When are surjective algebra homomorphisms of $\mathscr{B}(X)$ automatically injective?

Bence Horváth (partially joint work with Tomasz Kania)

Uniwersytetu Jagiellońskiego, Geometry of Banach Spaces Seminar

horvath@math.cas.cz Institute of Mathematics of the Czech Academy of Sciences

November 18, 2020

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y$ if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y)$.

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y$ (X and Y are linearly homeomorphic) if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y)$. ($\mathscr{B}(X)$ and $\mathscr{B}(Y)$ are homomorphically homeomorphic.)

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y$ (X and Y are linearly homeomorphic) if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y)$. ($\mathscr{B}(X)$ and $\mathscr{B}(Y)$ are homomorphically homeomorphic.)

Can we drop the injectivity assumption in Eidelheit's Theorem?...

Theorem (Eidelheit)

Let X and Y be Banach spaces. Then $X \cong Y$ (X and Y are linearly homeomorphic) if and only if $\mathscr{B}(X) \cong \mathscr{B}(Y)$. ($\mathscr{B}(X)$ and $\mathscr{B}(Y)$ are homomorphically homeomorphic.)

Can we drop the injectivity assumption in Eidelheit's Theorem?...

Question

Let X and Y be Banach spaces, let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective (continuous) algebra homomorphism. Is ψ automatically injective?

э

Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\iff \exists \varphi \colon \mathscr{B}(X) \to \mathbb{C}$ unital (surjective, continuous) algebra homomorphism.

Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\iff \exists \varphi \colon \mathscr{B}(X) \to \mathbb{C}$ unital (surjective, continuous) algebra homomorphism. As $\mathbb{C} \simeq \mathscr{B}(\mathbb{C})$, the surjective homomorphism φ cannot be injective.

Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\iff \exists \varphi \colon \mathscr{B}(X) \to \mathbb{C}$ unital (surjective, continuous) algebra homomorphism. As $\mathbb{C} \simeq \mathscr{B}(\mathbb{C})$, the surjective homomorphism φ cannot be injective.

Example

The following Banach spaces X are such that $\mathscr{B}(X)$ has a character:

The James space J_p (where 1 1</sub>], any hereditarily indecomposable space (Gowers–Maurey, Argyros–Haydon, ...);

Let X be infinite-dimensional such that $\mathscr{B}(X)$ has a character $\iff \exists \varphi \colon \mathscr{B}(X) \to \mathbb{C}$ unital (surjective, continuous) algebra homomorphism. As $\mathbb{C} \simeq \mathscr{B}(\mathbb{C})$, the surjective homomorphism φ cannot be injective.

Example

The following Banach spaces X are such that $\mathscr{B}(X)$ has a character:

- The James space J_p (where $1), the Semadeni space <math>C[0, \omega_1]$, any hereditarily indecomposable space (Gowers–Maurey, Argyros–Haydon, ...);
- Mankiewicz's separable and superreflexive space X_M, Gowers' space G, Tarbard's indecomposable but not H.I. space X_∞, the space C(K₀) where K₀ is a connected "Koszmider" space, the Motakis–Puglisi–Zisimopoulou space X_K.

In examples of the second type the character is obtained from a commutative quotient of $\mathscr{B}(X)$.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Example

Let ${\mathcal H}$ be a separable Hilbert space.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism.

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

1 Ker
$$(\psi) = \{0\};$$

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

- Ker $(\psi) = \{0\};$
- 2 Ker $(\psi) = \mathscr{K}(\mathcal{H});$

Example

Let \mathcal{H} be a separable Hilbert space. Let Y be a non-zero Banach space and let $\psi \colon \mathscr{B}(\mathcal{H}) \to \mathscr{B}(Y)$ be a continuous, surjective algebra homomorphism. By the classical result of Calkin we know that the lattice of closed, two-sided ideals of $\mathscr{B}(\mathcal{H})$ is given by

 $\{0\} \hookrightarrow \mathscr{K}(\mathcal{H}) \hookrightarrow \mathscr{B}(\mathcal{H}).$

- Ker $(\psi) = \{0\};$
- 2 Ker $(\psi) = \mathscr{K}(\mathcal{H});$

Clearly (3) is impossible.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

æ

< 🗇 > <

Clearly (3) is impossible. We show that (2) cannot hold either.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

э

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

• Assume Y is infinite-dimensional.

• Assume Y is infinite-dimensional. Then $\mathscr{B}(Y)$ is not simple, as $\mathscr{A}(Y) = \overline{\mathscr{F}(Y)}$ is a proper, closed, two-sided ideal.

Assume Y is infinite-dimensional. Then B(Y) is not simple, as
A(Y) = F(Y) is a proper, closed, two-sided ideal. But
K(H) is a maximal ideal in B(H) ⇐⇒ B(H)/K(H) is simple, a contradiction.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as 𝔐(Y) = 𝔐(Y) is a proper, closed, two-sided ideal. But 𝔐(𝔑) is a maximal ideal in 𝔅(𝔑) ⇔ 𝔅(𝔑)/𝔐(𝔑) is simple, a contradiction.
- Assume Y is finite-dimensional.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as 𝔐(Y) = 𝔐(Y) is a proper, closed, two-sided ideal. But 𝔐(𝔑) is a maximal ideal in 𝔅(𝔑) ⇔ 𝔅(𝔑)/𝔐(𝔑) is simple, a contradiction.
- Assume Y is finite-dimensional. Then ℬ(Y) is finite-dimensional, but ℬ(ℋ)/ℋ(ℋ) is not, a contradiction.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as ℬ(Y) = ℱ(Y) is a proper, closed, two-sided ideal. But ℋ(ℋ) is a maximal ideal in ℬ(ℋ) ⇔ ℬ(ℋ)/ℋ(ℋ) is simple, a contradiction.
- Assume Y is finite-dimensional. Then B(Y) is finite-dimensional, but B(H)/K(H) is not, a contradiction.

Thus (1) must hold $\iff \operatorname{Ker}(\psi) = \{0\} \iff \psi$ is injective.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as 𝔐(Y) = 𝔐(Y) is a proper, closed, two-sided ideal. But ℋ(ℋ) is a maximal ideal in ℬ(ℋ) ⇔ ℬ(ℋ)/ℋ(ℋ) is simple, a contradiction.
- Assume Y is finite-dimensional. Then B(Y) is finite-dimensional, but B(H)/K(H) is not, a contradiction.

Thus (1) must hold $\iff \operatorname{Ker}(\psi) = \{0\} \iff \psi$ is injective.

Remark

The same argument works if we replace \mathcal{H} with c_0 or ℓ_p , where $1 \leq p < \infty$.

- Assume Y is infinite-dimensional. Then ℬ(Y) is not simple, as 𝔐(Y) = 𝔐(Y) is a proper, closed, two-sided ideal. But 𝔐(𝔑) is a maximal ideal in 𝔅(𝔑) ⇔ 𝔅(𝔑)/𝔐(𝔑) is simple, a contradiction.
- Assume Y is finite-dimensional. Then B(Y) is finite-dimensional, but B(H)/K(H) is not, a contradiction.

Thus (1) must hold $\iff \operatorname{Ker}(\psi) = \{0\} \iff \psi$ is injective.

Remark

The same argument works if we replace \mathcal{H} with c_0 or ℓ_p , where $1 \leq p < \infty$. Indeed if X is one of the above, then by the Gohberg–Markus–Feldman Theorem the ideal lattice of $\mathscr{B}(X)$ is given by

$$\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{B}(X).$$

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi: \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

...But what about the continuity assumption?

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

...But what about the continuity assumption?

A word on automatic continuity

Let \mathcal{A} be a Banach algebra, let Y be a Banach space and let $\psi \colon \mathcal{A} \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then ψ is automatically continuous.

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

...But what about the continuity assumption?

A word on automatic continuity

Let \mathcal{A} be a Banach algebra, let Y be a Banach space and let $\psi \colon \mathcal{A} \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then ψ is automatically continuous.

This follows from a much more general result of B. E. Johnson.

A Banach space X has the SHAI property (Surjective Homomorphisms Are Injective) if for every non-zero Banach space Y every surjective algebra homomorphism $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is injective.

...But what about the continuity assumption?

A word on automatic continuity

Let \mathcal{A} be a Banach algebra, let Y be a Banach space and let $\psi \colon \mathcal{A} \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then ψ is automatically continuous.

This follows from a much more general result of B. E. Johnson.

Consequently, if X has the SHAI property, Y is non-zero and there is a surjective algebra homomorphism $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$, then

$$\mathscr{B}(X)\cong\mathscr{B}(Y)\Longleftrightarrow X\cong Y.$$

We know that c_0 and ℓ_p have the SHAI for $1 \leq p < \infty$.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

- (E
We know that c_0 and ℓ_p have the SHAI for $1 \leq p < \infty$.

Question Does ℓ_{∞} have the SHAI property?

We know that c_0 and ℓ_p have the SHAI for $1 \leq p < \infty$.

QuestionDoes ℓ_{∞} have the SHAI property?

Theorem (W. B. Johnson – G. Pisier – G. Schechtman, 2018)

 $\mathscr{B}(\ell_{\infty})$ has a continuum of closed, two-sided ideals.

We know that c_0 and ℓ_p have the SHAI for $1 \leqslant p < \infty$.

Question Does ℓ_{∞} have the SHAI property?

Theorem (W. B. Johnson – G. Pisier – G. Schechtman, 2018)

 $\mathscr{B}(\ell_{\infty})$ has a continuum of closed, two-sided ideals.

(The answer to the question is YES, but a different approach is needed.)

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

 $\bullet \ \psi$ is injective; or

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \operatorname{Ker}(\psi).$

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \operatorname{Ker}(\psi).$

We can say something more if ψ is surjective.

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \operatorname{Ker}(\psi).$

We can say something more if ψ is surjective.

Definition

 $T \in \mathscr{B}(X)$ is *inessential* if $I_X - ST$ is Fredholm, or equivalently

 $\dim(\operatorname{Ker}(I_X - ST)) < \infty, \quad \operatorname{codim}(\operatorname{Ran}(I_X - ST)) < \infty$

for all $S \in \mathscr{B}(X)$.

Recall that if X, Y are non-zero Banach spaces, and $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ is a non-zero, continuous algebra homomorphism, then either

- ψ is injective; or
- $\mathscr{A}(X) \subseteq \operatorname{Ker}(\psi).$

We can say something more if ψ is surjective.

Definition

 $T \in \mathscr{B}(X)$ is *inessential* if $I_X - ST$ is Fredholm, or equivalently

 $\dim(\operatorname{Ker}(I_X - ST)) < \infty, \quad \operatorname{codim}(\operatorname{Ran}(I_X - ST)) < \infty$

for all $S \in \mathscr{B}(X)$.

Fact

The set $\mathscr{E}(X)$ of inessential operators is a proper, closed, two-sided ideal of $\mathscr{B}(X)$ if X is infinite-dimensional.

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V. Ferenczi that there is no largest proper closed operator ideal.)

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V. Ferenczi that there is no largest proper closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X, Y be non-zero Banach spaces and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjectice algebra homomorphism.

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V. Ferenczi that there is no largest proper closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X, Y be non-zero Banach spaces and let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjectice algebra homomorphism. Then either

• ψ is injective; or

$$\{0\} \hookrightarrow \mathscr{A}(X) \hookrightarrow \mathscr{K}(X) \hookrightarrow \mathscr{S}(X) \hookrightarrow \mathscr{E}(X) \hookrightarrow \mathscr{B}(X)$$

is a sublattice of the lattice of closed, two-sided ideals of $\mathscr{B}(X)$.

(Digression: \mathscr{E} is a closed operator ideal in the sense of Pietsch. It was conjectured that \mathscr{E} is the largest proper closed operator ideal. It was recently shown by V. Ferenczi that there is no largest proper closed operator ideal.)

Lemma (H., Dichotomy Result I.)

Let X, Y be non-zero Banach spaces and let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjectice algebra homomorphism. Then either

• ψ is injective; or

•
$$\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi).$$

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:

• X has the SHAI property,

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:

- X has the SHAI property,
- Of any infinite-dimensional Banach space Y any surjective algebra homomorphism ψ: ℬ(X) → ℬ(Y) is automatically injective.

Let X be either ℓ_{∞} or Schlumprecht's arbitrarily distortable space **S**. Then X has the SHAI property.

An auxiliary

Lemma

Let X be a Banach space such that X contains a complemented subspace isomorphic to $X \oplus X$. Then the following are equivalent:

- X has the SHAI property,
- Of any infinite-dimensional Banach space Y any surjective algebra homomorphism ψ: ℬ(X) → ℬ(Y) is automatically injective.

Proof.

(Sketch.) Under the hypothesis $\mathscr{B}(X)$ cannot have finite-codimensional proper two-sided ideals.

Let Y be a Banach space and let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom.

