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Uniwersytetu Jagiellońskiego, Geometry of Banach Spaces Seminar

horvath@math.cas.cz
Institute of Mathematics of the Czech Academy of Sciences

November 18, 2020
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Some notation & motivation

If X is a complex Banach space, then B(X ) denotes the unital
Banach algebra of bounded, linear operators on X .

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then X ∼= Y (X and Y are
linearly homeomorphic) if and only if B(X ) ∼= B(Y ). (B(X ) and
B(Y ) are homomorphically homeomorphic.)

Can we drop the injectivity assumption in Eidelheit’s Theorem?...

Question

Let X and Y be Banach spaces, let ψ : B(X )→ B(Y ) be a
surjective (continuous) algebra homomorphism. Is ψ automatically
injective?
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In general the answer is NO.

Let X be infinite-dimensional such that B(X ) has a character
⇐⇒ ∃ϕ : B(X )→ C unital (surjective, continuous) algebra
homomorphism. As C ' B(C), the surjective homomorphism ϕ
cannot be injective.

Example

The following Banach spaces X are such that B(X ) has a character:

The James space Jp (where 1 < p <∞), the Semadeni space
C [0, ω1], any hereditarily indecomposable space
(Gowers–Maurey, Argyros–Haydon, ...);

Mankiewicz’s separable and superreflexive space XM , Gowers’
space G, Tarbard’s indecomposable but not H.I. space X∞, the
space C (K0) where K0 is a connected “Koszmider” space, the
Motakis–Puglisi–Zisimopoulou space XK .

In examples of the second type the character is obtained from a
commutative quotient of B(X ).
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For some classical spaces the answer to the question is YES.

Example

Let H be a separable Hilbert space.

Let Y be a non-zero Banach
space and let ψ : B(H)→ B(Y ) be a continuous, surjective
algebra homomorphism. By the classical result of Calkin we know
that the lattice of closed, two-sided ideals of B(H) is given by

{0} ↪→ K (H) ↪→ B(H).

As the kernel Ker(ψ) is a closed, two-sided ideal in B(H), one of
the following must hold:

1 Ker(ψ) = {0};
2 Ker(ψ) = K (H);

3 Ker(ψ) = B(H).
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Clearly (3) is impossible.

We show that (2) cannot hold either. For
assume towards a contradiction that Ker(ψ) = K (H). Thus
B(H)/K (H) ∼= B(Y ).

Assume Y is infinite-dimensional.

Then B(Y ) is not simple, as
A (Y ) = F (Y ) is a proper, closed, two-sided ideal. But
K (H) is a maximal ideal in B(H) ⇐⇒ B(H)/K (H) is
simple, a contradiction.

Assume Y is finite-dimensional. Then B(Y ) is
finite-dimensional, but B(H)/K (H) is not, a contradiction.

Thus (1) must hold ⇐⇒ Ker(ψ) = {0} ⇐⇒ ψ is injective.

Remark

The same argument works if we replace H with c0 or `p, where
1 6 p <∞.

Indeed if X is one of the above, then by the
Gohberg–Markus–Feldman Theorem the ideal lattice of B(X ) is
given by

{0} ↪→ K (X ) ↪→ B(X ).
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Definition

A Banach space X has the SHAI property (Surjective
Homomorphisms Are Injective) if for every non-zero Banach space
Y every surjective algebra homomorphism ψ : B(X )→ B(Y ) is
injective.

...But what about the continuity assumption?

A word on automatic continuity

Let A be a Banach algebra, let Y be a Banach space and let
ψ : A → B(Y ) be a surjective algebra homomorphism. Then ψ is
automatically continuous.

This follows from a much more general result of B. E. Johnson.

Consequently, if X has the SHAI property, Y is non-zero and there
is a surjective algebra homomorphism ψ : B(X )→ B(Y ), then

B(X ) ∼= B(Y )⇐⇒ X ∼= Y .
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We know that c0 and `p have the SHAI for 1 6 p <∞.

Question

Does `∞ have the SHAI property?

Theorem (W. B. Johnson – G. Pisier – G. Schechtman, 2018)

B(`∞) has a continuum of closed, two-sided ideals.

(The answer to the question is YES, but a different approach is
needed.)
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The method of large kernels I.

Recall that if X ,Y are non-zero Banach spaces, and
ψ : B(X )→ B(Y ) is a non-zero, continuous algebra
homomorphism, then either

ψ is injective; or

A (X ) ⊆ Ker(ψ).

We can say something more if ψ is surjective.

Definition

T ∈ B(X ) is inessential if IX − ST is Fredholm, or equivalently

dim(Ker(IX − ST )) <∞, codim(Ran(IX − ST )) <∞

for all S ∈ B(X ).

