Ring-theoretic (in)finiteness in reduced products of Banach algebras

Bence Horváth
(joint work w/ Matthew Daws [UCLan])

MTA Rényi Alfréd Matematikai Kutatóintézet, Analízis Szeminárium horvath@math.cas.cz
Institute of Mathematics of the Czech Academy of Sciences
March 19, 2021

Ring-theoretic (in)finiteness

Ring-theoretic (in)finiteness

Definition
Let \mathcal{A} be an algebra.

Ring-theoretic (in)finiteness

Definition

Let \mathcal{A} be an algebra. Then we say that

- $p \in \mathcal{A}$ is an idempotent if $p^{2}=p$;

Ring-theoretic (in)finiteness

Definition

Let \mathcal{A} be an algebra. Then we say that

- $p \in \mathcal{A}$ is an idempotent if $p^{2}=p$;
- two idempotents $p, q \in \mathcal{A}$ are equivalent, and denote it as $p \sim q$, if $\exists a, b \in \mathcal{A}$ such that $p=a b$ and $q=b a$;

Ring-theoretic (in)finiteness

Definition

Let \mathcal{A} be an algebra. Then we say that

- $p \in \mathcal{A}$ is an idempotent if $p^{2}=p$;
- two idempotents $p, q \in \mathcal{A}$ are equivalent, and denote it as $p \sim q$, if $\exists a, b \in \mathcal{A}$ such that $p=a b$ and $q=b a$;
- two idempotents $p, q \in \mathcal{A}$ are orthogonal, and denote it as $p \perp q$, if $p q=0=q p$.

Ring-theoretic (in)finiteness

Definition

Let \mathcal{A} be an algebra. Then we say that

- $p \in \mathcal{A}$ is an idempotent if $p^{2}=p$;
- two idempotents $p, q \in \mathcal{A}$ are equivalent, and denote it as $p \sim q$, if $\exists a, b \in \mathcal{A}$ such that $p=a b$ and $q=b a$;
- two idempotents $p, q \in \mathcal{A}$ are orthogonal, and denote it as $p \perp q$, if $p q=0=q p$.

Easy to see: \sim is an equivalence relation on the set of idempotents of \mathcal{A}.

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 .

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or $D F$, if $(\forall p \in \mathcal{A})$ idempotent:

$$
(p \sim 1) \Longrightarrow(p=1)
$$

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or $D F$, if $(\forall p \in \mathcal{A})$ idempotent: $(p \sim 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or DI, if it is not DF

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or $D F$, if $(\forall p \in \mathcal{A})$ idempotent: $(p \sim 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or $D I$, if it is not DF $(\Longleftrightarrow(\exists p \in \mathcal{A})$ idempotent: $(p \sim 1) \wedge(p \neq 1))$;

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or $D F$, if $(\forall p \in \mathcal{A})$ idempotent: $(p \sim 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or $D I$, if it is not DF $(\Longleftrightarrow(\exists p \in \mathcal{A})$ idempotent: $(p \sim 1) \wedge(p \neq 1))$;
(3) properly infinite or $P I$, if $(\exists p, q \in \mathcal{A})$ idempotents: $(p \sim 1 \sim q) \wedge(p \perp q)$.

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or DF, if $(\forall p \in \mathcal{A})$ idempotent: $(p \sim 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or $D I$, if it is not DF $(\Longleftrightarrow(\exists p \in \mathcal{A})$ idempotent: $(p \sim 1) \wedge(p \neq 1))$;
(3) properly infinite or $P I$, if $(\exists p, q \in \mathcal{A})$ idempotents: $(p \sim 1 \sim q) \wedge(p \perp q)$.

Some elementary observations:

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or DF, if $(\forall p \in \mathcal{A})$ idempotent: $(p \sim 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or $D I$, if it is not DF $(\Longleftrightarrow(\exists p \in \mathcal{A})$ idempotent: $(p \sim 1) \wedge(p \neq 1))$;
(3) properly infinite or $P I$, if $(\exists p, q \in \mathcal{A})$ idempotents: $(p \sim 1 \sim q) \wedge(p \perp q)$.