Let Y be a Banach space and let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case
$$X = \ell_{\infty}$$
.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi) = \mathscr{E}(X)$.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi) = \mathscr{E}(X)$. • The case $X = \mathbf{S}$.

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi) = \mathscr{E}(X)$.

• The case $X = \mathbf{S}$. Recall: X is complementably minimal

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi) = \mathscr{E}(X)$.

 The case X = S. Recall: X is complementably minimal (↔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X)

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi) = \mathscr{E}(X)$.

The case X = S. Recall: X is complementably minimal (↔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem S(X) is the unique maximal ideal in B(X).

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi) = \mathscr{E}(X)$.

The case X = S. Recall: X is complementably minimal (⇔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem 𝒮(X) is the unique maximal ideal in 𝔅(X). Thus 𝟸(X) = 𝔅(X) = Ker(ψ).

Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi) = \mathscr{E}(X)$.

The case X = S. Recall: X is complementably minimal (⇔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem 𝒮(X) is the unique maximal ideal in 𝔅(X). Thus 𝟸(X) = 𝔅(X) = Ker(ψ).

In both cases $\operatorname{Ker}(\psi) = \mathscr{E}(X)$ thus $\mathscr{B}(X)/\mathscr{E}(X) \cong \mathscr{B}(Y)$.

Let Y be a Banach space and let $\psi \colon \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective alg. hom. As $X \cong X \oplus X$, by Lemma we may assume that Y is inf. dim. Assume towards a contradiction that ψ is not injective. Hence $\mathscr{E}(X) \subseteq \operatorname{Ker}(\psi)$ by Dichotomy Result I.

• The case $X = \ell_\infty$. By a result of Laustsen & Loy, we know that

$$\mathscr{E}(X) = \mathscr{S}(X) = \mathscr{W}(X) = \mathscr{X}(X)$$

is the unique maximal ideal in $\mathscr{B}(X)$, hence $\operatorname{Ker}(\psi) = \mathscr{E}(X)$.

The case X = S. Recall: X is complementably minimal (⇔ every infinite-dimensional subspace of X contains a subspace which is complemented in X and isomorphic to X) hence by Whitley's Theorem 𝒮(X) is the unique maximal ideal in 𝔅(X). Thus 𝟸(X) = 𝔅(X) = Ker(ψ).

In both cases $\operatorname{Ker}(\psi) = \mathscr{E}(X)$ thus $\mathscr{B}(X)/\mathscr{E}(X) \cong \mathscr{B}(Y)$. Note that LHS is simple because $\mathscr{E}(X)$ is maximal, but RHS is not simple as Y is infinite-dimensional. A contradiction.

Our goal is to show that the Banach spaces

$$\left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{c_0},\quad \left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{\ell_1};$$

have the SHAI property.

Our goal is to show that the Banach spaces

$$\left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{c_0}, \quad \left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{\ell_1};$$

and

 $c_0(\lambda), \quad \ell^c_\infty(\lambda), \quad \ell_p(\lambda)$ (where $1 \leqslant p < \infty$ and λ is an infinite cardinal)

have the SHAI property.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Our goal is to show that the Banach spaces

$$\left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{c_0}, \quad \left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{\ell_1};$$

and

 $c_0(\lambda), \quad \ell^c_\infty(\lambda), \quad \ell_p(\lambda)$ (where $1 \leqslant p < \infty$ and λ is an infinite cardinal)

have the SHAI property.

Recall that

 $\ell^{c}_{\infty}(\lambda) := \left\{ x \in \ell_{\infty}(\lambda) \colon \operatorname{supp}(x) \text{ is countable} \right\}.$
Our goal is to show that the Banach spaces

$$\left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{c_0},\quad \left(\bigoplus_{n\in\mathbb{N}}\ell_2^n\right)_{\ell_1};$$

and

 $c_0(\lambda), \quad \ell^c_\infty(\lambda), \quad \ell_p(\lambda)$ (where $1 \leqslant p < \infty$ and λ is an infinite cardinal)

have the SHAI property.

Recall that

 $\ell^{c}_{\infty}(\lambda) := \{x \in \ell_{\infty}(\lambda) \colon \operatorname{supp}(x) \text{ is countable}\}.$

Note that $\ell_{\infty}^{c}(\lambda)$ is a sub-C*-algebra of the commutative C*-algebra $\ell_{\infty}(\lambda)$. Moreover $\ell_{\infty}^{c}(\lambda)$ is a C(K)-space, as observed by Johnson & Kania & Schechtman.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_{W}(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.–Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.–Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property. Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective algebra homomorphism.

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.–Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property. Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then either

• ψ is injective; or

Let X and W be Banach spaces. Define

$$\overline{\mathscr{G}}_W(X) := \overline{\operatorname{span}} \{ ST \colon T \in \mathscr{B}(X, W), S \in \mathscr{B}(W, X) \}.$$

Then $\overline{\mathscr{G}}_W(X) \trianglelefteq \mathscr{B}(X)$, and it is called the *ideal of operators that* approximately factor through W.

If X has a complemented subspace isomorphic to W, and $P \in \mathscr{B}(X)$ is an idempotent with $\operatorname{Ran}(P) \cong W$ then $\overline{\mathscr{G}}_W(X)$ coincides with $\overline{\langle P \rangle}$, the closed, two-sided ideal generated by P.

Proposition (H.–Kania, Dichotomy Result II.)

Let X be a Banach space and suppose that W is a complemented subspace of X such that W has the SHAI property. Let Y be a Banach space and let $\psi : \mathscr{B}(X) \to \mathscr{B}(Y)$ be a surjective algebra homomorphism. Then either

• ψ is injective; or

•
$$\overline{\mathscr{G}}_W(X) \subseteq \operatorname{Ker}(\psi).$$

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

/⊒ ► < ∃ ►

э

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$.

Suppose ψ is not injective. To show the claim it is enough to see that $P \in \text{Ker}(\psi)$.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$.

Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$.

Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$. Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$\theta \colon \mathscr{B}(W) \to \mathscr{B}(Z); \quad T \mapsto \psi(P|_W \circ T \circ P|^W)|_Z^Z$$

is well-defined.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$. Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$\theta \colon \mathscr{B}(W) \to \mathscr{B}(Z); \quad T \mapsto \psi(P|_W \circ T \circ P|^W)|_Z^Z$$

is well-defined. It is also an algebra homomorphism.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$. Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$\theta \colon \mathscr{B}(W) \to \mathscr{B}(Z); \quad T \mapsto \psi(P|_W \circ T \circ P|^W)|_Z^Z$$

is well-defined. It is also an algebra homomorphism. Bit less obvious: θ is surjective.

Let $P \in \mathscr{B}(X)$ be an idempotent with $W = \operatorname{Ran}(P)$. Suppose ψ is not injective. To show the claim it is enough to see that $P \in \operatorname{Ker}(\psi)$. Indeed; if this holds then $\overline{\mathscr{G}}_W(X) = \overline{\langle P \rangle} \subseteq \operatorname{Ker}(\psi)$ by definition, as $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(X)$. Assume in search of a contradiction that $P \notin \operatorname{Ker}(\psi)$. Then $Z := \operatorname{Ran}(\psi(P))$ is a non-zero, closed (complemented) subspace of Y. The map

$$\theta \colon \mathscr{B}(W) \to \mathscr{B}(Z); \quad T \mapsto \psi(P|_W \circ T \circ P|^W)|_Z^Z$$

is well-defined. It is also an algebra homomorphism.

Bit less obvious: θ is surjective. Since Z is non-zero, from the SHAI property of W it follows that θ is injective.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \text{Ker}(\psi)$. Then

 $\theta(P|^W \circ A \circ P|_W) =$

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Now let $A \in \mathscr{B}(X)$ be such that $A \in \operatorname{Ker}(\psi)$. Then

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Since θ is injective it follows that $P|^W A P|_W = 0$ or equivalently PAP = 0.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \text{Ker}(\psi)$. Then

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Since θ is injective it follows that $P|^W A P|_W = 0$ or equivalently PAP = 0.

We apply this in the following specific situation: We choose $x \in W = \operatorname{Ran}(P) \subseteq X$ and $\xi \in X^*$ norm one vectors with $\langle x, \xi \rangle = 1$.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \text{Ker}(\psi)$. Then

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Since θ is injective it follows that $P|^W A P|_W = 0$ or equivalently PAP = 0.

We apply this in the following specific situation: We choose $x \in W = \operatorname{Ran}(P) \subseteq X$ and $\xi \in X^*$ norm one vectors with $\langle x, \xi \rangle = 1$. As ψ is not injective, in particular we have $x \otimes \xi \in \mathscr{F}(X) \subseteq \operatorname{Ker}(\psi)$, consequently $P(x \otimes \xi)P = 0$.

Now let $A \in \mathscr{B}(X)$ be such that $A \in \text{Ker}(\psi)$. Then

$$\theta(P|^{W} \circ A \circ P|_{W}) = \psi(P|_{W} \circ P|^{W} \circ A \circ P|_{W} \circ P|^{W})|_{Z}^{Z}$$
$$= \psi(P \circ A \circ P)|_{Z}^{Z}$$
$$= (\psi(P) \circ \psi(A) \circ \psi(P))|_{Z}^{Z}$$
$$= 0.$$

Since θ is injective it follows that $P|^W A P|_W = 0$ or equivalently PAP = 0.

We apply this in the following specific situation: We choose $x \in W = \operatorname{Ran}(P) \subseteq X$ and $\xi \in X^*$ norm one vectors with $\langle x, \xi \rangle = 1$. As ψ is not injective, in particular we have $x \otimes \xi \in \mathscr{F}(X) \subseteq \operatorname{Ker}(\psi)$, consequently $P(x \otimes \xi)P = 0$. Thus

$$0 = (P(x \otimes \xi)P)x = \langle Px, \xi \rangle Px = \langle x, \xi \rangle x = x,$$

a contradiction. Consequently $P \in \text{Ker}(\psi)$ must hold.

Bence Horváth (partially joint work with Tomasz Kania)

The SHAI property

Let $X := (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$, where Y is c_0 or ℓ_1 . Then X has the SHAI property.

э

∍⊳

▲ 同 ▶ → 三 ▶

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Let $X := (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$, where Y is c_0 or ℓ_1 . Then X has the SHAI property.

Proof.

Main ingredient:

Theorem (Laustsen-Loy-Read, Laustsen-Schlumprecht-Zsák)

Let $X = (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$ where Y is c_0 or ℓ_1 . Then the lattice of closed, two-sided ideals in $\mathscr{B}(X)$ is given by

$$\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \overline{\mathscr{G}}_Y(X) \hookrightarrow \mathscr{B}(X).$$

Let $X := (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$, where Y is c_0 or ℓ_1 . Then X has the SHAI property.

Proof.

Main ingredient:

Theorem (Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák)

Let $X = (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$ where Y is c_0 or ℓ_1 . Then the lattice of closed, two-sided ideals in $\mathscr{B}(X)$ is given by

$$\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \overline{\mathscr{G}}_Y(X) \hookrightarrow \mathscr{B}(X).$$

Apply that c_0 and ℓ_1 have the SHAI property with Dichotomy Result II and the fact that $X \oplus X \cong X$.

Let $X := (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$, where Y is c_0 or ℓ_1 . Then X has the SHAI property.

Proof.

Main ingredient:

Theorem (Laustsen–Loy–Read, Laustsen–Schlumprecht–Zsák)

Let $X = (\bigoplus_{n \in \mathbb{N}} \ell_2^n)_Y$ where Y is c_0 or ℓ_1 . Then the lattice of closed, two-sided ideals in $\mathscr{B}(X)$ is given by

$$\{0\} \hookrightarrow \mathscr{K}(X) \hookrightarrow \overline{\mathscr{G}}_Y(X) \hookrightarrow \mathscr{B}(X).$$

< 🗇 🕨 < 🖻 🕨

Apply that c_0 and ℓ_1 have the SHAI property with Dichotomy Result II and the fact that $X \oplus X \cong X$.

Alternative proof: $\mathscr{B}(X)/\mathscr{K}(X)$ does not have minimal idempotents.

c_0 and ℓ_p have the SHAI property for all $p\in [1,\infty]$

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

白とくほと

 c_0 and ℓ_p have the SHAI property for all $p\in [1,\infty]$

Theorem (H.)

 $\ell_2(\lambda)$ has the SHAI property for every infinite cardinal λ .

< /₽ > < E >

 c_0 and ℓ_p have the SHAI property for all $p\in [1,\infty]$

Theorem (H.)

 $\ell_2(\lambda)$ has the SHAI property for every infinite cardinal λ .

The proof uses Spectral Theory to show that idempotents from $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ can be lifted to idempotents in $\mathscr{B}(\ell_2(\lambda))$, where $\mathscr{J} \trianglelefteq \mathscr{B}(\ell_2(\lambda))$.

・ 一 マ ト ・ 日 ト ・

 c_0 and ℓ_p have the SHAI property for all $p \in [1,\infty]$

Theorem (H.)