Fact

The set E (X ) of inessential operators is a proper, closed, two-sided
ideal of B(X ) if X is infinite-dimensional.
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For an infinite-dimensional X the chain

{0} ↪→ A (X ) ↪→ K (X ) ↪→ S (X ) ↪→ E (X ) ↪→ B(X )

is a sublattice of the lattice of closed, two-sided ideals of B(X ).

(Digression: E is a closed operator ideal in the sense of Pietsch. It
was conjectured that E is the largest proper closed operator ideal. It
was recently shown by V. Ferenczi that there is no largest proper
closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X ,Y be non-zero Banach spaces and let ψ : B(X )→ B(Y ) be
a surjectice algebra homomorphism. Then either

ψ is injective; or

E (X ) ⊆ Ker(ψ).
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Theorem (H.)

Let X be either `∞ or Schlumprecht’s arbitrarily distortable space S.
Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented
subspace isomorphic to X ⊕ X . Then the following are equivalent:

1 X has the SHAI property,

2 for any infinite-dimensional Banach space Y any surjective
algebra homomorphism ψ : B(X )→ B(Y ) is automatically
injective.

Proof.

(Sketch.) Under the hypothesis B(X ) cannot have
finite-codimensional proper two-sided ideals.
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Bence Horváth (partially joint work with Tomasz Kania) The SHAI property



Proof of Theorem.

Let Y be a Banach space and let ψ : B(X )→ B(Y ) be a
surjective alg. hom.

As X ∼= X ⊕ X , by Lemma we may assume
that Y is inf. dim. Assume towards a contradiction that ψ is not
injective. Hence E (X ) ⊆ Ker(ψ) by Dichotomy Result I.

The case X = `∞. By a result of Laustsen & Loy, we know that

E (X ) = S (X ) = W (X ) = X (X )

is the unique maximal ideal in B(X ), hence Ker(ψ) = E (X ).

The case X = S. Recall: X is complementably minimal (⇐⇒
every infinite-dimensional subspace of X contains a subspace
which is complemented in X and isomorphic to X ) hence by
Whitley’s Theorem S (X ) is the unique maximal ideal in B(X ).
Thus S (X ) = E (X ) = Ker(ψ).

In both cases Ker(ψ) = E (X ) thus B(X )/E (X ) ∼= B(Y ). Note
that LHS is simple because E (X ) is maximal, but RHS is not simple
as Y is infinite-dimensional. A contradiction.
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Our goal is to show that the Banach spaces(⊕
n∈N `

n
2

)
c0
,
(⊕

n∈N `
n
2

)
`1

;

and

c0(λ), `c∞(λ), `p(λ)

(where 1 6 p <∞ and λ is an infinite cardinal)

have the SHAI property.

Recall that

`c∞(λ) := {x ∈ `∞(λ) : supp(x) is countable} .

Note that `c∞(λ) is a sub-C*-algebra of the commutative
C*-algebra `∞(λ). Moreover `c∞(λ) is a C (K )-space, as observed
by Johnson & Kania & Schechtman.
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Bence Horváth (partially joint work with Tomasz Kania) The SHAI property



Our goal is to show that the Banach spaces(⊕
n∈N `

n
2

)
c0
,
(⊕

n∈N `
n
2

)
`1

;

and

c0(λ), `c∞(λ), `p(λ)

(where 1 6 p <∞ and λ is an infinite cardinal)

have the SHAI property.

Recall that

`c∞(λ) := {x ∈ `∞(λ) : supp(x) is countable} .

Note that `c∞(λ) is a sub-C*-algebra of the commutative
C*-algebra `∞(λ). Moreover `c∞(λ) is a C (K )-space, as observed
by Johnson & Kania & Schechtman.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property



The method of large kernels II.

Let X and W be Banach spaces. Define

GW (X ) := span
{
ST : T ∈ B(X ,W ),S ∈ B(W ,X )

}
.

Then GW (X ) E B(X ), and it is called the ideal of operators that
approximately factor through W .

If X has a complemented subspace isomorphic to W , and
P ∈ B(X ) is an idempotent with Ran(P) ∼= W then GW (X )
coincides with 〈P〉, the closed, two-sided ideal generated by P.

Proposition (H.–Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented
subspace of X such that W has the SHAI property.

Let Y be a
Banach space and let ψ : B(X )→ B(Y ) be a surjective algebra
homomorphism. Then either

ψ is injective; or

GW (X ) ⊆ Ker(ψ).
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Sketch proof of Dichotomy Result II.

Let P ∈ B(X ) be an idempotent with W = Ran(P).

