Hence $\mathscr{B}\left(\ell_{2}(\lambda)\right) / \mathscr{J}$ has no minimal idempotents.

The long sequence spaces

Recall

c_{0} and ℓ_{p} have the SHAI property for all $p \in[1, \infty]$

Theorem (H.)

$\ell_{2}(\lambda)$ has the SHAI property for every infinite cardinal λ.
The proof uses Spectral Theory to show that idempotents from $\mathscr{B}\left(\ell_{2}(\lambda)\right) / \mathscr{J}$ can be lifted to idempotents in $\mathscr{B}\left(\ell_{2}(\lambda)\right)$, where $\mathscr{J} \unlhd \mathscr{B}\left(\ell_{2}(\lambda)\right)$.
Hence $\mathscr{B}\left(\ell_{2}(\lambda)\right) / \mathscr{J}$ has no minimal idempotents.
Thus there is no Banach space Y with $\mathscr{B}\left(\ell_{2}(\lambda)\right) / \mathscr{J} \cong \mathscr{B}(Y)$, as minimal idempotents in $\mathscr{B}(Y)$ are precisely the rank one idempotents.

The long sequence spaces

Theorem (H.-Kania)
Let λ be an infinite cardinal. Then $c_{0}(\lambda), \ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (for $1 \leqslant p<\infty)$ have the SHAI property.

The long sequence spaces

Theorem (H.-Kania)

Let λ be an infinite cardinal. Then $c_{0}(\lambda), \ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (for $1 \leqslant p<\infty)$ have the SHAI property.

Ingredients of the proof.

Definition

Let X and Y be Banach spaces. Let $\mathscr{S}_{Y}(X)$ be a subset of $\mathscr{B}(X)$ defined by
$T \notin \mathscr{S}_{Y}(X) \Longleftrightarrow \exists W \subseteq X$ subspace with $W \cong Y$ such that $\left.T\right|_{W}$ is bounded below.

The long sequence spaces

Theorem (H.-Kania)

Let λ be an infinite cardinal. Then $c_{0}(\lambda), \ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (for $1 \leqslant p<\infty)$ have the SHAI property.

Ingredients of the proof.

Definition

Let X and Y be Banach spaces. Let $\mathscr{S}_{Y}(X)$ be a subset of $\mathscr{B}(X)$ defined by
$T \notin \mathscr{S}_{Y}(X) \Longleftrightarrow \exists W \subseteq X$ subspace with $W \cong Y$ such that $\left.T\right|_{W}$ is bounded below.
$\mathscr{S}_{Y}(X)$ is called the set of Y-singular operators on X.

The long sequence spaces
Ingredients of the proof (con't).
Facts
(1) $\mathscr{S}_{Y}(X) \subseteq \mathscr{S}_{Z}(X)$ if $Y \subseteq Z$.

The long sequence spaces
Ingredients of the proof (con't).
Facts
(1) $\mathscr{S}_{Y}(X) \subseteq \mathscr{S}_{Z}(X)$ if $Y \subseteq Z$.
(2) If $A \in \mathscr{S}_{Y}(X)$ and $T \in \mathscr{B}(X)$ then $A T, T A \in \mathscr{S}_{Y}(X)$.

The long sequence spaces
Ingredients of the proof (con't).

Facts

(1) $\mathscr{S}_{Y}(X) \subseteq \mathscr{S}_{Z}(X)$ if $Y \subseteq Z$.
(2) If $A \in \mathscr{S}_{Y}(X)$ and $T \in \mathscr{B}(X)$ then $A T, T A \in \mathscr{S}_{Y}(X)$.
(3) $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).

The long sequence spaces
Ingredients of the proof (con't).

Facts

(1) $\mathscr{S}_{Y}(X) \subseteq \mathscr{S}_{Z}(X)$ if $Y \subseteq Z$.
(2) If $A \in \mathscr{S}_{Y}(X)$ and $T \in \mathscr{B}(X)$ then $A T, T A \in \mathscr{S}_{Y}(X)$.
(3) $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).
(9) If $\mathscr{S}_{X}(X)$ is closed under addition and X is complementably homogeneous then $\mathscr{S}_{X}(X)$ is the unique maximal ideal in $\mathscr{B}(X)$. [folk, H.- Kania]

The long sequence spaces

Ingredients of the proof (con't).

Facts

(1) $\mathscr{S}_{Y}(X) \subseteq \mathscr{S}_{Z}(X)$ if $Y \subseteq Z$.
(2) If $A \in \mathscr{S}_{Y}(X)$ and $T \in \mathscr{B}(X)$ then $A T, T A \in \mathscr{S}_{Y}(X)$.
(3) $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).
(9) If $\mathscr{S}_{X}(X)$ is closed under addition and X is complementably homogeneous then $\mathscr{S}_{X}(X)$ is the unique maximal ideal in $\mathscr{B}(X)$. [folk, H.- Kania]
(X is complementably homogeneous if whenever Y is a subspace of X with $Y \cong X$ then there is $Z \subseteq Y$ subspace which is complemented in X and $Z \cong X$.)

The long sequence spaces

Ingredients of the proof (con't).

Facts

(1) $\mathscr{S}_{Y}(X) \subseteq \mathscr{S}_{Z}(X)$ if $Y \subseteq Z$.
(2) If $A \in \mathscr{S}_{Y}(X)$ and $T \in \mathscr{B}(X)$ then $A T, T A \in \mathscr{S}_{Y}(X)$.
(3) $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).
(9) If $\mathscr{S}_{X}(X)$ is closed under addition and X is complementably homogeneous then $\mathscr{S}_{X}(X)$ is the unique maximal ideal in $\mathscr{B}(X)$. [folk, H.- Kania]
(X is complementably homogeneous if whenever Y is a subspace of X with $Y \cong X$ then there is $Z \subseteq Y$ subspace which is complemented in X and $Z \cong X$.)
The spaces $c_{0}(\lambda), \ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (where $\left.1 \leqslant p<\infty\right)$ are complementably homogeneous.

The long sequence spaces

Ingredients of the proof (con't).
Let E_{λ} be one of the Banach spaces $c_{0}(\lambda), \ell_{\infty}^{c}(\lambda)$ or $\ell_{p}(\lambda)$ where $1 \leqslant p<\infty$.

The long sequence spaces

Ingredients of the proof (con't).

Let E_{λ} be one of the Banach spaces $c_{0}(\lambda), \ell_{\infty}^{c}(\lambda)$ or $\ell_{p}(\lambda)$ where $1 \leqslant p<\infty$.

Theorem (Johnson - Kania - Schechtman)

The set $\mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)$ is a closed, non-zero, proper two-sided ideal in $\mathscr{B}\left(E_{\lambda}\right)$ for every infinite cardinal $\kappa \leq \lambda$. In particular $\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)$ is maximal.

The long sequence spaces

Ingredients of the proof (con't).

Let E_{λ} be one of the Banach spaces $c_{0}(\lambda), \ell_{\infty}^{c}(\lambda)$ or $\ell_{p}(\lambda)$ where $1 \leqslant p<\infty$.

Theorem (Johnson - Kania - Schechtman)

The set $\mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)$ is a closed, non-zero, proper two-sided ideal in $\mathscr{B}\left(E_{\lambda}\right)$ for every infinite cardinal $\kappa \leq \lambda$. In particular $\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)$ is maximal.

Theorem (Johnson - Kania - Schechtman)

Let λ and κ be uncountable cardinals with $\lambda \geqslant \kappa$, and suppose that κ is not a successor of any cardinal number. Then

$$
\mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)=\overline{\bigcup_{\alpha<\kappa} \mathscr{S}_{E_{\alpha}}\left(E_{\lambda}\right)}
$$

The long sequence spaces

Ingredients of the proof (con't).
Theorem (H. - Kania, Johnson - Kania - Schechtman for $\left.\ell_{\infty}^{c}(\lambda)\right)$
Let λ and κ be infinite cardinals with $\lambda \geqslant \kappa$. Let $T \in \mathscr{B}\left(E_{\lambda}\right)$ be such that $T \notin \mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)$. Then

$$
\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \overline{\langle T\rangle} .
$$

The long sequence spaces

Ingredients of the proof (con't).

Theorem (H. - Kania, Johnson - Kania - Schechtman for $\left.\ell_{\infty}^{c}(\lambda)\right)$
Let λ and κ be infinite cardinals with $\lambda \geqslant \kappa$. Let $T \in \mathscr{B}\left(E_{\lambda}\right)$ be such that $T \notin \mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)$. Then

$$
\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \overline{\langle T\rangle} .
$$

The proof that E_{λ} has SHAI uses:

- Transfinite induction on the cardinals $\kappa \leqslant \lambda$;
- the above 3 theorems;
- and the Dichotomy Result II.

The long sequence spaces

Ingredients of the proof (con't).

Theorem (H. - Kania, Johnson - Kania - Schechtman for $\left.\ell_{\infty}^{c}(\lambda)\right)$
Let λ and κ be infinite cardinals with $\lambda \geqslant \kappa$. Let $T \in \mathscr{B}\left(E_{\lambda}\right)$ be such that $T \notin \mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)$. Then

$$
\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \overline{\langle T\rangle} .
$$

The proof that E_{λ} has SHAI uses:

- Transfinite induction on the cardinals $\kappa \leqslant \lambda$;
- the above 3 theorems;
- and the Dichotomy Result II. In this context, $\overline{\mathscr{G}}_{E_{\kappa}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)$, where $\psi: \mathscr{B}\left(E_{\lambda}\right) \rightarrow \mathscr{B}(Y)$ is some surjective, non-injective algebra hom.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa<\lambda$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa<\lambda$.
Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi: \mathscr{B}\left(E_{\lambda}\right) \rightarrow \mathscr{B}(Y)$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa<\lambda$.
Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi: \mathscr{B}\left(E_{\lambda}\right) \rightarrow \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ}, there is an idempotent $P_{(\kappa)} \in \mathscr{B}\left(E_{\lambda}\right)$ with $\operatorname{Ran}\left(P_{(\kappa)}\right) \cong E_{\kappa}$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa<\lambda$.
Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi: \mathscr{B}\left(E_{\lambda}\right) \rightarrow \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ}, there is an idempotent $P_{(\kappa)} \in \mathscr{B}\left(E_{\lambda}\right)$ with $\operatorname{Ran}\left(P_{(\kappa)}\right) \cong E_{\kappa}$. Clearly $P_{(\kappa)} \notin \mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)$, hence by Theorem above it follows that $\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}\left(E_{\lambda}\right)$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa<\lambda$.
Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi: \mathscr{B}\left(E_{\lambda}\right) \rightarrow \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ}, there is an idempotent $P_{(\kappa)} \in \mathscr{B}\left(E_{\lambda}\right)$ with $\operatorname{Ran}\left(P_{(\kappa)}\right) \cong E_{\kappa}$. Clearly $P_{(\kappa)} \notin \mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)$, hence by Theorem above it follows that $\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}\left(E_{\lambda}\right)$. As E_{κ} has the SHAI property by the inductive hypothesis, we conclude from Dichotomy Result II that

$$
\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)
$$

Proof

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa<\lambda$.
Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi: \mathscr{B}\left(E_{\lambda}\right) \rightarrow \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ}, there is an idempotent $P_{(\kappa)} \in \mathscr{B}\left(E_{\lambda}\right)$ with $\operatorname{Ran}\left(P_{(\kappa)}\right) \cong E_{\kappa}$. Clearly $P_{(\kappa)} \notin \mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)$, hence by Theorem above it follows that $\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \bar{G}_{E_{\kappa}}\left(E_{\lambda}\right)$. As E_{κ} has the SHAI property by the inductive hypothesis, we conclude from Dichotomy Result II that

$$
\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)
$$

We claim that $\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)$. We consider three cases:
(1) $\lambda=\omega$;
(2) λ is a successor cardinal;
(3) λ is uncountable and not a successor cardinal.