 $\ell_2(\lambda)$ has the SHAI property for every infinite cardinal λ .

The proof uses Spectral Theory to show that idempotents from $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ can be lifted to idempotents in $\mathscr{B}(\ell_2(\lambda))$, where $\mathscr{J} \trianglelefteq \mathscr{B}(\ell_2(\lambda))$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Hence $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ has no minimal idempotents.

 c_0 and ℓ_p have the SHAI property for all $p \in [1,\infty]$

Theorem (H.)

 $\ell_2(\lambda)$ has the SHAI property for every infinite cardinal λ .

The proof uses Spectral Theory to show that idempotents from $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ can be lifted to idempotents in $\mathscr{B}(\ell_2(\lambda))$, where $\mathscr{J} \trianglelefteq \mathscr{B}(\ell_2(\lambda))$.

Hence $\mathscr{B}(\ell_2(\lambda))/\mathscr{J}$ has no minimal idempotents.

Thus there is no Banach space Y with $\mathscr{B}(\ell_2(\lambda))/\mathscr{J} \cong \mathscr{B}(Y)$, as minimal idempotents in $\mathscr{B}(Y)$ are precisely the rank one idempotents.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem (H.–Kania)

Let λ be an infinite cardinal. Then $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (for $1 \leq p < \infty$) have the SHAI property.
Theorem (H.–Kania)

Let λ be an infinite cardinal. Then $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (for $1 \leq p < \infty$) have the SHAI property.

Ingredients of the proof.

Definition

Let X and Y be Banach spaces. Let $\mathscr{S}_Y(X)$ be a subset of $\mathscr{B}(X)$ defined by

 $T \notin \mathscr{S}_Y(X) \iff \exists W \subseteq X$ subspace with $W \cong Y$ such that $T|_W$ is bounded below.

Theorem (H.–Kania)

Let λ be an infinite cardinal. Then $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ and $\ell_{p}(\lambda)$ (for $1 \leq p < \infty$) have the SHAI property.

Ingredients of the proof.

Definition

Let X and Y be Banach spaces. Let $\mathscr{S}_{Y}(X)$ be a subset of $\mathscr{B}(X)$ defined by

 $T \notin \mathscr{S}_Y(X) \iff \exists W \subseteq X$ subspace with $W \cong Y$ such that $T|_W$ is bounded below.

 $\mathscr{S}_{Y}(X)$ is called the set of *Y*-singular operators on *X*.

Ingredients of the proof (con't).

Facts

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Ingredients of the proof (con't).

Facts

- **②** If $A \in \mathscr{S}_Y(X)$ and $T \in \mathscr{B}(X)$ then $AT, TA \in \mathscr{S}_Y(X)$.
- $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).

Ingredients of the proof (con't).

Facts

- **②** If $A \in \mathscr{S}_Y(X)$ and $T \in \mathscr{B}(X)$ then $AT, TA \in \mathscr{S}_Y(X)$.
- $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).
- If S_X(X) is closed under addition and X is complementably homogeneous then S_X(X) is the unique maximal ideal in B(X). [folk, H.- Kania]

Ingredients of the proof (con't).

Facts

② If $A \in \mathscr{S}_Y(X)$ and $T \in \mathscr{B}(X)$ then $AT, TA \in \mathscr{S}_Y(X)$.

• $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).

If S_X(X) is closed under addition and X is complementably homogeneous then S_X(X) is the unique maximal ideal in B(X). [folk, H.- Kania]

(X is complementably homogeneous if whenever Y is a subspace of X with $Y \cong X$ then there is $Z \subseteq Y$ subspace which is complemented in X and $Z \cong X$.)

Ingredients of the proof (con't).

Facts

② If $A \in \mathscr{S}_Y(X)$ and $T \in \mathscr{B}(X)$ then $AT, TA \in \mathscr{S}_Y(X)$.

- $\mathscr{S}_{Y}(X)$ need not be closed under addition (hence it is not an ideal in general).
- If S_X(X) is closed under addition and X is complementably homogeneous then S_X(X) is the unique maximal ideal in B(X). [folk, H.- Kania]

(X is complementably homogeneous if whenever Y is a subspace of X with $Y \cong X$ then there is $Z \subseteq Y$ subspace which is complemented in X and $Z \cong X$.) The spaces $c_0(\lambda)$, $\ell_{\infty}^c(\lambda)$ and $\ell_p(\lambda)$ (where $1 \leq p < \infty$) are complementably homogeneous.

Let E_{λ} be one of the Banach spaces $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ or $\ell_{p}(\lambda)$ where $1 \leq p < \infty$.

< □ > <

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Let E_{λ} be one of the Banach spaces $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ or $\ell_{p}(\lambda)$ where $1 \leq p < \infty$.

Theorem (Johnson – Kania – Schechtman)

The set $\mathscr{S}_{E_{\kappa}}(E_{\lambda})$ is a closed, non-zero, proper two-sided ideal in $\mathscr{B}(E_{\lambda})$ for every infinite cardinal $\kappa \leq \lambda$. In particular $\mathscr{S}_{E_{\lambda}}(E_{\lambda})$ is maximal.

Let E_{λ} be one of the Banach spaces $c_0(\lambda)$, $\ell_{\infty}^{c}(\lambda)$ or $\ell_{p}(\lambda)$ where $1 \leq p < \infty$.

Theorem (Johnson – Kania – Schechtman)

The set $\mathscr{S}_{\mathsf{E}_{\kappa}}(\mathsf{E}_{\lambda})$ is a closed, non-zero, proper two-sided ideal in $\mathscr{B}(\mathsf{E}_{\lambda})$ for every infinite cardinal $\kappa \leq \lambda$. In particular $\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda})$ is maximal.

Theorem (Johnson – Kania – Schechtman)

Let λ and κ be uncountable cardinals with $\lambda \ge \kappa$, and suppose that κ is not a successor of any cardinal number. Then

$$\mathscr{S}_{E_{\kappa}}(E_{\lambda}) = \overline{\bigcup_{\alpha < \kappa} \mathscr{S}_{E_{\alpha}}(E_{\lambda})}.$$

Ingredients of the proof (con't).
Theorem (H. – Kania, Johnson – Kania – Schechtman for $\ell^{c}_{\infty}(\lambda))$
Let λ and κ be infinite cardinals with $\lambda \ge \kappa$. Let $T \in \mathscr{B}(E_{\lambda})$ be such that $T \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$. Then
$\mathscr{S}_{\mathcal{E}_{\kappa^+}}(\mathcal{E}_{\lambda})\subseteq\overline{\langle T angle}.$

Theorem (H. – Kania, Johnson – Kania – Schechtman for $\ell_{\infty}^{c}(\lambda)$) Let λ and κ be infinite cardinals with $\lambda \ge \kappa$. Let $T \in \mathscr{B}(E_{\lambda})$ be

such that $T \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$. Then

$$\mathscr{S}_{\mathcal{E}_{\kappa^+}}(\mathcal{E}_{\lambda})\subseteq\overline{\langle T\rangle}.$$

The proof that E_{λ} has SHAI uses:

- Transfinite induction on the cardinals $\kappa \leq \lambda$;
- the above 3 theorems;
- and the Dichotomy Result II.

Theorem (H. – Kania, Johnson – Kania – Schechtman for $\ell_{\infty}^{c}(\lambda)$) Let λ and κ be infinite cardinals with $\lambda \ge \kappa$. Let $T \in \mathscr{B}(E_{\lambda})$ be

such that $T \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$. Then

$$\mathscr{S}_{\mathcal{E}_{\kappa^+}}(\mathcal{E}_{\lambda})\subseteq\overline{\langle T\rangle}.$$

The proof that E_{λ} has SHAI uses:

- Transfinite induction on the cardinals $\kappa \leq \lambda$;
- the above 3 theorems;
- and the Dichotomy Result II. In this context,

 *G*_{E_κ}(E_λ) ⊆ Ker(ψ), where ψ: ℬ(E_λ) → ℬ(Y) is some surjective, non-injective algebra hom.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi \colon \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi \colon \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ} , there is an idempotent $P_{(\kappa)} \in \mathscr{B}(E_{\lambda})$ with $\operatorname{Ran}(P_{(\kappa)}) \cong E_{\kappa}$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi \colon \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ} , there is an idempotent $P_{(\kappa)} \in \mathscr{B}(E_{\lambda})$ with $\operatorname{Ran}(P_{(\kappa)}) \cong E_{\kappa}$. Clearly $P_{(\kappa)} \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$, hence by Theorem above it follows that $\mathscr{S}_{E_{\kappa+}}(E_{\lambda}) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}(E_{\lambda})$.

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi: \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ} , there is an idempotent $P_{(\kappa)} \in \mathscr{B}(E_{\lambda})$ with $\operatorname{Ran}(P_{(\kappa)}) \cong E_{\kappa}$. Clearly $P_{(\kappa)} \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$, hence by Theorem above it follows that $\mathscr{S}_{E_{\kappa^+}}(E_{\lambda}) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}(E_{\lambda})$. As E_{κ} has the SHAI property by the inductive hypothesis, we conclude from Dichotomy Result II that

$$\mathscr{S}_{\mathsf{E}_{\kappa^+}}(\mathsf{E}_{\lambda}) \subseteq \overline{\mathscr{G}}_{\mathsf{E}_{\kappa}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

We prove by transfinite induction. Let λ be a fixed infinite cardinal and suppose E_{κ} has the SHAI property for each cardinal $\kappa < \lambda$. Assume towards a contradiction that there is an infinite-dimensional Banach space Y and a surjective, non-injective algebra homomorphism $\psi \colon \mathscr{B}(E_{\lambda}) \to \mathscr{B}(Y)$. As E_{κ} is isomorphic to a complemented subspace of E_{λ} , there is an idempotent $P_{(\kappa)} \in \mathscr{B}(E_{\lambda})$ with $\operatorname{Ran}(P_{(\kappa)}) \cong E_{\kappa}$. Clearly $P_{(\kappa)} \notin \mathscr{S}_{E_{\kappa}}(E_{\lambda})$, hence by Theorem above it follows that $\mathscr{S}_{E_{\kappa^+}}(E_{\lambda}) \subseteq \overline{\mathscr{G}}_{E_{\kappa}}(E_{\lambda})$. As E_{κ} has the SHAI property by the inductive hypothesis, we conclude from Dichotomy Result II that

$$\mathscr{S}_{\mathsf{E}_{\kappa^+}}(\mathsf{E}_{\lambda}) \subseteq \overline{\mathscr{G}}_{\mathsf{E}_{\kappa}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

We *claim* that $\mathscr{S}_{\mathcal{E}_{\lambda}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi)$. We consider three cases:

 $1 \lambda = \omega;$

- 2) λ is a successor cardinal;
- ${f 0}$ λ is uncountable and not a successor cardinal, a, is in the solution of λ

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(2) If λ is a successor cardinal then $\lambda = \kappa^+$ for some cardinal $\kappa < \lambda$. Thus we conclude

$$\mathscr{S}_{\mathcal{E}_{\lambda}}(\mathcal{E}_{\lambda}) = \mathscr{S}_{\mathcal{E}_{\kappa^{+}}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(2) If λ is a successor cardinal then $\lambda = \kappa^+$ for some cardinal $\kappa < \lambda$. Thus we conclude

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{S}_{\mathsf{E}_{\kappa^{+}}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(3) Let λ be an uncountable cardinal which is not a successor of any cardinal. We clearly have $\mathscr{S}_{\mathcal{E}_{\kappa}}(\mathcal{E}_{\lambda}) \subseteq \mathscr{S}_{\mathcal{E}_{\kappa^{+}}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi)$ for each $\kappa < \lambda$. As $\operatorname{Ker}(\psi)$ is closed, in view of Theorem we obtain

$$\mathscr{S}_{\mathcal{E}_{\lambda}}(\mathcal{E}_{\lambda}) = \bigcup_{\kappa < \lambda} \mathscr{S}_{\mathcal{E}_{\kappa}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(2) If λ is a successor cardinal then $\lambda = \kappa^+$ for some cardinal $\kappa < \lambda$. Thus we conclude

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{S}_{\mathsf{E}_{\kappa^{+}}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(3) Let λ be an uncountable cardinal which is not a successor of any cardinal. We clearly have $\mathscr{S}_{\mathcal{E}_{\kappa}}(\mathcal{E}_{\lambda}) \subseteq \mathscr{S}_{\mathcal{E}_{\kappa^+}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi)$ for each $\kappa < \lambda$. As $\operatorname{Ker}(\psi)$ is closed, in view of Theorem we obtain

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \bigcup_{\kappa < \lambda} \mathscr{S}_{\mathsf{E}_{\kappa}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

Since $\operatorname{Ker}(\psi) \trianglelefteq \mathscr{B}(E_{\lambda})$ is proper and $\mathscr{S}_{E_{\lambda}}(E_{\lambda})$ is maximal by Theorem, we must have $\mathscr{S}_{E_{\lambda}}(E_{\lambda}) = \operatorname{Ker}(\psi)$.