Suppose ψ is not injective. To show the claim it is enough to see
that P ∈ Ker(ψ). Indeed; if this holds then
GW (X ) = 〈P〉 ⊆ Ker(ψ) by definition, as Ker(ψ) E B(X ).

Assume in search of a contradiction that P /∈ Ker(ψ). Then
Z := Ran(ψ(P)) is a non-zero, closed (complemented) subspace of
Y . The map

θ : B(W )→ B(Z ); T 7→ ψ(P|W ◦ T ◦ P|W )|ZZ

is well-defined. It is also an algebra homomorphism.

Bit less obvious: θ is surjective. Since Z is non-zero, from the SHAI
property of W it follows that θ is injective.
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Sketch proof of Dichotomy Result II con’t.

Now let A ∈ B(X ) be such that A ∈ Ker(ψ).

Then

θ(P|W ◦ A ◦ P|W ) =

ψ(P|W ◦ P|W ◦ A ◦ P|W ◦ P|W )|ZZ
= ψ(P ◦ A ◦ P)|ZZ
= (ψ(P) ◦ ψ(A) ◦ ψ(P))

∣∣Z
Z

= 0.

Since θ is injective it follows that P|WAP|W = 0 or equivalently
PAP = 0.

We apply this in the following specific situation: We choose
x ∈W = Ran(P) ⊆ X and ξ ∈ X ∗ norm one vectors with
〈x , ξ〉 = 1. As ψ is not injective, in particular we have
x ⊗ ξ ∈ F (X ) ⊆ Ker(ψ), consequently P(x ⊗ ξ)P = 0. Thus

0 = (P(x ⊗ ξ)P)x = 〈Px , ξ〉Px = 〈x , ξ〉x = x ,

a contradiction. Consequently P ∈ Ker(ψ) must hold.
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Theorem (H.)

Let X := (
⊕

n∈N `
n
2)Y , where Y is c0 or `1. Then X has the SHAI

property.

Proof.

Main ingredient:

Theorem (Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák)

Let X = (
⊕

n∈N `
n
2)Y where Y is c0 or `1. Then the lattice of

closed, two-sided ideals in B(X ) is given by

{0} ↪→ K (X ) ↪→ G Y (X ) ↪→ B(X ).

Apply that c0 and `1 have the SHAI property with Dichotomy
Result II and the fact that X ⊕ X ∼= X .

Alternative proof: B(X )/K (X ) does not have minimal
idempotents.
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The long sequence spaces

Recall

c0 and `p have the SHAI property for all p ∈ [1,∞]

Theorem (H.)

`2(λ) has the SHAI property for every infinite cardinal λ.

The proof uses Spectral Theory to show that idempotents from
B(`2(λ))/J can be lifted to idempotents in B(`2(λ)), where
J E B(`2(λ)).

Hence B(`2(λ))/J has no minimal idempotents.

Thus there is no Banach space Y with B(`2(λ))/J ∼= B(Y ), as
minimal idempotents in B(Y ) are precisely the rank one
idempotents.
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The long sequence spaces

Theorem (H.–Kania)

Let λ be an infinite cardinal. Then c0(λ), `c∞(λ) and `p(λ) (for
1 6 p <∞) have the SHAI property.

Ingredients of the proof.

Definition

Let X and Y be Banach spaces. Let SY (X ) be a subset of B(X )
defined by

T /∈ SY (X )⇐⇒∃W ⊆ X subspace with W ∼= Y such that

T |W is bounded below.

SY (X ) is called the set of Y -singular operators on X .
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The long sequence spaces

Ingredients of the proof (con’t).

Facts

1 SY (X ) ⊆ SZ (X ) if Y ⊆ Z .

2 If A ∈ SY (X ) and T ∈ B(X ) then AT ,TA ∈ SY (X ).

3 SY (X ) need not be closed under addition (hence it is not an
ideal in general).

4 If SX (X ) is closed under addition and X is complementably
homogeneous then SX (X ) is the unique maximal ideal in
B(X ). [folk, H.– Kania]

(X is complementably homogeneous if whenever Y is a subspace of
X with Y ∼= X then there is Z ⊆ Y subspace which is
complemented in X and Z ∼= X . )
The spaces c0(λ), `c∞(λ) and `p(λ) (where 1 6 p <∞) are
complementably homogeneous.
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The long sequence spaces

Ingredients of the proof (con’t).

Let Eλ be one of the Banach spaces c0(λ), `c∞(λ) or `p(λ) where
1 6 p <∞.