Proof (con't.)

(1) If $\lambda=\omega$ then $E_{\lambda}=c_{0}$ or $E_{\lambda}=\ell_{p}$, where $p \in[1, \infty]$. Then Dichotomy Result I yields

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\mathscr{E}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)
$$

Proof (con't.)

(1) If $\lambda=\omega$ then $E_{\lambda}=c_{0}$ or $E_{\lambda}=\ell_{p}$, where $p \in[1, \infty]$. Then Dichotomy Result I yields

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\mathscr{E}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)
$$

(2) If λ is a successor cardinal then $\lambda=\kappa^{+}$for some cardinal $\kappa<\lambda$. Thus we conclude

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)
$$

(1) If $\lambda=\omega$ then $E_{\lambda}=c_{0}$ or $E_{\lambda}=\ell_{p}$, where $p \in[1, \infty]$. Then Dichotomy Result I yields

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\mathscr{E}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)
$$

(2) If λ is a successor cardinal then $\lambda=\kappa^{+}$for some cardinal $\kappa<\lambda$. Thus we conclude

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)
$$

(3) Let λ be an uncountable cardinal which is not a successor of any cardinal. We clearly have $\mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right) \subseteq \mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)$ for each $\kappa<\lambda$. As $\operatorname{Ker}(\psi)$ is closed, in view of Theorem we obtain

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\overline{\bigcup_{\kappa<\lambda} \mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right)} \subseteq \operatorname{Ker}(\psi)
$$

(1) If $\lambda=\omega$ then $E_{\lambda}=c_{0}$ or $E_{\lambda}=\ell_{p}$, where $p \in[1, \infty]$. Then Dichotomy Result I yields

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\mathscr{E}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)
$$

(2) If λ is a successor cardinal then $\lambda=\kappa^{+}$for some cardinal $\kappa<\lambda$. Thus we conclude

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)
$$

(3) Let λ be an uncountable cardinal which is not a successor of any cardinal. We clearly have $\mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right) \subseteq \mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)$ for each $\kappa<\lambda$. As $\operatorname{Ker}(\psi)$ is closed, in view of Theorem we obtain

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\overline{\bigcup_{\kappa<\lambda} \mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)}
$$

Since $\operatorname{Ker}(\psi) \unlhd \mathscr{B}\left(E_{\lambda}\right)$ is proper and $\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)$ is maximal by Theorem, we must have $\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\operatorname{Ker}(\psi)$.
(1) If $\lambda=\omega$ then $E_{\lambda}=c_{0}$ or $E_{\lambda}=\ell_{p}$, where $p \in[1, \infty]$. Then Dichotomy Result I yields

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\mathscr{E}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi) .
$$

(2) If λ is a successor cardinal then $\lambda=\kappa^{+}$for some cardinal $\kappa<\lambda$. Thus we conclude

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\mathscr{S}_{E_{k^{+}}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi) .
$$

(3) Let λ be an uncountable cardinal which is not a successor of any cardinal. We clearly have $\mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right) \subseteq \mathscr{S}_{E_{\kappa^{+}}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)$ for each $\kappa<\lambda$. As $\operatorname{Ker}(\psi)$ is closed, in view of Theorem we obtain

$$
\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\overline{\bigcup_{\kappa<\lambda} \mathscr{S}_{E_{\kappa}}\left(E_{\lambda}\right) \subseteq \operatorname{Ker}(\psi)}
$$

Since $\operatorname{Ker}(\psi) \unlhd \mathscr{B}\left(E_{\lambda}\right)$ is proper and $\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)$ is maximal by Theorem, we must have $\mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right)=\operatorname{Ker}(\psi)$. This is equivalent to $\mathscr{B}\left(E_{\lambda}\right) / \mathscr{S}_{E_{\lambda}}\left(E_{\lambda}\right) \cong \mathscr{B}(Y)$, which is impossible. Thus ψ must be injective.

Intermezzo: Fun times around Zakopane

Figure: Descending from Kasprowy Wierch, 2018 Summer

Further results, remarks

- $L_{p}[0,1]$ has the SHAI property for $1<p<\infty$ [Johnson Phillips - Schechtman, 2020+].
- $L_{p}[0,1]$ has the SHAI property for $1<p<\infty$ [Johnson Phillips - Schechtman, 2020+]. The "non-classical" complemented subspace X_{p} constructed by Rosenthal also has SHAI [Johnson - Phillips - Schechtman, 2020+].
- $L_{p}[0,1]$ has the SHAI property for $1<p<\infty$ [Johnson Phillips - Schechtman, 2020+]. The "non-classical" complemented subspace X_{p} constructed by Rosenthal also has SHAI [Johnson - Phillips - Schechtman, 2020+].
- If $X_{1}, X_{2}, \ldots, X_{n}$ have SHAI then $\bigoplus_{i=1}^{n} X_{i}$ has SHAI. [H.]
- $L_{p}[0,1]$ has the SHAI property for $1<p<\infty$ [Johnson Phillips - Schechtman, 2020+]. The "non-classical" complemented subspace X_{p} constructed by Rosenthal also has SHAI [Johnson - Phillips - Schechtman, 2020+].
- If $X_{1}, X_{2}, \ldots, X_{n}$ have SHAI then $\bigoplus_{i=1}^{n} X_{i}$ has SHAI. [H.]
- Hence $X:=\ell_{p} \oplus \ell_{q}$ and $X:=c_{0} \oplus \ell_{p}$ have SHAI. Note: $\mathscr{B}(X)$ has very complicated ideal lattice! [Freeman \& Schlumprecht \& Zsák]
- $L_{p}[0,1]$ has the SHAI property for $1<p<\infty$ [Johnson Phillips - Schechtman, 2020+]. The "non-classical" complemented subspace X_{p} constructed by Rosenthal also has SHAI [Johnson - Phillips - Schechtman, 2020+].
- If $X_{1}, X_{2}, \ldots, X_{n}$ have SHAI then $\bigoplus_{i=1}^{n} X_{i}$ has SHAI. [H.]
- Hence $X:=\ell_{p} \oplus \ell_{q}$ and $X:=c_{0} \oplus \ell_{p}$ have SHAI. Note: $\mathscr{B}(X)$ has very complicated ideal lattice! [Freeman \& Schlumprecht \& Zsák]
- SHAI is not a three-space property [H. - Kania].

Further results, remarks

- $L_{p}[0,1]$ has the SHAI property for $1<p<\infty$ [Johnson Phillips - Schechtman, 2020+]. The "non-classical" complemented subspace X_{p} constructed by Rosenthal also has SHAI [Johnson - Phillips - Schechtman, 2020+].
- If $X_{1}, X_{2}, \ldots, X_{n}$ have SHAI then $\bigoplus_{i=1}^{n} X_{i}$ has SHAI. [H.]
- Hence $X:=\ell_{p} \oplus \ell_{q}$ and $X:=c_{0} \oplus \ell_{p}$ have SHAI. Note: $\mathscr{B}(X)$ has very complicated ideal lattice! [Freeman \& Schlumprecht \& Zsák]
- SHAI is not a three-space property [H. - Kania].
- There exists an uncountable AD family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ and an Isbell-Mrówka space $K_{\mathcal{A}}$ such that $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ has a character [Koszmider-Laustsen, 2020+];
- $L_{p}[0,1]$ has the SHAI property for $1<p<\infty$ [Johnson Phillips - Schechtman, 2020+]. The "non-classical" complemented subspace X_{p} constructed by Rosenthal also has SHAI [Johnson - Phillips - Schechtman, 2020+].
- If $X_{1}, X_{2}, \ldots, X_{n}$ have SHAI then $\bigoplus_{i=1}^{n} X_{i}$ has SHAI. [H.]
- Hence $X:=\ell_{p} \oplus \ell_{q}$ and $X:=c_{0} \oplus \ell_{p}$ have SHAI. Note: $\mathscr{B}(X)$ has very complicated ideal lattice! [Freeman \& Schlumprecht \& Zsák]
- SHAI is not a three-space property [H. - Kania].
- There exists an uncountable AD family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ and an Isbell-Mrówka space $K_{\mathcal{A}}$ such that $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ has a character [Koszmider-Laustsen, 2020+];
- $C_{0}\left(K_{\mathcal{A}}\right)$ is a twisted sum of c_{0} and $c_{0}(\mathfrak{c})$ [follows from the construction of Koszmider \& Laustsen];
- $L_{p}[0,1]$ has the SHAI property for $1<p<\infty$ [Johnson Phillips - Schechtman, 2020+]. The "non-classical" complemented subspace X_{p} constructed by Rosenthal also has SHAI [Johnson - Phillips - Schechtman, 2020+].
- If $X_{1}, X_{2}, \ldots, X_{n}$ have SHAI then $\bigoplus_{i=1}^{n} X_{i}$ has SHAI. [H.]
- Hence $X:=\ell_{p} \oplus \ell_{q}$ and $X:=c_{0} \oplus \ell_{p}$ have SHAI. Note: $\mathscr{B}(X)$ has very complicated ideal lattice! [Freeman \& Schlumprecht \& Zsák]
- SHAI is not a three-space property [H. - Kania].
- There exists an uncountable AD family $\mathcal{A} \subseteq[\mathbb{N}]^{\omega}$ and an Isbell-Mrówka space $K_{\mathcal{A}}$ such that $\mathscr{B}\left(C_{0}\left(K_{\mathcal{A}}\right)\right)$ has a character [Koszmider-Laustsen, 2020+];
- $C_{0}\left(K_{\mathcal{A}}\right)$ is a twisted sum of c_{0} and $c_{0}(\mathfrak{c})$ [follows from the construction of Koszmider \& Laustsen];
- Both c_{0} and $c_{0}(\mathfrak{c})$ have SHAI but $C_{0}\left(K_{\mathcal{A}}\right)$ does not.