(1) If $\lambda = \omega$ then $E_{\lambda} = c_0$ or $E_{\lambda} = \ell_p$, where $p \in [1, \infty]$. Then Dichotomy Result I yields

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{E}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(2) If λ is a successor cardinal then $\lambda = \kappa^+$ for some cardinal $\kappa < \lambda$. Thus we conclude

$$\mathscr{S}_{\mathsf{E}_{\lambda}}(\mathsf{E}_{\lambda}) = \mathscr{S}_{\mathsf{E}_{\kappa^{+}}}(\mathsf{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

(3) Let λ be an uncountable cardinal which is not a successor of any cardinal. We clearly have $\mathscr{S}_{\mathcal{E}_{\kappa}}(\mathcal{E}_{\lambda}) \subseteq \mathscr{S}_{\mathcal{E}_{\kappa^+}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi)$ for each $\kappa < \lambda$. As $\operatorname{Ker}(\psi)$ is closed, in view of Theorem we obtain

$$\mathscr{S}_{\mathcal{E}_{\lambda}}(\mathcal{E}_{\lambda}) = \bigcup_{\kappa < \lambda} \mathscr{S}_{\mathcal{E}_{\kappa}}(\mathcal{E}_{\lambda}) \subseteq \operatorname{Ker}(\psi).$$

Since $\operatorname{Ker}(\psi) \leq \mathscr{B}(E_{\lambda})$ is proper and $\mathscr{S}_{E_{\lambda}}(E_{\lambda})$ is maximal by Theorem, we must have $\mathscr{S}_{E_{\lambda}}(E_{\lambda}) = \operatorname{Ker}(\psi)$. This is equivalent to $\mathscr{B}(E_{\lambda})/\mathscr{S}_{E_{\lambda}}(E_{\lambda}) \cong \mathscr{B}(Y)$, which is impossible. Thus ψ must be injective.

Intermezzo: Fun times around Zakopane

Figure: Descending from Kasprowy Wierch, 2018 Summer

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

L_p[0,1] has the SHAI property for 1 Phillips – Schechtman, 2020+].

• $L_{\rho}[0,1]$ has the SHAI property for 1 [Johnson –Phillips – Schechtman, 2020+]. The "non-classical" $complemented subspace <math>X_{\rho}$ constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].

- L_p[0,1] has the SHAI property for 1 Phillips Schechtman, 2020+]. The "non-classical" complemented subspace X_p constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]

- L_p[0,1] has the SHAI property for 1 Phillips Schechtman, 2020+]. The "non-classical" complemented subspace X_p constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]

- $L_p[0,1]$ has the SHAI property for 1 [Johnson –Phillips – Schechtman, 2020+]. The "non-classical" $complemented subspace <math>X_p$ constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]
- SHAI is not a three-space property [H. Kania].

- L_p[0,1] has the SHAI property for 1 Phillips Schechtman, 2020+]. The "non-classical" complemented subspace X_p constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]
- SHAI is not a three-space property [H. Kania].
 - There exists an uncountable AD family A ⊆ [ℕ]^ω and an Isbell–Mrówka space K_A such that ℬ(C₀(K_A)) has a character [Koszmider–Laustsen, 2020+];

- $L_p[0,1]$ has the SHAI property for 1 [Johnson –Phillips – Schechtman, 2020+]. The "non-classical" $complemented subspace <math>X_p$ constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]
- SHAI is not a three-space property [H. Kania].
 - There exists an uncountable AD family A ⊆ [ℕ]^ω and an Isbell–Mrówka space K_A such that ℬ(C₀(K_A)) has a character [Koszmider–Laustsen, 2020+];

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

C₀(K_A) is a twisted sum of c₀ and c₀(c) [follows from the construction of Koszmider & Laustsen];

- $L_p[0,1]$ has the SHAI property for 1 [Johnson –Phillips – Schechtman, 2020+]. The "non-classical" $complemented subspace <math>X_p$ constructed by Rosenthal also has SHAI [Johnson – Phillips – Schechtman, 2020+].
- If X_1, X_2, \ldots, X_n have SHAI then $\bigoplus_{i=1}^n X_i$ has SHAI. [H.]
- Hence X := ℓ_p ⊕ ℓ_q and X := c₀ ⊕ ℓ_p have SHAI. Note: ℬ(X) has very complicated ideal lattice! [Freeman & Schlumprecht & Zsák]
- SHAI is not a three-space property [H. Kania].
 - There exists an uncountable AD family A ⊆ [ℕ]^ω and an Isbell–Mrówka space K_A such that ℬ(C₀(K_A)) has a character [Koszmider–Laustsen, 2020+];
 - C₀(K_A) is a twisted sum of c₀ and c₀(c) [follows from the construction of Koszmider & Laustsen];
 - Both c_0 and $c_0(c)$ have SHAI but $C_0(\mathcal{K}_A)$ does not.

Recall that so far that all examples of Banach spaces X which lack SHAI have the property that there exists a character $\varphi \colon \mathscr{B}(X) \to \mathbb{C}$. (Or finite sums thereof, we can quotient to $M_n(\mathbb{C})$.) Recall that so far that all examples of Banach spaces X which lack SHAI have the property that there exists a character $\varphi \colon \mathscr{B}(X) \to \mathbb{C}$. (Or finite sums thereof, we can quotient to $M_n(\mathbb{C})$.)

We can have infinite-dimensional targets for surjective, non-injective algebra homomorphisms:
Recall that so far that all examples of Banach spaces X which lack SHAI have the property that there exists a character $\varphi \colon \mathscr{B}(X) \to \mathbb{C}$. (Or finite sums thereof, we can quotient to $M_n(\mathbb{C})$.)

We can have infinite-dimensional targets for surjective, non-injective algebra homomorphisms:

Theorem (H.)

Let Y be a separable, reflexive Banach space. Let

$$X_{\mathbf{Y}} := \left\{ f \in C([0,\omega_1]; \mathbf{Y}) : f(\omega_1) = \mathbf{0}_{\mathbf{Y}} \right\}.$$

There exists a surjective, non-injective algebra homomorphism

$$\psi \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y).$$

Most important ingredient: A result of Kania, Koszmider, and Laustsen:

Most important ingredient: A result of Kania, Koszmider, and Laustsen:

Theorem (Kania–Koszmider–Laustsen, Trans. Lond. Math. Soc., 2014)

For every $T \in \mathscr{B}(C_0[0, \omega_1))$ there exists a unique $\varphi(T) \in \mathbb{C}$ such that there exists a club (\iff closed and unbounded) subset $D \subseteq [0, \omega_1)$ such that:

 $(Tf)(\alpha) = \varphi(T)f(\alpha) \quad (\alpha \in D, f \in C_0[0, \omega_1)).$

Moreover, $\varphi : \mathscr{B}(C_0[0,\omega_1)) \to \mathbb{C}; T \mapsto \varphi(T)$ is a character.

Most important ingredient: A result of Kania, Koszmider, and Laustsen:

Theorem (Kania–Koszmider–Laustsen, Trans. Lond. Math. Soc., 2014)

For every $T \in \mathscr{B}(C_0[0, \omega_1))$ there exists a unique $\varphi(T) \in \mathbb{C}$ such that there exists a club (\iff closed and unbounded) subset $D \subseteq [0, \omega_1)$ such that:

$$(Tf)(\alpha) = \varphi(T)f(\alpha) \quad (\alpha \in D, f \in C_0[0, \omega_1)).$$

Moreover, $\varphi : \mathscr{B}(C_0[0,\omega_1)) \to \mathbb{C}; T \mapsto \varphi(T)$ is a character.

Note that the club subset in the statement is never unique.

• The character

$$\varphi: \mathscr{B}(C_0[0,\omega_1)) \to \mathbb{C}$$

of the previous theorem is termed the *Alspach–Benyamini* character.

The character

$$\varphi: \mathscr{B}(C_0[0,\omega_1)) \to \mathbb{C}$$

of the previous theorem is termed the *Alspach–Benyamini* character.

• The kernel of φ is the *Loy–Willis ideal*, denoted by \mathcal{M}_{LW} :

$$\mathcal{M}_{LW} := \mathrm{Ker}(\varphi).$$

The character

 $\varphi: \mathscr{B}(C_0[0,\omega_1)) \to \mathbb{C}$

of the previous theorem is termed the *Alspach–Benyamini* character.

• The kernel of φ is the *Loy–Willis ideal*, denoted by \mathcal{M}_{LW} :

$$\mathcal{M}_{LW} := \mathrm{Ker}(\varphi).$$

• Partial structure of the lattice of closed two-sided ideals of $\mathscr{B}(C_0[0,\omega_1))$ is given in [Kania–Laustsen, Proc. Amer. Math. Soc., 2015], in particular

$$\mathscr{E}(C_0[0,\omega_1)) = \mathscr{K}(C_0[0,\omega_1)) \subsetneq \mathcal{M}_{LW}.$$

• $C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y \stackrel{(1)}{\cong} C([0, \omega_1]; Y)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot)x$.

- $C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y \stackrel{(1)}{\cong} C([0, \omega_1]; Y)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot)x$.
- Recall $X_Y := \{ f \in C([0, \omega_1]; Y) : f(\omega_1) = 0_Y \}.$

- $C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y \stackrel{(1)}{\cong} C([0, \omega_1]; Y)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot)x$.
- Recall $X_Y := \{f \in C([0, \omega_1]; Y) : f(\omega_1) = 0_Y\}$. Fix $\mu, \xi \in X_Y^*$, then

$$\Big[\mu=\xi\Big]$$

- $C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y \stackrel{(1)}{\cong} C([0, \omega_1]; Y)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot)x$.
- Recall $X_Y := \{f \in C([0, \omega_1]; Y) : f(\omega_1) = 0_Y\}$. Fix $\mu, \xi \in X_Y^*$, then

$$\left[\mu = \xi\right] \Longleftrightarrow \left[\langle f \otimes x, \mu \rangle = \langle f \otimes x, \xi \rangle \quad \left(x \in Y, f \in C_0[0, \omega_1)\right)\right].$$

- $C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y \stackrel{(1)}{\cong} C([0, \omega_1]; Y)$, so we can may identify elements of the form $f \otimes x$ with $f(\cdot)x$.
- Recall $X_Y := \{f \in C([0, \omega_1]; Y) : f(\omega_1) = 0_Y\}$. Fix $\mu, \xi \in X_Y^*$, then

$$\left[\mu = \xi\right] \Longleftrightarrow \left[\langle f \otimes x, \mu \rangle = \langle f \otimes x, \xi \rangle \quad \left(x \in Y, f \in C_0[0, \omega_1)\right)\right].$$

• From the above and the Hahn–Banach Separation Theorem it follows that

$$X_Y \stackrel{(1)}{\cong} C_0[0,\omega_1) \hat{\otimes}_{\varepsilon} Y.$$

• By a result of Rudin we have

$$C[0,\omega_1]^* \stackrel{(1)}{\cong} \ell_1(\omega_1^+) := \left\{ g \colon [0,\omega_1] \to \mathbb{C} \colon \sum_{\alpha < \omega_1^+} |g(\alpha)| < \infty \right\},\$$

▶ ∢ ≣ ▶

given by the duality $\langle f, \delta_{\alpha} \rangle = f(\alpha) = \delta_{\alpha}(f)$.

• By a result of Rudin we have

$$C[0,\omega_1]^* \stackrel{(1)}{\cong} \ell_1(\omega_1^+) := \left\{ g \colon [0,\omega_1] \to \mathbb{C} \colon \sum_{\alpha < \omega_1^+} |g(\alpha)| < \infty \right\},$$

given by the duality $\langle f, \delta_{\alpha} \rangle = f(\alpha) = \delta_{\alpha}(f)$.

• $C[0, \omega_1]$ has the Approximation Property.

• By a result of Rudin we have

$$C[0,\omega_1]^* \stackrel{(1)}{\cong} \ell_1(\omega_1^+) := \left\{ g \colon [0,\omega_1] \to \mathbb{C} \colon \sum_{\alpha < \omega_1^+} |g(\alpha)| < \infty \right\},$$

given by the duality $\langle f, \delta_{\alpha} \rangle = f(\alpha) = \delta_{\alpha}(f)$.

- $C[0, \omega_1]$ has the Approximation Property.
- $C[0,\omega_1]^* \stackrel{(1)}{\cong} \ell_1(\omega_1^+)$ has the Radon–Nikodým Property.

• By a result of Rudin we have

$$C[0,\omega_1]^* \stackrel{(1)}{\cong} \ell_1(\omega_1^+) := \left\{ g \colon [0,\omega_1] \to \mathbb{C} \colon \sum_{\alpha < \omega_1^+} |g(\alpha)| < \infty \right\},\$$

given by the duality $\langle f, \delta_{\alpha} \rangle = f(\alpha) = \delta_{\alpha}(f)$.