Some elementary observations:

- \mathcal{A} is $\mathrm{DF} \Longleftrightarrow(\forall a, b \in \mathcal{A})((a b=1) \Longrightarrow(b a=1))$;

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or DF, if $(\forall p \in \mathcal{A})$ idempotent: $(p \sim 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or $D I$, if it is not DF $(\Longleftrightarrow(\exists p \in \mathcal{A})$ idempotent: $(p \sim 1) \wedge(p \neq 1))$;
(3) properly infinite or $P I$, if $(\exists p, q \in \mathcal{A})$ idempotents: $(p \sim 1 \sim q) \wedge(p \perp q)$.

Some elementary observations:

- \mathcal{A} is $\mathrm{DF} \Longleftrightarrow(\forall a, b \in \mathcal{A})((a b=1) \Longrightarrow(b a=1))$;
- \mathcal{A} is $\mathrm{DI} \Longleftrightarrow(\exists a, b \in \mathcal{A})((a b=1) \wedge(b a \neq 1))$;

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or DF, if $(\forall p \in \mathcal{A})$ idempotent: $(p \sim 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or $D I$, if it is not DF $(\Longleftrightarrow(\exists p \in \mathcal{A})$ idempotent: $(p \sim 1) \wedge(p \neq 1))$;
(3) properly infinite or $P I$, if $(\exists p, q \in \mathcal{A})$ idempotents: $(p \sim 1 \sim q) \wedge(p \perp q)$.

Some elementary observations:

- \mathcal{A} is $\mathrm{DF} \Longleftrightarrow(\forall a, b \in \mathcal{A})((a b=1) \Longrightarrow(b a=1))$;
- \mathcal{A} is $\mathrm{DI} \Longleftrightarrow(\exists a, b \in \mathcal{A})((a b=1) \wedge(b a \neq 1))$;
- a commutative unital algebra is DF;

Definition

Let \mathcal{A} be a unital algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or DF, if $(\forall p \in \mathcal{A})$ idempotent: $(p \sim 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or $D I$, if it is not DF $(\Longleftrightarrow(\exists p \in \mathcal{A})$ idempotent: $(p \sim 1) \wedge(p \neq 1))$;
(3) properly infinite or $P I$, if $(\exists p, q \in \mathcal{A})$ idempotents: $(p \sim 1 \sim q) \wedge(p \perp q)$.

Some elementary observations:

- \mathcal{A} is DF $\Longleftrightarrow(\forall a, b \in \mathcal{A})((a b=1) \Longrightarrow(b a=1))$;
- \mathcal{A} is $\mathrm{DI} \Longleftrightarrow(\exists a, b \in \mathcal{A})((a b=1) \wedge(b a \neq 1))$;
- a commutative unital algebra is DF;
- \mathcal{A}, \mathcal{B} are unital algebras, \mathcal{A} is PI and $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is a unital algebra hom $\Longrightarrow \mathcal{B}$ is PI .

Lemma

For a unital algebra \mathcal{A} :

\mathcal{A} is $\mathrm{Pl} \Longrightarrow \mathcal{A}$ is DI .

Lemma
For a unital algebra \mathcal{A} :

$$
\mathcal{A} \text { is } \mathrm{PI} \Longrightarrow \mathcal{A} \text { is } D I .
$$

A related notion, only for unital Banach algebras:

Lemma

For a unital algebra \mathcal{A} :

$$
\mathcal{A} \text { is } \mathrm{PI} \Longrightarrow \mathcal{A} \text { is } D I .
$$

A related notion, only for unital Banach algebras:

Definition

A unital Banach algebra has stable rank one, if the group of invertible elements $\operatorname{inv}(\mathcal{A})$ is norm dense in \mathcal{A}.

Lemma

For a unital algebra \mathcal{A} :

$$
\mathcal{A} \text { is } \mathrm{PI} \Longrightarrow \mathcal{A} \text { is } D I .
$$

A related notion, only for unital Banach algebras:

Definition

A unital Banach algebra has stable rank one, if the group of invertible elements $\operatorname{inv}(\mathcal{A})$ is norm dense in \mathcal{A}.

The following is a simple exercise using Carl Neumann series:

Lemma

For a unital algebra \mathcal{A} :

$$
\mathcal{A} \text { is } \mathrm{PI} \Longrightarrow \mathcal{A} \text { is } D I .
$$

A related notion, only for unital Banach algebras:

Definition

A unital Banach algebra has stable rank one, if the group of invertible elements $\operatorname{inv}(\mathcal{A})$ is norm dense in \mathcal{A}.