Further results, remarks

Recall that so far that all examples of Banach spaces X which lack SHAI have the property that there exists a character $\varphi: \mathscr{B}(X) \rightarrow \mathbb{C}$. (Or finite sums thereof, we can quotient to $M_{n}(\mathbb{C})$.)

Recall that so far that all examples of Banach spaces X which lack SHAI have the property that there exists a character $\varphi: \mathscr{B}(X) \rightarrow \mathbb{C}$. (Or finite sums thereof, we can quotient to $M_{n}(\mathbb{C})$.)
We can have infinite-dimensional targets for surjective, non-injective algebra homomorphisms:

Further results, remarks

Recall that so far that all examples of Banach spaces X which lack SHAI have the property that there exists a character $\varphi: \mathscr{B}(X) \rightarrow \mathbb{C}$. (Or finite sums thereof, we can quotient to $M_{n}(\mathbb{C})$.)
We can have infinite-dimensional targets for surjective, non-injective algebra homomorphisms:

Theorem (H.)

Let Y be a separable, reflexive Banach space. Let

$$
X_{Y}:=\left\{f \in C\left(\left[0, \omega_{1}\right] ; Y\right): f\left(\omega_{1}\right)=0_{Y}\right\} .
$$

There exists a surjective, non-injective algebra homomorphism

$$
\psi: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) .
$$

The proof, prelims

Most important ingredient: A result of Kania, Koszmider, and Laustsen:

Most important ingredient: A result of Kania, Koszmider, and Laustsen:

Theorem (Kania-Koszmider-Laustsen, Trans. Lond. Math. Soc., 2014)

For every $T \in \mathscr{B}\left(C_{0}\left[0, \omega_{1}\right)\right)$ there exists a unique $\varphi(T) \in \mathbb{C}$ such that there exists a club (\Longleftrightarrow closed and unbounded) subset $D \subseteq\left[0, \omega_{1}\right)$ such that:

$$
(T f)(\alpha)=\varphi(T) f(\alpha) \quad\left(\alpha \in D, f \in C_{0}\left[0, \omega_{1}\right)\right)
$$

Moreover, $\varphi: \mathscr{B}\left(C_{0}\left[0, \omega_{1}\right)\right) \rightarrow \mathbb{C} ; T \mapsto \varphi(T)$ is a character.

The proof, prelims

Most important ingredient: A result of Kania, Koszmider, and Laustsen:

Theorem (Kania-Koszmider-Laustsen, Trans. Lond. Math. Soc., 2014)

For every $T \in \mathscr{B}\left(C_{0}\left[0, \omega_{1}\right)\right)$ there exists a unique $\varphi(T) \in \mathbb{C}$ such that there exists a club (\Longleftrightarrow closed and unbounded) subset $D \subseteq\left[0, \omega_{1}\right)$ such that:

$$
(T f)(\alpha)=\varphi(T) f(\alpha) \quad\left(\alpha \in D, f \in C_{0}\left[0, \omega_{1}\right)\right)
$$

Moreover, $\varphi: \mathscr{B}\left(C_{0}\left[0, \omega_{1}\right)\right) \rightarrow \mathbb{C} ; T \mapsto \varphi(T)$ is a character.
Note that the club subset in the statement is never unique.

Some remarks

- The character

$$
\varphi: \mathscr{B}\left(C_{0}\left[0, \omega_{1}\right)\right) \rightarrow \mathbb{C}
$$

of the previous theorem is termed the Alspach-Benyamini character.

- The character

$$
\varphi: \mathscr{B}\left(C_{0}\left[0, \omega_{1}\right)\right) \rightarrow \mathbb{C}
$$

of the previous theorem is termed the Alspach-Benyamini character.

- The kernel of φ is the Loy-Willis ideal, denoted by $\mathcal{M}_{L W}$:

$$
\mathcal{M}_{L W}:=\operatorname{Ker}(\varphi)
$$

- The character

$$
\varphi: \mathscr{B}\left(C_{0}\left[0, \omega_{1}\right)\right) \rightarrow \mathbb{C}
$$

of the previous theorem is termed the Alspach-Benyamini character.

- The kernel of φ is the Loy-Willis ideal, denoted by $\mathcal{M}_{L W}$:

$$
\mathcal{M}_{L W}:=\operatorname{Ker}(\varphi)
$$

- Partial structure of the lattice of closed two-sided ideals of $\mathscr{B}\left(C_{0}\left[0, \omega_{1}\right)\right)$ is given in [Kania-Laustsen, Proc. Amer. Math. Soc., 2015], in particular

$$
\mathscr{E}\left(C_{0}\left[0, \omega_{1}\right)\right)=\mathscr{K}\left(C_{0}\left[0, \omega_{1}\right)\right) \subsetneq \mathcal{M}_{L W}
$$

Some remarks (con't.)

- $C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y \stackrel{(1)}{\cong} C\left(\left[0, \omega_{1}\right] ; Y\right)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot) x$.

Some remarks (con't.)

- $C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y \stackrel{(1)}{\cong} C\left(\left[0, \omega_{1}\right] ; Y\right)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot) x$.
- Recall $X_{Y}:=\left\{f \in C\left(\left[0, \omega_{1}\right] ; Y\right): f\left(\omega_{1}\right)=0_{Y}\right\}$.

Some remarks (con't.)

- $C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y \stackrel{(1)}{\cong} C\left(\left[0, \omega_{1}\right] ; Y\right)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot) x$.
- Recall $X_{Y}:=\left\{f \in C\left(\left[0, \omega_{1}\right] ; Y\right): f\left(\omega_{1}\right)=0_{Y}\right\}$. Fix $\mu, \xi \in X_{Y}^{*}$, then

$$
[\mu=\xi]
$$

Some remarks (con't.)

- $C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y \stackrel{(1)}{\cong} C\left(\left[0, \omega_{1}\right] ; Y\right)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot) x$.
- Recall $X_{Y}:=\left\{f \in C\left(\left[0, \omega_{1}\right] ; Y\right): f\left(\omega_{1}\right)=0_{Y}\right\}$. Fix $\mu, \xi \in X_{Y}^{*}$, then

$$
[\mu=\xi] \Longleftrightarrow\left[\langle f \otimes x, \mu\rangle=\langle f \otimes x, \xi\rangle \quad\left(x \in Y, f \in C_{0}\left[0, \omega_{1}\right)\right)\right] .
$$

Some remarks (con't.)

(1)

- $C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y \xlongequal[\cong]{\cong} C\left(\left[0, \omega_{1}\right] ; Y\right)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot) x$.
- Recall $X_{Y}:=\left\{f \in C\left(\left[0, \omega_{1}\right] ; Y\right): f\left(\omega_{1}\right)=0_{Y}\right\}$. Fix $\mu, \xi \in X_{\gamma}^{*}$, then

$$
[\mu=\xi] \Longleftrightarrow\left[\langle f \otimes x, \mu\rangle=\langle f \otimes x, \xi\rangle \quad\left(x \in Y, f \in C_{0}\left[0, \omega_{1}\right)\right)\right] .
$$

- From the above and the Hahn-Banach Separation Theorem it follows that

$$
X_{Y} \stackrel{(1)}{\cong} C_{0}\left[0, \omega_{1}\right) \hat{\otimes}_{\varepsilon} Y
$$

Some remarks (con't.)

- By a result of Rudin we have

$$
C\left[0, \omega_{1}\right]^{*} \stackrel{(1)}{=} \ell_{1}\left(\omega_{1}^{+}\right):=\left\{g:\left[0, \omega_{1}\right] \rightarrow \mathbb{C}: \sum_{\alpha<\omega_{1}^{+}}|g(\alpha)|<\infty\right\},
$$

given by the duality $\left\langle f, \delta_{\alpha}\right\rangle=f(\alpha)=\delta_{\alpha}(f)$.

Some remarks (con't.)

- By a result of Rudin we have

$$
C\left[0, \omega_{1}\right]^{*} \stackrel{(1)}{=} \ell_{1}\left(\omega_{1}^{+}\right):=\left\{g:\left[0, \omega_{1}\right] \rightarrow \mathbb{C}: \sum_{\alpha<\omega_{1}^{+}}|g(\alpha)|<\infty\right\},
$$

given by the duality $\left\langle f, \delta_{\alpha}\right\rangle=f(\alpha)=\delta_{\alpha}(f)$.

- $C\left[0, \omega_{1}\right]$ has the Approximation Property.

Some remarks (con't.)

- By a result of Rudin we have

$$
C\left[0, \omega_{1}\right]^{*} \stackrel{(1)}{\cong} \ell_{1}\left(\omega_{1}^{+}\right):=\left\{g:\left[0, \omega_{1}\right] \rightarrow \mathbb{C}: \sum_{\alpha<\omega_{1}^{+}}|g(\alpha)|<\infty\right\},
$$

given by the duality $\left\langle f, \delta_{\alpha}\right\rangle=f(\alpha)=\delta_{\alpha}(f)$.

- $C\left[0, \omega_{1}\right]$ has the Approximation Property.
- $C\left[0, \omega_{1}\right]^{*} \stackrel{(1)}{=} \ell_{1}\left(\omega_{1}^{+}\right)$has the Radon-Nikodým Property.

Some remarks (con't.)

- By a result of Rudin we have

$$
C\left[0, \omega_{1}\right]^{*} \stackrel{(1)}{\cong} \ell_{1}\left(\omega_{1}^{+}\right):=\left\{g:\left[0, \omega_{1}\right] \rightarrow \mathbb{C}: \sum_{\alpha<\omega_{1}^{+}}|g(\alpha)|<\infty\right\},
$$

given by the duality $\left\langle f, \delta_{\alpha}\right\rangle=f(\alpha)=\delta_{\alpha}(f)$.