- $C[0, \omega_1]$ has the Approximation Property.
- $C[0,\omega_1]^* \stackrel{(1)}{\cong} \ell_1(\omega_1^+)$ has the Radon–Nikodým Property.

Thus

$$C([0,\omega_1]; Y)^* \stackrel{(1)}{\cong} (C[0,\omega_1] \hat{\otimes}_{\varepsilon} Y)^* \stackrel{(1)}{\cong} C[0,\omega_1]^* \hat{\otimes}_{\pi} Y^*$$
$$\stackrel{(1)}{\cong} \ell_1(\omega_1^+) \hat{\otimes}_{\pi} Y^* \stackrel{(1)}{\cong} \ell_1(\omega_1^+; Y^*).$$

Fix $S \in \mathscr{B}(X_Y)$, $x \in Y$ and $\psi \in Y^*$. For any $f \in C_0[0, \omega_1)$ we can define the map

$$S^{\psi}_{x}f: [0, \omega_{1}] \to \mathbb{C}; \quad \alpha \mapsto \langle (S(f \otimes x))(\alpha), \psi \rangle.$$

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Fix $S \in \mathscr{B}(X_Y)$, $x \in Y$ and $\psi \in Y^*$. For any $f \in C_0[0, \omega_1)$ we can define the map

$$S^{\psi}_{x}f \colon [0,\omega_{1}] \to \mathbb{C}; \quad \alpha \mapsto \langle (S(f \otimes x))(\alpha), \psi \rangle.$$

It is clear that $S_x^{\psi} f$ is a continuous map, moreover by $S(f \otimes x) \in X_Y$ we also have $(S_x^{\psi} f)(\omega_1) = 0$, consequently $S_x^{\psi} f \in C_0[0, \omega_1)$.

Fix $S \in \mathscr{B}(X_Y)$, $x \in Y$ and $\psi \in Y^*$. For any $f \in C_0[0, \omega_1)$ we can define the map

$$S^{\psi}_{x}f \colon [0,\omega_{1}] \to \mathbb{C}; \quad \alpha \mapsto \langle (S(f \otimes x))(\alpha), \psi \rangle.$$

It is clear that $S_x^{\psi} f$ is a continuous map, moreover by $S(f \otimes x) \in X_Y$ we also have $(S_x^{\psi} f)(\omega_1) = 0$, consequently $S_x^{\psi} f \in C_0[0, \omega_1)$.

This allows us to define the map

$$S^{\psi}_{x}: C_{0}[0,\omega_{1}) \rightarrow C_{0}[0,\omega_{1}); \quad f \mapsto S^{\psi}_{x}f.$$

Fix $S \in \mathscr{B}(X_Y)$, $x \in Y$ and $\psi \in Y^*$. For any $f \in C_0[0, \omega_1)$ we can define the map

$$S^{\psi}_{x}f \colon [0,\omega_{1}] \to \mathbb{C}; \quad \alpha \mapsto \langle (S(f \otimes x))(\alpha),\psi \rangle.$$

It is clear that $S_x^{\psi} f$ is a continuous map, moreover by $S(f \otimes x) \in X_Y$ we also have $(S_x^{\psi} f)(\omega_1) = 0$, consequently $S_x^{\psi} f \in C_0[0, \omega_1)$.

This allows us to define the map

$$S^{\psi}_{x}: C_{0}[0,\omega_{1}) \rightarrow C_{0}[0,\omega_{1}); \quad f \mapsto S^{\psi}_{x}f.$$

It is clear that S^{ψ}_{x} is a linear map with

 $\|S_x^{\psi}\| \le \|S\| \|x\| \|\psi\|.$

Fix $S \in \mathscr{B}(X_Y)$, $x \in Y$ and $\psi \in Y^*$. For any $f \in C_0[0, \omega_1)$ we can define the map

$$S^{\psi}_{x}f \colon [0,\omega_{1}] \to \mathbb{C}; \quad \alpha \mapsto \langle (S(f \otimes x))(\alpha), \psi \rangle.$$

It is clear that $S_x^{\psi} f$ is a continuous map, moreover by $S(f \otimes x) \in X_Y$ we also have $(S_x^{\psi} f)(\omega_1) = 0$, consequently $S_x^{\psi} f \in C_0[0, \omega_1)$.

This allows us to define the map

$$S^{\psi}_{x}: C_{0}[0,\omega_{1}) \rightarrow C_{0}[0,\omega_{1}); \quad f \mapsto S^{\psi}_{x}f.$$

It is clear that S^{ψ}_{x} is a linear map with

 $\|S_x^{\psi}\| \le \|S\| \|x\| \|\psi\|.$

Consequently, by the K–K–L Theorem there is a club subset $D_{x,\psi} \subseteq [0,\omega_1)$ such that

$$(\mathcal{S}^\psi_{\mathsf{x}})^*\delta_lpha=arphi(\mathcal{S}^\psi_{\mathsf{x}})\delta_lpha \quad (lpha\in \mathcal{D}_{\mathsf{x},\psi}).$$

We also have $|\varphi(S_x^{\psi})| \le \|S\| \|x\| \|\psi\|$, since $\|\varphi\| = 1$.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

We also have $|\varphi(S_x^{\psi})| \le ||S|| ||x|| ||\psi||$, since $||\varphi|| = 1$. This allows us to define the map

$$ilde{\Theta}_{\mathcal{S}}: Y imes Y^* o \mathbb{C}; \quad (x,\psi) \mapsto arphi(\mathcal{S}^\psi_x),$$

and we have

$$|\tilde{\Theta}_{\mathcal{S}}(x,\psi)| \leq \|\mathcal{S}\|\|x\|\|\psi\| \quad (x\in Y,\,\psi\in Y^*).$$

We also have $|\varphi(S_x^{\psi})| \le ||S|| ||x|| ||\psi||$, since $||\varphi|| = 1$. This allows us to define the map

$$ilde{\Theta}_{\mathcal{S}}: Y imes Y^* o \mathbb{C}; \quad (x,\psi) \mapsto arphi(S^\psi_x),$$

and we have

$$| ilde{\Theta}_{\mathcal{S}}(x,\psi)| \leq \|\mathcal{S}\| \|x\| \|\psi\| \quad (x\in Y,\,\psi\in Y^*).$$

Now we show that $\tilde{\Theta}_S$ is bilinear.

We also have $|\varphi(S_x^{\psi})| \le ||S|| ||x|| ||\psi||$, since $||\varphi|| = 1$. This allows us to define the map

$$ilde{\Theta}_{\mathcal{S}}: Y imes Y^* o \mathbb{C}; \quad (x,\psi) \mapsto arphi(\mathcal{S}^\psi_x),$$

and we have

$$|\tilde{\Theta}_{\mathcal{S}}(x,\psi)| \leq \|\mathcal{S}\|\|x\|\|\psi\| \quad (x\in Y,\,\psi\in Y^*).$$

Now we show that $\tilde{\Theta}_S$ is bilinear. Let $x, y \in Y$, $\psi \in Y^*$ and $\lambda \in \mathbb{C}$ be arbitrary. Fix $f \in C_0[0, \omega_1)$ and $\alpha \in [0, \omega_1]$, then using linearity of the tensor product in the second variable, of S and of the functional ψ it follows:

We also have $|\varphi(S_x^{\psi})| \le ||S|| ||x|| ||\psi||$, since $||\varphi|| = 1$. This allows us to define the map

$$ilde{\Theta}_{\mathcal{S}}: Y imes Y^* o \mathbb{C}; \quad (x,\psi) \mapsto arphi(\mathcal{S}^\psi_x),$$

and we have

$$|\tilde{\Theta}_{\mathcal{S}}(x,\psi)| \leq \|\mathcal{S}\|\|x\|\|\psi\| \quad (x\in Y,\,\psi\in Y^*).$$

Now we show that $\tilde{\Theta}_S$ is bilinear. Let $x, y \in Y$, $\psi \in Y^*$ and $\lambda \in \mathbb{C}$ be arbitrary. Fix $f \in C_0[0, \omega_1)$ and $\alpha \in [0, \omega_1]$, then using linearity of the tensor product in the second variable, of S and of the functional ψ it follows:

$$\begin{split} (S_{x+\lambda y}^{\psi}f)(\alpha) &= \langle (S(f\otimes (x+\lambda y)))(\alpha),\psi\rangle \\ &= \langle (S(f\otimes x))(\alpha),\psi\rangle + \lambda \langle (S(f\otimes y))(\alpha),\psi\rangle \\ &= (S_{x}^{\psi}f)(\alpha) + \lambda (S_{y}^{\psi}f)(\alpha), \end{split}$$

proving $S_{x+\lambda y}^{\psi} = S_x^{\psi} + \lambda S_y^{\psi}$.

Since φ is linear,

$$\begin{split} \tilde{\Theta}_{\mathcal{S}}(x+\lambda y,\psi) &= \varphi(S_{x+\lambda y}^{\psi}) \\ &= \varphi(S_{x}^{\psi}+\lambda S_{y}^{\psi}) \\ &= \varphi(S_{x}^{\psi})+\lambda \varphi(S_{y}^{\psi}) \\ &= \tilde{\Theta}_{\mathcal{S}}(x,\psi)+\lambda \tilde{\Theta}_{\mathcal{S}}(y,\psi) \end{split}$$

follows, proving linearity of $\tilde{\Theta}_{\mathcal{S}}$ in the first variable.

Since φ is linear,

$$\begin{split} \tilde{\Theta}_{\mathcal{S}}(x+\lambda y,\psi) &= \varphi(S^{\psi}_{x+\lambda y}) \\ &= \varphi(S^{\psi}_{x}+\lambda S^{\psi}_{y}) \\ &= \varphi(S^{\psi}_{x}) + \lambda \varphi(S^{\psi}_{y}) \\ &= \tilde{\Theta}_{\mathcal{S}}(x,\psi) + \lambda \tilde{\Theta}_{\mathcal{S}}(y,\psi) \end{split}$$

follows, proving linearity of $\tilde{\Theta}_S$ in the first variable. Linearity in the second variable follows from an analogous reasoning. Consequently $\tilde{\Theta}_S$ is a bounded bilinear form on $Y \times Y^*$.

Since φ is linear,

$$\begin{split} \tilde{\Theta}_{\mathcal{S}}(x+\lambda y,\psi) &= \varphi(\mathcal{S}^{\psi}_{x+\lambda y}) \\ &= \varphi(\mathcal{S}^{\psi}_{x}+\lambda \mathcal{S}^{\psi}_{y}) \\ &= \varphi(\mathcal{S}^{\psi}_{x})+\lambda \varphi(\mathcal{S}^{\psi}_{y}) \\ &= \tilde{\Theta}_{\mathcal{S}}(x,\psi)+\lambda \tilde{\Theta}_{\mathcal{S}}(y,\psi) \end{split}$$

follows, proving linearity of $\tilde{\Theta}_S$ in the first variable. Linearity in the second variable follows from an analogous reasoning. Consequently $\tilde{\Theta}_S$ is a bounded bilinear form on $Y \times Y^*$. Let $\kappa_Y \colon Y \to Y^{**}$ denote the canonical embedding. By reflexivity

of Y the map

$$\Theta_{\mathcal{S}}: Y \to Y; \quad x \mapsto \kappa_Y^{-1}(\tilde{\Theta}_{\mathcal{S}}(x, \cdot))$$

defines a bounded linear operator on Y with $\|\Theta_S\|=\|\tilde{\Theta}_S\|$

Since φ is linear,

$$\begin{split} \tilde{\Theta}_{\mathcal{S}}(x+\lambda y,\psi) &= \varphi(S^{\psi}_{x+\lambda y}) \\ &= \varphi(S^{\psi}_{x}+\lambda S^{\psi}_{y}) \\ &= \varphi(S^{\psi}_{x}) + \lambda \varphi(S^{\psi}_{y}) \\ &= \tilde{\Theta}_{\mathcal{S}}(x,\psi) + \lambda \tilde{\Theta}_{\mathcal{S}}(y,\psi) \end{split}$$

follows, proving linearity of $\tilde{\Theta}_S$ in the first variable. Linearity in the second variable follows from an analogous reasoning. Consequently $\tilde{\Theta}_S$ is a bounded bilinear form on $Y \times Y^*$. Let $\kappa_Y \colon Y \to Y^{**}$ denote the canonical embedding. By reflexivity

of Y the map

$$\Theta_{\mathcal{S}} \colon Y \to Y; \quad x \mapsto \kappa_Y^{-1}(\tilde{\Theta}_{\mathcal{S}}(x, \cdot))$$

defines a bounded linear operator on Y with $\|\Theta_{\mathit{S}}\| = \|\tilde{\Theta}_{\mathit{S}}\|$ and

$$\langle \Theta_{\mathcal{S}}(x),\psi
angle = ilde{\Theta}_{\mathcal{S}}(x,\psi)=arphi(\mathcal{S}^\psi_x) \quad (x\in Y,\,\psi\in Y^*).$$

Thus we can define the map

$$\Theta \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y); \quad S \mapsto \Theta_S.$$

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Thus we can define the map

$$\Theta \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y); \quad S \mapsto \Theta_S.$$

Since Y is separable and reflexive it follows that Y^* is separable too. Let $Q \subseteq Y$ and $\mathcal{R} \subseteq Y^*$ be countable dense subsets.