The following is a simple exercise using Carl Neumann series:
Lemma (Rieffel, PLMS, '83 ?)
For a unital Banach algebra \mathcal{A} :

$$
\mathcal{A} \text { has stable rank one } \Longrightarrow \mathcal{A} \text { is } D F \text {. }
$$

Some overdue examples now. From now on, all Banach algebras are assumed to be above the complex field.

Some overdue examples now. From now on, all Banach algebras are assumed to be above the complex field.

Example

All the following Banach algebras have stable rank one:

Some overdue examples now. From now on, all Banach algebras are assumed to be above the complex field.

Example

All the following Banach algebras have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension 0 or 1 (e.g. $K=[0,1]$) [Rieffel];

Some overdue examples now. From now on, all Banach algebras are assumed to be above the complex field.

Example

All the following Banach algebras have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension 0 or 1 (e.g. $K=[0,1])$ [Rieffel];
- $C_{r}^{*}\left(\mathbb{F}_{2}\right)$ [Dykema-Haagerup-Rørdam];

Some overdue examples now. From now on, all Banach algebras are assumed to be above the complex field.

Example

All the following Banach algebras have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension 0 or 1 (e.g. $K=[0,1])$ [Rieffel];
- $C_{r}^{*}\left(\mathbb{F}_{2}\right)$ [Dykema-Haagerup-Rørdam];
- $C_{r}^{*}(\Gamma)$, where Γ (endowed with the discrete top) is hyperbolic, torsion-free and non-elementary [Dykema-de la Harpe];

Some overdue examples now. From now on, all Banach algebras are assumed to be above the complex field.

Example

All the following Banach algebras have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension 0 or 1 (e.g. $K=[0,1])$ [Rieffel];
- $C_{r}^{*}\left(\mathbb{F}_{2}\right)$ [Dykema-Haagerup-Rørdam];
- $C_{r}^{*}(\Gamma)$, where Γ (endowed with the discrete top) is hyperbolic, torsion-free and non-elementary [Dykema-de la Harpe];
- $\ell^{1}(\mathbb{Z})$ endowed with the convolution product [Dawson-Feinstein];

Some overdue examples now. From now on, all Banach algebras are assumed to be above the complex field.

Example

All the following Banach algebras have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension 0 or 1 (e.g. $K=[0,1]$) [Rieffel];
- $C_{r}^{*}\left(\mathbb{F}_{2}\right)$ [Dykema-Haagerup-Rørdam];
- $C_{r}^{*}(\Gamma)$, where Γ (endowed with the discrete top) is hyperbolic, torsion-free and non-elementary [Dykema-de la Harpe];
- $\ell^{1}(\mathbb{Z})$ endowed with the convolution product [Dawson-Feinstein];
- $M_{n}(\mathbb{C})$ (for each $n \in \mathbb{N}$);

Some overdue examples now. From now on, all Banach algebras are assumed to be above the complex field.

Example

All the following Banach algebras have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension 0 or 1 (e.g. $K=[0,1]$) [Rieffel];
- $C_{r}^{*}\left(\mathbb{F}_{2}\right)$ [Dykema-Haagerup-Rørdam];
- $C_{r}^{*}(\Gamma)$, where Γ (endowed with the discrete top) is hyperbolic, torsion-free and non-elementary [Dykema-de la Harpe];
- $\ell^{1}(\mathbb{Z})$ endowed with the convolution product [Dawson-Feinstein];
- $M_{n}(\mathbb{C})$ (for each $n \in \mathbb{N}$);
- the CAR-algebra $M_{2^{\infty}}(\mathbb{C}):=\underset{\longrightarrow}{\lim } M_{2^{n}}(\mathbb{C})$ [Rieffel];

Some overdue examples now. From now on, all Banach algebras are assumed to be above the complex field.

Example

All the following Banach algebras have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension 0 or 1 (e.g. $K=[0,1]$) [Rieffel];
- $C_{r}^{*}\left(\mathbb{F}_{2}\right)$ [Dykema-Haagerup-Rørdam];
- $C_{r}^{*}(\Gamma)$, where Γ (endowed with the discrete top) is hyperbolic, torsion-free and non-elementary [Dykema-de la Harpe];
- $\ell^{1}(\mathbb{Z})$ endowed with the convolution product [Dawson-Feinstein];
- $M_{n}(\mathbb{C})$ (for each $n \in \mathbb{N}$);
- the CAR-algebra $M_{2^{\infty}}(\mathbb{C}):=\underset{\longrightarrow}{\lim } M_{2^{n}}(\mathbb{C})$ [Rieffel];
- $\mathcal{B}(X)$, where X is a hereditarily indecomposable Banach space [folklore, H.].