- $C\left[0, \omega_{1}\right]$ has the Approximation Property.
(1)
- $C\left[0, \omega_{1}\right]^{*} \stackrel{(1)}{\cong} \ell_{1}\left(\omega_{1}^{+}\right)$has the Radon-Nikodým Property.
- Thus

$$
\begin{aligned}
C\left(\left[0, \omega_{1}\right] ; Y\right)^{*} & \stackrel{(1)}{\cong}\left(C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)^{*} \stackrel{(1)}{\cong} C\left[0, \omega_{1}\right]^{*} \hat{\otimes}_{\pi} Y^{*} \\
& \stackrel{(1)}{\cong} \ell_{1}\left(\omega_{1}^{+}\right) \hat{\otimes}_{\pi} Y^{*} \stackrel{(1)}{\cong} \ell_{1}\left(\omega_{1}^{+} ; Y^{*}\right) .
\end{aligned}
$$

Proof of the Theorem

Fix $S \in \mathscr{B}\left(X_{Y}\right), x \in Y$ and $\psi \in Y^{*}$. For any $f \in C_{0}\left[0, \omega_{1}\right)$ we can define the map

$$
S_{x}^{\psi} f:\left[0, \omega_{1}\right] \rightarrow \mathbb{C} ; \quad \alpha \mapsto\langle(S(f \otimes x))(\alpha), \psi\rangle .
$$

Fix $S \in \mathscr{B}\left(X_{Y}\right), x \in Y$ and $\psi \in Y^{*}$. For any $f \in C_{0}\left[0, \omega_{1}\right)$ we can define the map

$$
S_{x}^{\psi} f:\left[0, \omega_{1}\right] \rightarrow \mathbb{C} ; \quad \alpha \mapsto\langle(S(f \otimes x))(\alpha), \psi\rangle .
$$

It is clear that $S_{X}^{\psi} f$ is a continuous map, moreover by $S(f \otimes x) \in X_{Y}$ we also have $\left(S_{X}^{\psi} f\right)\left(\omega_{1}\right)=0$, consequently $S_{X}^{\psi} f \in C_{0}\left[0, \omega_{1}\right)$.

Fix $S \in \mathscr{B}\left(X_{Y}\right), x \in Y$ and $\psi \in Y^{*}$. For any $f \in C_{0}\left[0, \omega_{1}\right)$ we can define the map

$$
S_{x}^{\psi} f:\left[0, \omega_{1}\right] \rightarrow \mathbb{C} ; \quad \alpha \mapsto\langle(S(f \otimes x))(\alpha), \psi\rangle .
$$

It is clear that $S_{x}^{\psi} f$ is a continuous map, moreover by $S(f \otimes x) \in X_{Y}$ we also have $\left(S_{X}^{\psi} f\right)\left(\omega_{1}\right)=0$, consequently $S_{x}^{\psi} f \in C_{0}\left[0, \omega_{1}\right)$.
This allows us to define the map

$$
S_{x}^{\psi}: C_{0}\left[0, \omega_{1}\right) \rightarrow C_{0}\left[0, \omega_{1}\right) ; \quad f \mapsto S_{x}^{\psi} f .
$$

Fix $S \in \mathscr{B}\left(X_{Y}\right), x \in Y$ and $\psi \in Y^{*}$. For any $f \in C_{0}\left[0, \omega_{1}\right)$ we can define the map

$$
S_{x}^{\psi} f:\left[0, \omega_{1}\right] \rightarrow \mathbb{C} ; \quad \alpha \mapsto\langle(S(f \otimes x))(\alpha), \psi\rangle .
$$

It is clear that $S_{x}^{\psi} f$ is a continuous map, moreover by
$S(f \otimes x) \in X_{Y}$ we also have $\left(S_{X}^{y} f\right)\left(\omega_{1}\right)=0$, consequently $S_{x}^{\psi} f \in C_{0}\left[0, \omega_{1}\right)$.
This allows us to define the map

$$
S_{x}^{\psi}: C_{0}\left[0, \omega_{1}\right) \rightarrow C_{0}\left[0, \omega_{1}\right) ; \quad f \mapsto S_{x}^{\psi} f .
$$

It is clear that S_{x}^{ψ} is a linear map with

$$
\left\|S_{x}^{\psi}\right\| \leq\|S\|\|x\|\|\psi\| .
$$

Fix $S \in \mathscr{B}\left(X_{Y}\right), x \in Y$ and $\psi \in Y^{*}$. For any $f \in C_{0}\left[0, \omega_{1}\right)$ we can define the map

$$
S_{x}^{\psi} f:\left[0, \omega_{1}\right] \rightarrow \mathbb{C} ; \quad \alpha \mapsto\langle(S(f \otimes x))(\alpha), \psi\rangle .
$$

It is clear that $S_{x}^{\psi} f$ is a continuous map, moreover by
$S(f \otimes x) \in X_{Y}$ we also have $\left(S_{X}^{y} f\right)\left(\omega_{1}\right)=0$, consequently $S_{x}^{\psi} f \in C_{0}\left[0, \omega_{1}\right)$.
This allows us to define the map

$$
S_{x}^{\psi}: C_{0}\left[0, \omega_{1}\right) \rightarrow C_{0}\left[0, \omega_{1}\right) ; \quad f \mapsto S_{x}^{\psi} f .
$$

It is clear that S_{x}^{ψ} is a linear map with

$$
\left\|S_{x}^{\psi}\right\| \leq\|S\|\|x\|\|\psi\| .
$$

Consequently, by the $\mathrm{K}-\mathrm{K}-\mathrm{L}$ Theorem there is a club subset $D_{\chi, \psi} \subseteq\left[0, \omega_{1}\right)$ such that

$$
\left(S_{x}^{\psi}\right)^{*} \delta_{\alpha}=\varphi\left(S_{x}^{\psi}\right) \delta_{\alpha} \quad\left(\alpha \in D_{x, \psi}\right) .
$$

Proof of the Theorem (con't.)

We also have $\left|\varphi\left(S_{x}^{\psi}\right)\right| \leq\|S\|\|x\|\|\psi\|$, since $\|\varphi\|=1$.

Proof of the Theorem (con't.)

We also have $\left|\varphi\left(S_{X}^{\psi}\right)\right| \leq\|S\|\|x\|\|\psi\|$, since $\|\varphi\|=1$. This allows us to define the map

$$
\tilde{\Theta}_{S}: Y \times Y^{*} \rightarrow \mathbb{C} ; \quad(x, \psi) \mapsto \varphi\left(S_{x}^{\psi}\right),
$$

and we have

$$
\left|\tilde{\Theta}_{S}(x, \psi)\right| \leq\|S\|\|x\|\|\psi\| \quad\left(x \in Y, \psi \in Y^{*}\right) .
$$

We also have $\left|\varphi\left(S_{x}^{\psi}\right)\right| \leq\|S\|\|x\|\|\psi\|$, since $\|\varphi\|=1$. This allows us to define the map

$$
\tilde{\Theta}_{S}: Y \times Y^{*} \rightarrow \mathbb{C} ; \quad(x, \psi) \mapsto \varphi\left(S_{x}^{\psi}\right),
$$

and we have

$$
\left|\tilde{\Theta}_{S}(x, \psi)\right| \leq\|S\|\|x\|\|\psi\| \quad\left(x \in Y, \psi \in Y^{*}\right) .
$$

Now we show that $\tilde{\Theta}_{S}$ is bilinear.

We also have $\left|\varphi\left(S_{x}^{\psi}\right)\right| \leq\|S\|\|x\|\|\psi\|$, since $\|\varphi\|=1$. This allows us to define the map

$$
\tilde{\Theta}_{S}: Y \times Y^{*} \rightarrow \mathbb{C} ; \quad(x, \psi) \mapsto \varphi\left(S_{x}^{\psi}\right),
$$

and we have

$$
\left|\tilde{\Theta}_{S}(x, \psi)\right| \leq\|S\|\|x\|\|\psi\| \quad\left(x \in Y, \psi \in Y^{*}\right) .
$$

Now we show that $\tilde{\Theta}_{S}$ is bilinear. Let $x, y \in Y, \psi \in Y^{*}$ and $\lambda \in \mathbb{C}$ be arbitrary. Fix $f \in C_{0}\left[0, \omega_{1}\right)$ and $\alpha \in\left[0, \omega_{1}\right]$, then using linearity of the tensor product in the second variable, of S and of the functional ψ it follows:

We also have $\left|\varphi\left(S_{x}^{\psi}\right)\right| \leq\|S\|\|x\|\|\psi\|$, since $\|\varphi\|=1$. This allows us to define the map

$$
\tilde{\Theta}_{S}: Y \times Y^{*} \rightarrow \mathbb{C} ; \quad(x, \psi) \mapsto \varphi\left(S_{x}^{\psi}\right),
$$

and we have

$$
\left|\tilde{\Theta}_{s}(x, \psi)\right| \leq\|S\|\|x\|\|\psi\| \quad\left(x \in Y, \psi \in Y^{*}\right) .
$$

Now we show that $\tilde{\Theta}_{S}$ is bilinear. Let $x, y \in Y, \psi \in Y^{*}$ and $\lambda \in \mathbb{C}$ be arbitrary. Fix $f \in C_{0}\left[0, \omega_{1}\right)$ and $\alpha \in\left[0, \omega_{1}\right]$, then using linearity of the tensor product in the second variable, of S and of the functional ψ it follows:

$$
\begin{aligned}
\left(S_{x+\lambda y}^{\psi} f\right)(\alpha) & =\langle(S(f \otimes(x+\lambda y)))(\alpha), \psi\rangle \\
& =\langle(S(f \otimes x))(\alpha), \psi\rangle+\lambda\langle(S(f \otimes y))(\alpha), \psi\rangle \\
& =\left(S_{x}^{\psi} f\right)(\alpha)+\lambda\left(S_{y}^{\psi} f\right)(\alpha),
\end{aligned}
$$

proving $S_{x+\lambda y}^{\psi}=S_{x}^{\psi}+\lambda S_{y}^{\psi}$.

Proof of the Theorem (con't.)

Since φ is linear,

$$
\begin{aligned}
\tilde{\Theta}_{s}(x+\lambda y, \psi) & =\varphi\left(S_{x+\lambda y}^{\psi}\right) \\
& =\varphi\left(S_{x}^{\psi}+\lambda S_{y}^{\psi}\right) \\
& =\varphi\left(S_{x}^{\psi}\right)+\lambda \varphi\left(S_{y}^{\psi}\right) \\
& =\tilde{\Theta}_{S}(x, \psi)+\lambda \tilde{\Theta}_{S}(y, \psi)
\end{aligned}
$$

follows, proving linearity of $\tilde{\Theta}_{s}$ in the first variable.