Thus we can define the map

$$\Theta \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y); \quad S \mapsto \Theta_S.$$

Since Y is separable and reflexive it follows that Y^* is separable too. Let $Q \subseteq Y$ and $\mathcal{R} \subseteq Y^*$ be countable dense subsets. Let us fix $S \in \mathscr{B}(X_Y)$, $x \in Q$ and $\psi \in \mathcal{R}$.

Thus we can define the map

$$\Theta \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y); \quad S \mapsto \Theta_S.$$

Since Y is separable and reflexive it follows that Y^* is separable too. Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^*$ be countable dense subsets. Let us fix $S \in \mathscr{B}(X_Y)$, $x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D^S_{x,\psi} \subseteq [0, \omega_1)$ such that

$$(S_x^{\psi}f)(\alpha) = \varphi(S_x^{\psi})f(\alpha) \quad (\alpha \in D_{x,\psi}^{S}, f \in C_0[0,\omega_1)).$$

Thus we can define the map

$$\Theta \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y); \quad S \mapsto \Theta_S.$$

Since Y is separable and reflexive it follows that Y^* is separable too. Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^*$ be countable dense subsets. Let us fix $S \in \mathscr{B}(X_Y)$, $x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D^S_{x,\psi} \subseteq [0, \omega_1)$ such that

$$(S_x^{\psi}f)(\alpha) = \varphi(S_x^{\psi})f(\alpha) \quad (\alpha \in D_{x,\psi}^S, f \in C_0[0,\omega_1)).$$

Hence

$$\langle {\mathcal S}(f\otimes x), \delta_lpha\otimes\psi
angle = \langle ({\mathcal S}(f\otimes x))(lpha),\psi
angle$$

for all
$$\alpha \in D_{x,\psi}^{S}$$
, $f \in C_{0}[0,\omega_{1})$).

Thus we can define the map

$$\Theta \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y); \quad S \mapsto \Theta_S.$$

Since Y is separable and reflexive it follows that Y^* is separable too. Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^*$ be countable dense subsets. Let us fix $S \in \mathscr{B}(X_Y)$, $x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D_{x,\psi}^S \subseteq [0, \omega_1)$ such that

$$(S_x^{\psi}f)(\alpha) = \varphi(S_x^{\psi})f(\alpha) \quad (\alpha \in D_{x,\psi}^{\mathcal{S}}, f \in C_0[0,\omega_1)).$$

Hence

$$\langle S(f\otimes x), \delta_{lpha}\otimes\psi
angle = \langle (S(f\otimes x))(lpha),\psi
angle = (S^{\psi}_{x}f)(lpha)$$

for all
$$\alpha \in D_{x,\psi}^{S}$$
, $f \in C_{0}[0,\omega_{1})$).
Thus we can define the map

$$\Theta \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y); \quad S \mapsto \Theta_S.$$

Since Y is separable and reflexive it follows that Y^* is separable too. Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^*$ be countable dense subsets. Let us fix $S \in \mathscr{B}(X_Y)$, $x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D_{x,\psi}^S \subseteq [0, \omega_1)$ such that

$$(S_x^{\psi}f)(\alpha) = \varphi(S_x^{\psi})f(\alpha) \quad (\alpha \in D_{x,\psi}^{\mathcal{S}}, f \in C_0[0,\omega_1)).$$

Hence

$$egin{aligned} &\langle \mathcal{S}(f\otimes x),\delta_lpha\otimes\psi
angle = \langle (\mathcal{S}(f\otimes x))(lpha),\psi
angle = (\mathcal{S}^\psi_x f)(lpha)\ &= f(lpha)arphi(\mathcal{S}^\psi_x) \end{aligned}$$

for all $\alpha \in D_{x,\psi}^{S}$, $f \in C_{0}[0,\omega_{1})$).

Thus we can define the map

$$\Theta \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y); \quad S \mapsto \Theta_S.$$

Since Y is separable and reflexive it follows that Y^* is separable too. Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^*$ be countable dense subsets. Let us fix $S \in \mathscr{B}(X_Y)$, $x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D^S_{x,\psi} \subseteq [0, \omega_1)$ such that

$$(S_x^{\psi}f)(\alpha) = \varphi(S_x^{\psi})f(\alpha) \quad (\alpha \in D_{x,\psi}^{\mathcal{S}}, f \in C_0[0,\omega_1)).$$

Hence

$$\begin{split} \langle \mathcal{S}(f\otimes x), \delta_{\alpha}\otimes\psi\rangle &= \langle (\mathcal{S}(f\otimes x))(\alpha), \psi\rangle = (\mathcal{S}_{x}^{\psi}f)(\alpha)\\ &= f(\alpha)\varphi(\mathcal{S}_{x}^{\psi}) = \langle f(\alpha)\Theta(\mathcal{S})x, \psi\rangle \end{split}$$

for all $\alpha \in D_{x,\psi}^{S}$, $f \in C_{0}[0,\omega_{1})$).

Thus we can define the map

$$\Theta \colon \mathscr{B}(X_Y) \to \mathscr{B}(Y); \quad S \mapsto \Theta_S.$$

Since Y is separable and reflexive it follows that Y^* is separable too. Let $\mathcal{Q} \subseteq Y$ and $\mathcal{R} \subseteq Y^*$ be countable dense subsets. Let us fix $S \in \mathscr{B}(X_Y)$, $x \in \mathcal{Q}$ and $\psi \in \mathcal{R}$. As above, there exists a club subset $D^S_{x,\psi} \subseteq [0, \omega_1)$ such that

$$(S_x^{\psi}f)(\alpha) = \varphi(S_x^{\psi})f(\alpha) \quad (\alpha \in D_{x,\psi}^{\mathcal{S}}, f \in C_0[0,\omega_1)).$$

Hence

$$egin{aligned} &\langle S(f\otimes x),\delta_lpha\otimes\psi
angle &=\langle (S(f\otimes x))(lpha),\psi
angle &=(S^\psi_xf)(lpha)\ &=f(lpha)arphi(S^\psi_x)=\langle f(lpha)\Theta(S)x,\psi
angle\ &=\langle f\otimes(\Theta(S)x),\delta_lpha\otimes\psi
angle \end{aligned}$$

for all $\alpha \in D_{x,\psi}^{S}$, $f \in C_{0}[0,\omega_{1})$).

As a countable intersection of club subsets is a club subset, we have that

$$D^{\mathsf{S}} := \bigcap_{(x,\psi)\in\mathcal{Q}\times\mathcal{R}} D^{\mathsf{S}}_{x,\psi}$$

is a club subset of $[0, \omega_1)$.

As a countable intersection of club subsets is a club subset, we have that

$$D^{S} := \bigcap_{(x,\psi) \in \mathcal{Q} \times \mathcal{R}} D^{S}_{x,\psi}$$

is a club subset of $[0, \omega_1)$. Consequently

 $\langle S(f \otimes x), \delta_{\alpha} \otimes \psi \rangle = \langle f \otimes (\Theta(S)x), \delta_{\alpha} \otimes \psi \rangle$

holds for any $\alpha \in D^{S}$, any $f \in C_{0}[0, \omega_{1})$ and any $x \in Q$, $\psi \in \mathcal{R}$.

As a countable intersection of club subsets is a club subset, we have that

$$D^{S} := \bigcap_{(x,\psi) \in \mathcal{Q} \times \mathcal{R}} D^{S}_{x,\psi}$$

is a club subset of $[0, \omega_1)$. Consequently

$$\langle S(f \otimes x), \delta_{\alpha} \otimes \psi \rangle = \langle f \otimes (\Theta(S)x), \delta_{\alpha} \otimes \psi \rangle$$

holds for any $\alpha \in D^S$, any $f \in C_0[0, \omega_1)$ and any $x \in Q$, $\psi \in \mathcal{R}$. Fix $S \in \mathscr{B}(X_Y)$, $\alpha \in D^S$ and $f \in C_0[0, \omega_1)$. Define the maps

$$g_{(S,f,\alpha)} \colon Y \times Y^* \to \mathbb{C}; \quad (x,\psi) \mapsto \langle S(f \otimes x), \delta_\alpha \otimes \psi \rangle, \\ h_{(S,f,\alpha)} \colon Y \times Y^* \to \mathbb{C}; \quad (x,\psi) \mapsto \langle f \otimes (\Theta(S)x), \delta_\alpha \otimes \psi \rangle.$$

As a countable intersection of club subsets is a club subset, we have that

$$D^{S} := \bigcap_{(x,\psi) \in \mathcal{Q} \times \mathcal{R}} D^{S}_{x,\psi}$$

is a club subset of $[0, \omega_1)$. Consequently

$$\langle S(f \otimes x), \delta_{\alpha} \otimes \psi \rangle = \langle f \otimes (\Theta(S)x), \delta_{\alpha} \otimes \psi \rangle$$

holds for any $\alpha \in D^S$, any $f \in C_0[0, \omega_1)$ and any $x \in Q$, $\psi \in \mathcal{R}$. Fix $S \in \mathscr{B}(X_Y)$, $\alpha \in D^S$ and $f \in C_0[0, \omega_1)$. Define the maps

$$\begin{split} g_{(S,f,\alpha)} &\colon Y \times Y^* \to \mathbb{C}; \quad (x,\psi) \mapsto \langle S(f \otimes x), \delta_\alpha \otimes \psi \rangle, \\ h_{(S,f,\alpha)} &\colon Y \times Y^* \to \mathbb{C}; \quad (x,\psi) \mapsto \langle f \otimes (\Theta(S)x), \delta_\alpha \otimes \psi \rangle. \end{split}$$

Thus we can reformulate the above equation as

$$g_{(S,f,\alpha)}(x,\psi) = h_{(S,f,\alpha)}(x,\psi) \quad ((x,\psi) \in \mathcal{Q} \times \mathcal{R}).$$

As $g_{(S,f,\alpha)}$ and $h_{(S,f,\alpha)}$ are continuous functions between metric spaces, density of $\mathcal{Q} \times \mathcal{R}$ in $Y \times Y^*$ implies that

$$g_{(S,f,\alpha)}(x,\psi) = h_{(S,f,\alpha)}(x,\psi) \quad ((x,\psi) \in Y \times Y^*).$$

As $g_{(S,f,\alpha)}$ and $h_{(S,f,\alpha)}$ are continuous functions between metric spaces, density of $\mathcal{Q} \times \mathcal{R}$ in $Y \times Y^*$ implies that

$$g_{(S,f,\alpha)}(x,\psi) = h_{(S,f,\alpha)}(x,\psi) \quad ((x,\psi) \in Y \times Y^*).$$

In other words, for any $S \in \mathscr{B}(X_Y)$ there exists a club subset $D^S \subseteq [0, \omega_1)$ such that

$$\langle f \otimes x, S^*(\delta_{\alpha} \otimes \psi) \rangle = \langle f \otimes x, \delta_{\alpha} \otimes (\Theta(S)^* \psi) \rangle$$

for any $\alpha \in D^{S}$, $f \in C_{0}[0, \omega_{1})$ and $x \in Y$, $\psi \in Y^{*}$.

As $g_{(S,f,\alpha)}$ and $h_{(S,f,\alpha)}$ are continuous functions between metric spaces, density of $\mathcal{Q} \times \mathcal{R}$ in $Y \times Y^*$ implies that

$$g_{(S,f,\alpha)}(x,\psi) = h_{(S,f,\alpha)}(x,\psi) \quad ((x,\psi) \in Y \times Y^*).$$

In other words, for any $S \in \mathscr{B}(X_Y)$ there exists a club subset $D^S \subseteq [0, \omega_1)$ such that

$$\langle f \otimes x, S^*(\delta_{\alpha} \otimes \psi) \rangle = \langle f \otimes x, \delta_{\alpha} \otimes (\Theta(S)^* \psi) \rangle$$

for any $\alpha \in D^{S}$, $f \in C_{0}[0, \omega_{1})$ and $x \in Y$, $\psi \in Y^{*}$. Therefore we obtain that

$$S^*(\delta_{\alpha}\otimes\psi)=\delta_{\alpha}\otimes(\Theta(S)^*\psi). \tag{1}$$

for all $\alpha \in D^{S}$ and $\psi \in Y^{*}$.

We show that for any $S \in \mathscr{B}(X_Y)$ the operator $\Theta(S)$ is determined by equation (1).

We show that for any $S \in \mathscr{B}(X_Y)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_1(S), \Theta_2(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_1^S, D_2^S \subseteq [0, \omega_1)$ with the property that

$$S^*(\delta_lpha\otimes\psi)=\delta_lpha\otimes(\Theta_i(S)^*\psi)$$

for $i \in \{1, 2\}$, all $\alpha \in D_i^S$ and all $\psi \in Y^*$.