Theorem (Johnson – Kania – Schechtman)

The set SEκ(Eλ) is a closed, non-zero, proper two-sided ideal in
B(Eλ) for every infinite cardinal κ ≤ λ. In particular SEλ

(Eλ) is
maximal.

Theorem (Johnson – Kania – Schechtman)

Let λ and κ be uncountable cardinals with λ > κ, and suppose that
κ is not a successor of any cardinal number. Then

SEκ(Eλ) =
⋃
α<κ

SEα(Eλ).
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The long sequence spaces

Ingredients of the proof (con’t).

Theorem (H. – Kania, Johnson – Kania – Schechtman for `c∞(λ))

Let λ and κ be infinite cardinals with λ > κ. Let T ∈ B(Eλ) be
such that T /∈ SEκ(Eλ). Then

SEκ+ (Eλ) ⊆ 〈T 〉.

The proof that Eλ has SHAI uses:

Transfinite induction on the cardinals κ 6 λ;

the above 3 theorems;

and the Dichotomy Result II.

In this context,
G Eκ(Eλ) ⊆ Ker(ψ), where ψ : B(Eλ)→ B(Y ) is some
surjective, non-injective algebra hom.
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Proof

We prove by transfinite induction. Let λ be a fixed infinite cardinal
and suppose Eκ has the SHAI property for each cardinal κ < λ.

Assume towards a contradiction that there is an infinite-dimensional
Banach space Y and a surjective, non-injective algebra
homomorphism ψ : B(Eλ)→ B(Y ). As Eκ is isomorphic to a
complemented subspace of Eλ, there is an idempotent
P(κ) ∈ B(Eλ) with Ran(P(κ)) ∼= Eκ. Clearly P(κ) /∈ SEκ(Eλ),

hence by Theorem above it follows that SEκ+ (Eλ) ⊆ G Eκ(Eλ). As
Eκ has the SHAI property by the inductive hypothesis, we conclude
from Dichotomy Result II that

SEκ+ (Eλ) ⊆ G Eκ(Eλ) ⊆ Ker(ψ).

We claim that SEλ
(Eλ) ⊆ Ker(ψ). We consider three cases:

1 λ = ω;

2 λ is a successor cardinal;

3 λ is uncountable and not a successor cardinal.
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Proof (con’t.)

(1) If λ = ω then Eλ = c0 or Eλ = `p, where p ∈ [1,∞]. Then
Dichotomy Result I yields

SEλ
(Eλ) = E (Eλ) ⊆ Ker(ψ).

(2) If λ is a successor cardinal then λ = κ+ for some cardinal
κ < λ. Thus we conclude

SEλ
(Eλ) = SEκ+ (Eλ) ⊆ Ker(ψ).

(3) Let λ be an uncountable cardinal which is not a successor of
any cardinal. We clearly have SEκ(Eλ) ⊆ SEκ+ (Eλ) ⊆ Ker(ψ) for
each κ < λ. As Ker(ψ) is closed, in view of Theorem we obtain

SEλ
(Eλ) =

⋃
κ<λ

SEκ(Eλ) ⊆ Ker(ψ).

Since Ker(ψ) E B(Eλ) is proper and SEλ
(Eλ) is maximal by

Theorem, we must have SEλ
(Eλ) = Ker(ψ). This is equivalent to

B(Eλ)/SEλ
(Eλ) ∼= B(Y ), which is impossible. Thus ψ must be

injective.
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Intermezzo: Fun times around Zakopane

Figure: Descending from Kasprowy Wierch, 2018 Summer
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Further results, remarks

Lp[0, 1] has the SHAI property for 1 < p <∞ [Johnson –
Phillips – Schechtman, 2020+].

The “non-classical”
complemented subspace Xp constructed by Rosenthal also has
SHAI [Johnson – Phillips – Schechtman, 2020+].

If X1,X2, . . . ,Xn have SHAI then
⊕n

i=1 Xi has SHAI. [H.]

Hence X := `p ⊕ `q and X := c0 ⊕ `p have SHAI. Note: B(X )
has very complicated ideal lattice! [Freeman & Schlumprecht
& Zsák]

SHAI is not a three-space property [H. – Kania].

There exists an uncountable AD family A ⊆ [N]ω and an
Isbell–Mrówka space KA such that B(C0(KA)) has a character
[Koszmider–Laustsen, 2020+];
C0(KA) is a twisted sum of c0 and c0(c) [follows from the
construction of Koszmider & Laustsen];
Both c0 and c0(c) have SHAI but C0(KA) does not.
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Further results, remarks

Recall that so far that all examples of Banach spaces X which lack
SHAI have the property that there exists a character ϕ : B(X )→ C.
(Or finite sums thereof, we can quotient to Mn(C).)