Since φ is linear,

$$
\begin{aligned}
\tilde{\Theta}_{S}(x+\lambda y, \psi) & =\varphi\left(S_{x+\lambda y}^{\psi}\right) \\
& =\varphi\left(S_{x}^{\psi}+\lambda S_{y}^{\psi}\right) \\
& =\varphi\left(S_{x}^{\psi}\right)+\lambda \varphi\left(S_{y}^{\psi}\right) \\
& =\tilde{\Theta}_{S}(x, \psi)+\lambda \tilde{\Theta}_{S}(y, \psi)
\end{aligned}
$$

follows, proving linearity of $\tilde{\Theta}_{S}$ in the first variable. Linearity in the second variable follows from an analogous reasoning. Consequently $\tilde{\Theta}_{S}$ is a bounded bilinear form on $Y \times Y^{*}$.

Since φ is linear,

$$
\begin{aligned}
\tilde{\Theta}_{S}(x+\lambda y, \psi) & =\varphi\left(S_{x+\lambda y}^{\psi}\right) \\
& =\varphi\left(S_{x}^{\psi}+\lambda S_{y}^{\psi}\right) \\
& =\varphi\left(S_{x}^{\psi}\right)+\lambda \varphi\left(S_{y}^{\psi}\right) \\
& =\tilde{\Theta}_{S}(x, \psi)+\lambda \tilde{\Theta}_{S}(y, \psi)
\end{aligned}
$$

follows, proving linearity of $\tilde{\Theta}_{S}$ in the first variable. Linearity in the second variable follows from an analogous reasoning. Consequently $\tilde{\Theta}_{S}$ is a bounded bilinear form on $Y \times Y^{*}$.
Let $\kappa_{Y}: Y \rightarrow Y^{* *}$ denote the canonical embedding. By reflexivity of Y the map

$$
\Theta_{S}: Y \rightarrow Y ; \quad x \mapsto \kappa_{Y}^{-1}\left(\tilde{\Theta}_{S}(x, \cdot)\right)
$$

defines a bounded linear operator on Y with $\left\|\Theta_{S}\right\|=\left\|\tilde{\Theta}_{S}\right\|$

Since φ is linear,

$$
\begin{aligned}
\tilde{\Theta}_{S}(x+\lambda y, \psi) & =\varphi\left(S_{x+\lambda y}^{\psi}\right) \\
& =\varphi\left(S_{x}^{\psi}+\lambda S_{y}^{\psi}\right) \\
& =\varphi\left(S_{x}^{\psi}\right)+\lambda \varphi\left(S_{y}^{\psi}\right) \\
& =\tilde{\Theta}_{S}(x, \psi)+\lambda \tilde{\Theta}_{S}(y, \psi)
\end{aligned}
$$

follows, proving linearity of $\tilde{\Theta}_{S}$ in the first variable. Linearity in the second variable follows from an analogous reasoning. Consequently $\tilde{\Theta}_{S}$ is a bounded bilinear form on $Y \times Y^{*}$.
Let $\kappa_{Y}: Y \rightarrow Y^{* *}$ denote the canonical embedding. By reflexivity of Y the map

$$
\Theta_{S}: Y \rightarrow Y ; \quad x \mapsto \kappa_{Y}^{-1}\left(\tilde{\Theta}_{S}(x, \cdot)\right)
$$

defines a bounded linear operator on Y with $\left\|\Theta_{S}\right\|=\left\|\tilde{\Theta}_{S}\right\|$ and

$$
\left\langle\Theta_{s}(x), \psi\right\rangle=\tilde{\Theta}_{s}(x, \psi)=\varphi\left(S_{x}^{\psi}\right) \quad\left(x \in Y, \psi \in Y^{*}\right)
$$

Proof of the Theorem (con't.)

Thus we can define the map

$$
\Theta: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) ; \quad S \mapsto \Theta_{S}
$$

Proof of the Theorem (con't.)

Thus we can define the map

$$
\Theta: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) ; \quad S \mapsto \Theta_{S} .
$$

Since Y is separable and reflexive it follows that Y^{*} is separable too. Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^{*}$ be countable dense subsets.

Proof of the Theorem (con't.)

Thus we can define the map

$$
\Theta: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) ; \quad S \mapsto \Theta_{S} .
$$

Since Y is separable and reflexive it follows that Y^{*} is separable too.
Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^{*}$ be countable dense subsets. Let us fix $S \in \mathscr{B}\left(X_{Y}\right), x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$.

Thus we can define the map

$$
\Theta: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) ; \quad S \mapsto \Theta_{S}
$$

Since Y is separable and reflexive it follows that Y^{*} is separable too.
Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^{*}$ be countable dense subsets. Let us fix $S \in \mathscr{B}\left(X_{Y}\right), x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D_{x, \psi}^{S} \subseteq\left[0, \omega_{1}\right)$ such that

$$
\left(S_{x}^{\psi} f\right)(\alpha)=\varphi\left(S_{x}^{\psi}\right) f(\alpha) \quad\left(\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)
$$

Thus we can define the map

$$
\Theta: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) ; \quad S \mapsto \Theta_{S}
$$

Since Y is separable and reflexive it follows that Y^{*} is separable too.
Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^{*}$ be countable dense subsets. Let us fix $S \in \mathscr{B}\left(X_{Y}\right), x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D_{x, \psi}^{S} \subseteq\left[0, \omega_{1}\right)$ such that

$$
\left(S_{x}^{\psi} f\right)(\alpha)=\varphi\left(S_{x}^{\psi}\right) f(\alpha) \quad\left(\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)
$$

Hence

$$
\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle=\langle(S(f \otimes x))(\alpha), \psi\rangle
$$

for all $\left.\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)$.

Thus we can define the map

$$
\Theta: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) ; \quad S \mapsto \Theta_{S}
$$

Since Y is separable and reflexive it follows that Y^{*} is separable too.
Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^{*}$ be countable dense subsets. Let us fix $S \in \mathscr{B}\left(X_{Y}\right), x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D_{x, \psi}^{S} \subseteq\left[0, \omega_{1}\right)$ such that

$$
\left(S_{x}^{\psi} f\right)(\alpha)=\varphi\left(S_{x}^{\psi}\right) f(\alpha) \quad\left(\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)
$$

Hence

$$
\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle=\langle(S(f \otimes x))(\alpha), \psi\rangle=\left(S_{x}^{\psi} f\right)(\alpha)
$$

for all $\left.\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)$.

Thus we can define the map

$$
\Theta: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) ; \quad S \mapsto \Theta_{S}
$$

Since Y is separable and reflexive it follows that Y^{*} is separable too.
Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^{*}$ be countable dense subsets. Let us fix $S \in \mathscr{B}\left(X_{Y}\right), x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D_{x, \psi}^{S} \subseteq\left[0, \omega_{1}\right)$ such that

$$
\left(S_{x}^{\psi} f\right)(\alpha)=\varphi\left(S_{x}^{\psi}\right) f(\alpha) \quad\left(\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)
$$

Hence

$$
\begin{aligned}
\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle & =\langle(S(f \otimes x))(\alpha), \psi\rangle=\left(S_{x}^{\psi} f\right)(\alpha) \\
& =f(\alpha) \varphi\left(S_{x}^{\psi}\right)
\end{aligned}
$$

for all $\left.\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)$.

Thus we can define the map

$$
\Theta: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) ; \quad S \mapsto \Theta_{S}
$$

Since Y is separable and reflexive it follows that Y^{*} is separable too.
Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^{*}$ be countable dense subsets. Let us fix $S \in \mathscr{B}\left(X_{Y}\right), x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D_{x, \psi}^{S} \subseteq\left[0, \omega_{1}\right)$ such that

$$
\left(S_{x}^{\psi} f\right)(\alpha)=\varphi\left(S_{x}^{\psi}\right) f(\alpha) \quad\left(\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)
$$

Hence

$$
\begin{aligned}
\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle & =\langle(S(f \otimes x))(\alpha), \psi\rangle=\left(S_{x}^{\psi} f\right)(\alpha) \\
& =f(\alpha) \varphi\left(S_{x}^{\psi}\right)=\langle f(\alpha) \Theta(S) x, \psi\rangle
\end{aligned}
$$

for all $\left.\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)$.

Thus we can define the map

$$
\Theta: \mathscr{B}\left(X_{Y}\right) \rightarrow \mathscr{B}(Y) ; \quad S \mapsto \Theta_{S}
$$

Since Y is separable and reflexive it follows that Y^{*} is separable too.
Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^{*}$ be countable dense subsets. Let us fix $S \in \mathscr{B}\left(X_{Y}\right), x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D_{x, \psi}^{S} \subseteq\left[0, \omega_{1}\right)$ such that

$$
\left(S_{x}^{\psi} f\right)(\alpha)=\varphi\left(S_{x}^{\psi}\right) f(\alpha) \quad\left(\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)
$$

Hence

$$
\begin{aligned}
\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle & =\langle(S(f \otimes x))(\alpha), \psi\rangle=\left(S_{x}^{\psi} f\right)(\alpha) \\
& =f(\alpha) \varphi\left(S_{x}^{\psi}\right)=\langle f(\alpha) \Theta(S) x, \psi\rangle \\
& =\left\langle f \otimes(\Theta(S) x), \delta_{\alpha} \otimes \psi\right\rangle
\end{aligned}
$$

for all $\left.\alpha \in D_{x, \psi}^{S}, f \in C_{0}\left[0, \omega_{1}\right)\right)$.

Proof of the Theorem (con't.)

As a countable intersection of club subsets is a club subset, we have that

$$
D^{S}:=\bigcap_{(x, \psi) \in \mathcal{Q} \times \mathcal{R}} D_{x, \psi}^{S}
$$

is a club subset of $\left[0, \omega_{1}\right)$.

As a countable intersection of club subsets is a club subset, we have that

$$
D^{S}:=\bigcap_{(x, \psi) \in \mathcal{Q} \times \mathcal{R}} D_{x, \psi}^{S}
$$

is a club subset of $\left[0, \omega_{1}\right)$. Consequently

$$
\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle=\left\langle f \otimes(\Theta(S) x), \delta_{\alpha} \otimes \psi\right\rangle
$$

holds for any $\alpha \in D^{S}$, any $f \in C_{0}\left[0, \omega_{1}\right)$ and any $x \in \mathcal{Q}, \psi \in \mathcal{R}$.