Example

The following Banach algebras are DF but do not have stable rank one:

Example

The following Banach algebras are DF but do not have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension ≥ 2 (e.g. $K=\mathbb{D})$ [Rieffel];

Example

The following Banach algebras are DF but do not have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension ≥ 2 (e.g. $K=\mathbb{D})$ [Rieffel];
- $\ell^{1}(S)$, where S is a commutative, cancellative monoid which is not a group (e.g. $S=\mathbb{N}_{0}$) [Draga-Kania];

Example

The following Banach algebras are DF but do not have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension ≥ 2 (e.g. $K=\mathbb{D}$) [Rieffel];
- $\ell^{1}(S)$, where S is a commutative, cancellative monoid which is not a group (e.g. $S=\mathbb{N}_{0}$) [Draga-Kania];
- $\mathcal{B}\left(X_{T}\right)$, where X_{T} is the indecomposable but not hereditarily indecomposable Banach space constructed by Tarbard [H.].

Example

The following Banach algebras are DF but do not have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension ≥ 2 (e.g. $K=\mathbb{D})$ [Rieffel];
- $\ell^{1}(S)$, where S is a commutative, cancellative monoid which is not a group (e.g. $S=\mathbb{N}_{0}$) [Draga-Kania];
- $\mathcal{B}\left(X_{T}\right)$, where X_{T} is the indecomposable but not hereditarily indecomposable Banach space constructed by Tarbard [H.].

Example

The following Banach algebras are DI but not properly infinite:

Example

The following Banach algebras are DF but do not have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension ≥ 2 (e.g. $K=\mathbb{D})$ [Rieffel];
- $\ell^{1}(S)$, where S is a commutative, cancellative monoid which is not a group (e.g. $S=\mathbb{N}_{0}$) [Draga-Kania];
- $\mathcal{B}\left(X_{T}\right)$, where X_{T} is the indecomposable but not hereditarily indecomposable Banach space constructed by Tarbard [H.].

Example

The following Banach algebras are DI but not properly infinite:

- $\ell^{1}(B C)$, where $B C$ is the bicyclic monoid [folk];

Example

The following Banach algebras are DF but do not have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension ≥ 2 (e.g. $K=\mathbb{D})$ [Rieffel];
- $\ell^{1}(S)$, where S is a commutative, cancellative monoid which is not a group (e.g. $S=\mathbb{N}_{0}$) [Draga-Kania];
- $\mathcal{B}\left(X_{T}\right)$, where X_{T} is the indecomposable but not hereditarily indecomposable Banach space constructed by Tarbard [H.].

Example

The following Banach algebras are DI but not properly infinite:

- $\ell^{1}(B C)$, where $B C$ is the bicyclic monoid [folk];
- $L^{1}\left(\mathbb{C} \rtimes \mathbb{C}^{*}\right)$ [Y. Choi];

Example

The following Banach algebras are DF but do not have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension ≥ 2 (e.g. $K=\mathbb{D})$ [Rieffel];
- $\ell^{1}(S)$, where S is a commutative, cancellative monoid which is not a group (e.g. $S=\mathbb{N}_{0}$) [Draga-Kania];
- $\mathcal{B}\left(X_{T}\right)$, where X_{T} is the indecomposable but not hereditarily indecomposable Banach space constructed by Tarbard [H.].

Example

The following Banach algebras are DI but not properly infinite:

- $\ell^{1}(B C)$, where $B C$ is the bicyclic monoid [folk];
- $L^{1}\left(\mathbb{C} \rtimes \mathbb{C}^{*}\right)$ [Y. Choi];
- $\mathcal{B}(X)$, where X is the $p^{\text {th }}$ James space \mathcal{J}_{p} or $C\left[0, \omega_{1}\right]$,

Example

The following Banach algebras are DF but do not have stable rank one:

- $C(K)$, where K is cpt Hdff with covering dimension ≥ 2 (e.g. $K=\mathbb{D})$ [Rieffel];
- $\ell^{1}(S)$, where S is a commutative, cancellative monoid which is not a group (e.g. $S=\mathbb{N}_{0}$) [Draga-Kania];
- $\mathcal{B}\left(X_{T}\right)$, where X_{T} is the indecomposable but not hereditarily indecomposable Banach space constructed by Tarbard [H.].