We show that for any $S \in \mathscr{B}(X_Y)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_1(S), \Theta_2(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_1^S, D_2^S \subseteq [0, \omega_1)$ with the property that

$$S^*(\delta_lpha\otimes\psi)=\delta_lpha\otimes(\Theta_i(S)^*\psi)$$

$$\langle \Theta_1(S) x, \psi \rangle = \langle \mathbf{1}_{[0,\alpha]} \otimes x, \delta_\alpha \otimes (\Theta_1(S)^* \psi) \rangle$$

We show that for any $S \in \mathscr{B}(X_Y)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_1(S), \Theta_2(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_1^S, D_2^S \subseteq [0, \omega_1)$ with the property that

$$S^*(\delta_lpha\otimes\psi)=\delta_lpha\otimes(\Theta_i(S)^*\psi)$$

$$egin{aligned} &\langle \Theta_1(S) x, \psi
angle &= \langle \mathbf{1}_{[0, \alpha]} \otimes x, \delta_lpha \otimes (\Theta_1(S)^* \psi)
angle \ &= \langle \mathbf{1}_{[0, \alpha]} \otimes x, S^*(\delta_lpha \otimes \psi)
angle \end{aligned}$$

We show that for any $S \in \mathscr{B}(X_Y)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_1(S), \Theta_2(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_1^S, D_2^S \subseteq [0, \omega_1)$ with the property that

$$S^*(\delta_lpha\otimes\psi)=\delta_lpha\otimes(\Theta_i(S)^*\psi)$$

$$egin{aligned} &\langle \Theta_1(S) x, \psi
angle &= \langle \mathbf{1}_{[0, lpha]} \otimes x, \delta_lpha \otimes (\Theta_1(S)^* \psi)
angle \ &= \langle \mathbf{1}_{[0, lpha]} \otimes x, S^*(\delta_lpha \otimes \psi)
angle \ &= \langle \mathbf{1}_{[0, lpha]} \otimes x, \delta_lpha \otimes (\Theta_2(S)^* \psi)
angle \end{aligned}$$

We show that for any $S \in \mathscr{B}(X_Y)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_1(S), \Theta_2(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_1^S, D_2^S \subseteq [0, \omega_1)$ with the property that

$$S^*(\delta_lpha\otimes\psi)=\delta_lpha\otimes(\Theta_i(S)^*\psi)$$

$$egin{aligned} &\langle \Theta_1(S)x,\psi
angle &= \langle \mathbf{1}_{[0,lpha]}\otimes x,\delta_lpha\otimes (\Theta_1(S)^*\psi)
angle \ &= \langle \mathbf{1}_{[0,lpha]}\otimes x,S^*(\delta_lpha\otimes\psi)
angle \ &= \langle \mathbf{1}_{[0,lpha]}\otimes x,\delta_lpha\otimes (\Theta_2(S)^*\psi)
angle \ &= \langle \Theta_2(S)x,\psi
angle \end{aligned}$$

We show that for any $S \in \mathscr{B}(X_Y)$ the operator $\Theta(S)$ is determined by equation (1). Indeed, suppose $\Theta_1(S), \Theta_2(S) \in \mathscr{B}(Y)$ are such that there exist club subsets $D_1^S, D_2^S \subseteq [0, \omega_1)$ with the property that

$$S^*(\delta_{lpha}\otimes\psi)=\delta_{lpha}\otimes(\Theta_i(S)^*\psi)$$

for $i \in \{1, 2\}$, all $\alpha \in D_i^S$ and all $\psi \in Y^*$. Let $\alpha \in D_1^S \cap D_2^S$, $x \in Y$ and $\psi \in Y^*$ be fixed. Then

$$\begin{split} \langle \Theta_1(S) x, \psi \rangle &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, \delta_\alpha \otimes (\Theta_1(S)^* \psi) \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, S^*(\delta_\alpha \otimes \psi) \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, \delta_\alpha \otimes (\Theta_2(S)^* \psi) \rangle \\ &= \langle \Theta_2(S) x, \psi \rangle \end{split}$$

and thus $\Theta_1(S) = \Theta_2(S)$.

We are now prepared to prove that Θ is an algebra homomorphism.

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}(X_Y)$ be fixed.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}(X_Y)$ be fixed. Let $D^T, D^S, D^{TS} \subseteq [0, \omega_1)$ be club subsets which satisfy equation (1).

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}(X_Y)$ be fixed. Let $D^T, D^S, D^{TS} \subseteq [0, \omega_1)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^T \cap D^S \cap D^{TS}$, $x \in Y$ and $\psi \in Y^*$. Then we obtain:

 $\delta_{\alpha} \otimes (\Theta(TS)^*\psi) = (TS)^*(\delta_{\alpha} \otimes \psi)$

$$egin{aligned} \delta_lpha\otimes(\Theta(\mathit{TS})^*\psi)&=(\mathit{TS})^*(\delta_lpha\otimes\psi)\ &=S^*\mathit{T}^*(\delta_lpha\otimes\psi) \end{aligned}$$

$$egin{aligned} \delta_lpha\otimes(\Theta(\mathit{TS})^*\psi)&=(\mathit{TS})^*(\delta_lpha\otimes\psi)\ &=S^*\mathit{T}^*(\delta_lpha\otimes\psi)\ &=S^*(\delta_lpha\otimes(\Theta(\mathit{T})^*\psi) \end{aligned}$$

$$egin{aligned} \delta_lpha\otimes(\Theta(\mathit{TS})^*\psi)&=(\mathit{TS})^*(\delta_lpha\otimes\psi)\ &=S^*\mathit{T}^*(\delta_lpha\otimes\psi)\ &=S^*(\delta_lpha\otimes(\Theta(\mathit{T})^*\psi))\ &=\delta_lpha\otimes(\Theta(\mathit{S})^*\Theta(\mathit{T})^*\psi) \end{aligned}$$

$$egin{aligned} &\delta_lpha\otimes(\Theta(TS)^*\psi)=(TS)^*(\delta_lpha\otimes\psi)\ &=S^*T^*(\delta_lpha\otimes\psi)\ &=S^*(\delta_lpha\otimes(\Theta(T)^*\psi))\ &=\delta_lpha\otimes(\Theta(S)^*\Theta(T)^*\psi)\ &=\delta_lpha\otimes((\Theta(T)\Theta(S))^*\psi), \end{aligned}$$

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}(X_Y)$ be fixed. Let $D^T, D^S, D^{TS} \subseteq [0, \omega_1)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^T \cap D^S \cap D^{TS}$, $x \in Y$ and $\psi \in Y^*$. Then we obtain:

$$\begin{split} \delta_{\alpha} \otimes (\Theta(TS)^{*}\psi) &= (TS)^{*}(\delta_{\alpha} \otimes \psi) \\ &= S^{*}T^{*}(\delta_{\alpha} \otimes \psi) \\ &= S^{*}(\delta_{\alpha} \otimes (\Theta(T)^{*}\psi)) \\ &= \delta_{\alpha} \otimes (\Theta(S)^{*}\Theta(T)^{*}\psi) \\ &= \delta_{\alpha} \otimes ((\Theta(T)\Theta(S))^{*}\psi), \end{split}$$

hence $\Theta(TS)^*\psi = (\Theta(T)\Theta(S))^*\psi$, so $\Theta(TS)^* = (\Theta(T)\Theta(S))^*$, equivalently $\Theta(TS) = \Theta(T)\Theta(S)$.

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}(X_Y)$ be fixed. Let $D^T, D^S, D^{TS} \subseteq [0, \omega_1)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^T \cap D^S \cap D^{TS}$, $x \in Y$ and $\psi \in Y^*$. Then we obtain:

$$egin{aligned} &\delta_lpha\otimes(\Theta(\mathit{TS})^*\psi)=(\mathit{TS})^*(\delta_lpha\otimes\psi)\ &=S^*\mathit{T}^*(\delta_lpha\otimes\psi)\ &=S^*(\delta_lpha\otimes(\Theta(\mathit{T})^*\psi))\ &=\delta_lpha\otimes(\Theta(\mathit{S})^*\Theta(\mathit{T})^*\psi)\ &=\delta_lpha\otimes((\Theta(\mathit{T})\Theta(\mathit{S}))^*\psi), \end{aligned}$$

hence $\Theta(TS)^*\psi = (\Theta(T)\Theta(S))^*\psi$, so $\Theta(TS)^* = (\Theta(T)\Theta(S))^*$, equivalently $\Theta(TS) = \Theta(T)\Theta(S)$.

Linearity can be shown with analogous reasoning.

We show that Θ is multiplicative. Let $S, T \in \mathscr{B}(X_Y)$ be fixed. Let $D^T, D^S, D^{TS} \subseteq [0, \omega_1)$ be club subsets which satisfy equation (1). Fix $\alpha \in D^T \cap D^S \cap D^{TS}$, $x \in Y$ and $\psi \in Y^*$. Then we obtain:

$$egin{aligned} \delta_lpha\otimes(\Theta(\mathit{TS})^*\psi)&=(\mathit{TS})^*(\delta_lpha\otimes\psi)\ &=S^*\mathit{T}^*(\delta_lpha\otimes\psi)\ &=S^*(\delta_lpha\otimes(\Theta(\mathit{T})^*\psi))\ &=\delta_lpha\otimes(\Theta(\mathit{S})^*\Theta(\mathit{T})^*\psi)\ &=\delta_lpha\otimes((\Theta(\mathit{T})\Theta(\mathit{S}))^*\psi), \end{aligned}$$

hence $\Theta(TS)^*\psi = (\Theta(T)\Theta(S))^*\psi$, so $\Theta(TS)^* = (\Theta(T)\Theta(S))^*$, equivalently $\Theta(TS) = \Theta(T)\Theta(S)$.

Linearity can be shown with analogous reasoning.

For any $S \in \mathscr{B}(X_Y)$ we have $\|\Theta(S)\| = \|\tilde{\Theta}_S\| \le \|S\|$, thus $\|\Theta\| \le 1$.

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

 $\Lambda \colon \mathscr{B}(Y) \to \mathscr{B}(X_Y) \quad \text{with} \quad \Theta \circ \Lambda = \mathrm{id}_{\mathscr{B}(Y)}.$

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

$$\Lambda \colon \mathscr{B}(Y) \to \mathscr{B}(X_Y) \quad \text{with} \quad \Theta \circ \Lambda = \mathrm{id}_{\mathscr{B}(Y)}.$$

Let $P \in \mathscr{B}(C[0,\omega_1])$ be the idempotent operator with

$$P\colon C[0,\omega_1]\to C[0,\omega_1]; \quad g\mapsto g-c_{g(\omega_1)}.$$

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

$$\Lambda \colon \mathscr{B}(Y) \to \mathscr{B}(X_Y) \quad \text{with} \quad \Theta \circ \Lambda = \mathrm{id}_{\mathscr{B}(Y)}.$$

Let $P \in \mathscr{B}(C[0,\omega_1])$ be the idempotent operator with

$$P\colon C[0,\omega_1]\to C[0,\omega_1]; \quad g\mapsto g-c_{g(\omega_1)}.$$

Then $\operatorname{Ran}(P) = C_0[0, \omega_1)$. It is also not hard to see that

$$I_{X_Y} = (P \otimes_{\varepsilon} I_Y)|_{X_Y}.$$

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

$$\Lambda \colon \mathscr{B}(Y) \to \mathscr{B}(X_Y) \quad \text{with} \quad \Theta \circ \Lambda = \mathrm{id}_{\mathscr{B}(Y)}.$$

Let $P \in \mathscr{B}(C[0,\omega_1])$ be the idempotent operator with

$$P\colon C[0,\omega_1]\to C[0,\omega_1]; \quad g\mapsto g-c_{g(\omega_1)}.$$

Then $\operatorname{Ran}(P) = C_0[0, \omega_1)$. It is also not hard to see that

$$I_{X_Y} = (P \otimes_{\varepsilon} I_Y)|_{X_Y}.$$

Let us fix an $A \in \mathscr{B}(Y)$. We observe that

$$S := (P \otimes_{\varepsilon} A)|_{X_Y}$$

belongs to $\mathscr{B}(X_Y)$.