We can have infinite-dimensional targets for surjective, non-injective
algebra homomorphisms:

Theorem (H.)

Let Y be a separable, reflexive Banach space. Let

XY :=
{
f ∈ C

(
[0, ω1];Y

)
: f (ω1) = 0Y

}
.

There exists a surjective, non-injective algebra homomorphism

ψ : B(XY )→ B(Y ).
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The proof, prelims

Most important ingredient: A result of Kania, Koszmider, and
Laustsen:

Theorem (Kania–Koszmider–Laustsen, Trans. Lond. Math. Soc.,
2014)

For every T ∈ B(C0[0, ω1)) there exists a unique ϕ(T ) ∈ C such
that there exists a club (⇐⇒ closed and unbounded) subset
D ⊆ [0, ω1) such that:

(Tf )(α) = ϕ(T )f (α) (α ∈ D, f ∈ C0[0, ω1)).

Moreover, ϕ : B(C0[0, ω1))→ C; T 7→ ϕ(T ) is a character.

Note that the club subset in the statement is never unique.
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Some remarks

The character
ϕ : B(C0[0, ω1))→ C

of the previous theorem is termed the Alspach–Benyamini
character.

The kernel of ϕ is the Loy–Willis ideal, denoted by MLW :

MLW := Ker(ϕ).

Partial structure of the lattice of closed two-sided ideals of
B(C0[0, ω1)) is given in [Kania–Laustsen, Proc. Amer. Math.
Soc., 2015], in particular

E (C0[0, ω1)) = K (C0[0, ω1)) (MLW .
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Some remarks (con’t.)

C [0, ω1]⊗̂εY
(1)∼= C ([0, ω1];Y ), so we can may identify elements

of the form f ⊗ x with f (·)x .

Recall XY :=
{
f ∈ C

(
[0, ω1];Y

)
: f (ω1) = 0Y

}
. Fix

µ, ξ ∈ X ∗Y , then[
µ = ξ

]

⇐⇒
[
〈f⊗x , µ〉 = 〈f⊗x , ξ〉

(
x ∈ Y , f ∈ C0[0, ω1)

)]
.

From the above and the Hahn–Banach Separation Theorem it
follows that

XY

(1)∼= C0[0, ω1)⊗̂εY .
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Bence Horváth (partially joint work with Tomasz Kania) The SHAI property



Some remarks (con’t.)

By a result of Rudin we have

C [0, ω1]∗
(1)∼= `1(ω+

1 ) :=

g : [0, ω1]→ C :
∑
α<ω+

1

|g(α)| <∞

 ,

given by the duality 〈f , δα〉 = f (α) = δα(f ).

C [0, ω1] has the Approximation Property.

C [0, ω1]∗
(1)∼= `1(ω+

1 ) has the Radon–Nikodým Property.

Thus

C ([0, ω1];Y )∗
(1)∼= (C [0, ω1]⊗̂εY )∗

(1)∼= C [0, ω1]∗⊗̂πY ∗

(1)∼= `1(ω+
1 )⊗̂πY ∗

(1)∼= `1(ω+
1 ;Y ∗).
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 ,

given by the duality 〈f , δα〉 = f (α) = δα(f ).

C [0, ω1] has the Approximation Property.

C [0, ω1]∗
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Proof of the Theorem

Fix S ∈ B(XY ), x ∈ Y and ψ ∈ Y ∗. For any f ∈ C0[0, ω1) we can
define the map

Sψx f : [0, ω1]→ C; α 7→ 〈(S(f ⊗ x))(α), ψ〉.

It is clear that Sψx f is a continuous map, moreover by
S(f ⊗ x) ∈ XY we also have (Sψx f )(ω1) = 0, consequently

Sψx f ∈ C0[0, ω1).

This allows us to define the map

Sψx : C0[0, ω1)→ C0[0, ω1); f 7→ Sψx f .

It is clear that Sψx is a linear map with

‖Sψx ‖ ≤ ‖S‖‖x‖‖ψ‖.

Consequently, by the K–K–L Theorem there is a club subset
Dx ,ψ ⊆ [0, ω1) such that

(Sψx )∗δα = ϕ(Sψx )δα (α ∈ Dx ,ψ).
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Proof of the Theorem (con’t.)

We also have |ϕ(Sψx )| ≤ ‖S‖‖x‖‖ψ‖, since ‖ϕ‖ = 1.

This allows us
to define the map

Θ̃S : Y × Y ∗ → C; (x , ψ) 7→ ϕ(Sψx ),

and we have

|Θ̃S(x , ψ)| ≤ ‖S‖‖x‖‖ψ‖ (x ∈ Y , ψ ∈ Y ∗).