As a countable intersection of club subsets is a club subset, we have that

$$
D^{S}:=\bigcap_{(x, \psi) \in \mathcal{Q} \times \mathcal{R}} D_{x, \psi}^{S}
$$

is a club subset of $\left[0, \omega_{1}\right)$. Consequently

$$
\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle=\left\langle f \otimes(\Theta(S) x), \delta_{\alpha} \otimes \psi\right\rangle
$$

holds for any $\alpha \in D^{S}$, any $f \in C_{0}\left[0, \omega_{1}\right)$ and any $x \in \mathcal{Q}, \psi \in \mathcal{R}$.
Fix $S \in \mathscr{B}\left(X_{Y}\right), \alpha \in D^{S}$ and $f \in C_{0}\left[0, \omega_{1}\right)$. Define the maps

$$
\begin{array}{ll}
g_{(S, f, \alpha)}: Y \times Y^{*} \rightarrow \mathbb{C} ; & (x, \psi) \mapsto\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle \\
h_{(S, f, \alpha)}: Y \times Y^{*} \rightarrow \mathbb{C} ; & (x, \psi) \mapsto\left\langle f \otimes(\Theta(S) x), \delta_{\alpha} \otimes \psi\right\rangle .
\end{array}
$$

As a countable intersection of club subsets is a club subset, we have that

$$
D^{S}:=\bigcap_{(x, \psi) \in \mathcal{Q} \times \mathcal{R}} D_{x, \psi}^{S}
$$

is a club subset of $\left[0, \omega_{1}\right)$. Consequently

$$
\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle=\left\langle f \otimes(\Theta(S) x), \delta_{\alpha} \otimes \psi\right\rangle
$$

holds for any $\alpha \in D^{S}$, any $f \in C_{0}\left[0, \omega_{1}\right)$ and any $x \in \mathcal{Q}, \psi \in \mathcal{R}$.
Fix $S \in \mathscr{B}\left(X_{Y}\right), \alpha \in D^{S}$ and $f \in C_{0}\left[0, \omega_{1}\right)$. Define the maps

$$
\begin{array}{ll}
g_{(S, f, \alpha)}: Y \times Y^{*} \rightarrow \mathbb{C} ; & (x, \psi) \mapsto\left\langle S(f \otimes x), \delta_{\alpha} \otimes \psi\right\rangle \\
h_{(S, f, \alpha)}: Y \times Y^{*} \rightarrow \mathbb{C} ; & (x, \psi) \mapsto\left\langle f \otimes(\Theta(S) x), \delta_{\alpha} \otimes \psi\right\rangle .
\end{array}
$$

Thus we can reformulate the above equation as

$$
g_{(S, f, \alpha)}(x, \psi)=h_{(S, f, \alpha)}(x, \psi) \quad((x, \psi) \in \mathcal{Q} \times \mathcal{R})
$$

Proof of the Theorem (con't.)

As $g_{(S, f, \alpha)}$ and $h_{(S, f, \alpha)}$ are continuous functions between metric spaces, density of $\mathcal{Q} \times \mathcal{R}$ in $Y \times Y^{*}$ implies that

$$
g_{(S, f, \alpha)}(x, \psi)=h_{(S, f, \alpha)}(x, \psi) \quad\left((x, \psi) \in Y \times Y^{*}\right)
$$

As $g_{(S, f, \alpha)}$ and $h_{(S, f, \alpha)}$ are continuous functions between metric spaces, density of $\mathcal{Q} \times \mathcal{R}$ in $Y \times Y^{*}$ implies that

$$
g_{(S, f, \alpha)}(x, \psi)=h_{(S, f, \alpha)}(x, \psi) \quad\left((x, \psi) \in Y \times Y^{*}\right)
$$

In other words, for any $S \in \mathscr{B}\left(X_{Y}\right)$ there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that

$$
\left\langle f \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle=\left\langle f \otimes x, \delta_{\alpha} \otimes\left(\Theta(S)^{*} \psi\right)\right\rangle
$$

for any $\alpha \in D^{S}, f \in C_{0}\left[0, \omega_{1}\right)$ and $x \in Y, \psi \in Y^{*}$.

As $g_{(S, f, \alpha)}$ and $h_{(S, f, \alpha)}$ are continuous functions between metric spaces, density of $\mathcal{Q} \times \mathcal{R}$ in $Y \times Y^{*}$ implies that

$$
g_{(S, f, \alpha)}(x, \psi)=h_{(S, f, \alpha)}(x, \psi) \quad\left((x, \psi) \in Y \times Y^{*}\right)
$$

In other words, for any $S \in \mathscr{B}\left(X_{Y}\right)$ there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that

$$
\left\langle f \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle=\left\langle f \otimes x, \delta_{\alpha} \otimes\left(\Theta(S)^{*} \psi\right)\right\rangle
$$

for any $\alpha \in D^{S}, f \in C_{0}\left[0, \omega_{1}\right)$ and $x \in Y, \psi \in Y^{*}$.
Therefore we obtain that

$$
\begin{equation*}
S^{*}\left(\delta_{\alpha} \otimes \psi\right)=\delta_{\alpha} \otimes\left(\Theta(S)^{*} \psi\right) \tag{1}
\end{equation*}
$$

for all $\alpha \in D^{S}$ and $\psi \in Y^{*}$.

Proof of the Theorem (con't.)

We show that for any $S \in \mathscr{B}\left(X_{Y}\right)$ the operator $\Theta(S)$ is determined by equation (1).

We show that for any $S \in \mathscr{B}\left(X_{Y}\right)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_{1}(S), \Theta_{2}(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_{1}^{S}, D_{2}^{S} \subseteq\left[0, \omega_{1}\right)$ with the property that

$$
S^{*}\left(\delta_{\alpha} \otimes \psi\right)=\delta_{\alpha} \otimes\left(\Theta_{i}(S)^{*} \psi\right)
$$

for $i \in\{1,2\}$, all $\alpha \in D_{i}^{S}$ and all $\psi \in Y^{*}$.

We show that for any $S \in \mathscr{B}\left(X_{Y}\right)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_{1}(S), \Theta_{2}(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_{1}^{S}, D_{2}^{S} \subseteq\left[0, \omega_{1}\right)$ with the property that

$$
S^{*}\left(\delta_{\alpha} \otimes \psi\right)=\delta_{\alpha} \otimes\left(\Theta_{i}(S)^{*} \psi\right)
$$

for $i \in\{1,2\}$, all $\alpha \in D_{i}^{S}$ and all $\psi \in Y^{*}$. Let $\alpha \in D_{1}^{S} \cap D_{2}^{S}$, $x \in Y$ and $\psi \in Y^{*}$ be fixed. Then

$$
\left\langle\Theta_{1}(S) x, \psi\right\rangle=\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta_{1}(S)^{*} \psi\right)\right\rangle
$$

We show that for any $S \in \mathscr{B}\left(X_{Y}\right)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_{1}(S), \Theta_{2}(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_{1}^{S}, D_{2}^{S} \subseteq\left[0, \omega_{1}\right)$ with the property that

$$
S^{*}\left(\delta_{\alpha} \otimes \psi\right)=\delta_{\alpha} \otimes\left(\Theta_{i}(S)^{*} \psi\right)
$$

for $i \in\{1,2\}$, all $\alpha \in D_{i}^{S}$ and all $\psi \in Y^{*}$. Let $\alpha \in D_{1}^{S} \cap D_{2}^{S}$, $x \in Y$ and $\psi \in Y^{*}$ be fixed. Then

$$
\begin{aligned}
\left\langle\Theta_{1}(S) x, \psi\right\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta_{1}(S)^{*} \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle
\end{aligned}
$$

We show that for any $S \in \mathscr{B}\left(X_{Y}\right)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_{1}(S), \Theta_{2}(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_{1}^{S}, D_{2}^{S} \subseteq\left[0, \omega_{1}\right)$ with the property that

$$
S^{*}\left(\delta_{\alpha} \otimes \psi\right)=\delta_{\alpha} \otimes\left(\Theta_{i}(S)^{*} \psi\right)
$$

for $i \in\{1,2\}$, all $\alpha \in D_{i}^{S}$ and all $\psi \in Y^{*}$. Let $\alpha \in D_{1}^{S} \cap D_{2}^{S}$, $x \in Y$ and $\psi \in Y^{*}$ be fixed. Then

$$
\begin{aligned}
\left\langle\Theta_{1}(S) x, \psi\right\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta_{1}(S)^{*} \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta_{2}(S)^{*} \psi\right)\right\rangle
\end{aligned}
$$

We show that for any $S \in \mathscr{B}\left(X_{Y}\right)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_{1}(S), \Theta_{2}(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_{1}^{S}, D_{2}^{S} \subseteq\left[0, \omega_{1}\right)$ with the property that

$$
S^{*}\left(\delta_{\alpha} \otimes \psi\right)=\delta_{\alpha} \otimes\left(\Theta_{i}(S)^{*} \psi\right)
$$

for $i \in\{1,2\}$, all $\alpha \in D_{i}^{S}$ and all $\psi \in Y^{*}$. Let $\alpha \in D_{1}^{S} \cap D_{2}^{S}$, $x \in Y$ and $\psi \in Y^{*}$ be fixed. Then

$$
\begin{aligned}
\left\langle\Theta_{1}(S) x, \psi\right\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta_{1}(S)^{*} \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta_{2}(S)^{*} \psi\right)\right\rangle \\
& =\left\langle\Theta_{2}(S) x, \psi\right\rangle
\end{aligned}
$$

Proof of the Theorem (con't.)

We show that for any $S \in \mathscr{B}\left(X_{Y}\right)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_{1}(S), \Theta_{2}(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_{1}^{S}, D_{2}^{S} \subseteq\left[0, \omega_{1}\right)$ with the property that

$$
S^{*}\left(\delta_{\alpha} \otimes \psi\right)=\delta_{\alpha} \otimes\left(\Theta_{i}(S)^{*} \psi\right)
$$

for $i \in\{1,2\}$, all $\alpha \in D_{i}^{S}$ and all $\psi \in Y^{*}$. Let $\alpha \in D_{1}^{S} \cap D_{2}^{S}$, $x \in Y$ and $\psi \in Y^{*}$ be fixed. Then

$$
\begin{aligned}
\left\langle\Theta_{1}(S) x, \psi\right\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta_{1}(S)^{*} \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta_{2}(S)^{*} \psi\right)\right\rangle \\
& =\left\langle\Theta_{2}(S) x, \psi\right\rangle
\end{aligned}
$$

and thus $\Theta_{1}(S)=\Theta_{2}(S)$.
We are now prepared to prove that Θ is an algebra homomorphism.

Proof of the Theorem (con't.)

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed.

Proof of the Theorem (con't.)

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed. Let $D^{T}, D^{S}, D^{T S} \subseteq\left[0, \omega_{1}\right)$ be club subsets which satisfy equation (1).