We now show that Θ is surjective. We show more: There exists a norm one algebra homomorphism

$$\Lambda \colon \mathscr{B}(Y) \to \mathscr{B}(X_Y) \quad \text{with} \quad \Theta \circ \Lambda = \mathrm{id}_{\mathscr{B}(Y)}.$$

Let $P \in \mathscr{B}(C[0,\omega_1])$ be the idempotent operator with

$$P\colon C[0,\omega_1]\to C[0,\omega_1]; \quad g\mapsto g-c_{g(\omega_1)}.$$

Then $\operatorname{Ran}(P) = C_0[0, \omega_1)$. It is also not hard to see that

$$I_{X_Y} = (P \otimes_{\varepsilon} I_Y)|_{X_Y}.$$

Let us fix an $A \in \mathscr{B}(Y)$. We observe that

$$S := (P \otimes_{\varepsilon} A)|_{X_Y}$$

belongs to $\mathscr{B}(X_Y)$. Indeed, the identity

$$((P \otimes_{\varepsilon} A)(g \otimes x))(\omega_1) = (Pg)(\omega_1)Ax = 0$$

holds for any $g \in C[0, \omega_1]$ and $x \in Y$, since $P_{\mathcal{G}} \subseteq C_0[0, \omega_1)$, where $\mathcal{G} \subseteq \mathcal{G}_0[0, \omega_1)$, we have

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

which shows that $S \in \mathscr{B}(X_Y)$.

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

which shows that $S \in \mathscr{B}(X_Y)$. Therefore there exists a club subset $D^S \subseteq [0, \omega_1)$ such that equation (1) is satisfied for all $\alpha \in D^S$ and all $\psi \in Y^*$.

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

which shows that $S \in \mathscr{B}(X_Y)$. Therefore there exists a club subset $D^S \subseteq [0, \omega_1)$ such that equation (1) is satisfied for all $\alpha \in D^S$ and all $\psi \in Y^*$. Fix $\alpha \in D^S$, then

$$\langle Ax, \psi \rangle = \langle \mathbf{1}_{[0,\alpha]} \otimes (Ax), \delta_{\alpha} \otimes \psi \rangle$$

$$(x \in Y, \psi \in Y^*)$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

which shows that $S \in \mathscr{B}(X_Y)$. Therefore there exists a club subset $D^S \subseteq [0, \omega_1)$ such that equation (1) is satisfied for all $\alpha \in D^S$ and all $\psi \in Y^*$. Fix $\alpha \in D^S$, then

$$\begin{split} \langle Ax, \psi \rangle &= \langle \mathbf{1}_{[0,\alpha]} \otimes (Ax), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle (P \otimes_{\varepsilon} A) (\mathbf{1}_{[0,\alpha]} \otimes x), \delta_{\alpha} \otimes \psi \rangle \end{split}$$

$$(x \in Y, \psi \in Y^*)$$
Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

$$\begin{split} \langle \mathsf{A}\mathsf{x},\psi\rangle &= \langle \mathbf{1}_{[0,\alpha]}\otimes(\mathsf{A}\mathsf{x}),\delta_{\alpha}\otimes\psi\rangle \\ &= \langle (\mathsf{P}\otimes_{\varepsilon}\mathsf{A})(\mathbf{1}_{[0,\alpha]}\otimes\mathsf{x}),\delta_{\alpha}\otimes\psi\rangle \\ &= \langle \mathbf{1}_{[0,\alpha]}\otimes\mathsf{x},\mathsf{S}^*(\delta_{\alpha}\otimes\psi)\rangle \end{split}$$

$$(x \in Y, \psi \in Y^*)$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

$$\begin{split} \langle Ax, \psi \rangle &= \langle \mathbf{1}_{[0,\alpha]} \otimes (Ax), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle (P \otimes_{\varepsilon} A) (\mathbf{1}_{[0,\alpha]} \otimes x), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, S^{*} (\delta_{\alpha} \otimes \psi) \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, \delta_{\alpha} \otimes (\Theta(S)^{*} \psi) \rangle \end{split}$$

$$(x \in Y, \psi \in Y^*)$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

$$\begin{split} \langle Ax, \psi \rangle &= \langle \mathbf{1}_{[0,\alpha]} \otimes (Ax), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle (P \otimes_{\varepsilon} A) (\mathbf{1}_{[0,\alpha]} \otimes x), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, S^* (\delta_{\alpha} \otimes \psi) \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, \delta_{\alpha} \otimes (\Theta(S)^* \psi) \rangle \\ &= \langle x, \Theta(S)^* \psi \rangle \\ &\qquad (x \in Y, \psi \in Y^*) \end{split}$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

$$\begin{split} \langle Ax, \psi \rangle &= \langle \mathbf{1}_{[0,\alpha]} \otimes (Ax), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle (P \otimes_{\varepsilon} A) (\mathbf{1}_{[0,\alpha]} \otimes x), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, S^* (\delta_{\alpha} \otimes \psi) \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, \delta_{\alpha} \otimes (\Theta(S)^* \psi) \rangle \\ &= \langle x, \Theta(S)^* \psi \rangle \\ &= \langle \Theta(S)x, \psi \rangle \quad (x \in Y, \psi \in Y^*) \end{split}$$

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

which shows that $S \in \mathscr{B}(X_Y)$. Therefore there exists a club subset $D^S \subseteq [0, \omega_1)$ such that equation (1) is satisfied for all $\alpha \in D^S$ and all $\psi \in Y^*$. Fix $\alpha \in D^S$, then

$$\begin{split} \langle Ax, \psi \rangle &= \langle \mathbf{1}_{[0,\alpha]} \otimes (Ax), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle (P \otimes_{\varepsilon} A) (\mathbf{1}_{[0,\alpha]} \otimes x), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, S^* (\delta_{\alpha} \otimes \psi) \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, \delta_{\alpha} \otimes (\Theta(S)^* \psi) \rangle \\ &= \langle x, \Theta(S)^* \psi \rangle \\ &= \langle \Theta(S) x, \psi \rangle \quad (x \in Y, \psi \in Y^*) \end{split}$$

and thus $\Theta(S) = A$.

Thus by linearity and continuity of $P \otimes_{\varepsilon} A$ in fact

$$((P \otimes_{\varepsilon} A)u)(\omega_1) = 0 \quad (u \in C[0, \omega_1] \hat{\otimes}_{\varepsilon} Y),$$

which shows that $S \in \mathscr{B}(X_Y)$. Therefore there exists a club subset $D^S \subseteq [0, \omega_1)$ such that equation (1) is satisfied for all $\alpha \in D^S$ and all $\psi \in Y^*$. Fix $\alpha \in D^S$, then

$$\begin{split} \langle Ax, \psi \rangle &= \langle \mathbf{1}_{[0,\alpha]} \otimes (Ax), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle (P \otimes_{\varepsilon} A) (\mathbf{1}_{[0,\alpha]} \otimes x), \delta_{\alpha} \otimes \psi \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, S^* (\delta_{\alpha} \otimes \psi) \rangle \\ &= \langle \mathbf{1}_{[0,\alpha]} \otimes x, \delta_{\alpha} \otimes (\Theta(S)^* \psi) \rangle \\ &= \langle x, \Theta(S)^* \psi \rangle \\ &= \langle \Theta(S) x, \psi \rangle \quad (x \in Y, \psi \in Y^*) \end{split}$$

and thus $\Theta(S) = A$. In particular, we obtain $\Theta(I_{X_Y}) = I_Y$, with $\|\Theta\| \le 1$ this yields $\|\Theta\| = 1$.

Bence Horváth (partially joint work with Tomasz Kania) The SHAI property

Also, the above shows that the map

$$\Lambda: \ \mathscr{B}(Y) \to \mathscr{B}(X_Y); \quad A \mapsto (P \otimes_{\varepsilon} A)|_{X_Y}$$

satisfies $\Theta \circ \Lambda = \operatorname{id}_{\mathscr{B}(Y)}$.

Also, the above shows that the map

$$\Lambda: \mathscr{B}(Y) \to \mathscr{B}(X_Y); \quad A \mapsto (P \otimes_{\varepsilon} A)|_{X_Y}$$

satisfies $\Theta \circ \Lambda = id_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$.

Also, the above shows that the map

$$\Lambda: \mathscr{B}(Y) \to \mathscr{B}(X_Y); \quad A \mapsto (P \otimes_{\varepsilon} A)|_{X_Y}$$

satisfies $\Theta \circ \Lambda = \operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$. Also, $\Lambda(I_Y) = I_{X_Y}$ holds by $I_{X_Y} = (P \otimes_{\varepsilon} I_Y)|_{X_Y}$, consequently $\|\Lambda\| = 1$.

$$\Lambda: \mathscr{B}(Y) \to \mathscr{B}(X_Y); \quad A \mapsto (P \otimes_{\varepsilon} A)|_{X_Y}$$

satisfies $\Theta \circ \Lambda = \operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$. Also, $\Lambda(I_Y) = I_{X_Y}$ holds by $I_{X_Y} = (P \otimes_{\varepsilon} I_Y)|_{X_Y}$, consequently $\|\Lambda\| = 1$. The map Λ is an algebra homomorphism plainly because $P \in \mathscr{B}(C[0, \omega_1])$ is an idempotent. Indeed,

$$(P \otimes_{\varepsilon} A)(P \otimes_{\varepsilon} B) = P \otimes_{\varepsilon} (AB) \quad (A, B \in \mathscr{B}(Y)).$$

$$\Lambda: \mathscr{B}(Y) \to \mathscr{B}(X_Y); \quad A \mapsto (P \otimes_{\varepsilon} A)|_{X_Y}$$

satisfies $\Theta \circ \Lambda = \operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$. Also, $\Lambda(I_Y) = I_{X_Y}$ holds by $I_{X_Y} = (P \otimes_{\varepsilon} I_Y)|_{X_Y}$, consequently $\|\Lambda\| = 1$. The map Λ is an algebra homomorphism plainly because $P \in \mathscr{B}(C[0, \omega_1])$ is an idempotent. Indeed,

$$(P \otimes_{\varepsilon} A)(P \otimes_{\varepsilon} B) = P \otimes_{\varepsilon} (AB) \quad (A, B \in \mathscr{B}(Y)).$$

It remains to prove that Θ is not injective. For assume towards a contradiction it is; then $\mathscr{B}(X_Y)$ and $\mathscr{B}(Y)$ are isomorphic as Banach algebras.

$$\Lambda: \mathscr{B}(Y) \to \mathscr{B}(X_Y); \quad A \mapsto (P \otimes_{\varepsilon} A)|_{X_Y}$$

satisfies $\Theta \circ \Lambda = \operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$. Also, $\Lambda(I_Y) = I_{X_Y}$ holds by $I_{X_Y} = (P \otimes_{\varepsilon} I_Y)|_{X_Y}$, consequently $\|\Lambda\| = 1$. The map Λ is an algebra homomorphism plainly because $P \in \mathscr{B}(C[0, \omega_1])$ is an idempotent. Indeed,

$$(P \otimes_{\varepsilon} A)(P \otimes_{\varepsilon} B) = P \otimes_{\varepsilon} (AB) \quad (A, B \in \mathscr{B}(Y)).$$

It remains to prove that Θ is not injective. For assume towards a contradiction it is; then $\mathscr{B}(X_Y)$ and $\mathscr{B}(Y)$ are isomorphic as Banach algebras. By Eidelheit's Theorem this is equivalent to saying that X_Y and Y are isomorphic as Banach spaces.

$$\Lambda: \mathscr{B}(Y) \to \mathscr{B}(X_Y); \quad A \mapsto (P \otimes_{\varepsilon} A)|_{X_Y}$$

satisfies $\Theta \circ \Lambda = \operatorname{id}_{\mathscr{B}(Y)}$. It is immediate that Λ is linear with $\|\Lambda\| \leq 1$. Also, $\Lambda(I_Y) = I_{X_Y}$ holds by $I_{X_Y} = (P \otimes_{\varepsilon} I_Y)|_{X_Y}$, consequently $\|\Lambda\| = 1$. The map Λ is an algebra homomorphism plainly because $P \in \mathscr{B}(C[0, \omega_1])$ is an idempotent. Indeed,

$$(P \otimes_{\varepsilon} A)(P \otimes_{\varepsilon} B) = P \otimes_{\varepsilon} (AB) \quad (A, B \in \mathscr{B}(Y)).$$

It remains to prove that Θ is not injective. For assume towards a contradiction it is; then $\mathscr{B}(X_Y)$ and $\mathscr{B}(Y)$ are isomorphic as Banach algebras. By Eidelheit's Theorem this is equivalent to saying that X_Y and Y are isomorphic as Banach spaces. This is clearly nonsense, since for example, Y is separable whereas X_Y is not. \Box

OK, the very last slide, really

Thank you for your attention :)

OK, the very last slide, really

Thank you for your attention :)

Sources

- B. Horváth, "When are full representations of algebras of operators on Banach spaces automatically faithful?", Studia Mathematica (2020), available on the arXiv;
- B. Horváth and T. Kania, "Surjective homomorphisms from algebras of operators on long sequence spaces automatically injective", submitted, available on the arXiv;
- W. B. Johnson, T. Kania and G. Schechtman, "Closed ideals of operators on and complemented subspaces of Banach spaces of functions with countable support", Proceedinds of the AMS (2016), available on the arXiv;
- P. Koszmider and N. J. Laustsen, "A Banach space induced by an almost disjoint family, admitting only few operators and decompositions", available on the arXiv.