Example

The following Banach algebras are DI but not properly infinite:

- $\ell^{1}(B C)$, where $B C$ is the bicyclic monoid [folk];
- $L^{1}\left(\mathbb{C} \rtimes \mathbb{C}^{*}\right)$ [Y. Choi];
- $\mathcal{B}(X)$, where X is the $p^{\text {th }}$ James space \mathcal{J}_{p} or $C\left[0, \omega_{1}\right]$, or Figiel's space \mathcal{F} [Laustsen].

Example

The following Banach algebras are properly infinite:

Example

The following Banach algebras are properly infinite:

- $\mathcal{B}(X)$, where X is a Banach space such that it contains a complemented subspace isomorphic to $X \oplus X$ (e.g. $X=\ell_{p}$, where $1 \leq p \leq \infty$) [Laustsen];

Example

The following Banach algebras are properly infinite:

- $\mathcal{B}(X)$, where X is a Banach space such that it contains a complemented subspace isomorphic to $X \oplus X$ (e.g. $X=\ell_{p}$, where $1 \leq p \leq \infty$) [Laustsen];
- " $\ell{ }^{1}\left(C u_{2} \backslash\{\diamond\}\right)$ ", where $C u_{2}$ is the second Cuntz semigroup with a zero element \diamond [folk].

C^{*}-theoretic (in)finiteness

C^{*}-theoretic (in)finiteness

Definition (The C^{*}-versions)

Let \mathcal{A} be a C^{*}-algebra.

C^{*}-theoretic (in)finiteness

Definition (The C^{*}-versions)

Let \mathcal{A} be a C^{*}-algebra. Then we say that:
(1) $p \in \mathcal{A}$ is a projection if $p^{2}=p$ and $p^{*}=p$;

C^{*}-theoretic (in)finiteness

Definition (The C^{*}-versions)

Let \mathcal{A} be a C^{*}-algebra. Then we say that:
(1) $p \in \mathcal{A}$ is a projection if $p^{2}=p$ and $p^{*}=p$;
(2) two projections $p, q \in \mathcal{A}$ are Murray-von Neumann equivalent, and denote it as $p \approx q$, if $\exists v \in \mathcal{A}$ such that $p=v^{*} v$ and $q=v v^{*}$;

C^{*}-theoretic (in)finiteness

Definition (The C^{*}-versions)

Let \mathcal{A} be a C^{*}-algebra. Then we say that:
(1) $p \in \mathcal{A}$ is a projection if $p^{2}=p$ and $p^{*}=p$;
(2) two projections $p, q \in \mathcal{A}$ are Murray-von Neumann equivalent, and denote it as $p \approx q$, if $\exists v \in \mathcal{A}$ such that $p=v^{*} v$ and $q=v v^{*}$;
(3) two projections $p, q \in \mathcal{A}$ are orthogonal, and denote it as $p \perp q$, if $p q=0$.

C^{*}-theoretic (in)finiteness

Definition (The C^{*}-versions)

Let \mathcal{A} be a C^{*}-algebra. Then we say that:
(1) $p \in \mathcal{A}$ is a projection if $p^{2}=p$ and $p^{*}=p$;
(2) two projections $p, q \in \mathcal{A}$ are Murray-von Neumann equivalent, and denote it as $p \approx q$, if $\exists v \in \mathcal{A}$ such that $p=v^{*} v$ and $q=v v^{*}$;
(3) two projections $p, q \in \mathcal{A}$ are orthogonal, and denote it as $p \perp q$, if $p q=0$.

Easy to see:

C^{*}-theoretic (in)finiteness

Definition (The C^{*}-versions)

Let \mathcal{A} be a C^{*}-algebra. Then we say that:
(1) $p \in \mathcal{A}$ is a projection if $p^{2}=p$ and $p^{*}=p$;
(2) two projections $p, q \in \mathcal{A}$ are Murray-von Neumann equivalent, and denote it as $p \approx q$, if $\exists v \in \mathcal{A}$ such that $p=v^{*} v$ and $q=v v^{*}$;
(3) two projections $p, q \in \mathcal{A}$ are orthogonal, and denote it as $p \perp q$, if $p q=0$.