Now we show that Θ̃S is bilinear. Let x , y ∈ Y , ψ ∈ Y ∗ and λ ∈ C
be arbitrary. Fix f ∈ C0[0, ω1) and α ∈ [0, ω1], then using linearity
of the tensor product in the second variable, of S and of the
functional ψ it follows:

(Sψx+λy f )(α) = 〈(S(f ⊗ (x + λy)))(α), ψ〉
= 〈(S(f ⊗ x))(α), ψ〉+ λ〈(S(f ⊗ y))(α), ψ〉
= (Sψx f )(α) + λ(Sψy f )(α),

proving Sψx+λy = Sψx + λSψy .
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Proof of the Theorem (con’t.)

Since ϕ is linear,

Θ̃S(x + λy , ψ) = ϕ(Sψx+λy )

= ϕ(Sψx + λSψy )

= ϕ(Sψx ) + λϕ(Sψy )

= Θ̃S(x , ψ) + λΘ̃S(y , ψ)

follows, proving linearity of Θ̃S in the first variable.

Linearity in the
second variable follows from an analogous reasoning. Consequently
Θ̃S is a bounded bilinear form on Y × Y ∗.
Let κY : Y → Y ∗∗ denote the canonical embedding. By reflexivity
of Y the map

ΘS : Y → Y ; x 7→ κ−1
Y (Θ̃S(x , ·))

defines a bounded linear operator on Y with ‖ΘS‖ = ‖Θ̃S‖ and

〈ΘS(x), ψ〉 = Θ̃S(x , ψ) = ϕ(Sψx ) (x ∈ Y , ψ ∈ Y ∗).
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Proof of the Theorem (con’t.)

Thus we can define the map

Θ: B(XY )→ B(Y ); S 7→ ΘS .

Since Y is separable and reflexive it follows that Y ∗ is separable too.
Let Q ⊆ Y and R ⊆ Y ∗ be countable dense subsets. Let us fix
S ∈ B(XY ), x ∈ Q and ψ ∈ R. As above, there exists a club
subset DS

x ,ψ ⊆ [0, ω1) such that

(Sψx f )(α) = ϕ(Sψx )f (α) (α ∈ DS
x ,ψ, f ∈ C0[0, ω1)).

Hence

〈S(f ⊗ x), δα ⊗ ψ〉 = 〈(S(f ⊗ x))(α), ψ〉

= (Sψx f )(α)

= f (α)ϕ(Sψx ) = 〈f (α)Θ(S)x , ψ〉
= 〈f ⊗ (Θ(S)x), δα ⊗ ψ〉

for all α ∈ DS
x ,ψ, f ∈ C0[0, ω1)).
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subset DS

x ,ψ ⊆ [0, ω1) such that

(Sψx f )(α) = ϕ(Sψx )f (α) (α ∈ DS
x ,ψ, f ∈ C0[0, ω1)).

Hence

〈S(f ⊗ x), δα ⊗ ψ〉 = 〈(S(f ⊗ x))(α), ψ〉 = (Sψx f )(α)

= f (α)ϕ(Sψx ) = 〈f (α)Θ(S)x , ψ〉

= 〈f ⊗ (Θ(S)x), δα ⊗ ψ〉

for all α ∈ DS
x ,ψ, f ∈ C0[0, ω1)).
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Proof of the Theorem (con’t.)

As a countable intersection of club subsets is a club subset, we have
that

DS :=
⋂

(x ,ψ)∈Q×R

DS
x ,ψ

is a club subset of [0, ω1).

Consequently

〈S(f ⊗ x), δα ⊗ ψ〉 = 〈f ⊗ (Θ(S)x), δα ⊗ ψ〉

holds for any α ∈ DS , any f ∈ C0[0, ω1) and any x ∈ Q, ψ ∈ R.

Fix S ∈ B(XY ), α ∈ DS and f ∈ C0[0, ω1). Define the maps

g(S,f ,α) : Y × Y ∗ → C; (x , ψ) 7→ 〈S(f ⊗ x), δα ⊗ ψ〉,
h(S,f ,α) : Y × Y ∗ → C; (x , ψ) 7→ 〈f ⊗ (Θ(S)x), δα ⊗ ψ〉.

Thus we can reformulate the above equation as

g(S ,f ,α)(x , ψ) = h(S ,f ,α)(x , ψ) ((x , ψ) ∈ Q×R).
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Proof of the Theorem (con’t.)

As g(S ,f ,α) and h(S ,f ,α) are continuous functions between metric
spaces, density of Q×R in Y × Y ∗ implies that

g(S,f ,α)(x , ψ) = h(S,f ,α)(x , ψ) ((x , ψ) ∈ Y × Y ∗).