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed. Let $D^{T}, D^{S}, D^{T S} \subseteq\left[0, \omega_{1}\right)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^{T} \cap D^{S} \cap D^{T S}, x \in Y$ and $\psi \in Y^{*}$. Then we obtain:

$$
\delta_{\alpha} \otimes\left(\Theta(T S)^{*} \psi\right)=(T S)^{*}\left(\delta_{\alpha} \otimes \psi\right)
$$

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed. Let $D^{T}, D^{S}, D^{T S} \subseteq\left[0, \omega_{1}\right)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^{T} \cap D^{S} \cap D^{T S}, x \in Y$ and $\psi \in Y^{*}$. Then we obtain:

$$
\begin{aligned}
\delta_{\alpha} \otimes\left(\Theta(T S)^{*} \psi\right) & =(T S)^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*} T^{*}\left(\delta_{\alpha} \otimes \psi\right)
\end{aligned}
$$

Proof of the Theorem (con't.)

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed. Let $D^{T}, D^{S}, D^{T S} \subseteq\left[0, \omega_{1}\right)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^{T} \cap D^{S} \cap D^{T S}, x \in Y$ and $\psi \in Y^{*}$. Then we obtain:

$$
\begin{aligned}
\delta_{\alpha} \otimes\left(\Theta(T S)^{*} \psi\right) & =(T S)^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*} T^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*}\left(\delta_{\alpha} \otimes\left(\Theta(T)^{*} \psi\right)\right)
\end{aligned}
$$

Proof of the Theorem (con't.)

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed. Let $D^{T}, D^{S}, D^{T S} \subseteq\left[0, \omega_{1}\right)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^{T} \cap D^{S} \cap D^{T S}, x \in Y$ and $\psi \in Y^{*}$. Then we obtain:

$$
\begin{aligned}
\delta_{\alpha} \otimes\left(\Theta(T S)^{*} \psi\right) & =(T S)^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*} T^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*}\left(\delta_{\alpha} \otimes\left(\Theta(T)^{*} \psi\right)\right) \\
& =\delta_{\alpha} \otimes\left(\Theta(S)^{*} \Theta(T)^{*} \psi\right)
\end{aligned}
$$

Proof of the Theorem (con't.)

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed. Let $D^{T}, D^{S}, D^{T S} \subseteq\left[0, \omega_{1}\right)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^{T} \cap D^{S} \cap D^{T S}, x \in Y$ and $\psi \in Y^{*}$. Then we obtain:

$$
\begin{aligned}
\delta_{\alpha} \otimes\left(\Theta(T S)^{*} \psi\right) & =(T S)^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*} T^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*}\left(\delta_{\alpha} \otimes\left(\Theta(T)^{*} \psi\right)\right) \\
& =\delta_{\alpha} \otimes\left(\Theta(S)^{*} \Theta(T)^{*} \psi\right) \\
& =\delta_{\alpha} \otimes\left((\Theta(T) \Theta(S))^{*} \psi\right),
\end{aligned}
$$

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed. Let $D^{T}, D^{S}, D^{T S} \subseteq\left[0, \omega_{1}\right)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^{T} \cap D^{S} \cap D^{T S}, x \in Y$ and $\psi \in Y^{*}$. Then we obtain:

$$
\begin{aligned}
\delta_{\alpha} \otimes\left(\Theta(T S)^{*} \psi\right) & =(T S)^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*} T^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*}\left(\delta_{\alpha} \otimes\left(\Theta(T)^{*} \psi\right)\right) \\
& =\delta_{\alpha} \otimes\left(\Theta(S)^{*} \Theta(T)^{*} \psi\right) \\
& =\delta_{\alpha} \otimes\left((\Theta(T) \Theta(S))^{*} \psi\right),
\end{aligned}
$$

hence $\Theta(T S)^{*} \psi=(\Theta(T) \Theta(S))^{*} \psi$, so $\Theta(T S)^{*}=(\Theta(T) \Theta(S))^{*}$, equivalently $\Theta(T S)=\Theta(T) \Theta(S)$.

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed. Let $D^{T}, D^{S}, D^{T S} \subseteq\left[0, \omega_{1}\right)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^{T} \cap D^{S} \cap D^{T S}, x \in Y$ and $\psi \in Y^{*}$. Then we obtain:

$$
\begin{aligned}
\delta_{\alpha} \otimes\left(\Theta(T S)^{*} \psi\right) & =(T S)^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*} T^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*}\left(\delta_{\alpha} \otimes\left(\Theta(T)^{*} \psi\right)\right) \\
& =\delta_{\alpha} \otimes\left(\Theta(S)^{*} \Theta(T)^{*} \psi\right) \\
& =\delta_{\alpha} \otimes\left((\Theta(T) \Theta(S))^{*} \psi\right),
\end{aligned}
$$

hence $\Theta(T S)^{*} \psi=(\Theta(T) \Theta(S))^{*} \psi$, so $\Theta(T S)^{*}=(\Theta(T) \Theta(S))^{*}$, equivalently $\Theta(T S)=\Theta(T) \Theta(S)$.
Linearity can be shown with analogous reasoning.

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}\left(X_{Y}\right)$ be fixed. Let $D^{T}, D^{S}, D^{T S} \subseteq\left[0, \omega_{1}\right.$) be club subsets which satisfy equation (1). Fix $\alpha \in D^{T} \cap D^{S} \cap D^{T S}, x \in Y$ and $\psi \in Y^{*}$. Then we obtain:

$$
\begin{aligned}
\delta_{\alpha} \otimes\left(\Theta(T S)^{*} \psi\right) & =(T S)^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*} T^{*}\left(\delta_{\alpha} \otimes \psi\right) \\
& =S^{*}\left(\delta_{\alpha} \otimes\left(\Theta(T)^{*} \psi\right)\right) \\
& =\delta_{\alpha} \otimes\left(\Theta(S)^{*} \Theta(T)^{*} \psi\right) \\
& =\delta_{\alpha} \otimes\left((\Theta(T) \Theta(S))^{*} \psi\right),
\end{aligned}
$$

hence $\Theta(T S)^{*} \psi=(\Theta(T) \Theta(S))^{*} \psi$, so $\Theta(T S)^{*}=(\Theta(T) \Theta(S))^{*}$, equivalently $\Theta(T S)=\Theta(T) \Theta(S)$.

Linearity can be shown with analogous reasoning.
For any $S \in \mathscr{B}\left(X_{Y}\right)$ we have $\|\Theta(S)\|=\left\|\tilde{\Theta}_{S}\right\| \leq\|S\|$, thus $\|\Theta\| \leq 1$.

Proof of the Theorem (con't.)

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) \quad \text { with } \quad \Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)} .
$$

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) \quad \text { with } \quad \Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)} .
$$

Let $P \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ be the idempotent operator with

$$
P: C\left[0, \omega_{1}\right] \rightarrow C\left[0, \omega_{1}\right] ; \quad g \mapsto g-c_{g\left(\omega_{1}\right)}
$$

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) \quad \text { with } \quad \Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}
$$

Let $P \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ be the idempotent operator with

$$
P: C\left[0, \omega_{1}\right] \rightarrow C\left[0, \omega_{1}\right] ; \quad g \mapsto g-c_{g\left(\omega_{1}\right)}
$$

Then $\operatorname{Ran}(P)=C_{0}\left[0, \omega_{1}\right)$. It is also not hard to see that

$$
I_{X_{Y}}=\left.\left(P \otimes_{\varepsilon} I_{Y}\right)\right|_{X_{Y}} .
$$

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) \quad \text { with } \quad \Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}
$$

Let $P \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ be the idempotent operator with

$$
P: C\left[0, \omega_{1}\right] \rightarrow C\left[0, \omega_{1}\right] ; \quad g \mapsto g-c_{g\left(\omega_{1}\right)} .
$$

Then $\operatorname{Ran}(P)=C_{0}\left[0, \omega_{1}\right)$. It is also not hard to see that

$$
I_{X_{Y}}=\left.\left(P \otimes_{\varepsilon} I_{Y}\right)\right|_{X_{Y}} .
$$

Let us fix an $A \in \mathscr{B}(Y)$. We observe that

$$
S:=\left.\left(P \otimes_{\varepsilon} A\right)\right|_{X_{Y}}
$$

belongs to $\mathscr{B}\left(X_{Y}\right)$.

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) \quad \text { with } \quad \Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}
$$

Let $P \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ be the idempotent operator with

$$
P: C\left[0, \omega_{1}\right] \rightarrow C\left[0, \omega_{1}\right] ; \quad g \mapsto g-c_{g\left(\omega_{1}\right)} .
$$

Then $\operatorname{Ran}(P)=C_{0}\left[0, \omega_{1}\right)$. It is also not hard to see that

$$
I_{X_{Y}}=\left.\left(P \otimes_{\varepsilon} I_{Y}\right)\right|_{X_{Y}} .
$$

Let us fix an $A \in \mathscr{B}(Y)$. We observe that

$$
S:=\left.\left(P \otimes_{\varepsilon} A\right)\right|_{X_{Y}}
$$

belongs to $\mathscr{B}\left(X_{Y}\right)$. Indeed, the identity

$$
\left(\left(P \otimes_{\varepsilon} A\right)(g \otimes x)\right)\left(\omega_{1}\right)=(P g)\left(\omega_{1}\right) A x=0
$$

holds for any $g \in C\left[0, \omega_{1}\right]$ and $x \in Y$, since $P g \in C_{0}\left[0, \omega_{1}\right)$.

Proof of the Theorem (con't.)

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$.

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$. Therefore there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that equation (1) is satisfied for all $\alpha \in D^{S}$ and all $\psi \in Y^{*}$.

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$. Therefore there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that equation (1) is satisfied for all $\alpha \in D^{S}$ and all $\psi \in Y^{*}$. Fix $\alpha \in D^{S}$, then

$$
\langle A x, \psi\rangle=\left\langle\mathbf{1}_{[0, \alpha]} \otimes(A x), \delta_{\alpha} \otimes \psi\right\rangle
$$

$$
\left(x \in Y, \psi \in Y^{*}\right)
$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$. Therefore there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that equation (1) is satisfied for all $\alpha \in D^{S}$ and all $\psi \in Y^{*}$. Fix $\alpha \in D^{S}$, then

$$
\begin{aligned}
\langle A x, \psi\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes(A x), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\left(P \otimes_{\varepsilon} A\right)\left(\mathbf{1}_{[0, \alpha]} \otimes x\right), \delta_{\alpha} \otimes \psi\right\rangle
\end{aligned}
$$

$$
\left(x \in Y, \psi \in Y^{*}\right)
$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$. Therefore there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that equation (1) is satisfied for all $\alpha \in D^{S}$ and all $\psi \in Y^{*}$. Fix $\alpha \in D^{S}$, then

$$
\begin{aligned}
\langle A x, \psi\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes(A x), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\left(P \otimes_{\varepsilon} A\right)\left(\mathbf{1}_{[0, \alpha]} \otimes x\right), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle
\end{aligned}
$$

$$
\left(x \in Y, \psi \in Y^{*}\right)
$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$. Therefore there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that equation (1) is satisfied for all $\alpha \in D^{S}$ and all $\psi \in Y^{*}$. Fix $\alpha \in D^{S}$, then

$$
\begin{aligned}
\langle A x, \psi\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes(A x), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\left(P \otimes_{\varepsilon} A\right)\left(\mathbf{1}_{[0, \alpha]} \otimes x\right), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta(S)^{*} \psi\right)\right\rangle
\end{aligned}
$$

$$
\left(x \in Y, \psi \in Y^{*}\right)
$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$. Therefore there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that equation (1) is satisfied for all $\alpha \in D^{S}$ and all $\psi \in Y^{*}$. Fix $\alpha \in D^{S}$, then

$$
\begin{aligned}
\langle A x, \psi\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes(A x), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\left(P \otimes_{\varepsilon} A\right)\left(\mathbf{1}_{[0, \alpha]} \otimes x\right), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta(S)^{*} \psi\right)\right\rangle \\
= & \left\langle x, \Theta(S)^{*} \psi\right\rangle \\
& \quad\left(x \in Y, \psi \in Y^{*}\right)
\end{aligned}
$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$. Therefore there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that equation (1) is satisfied for all $\alpha \in D^{S}$ and all $\psi \in Y^{*}$. Fix $\alpha \in D^{S}$, then

$$
\begin{aligned}
\langle A x, \psi\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes(A x), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\left(P \otimes_{\varepsilon} A\right)\left(\mathbf{1}_{[0, \alpha]} \otimes x\right), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta(S)^{*} \psi\right)\right\rangle \\
& =\left\langle x, \Theta(S)^{*} \psi\right\rangle \\
& =\langle\Theta(S) x, \psi\rangle \quad\left(x \in Y, \psi \in Y^{*}\right)
\end{aligned}
$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$. Therefore there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that equation (1) is satisfied for all $\alpha \in D^{S}$ and all $\psi \in Y^{*}$. Fix $\alpha \in D^{S}$, then

$$
\begin{aligned}
\langle A x, \psi\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes(A x), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\left(P \otimes_{\varepsilon} A\right)\left(\mathbf{1}_{[0, \alpha]} \otimes x\right), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta(S)^{*} \psi\right)\right\rangle \\
& =\left\langle x, \Theta(S)^{*} \psi\right\rangle \\
& =\langle\Theta(S) x, \psi\rangle \quad\left(x \in Y, \psi \in Y^{*}\right)
\end{aligned}
$$

and thus $\Theta(S)=A$.

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$
\left(\left(P \otimes_{\varepsilon} A\right) u\right)\left(\omega_{1}\right)=0 \quad\left(u \in C\left[0, \omega_{1}\right] \hat{\otimes}_{\varepsilon} Y\right)
$$

which shows that $S \in \mathscr{B}\left(X_{Y}\right)$. Therefore there exists a club subset $D^{S} \subseteq\left[0, \omega_{1}\right)$ such that equation (1) is satisfied for all $\alpha \in D^{S}$ and all $\psi \in Y^{*}$. Fix $\alpha \in D^{S}$, then

$$
\begin{aligned}
\langle A x, \psi\rangle & =\left\langle\mathbf{1}_{[0, \alpha]} \otimes(A x), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\left(P \otimes_{\varepsilon} A\right)\left(\mathbf{1}_{[0, \alpha]} \otimes x\right), \delta_{\alpha} \otimes \psi\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, S^{*}\left(\delta_{\alpha} \otimes \psi\right)\right\rangle \\
& =\left\langle\mathbf{1}_{[0, \alpha]} \otimes x, \delta_{\alpha} \otimes\left(\Theta(S)^{*} \psi\right)\right\rangle \\
& =\left\langle x, \Theta(S)^{*} \psi\right\rangle \\
& =\langle\Theta(S) x, \psi\rangle \quad\left(x \in Y, \psi \in Y^{*}\right)
\end{aligned}
$$

and thus $\Theta(S)=A$. In particular, we obtain $\Theta\left(I_{X_{Y}}\right)=I_{Y}$, with $\|\Theta\| \leq 1$ this yields $\|\Theta\|=1$.

Proof of the Theorem (con't.)

Also, the above shows that the map

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) ;\left.\quad A \mapsto\left(P \otimes_{\varepsilon} A\right)\right|_{X_{Y}}
$$

satisfies $\Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}$.

Proof of the Theorem (con't.)

Also, the above shows that the map

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) ;\left.\quad A \mapsto\left(P \otimes_{\varepsilon} A\right)\right|_{X_{Y}}
$$

satisfies $\Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$.

Proof of the Theorem (con't.)

Also, the above shows that the map

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) ;\left.\quad A \mapsto\left(P \otimes_{\varepsilon} A\right)\right|_{X_{Y}}
$$

satisfies $\Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$. Also, $\Lambda\left(I_{Y}\right)=I_{X_{Y}}$ holds by $I_{X_{Y}}=\left.\left(P \otimes_{\varepsilon} I_{Y}\right)\right|_{X_{Y}}$, consequently $\|\Lambda\|=1$.

Proof of the Theorem (con't.)

Also, the above shows that the map

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) ;\left.\quad A \mapsto\left(P \otimes_{\varepsilon} A\right)\right|_{X_{Y}}
$$

satisfies $\Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$. Also, $\Lambda\left(I_{Y}\right)=I_{X_{Y}}$ holds by $I_{X_{Y}}=\left.\left(P \otimes_{\varepsilon} I_{Y}\right)\right|_{X_{Y}}$, consequently $\|\Lambda\|=1$. The map Λ is an algebra homomorphism plainly because $P \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ is an idempotent. Indeed,

$$
\left(P \otimes_{\varepsilon} A\right)\left(P \otimes_{\varepsilon} B\right)=P \otimes_{\varepsilon}(A B) \quad(A, B \in \mathscr{B}(Y))
$$

Proof of the Theorem (con't.)

Also, the above shows that the map

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) ;\left.\quad A \mapsto\left(P \otimes_{\varepsilon} A\right)\right|_{X_{Y}}
$$

satisfies $\Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$. Also, $\Lambda\left(I_{Y}\right)=I_{X_{Y}}$ holds by $I_{X_{Y}}=\left.\left(P \otimes_{\varepsilon} I_{Y}\right)\right|_{X_{Y}}$, consequently $\|\Lambda\|=1$. The map Λ is an algebra homomorphism plainly because $P \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ is an idempotent. Indeed,

$$
\left(P \otimes_{\varepsilon} A\right)\left(P \otimes_{\varepsilon} B\right)=P \otimes_{\varepsilon}(A B) \quad(A, B \in \mathscr{B}(Y))
$$

It remains to prove that Θ is not injective. For assume towards a contradiction it is; then $\mathscr{B}\left(X_{Y}\right)$ and $\mathscr{B}(Y)$ are isomorphic as Banach algebras.

Also, the above shows that the map

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) ;\left.\quad A \mapsto\left(P \otimes_{\varepsilon} A\right)\right|_{X_{Y}}
$$

satisfies $\Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with
$\|\Lambda\| \leq 1$. Also, $\Lambda\left(I_{Y}\right)=I_{X_{Y}}$ holds by $I_{X_{Y}}=\left.\left(P \otimes_{\varepsilon} I_{Y}\right)\right|_{X_{Y}}$, consequently $\|\Lambda\|=1$. The map Λ is an algebra homomorphism plainly because $P \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ is an idempotent. Indeed,

$$
\left(P \otimes_{\varepsilon} A\right)\left(P \otimes_{\varepsilon} B\right)=P \otimes_{\varepsilon}(A B) \quad(A, B \in \mathscr{B}(Y))
$$

It remains to prove that Θ is not injective. For assume towards a contradiction it is; then $\mathscr{B}\left(X_{Y}\right)$ and $\mathscr{B}(Y)$ are isomorphic as Banach algebras. By Eidelheit's Theorem this is equivalent to saying that X_{Y} and Y are isomorphic as Banach spaces.

Proof of the Theorem (con't.)

Also, the above shows that the map

$$
\Lambda: \mathscr{B}(Y) \rightarrow \mathscr{B}\left(X_{Y}\right) ;\left.\quad A \mapsto\left(P \otimes_{\varepsilon} A\right)\right|_{X_{Y}}
$$

satisfies $\Theta \circ \Lambda=\operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with
$\|\Lambda\| \leq 1$. Also, $\Lambda\left(I_{Y}\right)=I_{X_{Y}}$ holds by $I_{X_{Y}}=\left.\left(P \otimes_{\varepsilon} I_{Y}\right)\right|_{X_{Y}}$, consequently $\|\Lambda\|=1$. The map Λ is an algebra homomorphism plainly because $P \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ is an idempotent. Indeed,

$$
\left(P \otimes_{\varepsilon} A\right)\left(P \otimes_{\varepsilon} B\right)=P \otimes_{\varepsilon}(A B) \quad(A, B \in \mathscr{B}(Y))
$$

It remains to prove that Θ is not injective. For assume towards a contradiction it is; then $\mathscr{B}\left(X_{Y}\right)$ and $\mathscr{B}(Y)$ are isomorphic as Banach algebras. By Eidelheit's Theorem this is equivalent to saying that X_{Y} and Y are isomorphic as Banach spaces. This is clearly nonsense, since for example, Y is separable whereas X_{Y} is not. \square

OK, the very last slide, really

Thank you for your attention :)

OK, the very last slide, really

Thank you for your attention :)

Sources

- B. Horváth, "When are full representations of algebras of operators on Banach spaces automatically faithful?", Studia Mathematica (2020), available on the arXiv;
- B. Horváth and T. Kania, "Surjective homomorphisms from algebras of operators on long sequence spaces automatically injective", submitted, available on the arXiv;
- W. B. Johnson, T. Kania and G. Schechtman, "Closed ideals of operators on and complemented subspaces of Banach spaces of functions with countable support", Proceedinds of the AMS (2016), available on the arXiv;
- P. Koszmider and N. J. Laustsen, "A Banach space induced by an almost disjoint family, admitting only few operators and decompositions", available on the arXiv.