In other words, for any S ∈ B(XY ) there exists a club subset
DS ⊆ [0, ω1) such that

〈f ⊗ x ,S∗(δα ⊗ ψ)〉 = 〈f ⊗ x , δα ⊗ (Θ(S)∗ψ)〉

for any α ∈ DS , f ∈ C0[0, ω1) and x ∈ Y , ψ ∈ Y ∗.
Therefore we obtain that

S∗(δα ⊗ ψ) = δα ⊗ (Θ(S)∗ψ). (1)

for all α ∈ DS and ψ ∈ Y ∗.
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Proof of the Theorem (con’t.)

We show that for any S ∈ B(XY ) the operator Θ(S) is determined
by equation (1).

Indeed, suppose Θ1(S),Θ2(S) ∈ B(Y ) are such
that there exist club subsets DS

1 ,D
S
2 ⊆ [0, ω1) with the property

that

S∗(δα ⊗ ψ) = δα ⊗ (Θi (S)∗ψ)

for i ∈ {1, 2}, all α ∈ DS
i and all ψ ∈ Y ∗. Let α ∈ DS

1 ∩ DS
2 ,

x ∈ Y and ψ ∈ Y ∗ be fixed. Then

〈Θ1(S)x , ψ〉 = 〈1[0,α] ⊗ x , δα ⊗ (Θ1(S)∗ψ)〉

= 〈1[0,α] ⊗ x ,S∗(δα ⊗ ψ)〉
= 〈1[0,α] ⊗ x , δα ⊗ (Θ2(S)∗ψ)〉
= 〈Θ2(S)x , ψ〉

and thus Θ1(S) = Θ2(S).

We are now prepared to prove that Θ is an algebra homomorphism.
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Bence Horváth (partially joint work with Tomasz Kania) The SHAI property



Proof of the Theorem (con’t.)

We show that for any S ∈ B(XY ) the operator Θ(S) is determined
by equation (1). Indeed, suppose Θ1(S),Θ2(S) ∈ B(Y ) are such
that there exist club subsets DS

1 ,D
S
2 ⊆ [0, ω1) with the property

that

S∗(δα ⊗ ψ) = δα ⊗ (Θi (S)∗ψ)

for i ∈ {1, 2}, all α ∈ DS
i and all ψ ∈ Y ∗. Let α ∈ DS

1 ∩ DS
2 ,

x ∈ Y and ψ ∈ Y ∗ be fixed. Then

〈Θ1(S)x , ψ〉 = 〈1[0,α] ⊗ x , δα ⊗ (Θ1(S)∗ψ)〉
= 〈1[0,α] ⊗ x , S∗(δα ⊗ ψ)〉
= 〈1[0,α] ⊗ x , δα ⊗ (Θ2(S)∗ψ)〉
= 〈Θ2(S)x , ψ〉

and thus Θ1(S) = Θ2(S).

We are now prepared to prove that Θ is an algebra homomorphism.
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Proof of the Theorem (con’t.)

We show that Θ is multiplicative. Let S ,T ∈ B(XY ) be fixed.

Let
DT ,DS ,DTS ⊆ [0, ω1) be club subsets which satisfy equation (1).
Fix α ∈ DT ∩ DS ∩ DTS , x ∈ Y and ψ ∈ Y ∗. Then we obtain:

δα ⊗ (Θ(TS)∗ψ) = (TS)∗(δα ⊗ ψ)

= S∗T ∗(δα ⊗ ψ)

= S∗(δα ⊗ (Θ(T )∗ψ))

= δα ⊗ (Θ(S)∗Θ(T )∗ψ)

= δα ⊗ ((Θ(T )Θ(S))∗ψ),

hence Θ(TS)∗ψ = (Θ(T )Θ(S))∗ψ, so Θ(TS)∗ = (Θ(T )Θ(S))∗,
equivalently Θ(TS) = Θ(T )Θ(S).

Linearity can be shown with analogous reasoning.

For any S ∈ B(XY ) we have ‖Θ(S)‖ = ‖Θ̃S‖ ≤ ‖S‖, thus
‖Θ‖ ≤ 1.
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DT ,DS ,DTS ⊆ [0, ω1) be club subsets which satisfy equation (1).
Fix α ∈ DT ∩ DS ∩ DTS , x ∈ Y and ψ ∈ Y ∗. Then we obtain:

δα ⊗ (Θ(TS)∗ψ) = (TS)∗(δα ⊗ ψ)

= S∗T ∗(δα ⊗ ψ)

= S∗(δα ⊗ (Θ(T )∗ψ))

= δα ⊗ (Θ(S)∗Θ(T )∗ψ)

= δα ⊗ ((Θ(T )Θ(S))∗ψ),

hence Θ(TS)∗ψ = (Θ(T )Θ(S))∗ψ, so Θ(TS)∗ = (Θ(T )Θ(S))∗,
equivalently Θ(TS) = Θ(T )Θ(S).

Linearity can be shown with analogous reasoning.

For any S ∈ B(XY ) we have ‖Θ(S)‖ = ‖Θ̃S‖ ≤ ‖S‖, thus
‖Θ‖ ≤ 1.
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Proof of the Theorem (con’t.)

We now show that Θ is surjective. We show more: There exists a
norm one algebra homomorphism

Λ: B(Y )→ B(XY ) with Θ ◦ Λ = idB(Y ).

Let P ∈ B(C [0, ω1]) be the idempotent operator with

P : C [0, ω1]→ C [0, ω1]; g 7→ g − cg(ω1).

Then Ran(P) = C0[0, ω1). It is also not hard to see that

IXY
= (P ⊗ε IY )|XY

.

Let us fix an A ∈ B(Y ). We observe that

S := (P ⊗ε A)|XY

belongs to B(XY ). Indeed, the identity

((P ⊗ε A)(g ⊗ x))(ω1) = (Pg)(ω1)Ax = 0

holds for any g ∈ C [0, ω1] and x ∈ Y , since Pg ∈ C0[0, ω1).
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Proof of the Theorem (con’t.)

Thus by linearity and continuity of P ⊗ε A in fact

((P ⊗ε A)u)(ω1) = 0 (u ∈ C [0, ω1]⊗̂εY ),

which shows that S ∈ B(XY ).

Therefore there exists a club subset
DS ⊆ [0, ω1) such that equation (1) is satisfied for all α ∈ DS and
all ψ ∈ Y ∗. Fix α ∈ DS , then

〈Ax , ψ〉 = 〈1[0,α] ⊗ (Ax), δα ⊗ ψ〉

= 〈(P ⊗ε A)(1[0,α] ⊗ x), δα ⊗ ψ〉
= 〈1[0,α] ⊗ x ,S∗(δα ⊗ ψ)〉
= 〈1[0,α] ⊗ x , δα ⊗ (Θ(S)∗ψ)〉
= 〈x ,Θ(S)∗ψ〉
= 〈Θ(S)x , ψ〉

(x ∈ Y , ψ ∈ Y ∗)

and thus Θ(S) = A. In particular, we obtain Θ(IXY
) = IY , with

‖Θ‖ ≤ 1 this yields ‖Θ‖ = 1.
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Proof of the Theorem (con’t.)

Also, the above shows that the map

Λ : B(Y )→ B(XY ); A 7→ (P ⊗ε A)|XY

satisfies Θ ◦ Λ = idB(Y ).

It is immediate that Λ is linear with
‖Λ‖ ≤ 1. Also, Λ(IY ) = IXY

holds by IXY
= (P ⊗ε IY )|XY

,
consequently ‖Λ‖ = 1. The map Λ is an algebra homomorphism
plainly because P ∈ B(C [0, ω1]) is an idempotent. Indeed,

(P ⊗ε A)(P ⊗ε B) = P ⊗ε (AB) (A,B ∈ B(Y )).

It remains to prove that Θ is not injective. For assume towards a
contradiction it is; then B(XY ) and B(Y ) are isomorphic as
Banach algebras. By Eidelheit’s Theorem this is equivalent to saying
that XY and Y are isomorphic as Banach spaces. This is clearly
nonsense, since for example, Y is separable whereas XY is not.
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Banach algebras. By Eidelheit’s Theorem this is equivalent to saying
that XY and Y are isomorphic as Banach spaces.

This is clearly
nonsense, since for example, Y is separable whereas XY is not.
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Proof of the Theorem (con’t.)
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OK, the very last slide, really

Thank you for your attention :)

Sources

B. Horváth, “When are full representations of algebras of
operators on Banach spaces automatically faithful?”, Studia
Mathematica (2020), available on the arXiv;

B. Horváth and T. Kania, “Surjective homomorphisms from
algebras of operators on long sequence spaces automatically
injective”, submitted, available on the arXiv;

W. B. Johnson, T. Kania and G. Schechtman, “Closed ideals of
operators on and complemented subspaces of Banach spaces of
functions with countable support”, Proceedinds of the AMS
(2016), available on the arXiv;

P. Koszmider and N. J. Laustsen, “A Banach space induced by
an almost disjoint family, admitting only few operators and
decompositions”, available on the arXiv.
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