Easy to see:
a) \approx is an equivalence relation on the set of projections of \mathcal{A};

C^{*}-theoretic (in)finiteness

Definition (The C^{*}-versions)

Let \mathcal{A} be a C^{*}-algebra. Then we say that:
(1) $p \in \mathcal{A}$ is a projection if $p^{2}=p$ and $p^{*}=p$;
(2) two projections $p, q \in \mathcal{A}$ are Murray-von Neumann equivalent, and denote it as $p \approx q$, if $\exists v \in \mathcal{A}$ such that $p=v^{*} v$ and $q=v v^{*}$;
(3) two projections $p, q \in \mathcal{A}$ are orthogonal, and denote it as $p \perp q$, if $p q=0$.

Easy to see:
a) \approx is an equivalence relation on the set of projections of \mathcal{A};
b) if v is as in 2), then it is a partial isometry of \mathcal{A};

C^{*}-theoretic (in)finiteness

Definition (The C^{*}-versions)

Let \mathcal{A} be a C^{*}-algebra. Then we say that:
(1) $p \in \mathcal{A}$ is a projection if $p^{2}=p$ and $p^{*}=p$;
(2) two projections $p, q \in \mathcal{A}$ are Murray-von Neumann equivalent, and denote it as $p \approx q$, if $\exists v \in \mathcal{A}$ such that $p=v^{*} v$ and $q=v v^{*}$;
(3) two projections $p, q \in \mathcal{A}$ are orthogonal, and denote it as $p \perp q$, if $p q=0$.

Easy to see:
a) \approx is an equivalence relation on the set of projections of \mathcal{A};
b) if v is as in 2), then it is a partial isometry of \mathcal{A};
c) if p, q are as in 3), then $q p=0$ follows.

Definition (The C^{*}-versions of (in)finiteness)

Let \mathcal{A} be a unital C^{*}-algebra with multiplicative identity 1 .

Definition (The C^{*}-versions of (in)finiteness)

Let \mathcal{A} be a unital C^{*}-algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or $D F$, if $(\forall p \in \mathcal{A})$ projection: $(p \approx 1) \Longrightarrow(p=1)$;

Definition (The C^{*}-versions of (in)finiteness)

Let \mathcal{A} be a unital C^{*}-algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or $D F$, if $(\forall p \in \mathcal{A})$ projection: $(p \approx 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or $D I$, if it is not DF $(\Longleftrightarrow(\exists p \in \mathcal{A})$ projection: $(p \approx 1) \wedge(p \neq 1))$;

Definition (The C^{*}-versions of (in)finiteness)

Let \mathcal{A} be a unital C^{*}-algebra with multiplicative identity 1 . We say that \mathcal{A} is
(1) Dedekind-finite or $D F$, if $(\forall p \in \mathcal{A})$ projection: $(p \approx 1) \Longrightarrow(p=1)$;
(2) Dedekind-infinite or $D I$, if it is not DF $(\Longleftrightarrow(\exists p \in \mathcal{A})$ projection: $(p \approx 1) \wedge(p \neq 1))$;
(3) properly infinite or $P I$, if $(\exists p, q \in \mathcal{A})$ projections: $(p \approx 1 \approx q) \wedge(p \perp q)$.
... But for unital C^{*}-algebras both versions make sense, which one to use???
... But for unital C^{*}-algebras both versions make sense, which one to use??? It absolutely does not matter.
... But for unital C^{*}-algebras both versions make sense, which one to use??? It absolutely does not matter.

```
Proposition (folk, scattered through H.G. Dales' book "Banach Algebras and Automatic Continuity")
Let \(\mathcal{A}\) be a unital \(C^{*}\)-algebra.
```

... But for unital C^{*}-algebras both versions make sense, which one to use??? It absolutely does not matter.

Proposition (folk, scattered through H.G. Dales' book "Banach Algebras and Automatic Continuity")
Let \mathcal{A} be a unital C^{*}-algebra. Then
(1) \mathcal{A} is DF as an algebra $\Leftrightarrow \mathcal{A}$ is $D F$ as a C^{*}-algebra;
... But for unital C^{*}-algebras both versions make sense, which one to use??? It absolutely does not matter.

Proposition (folk, scattered through H.G. Dales' book "Banach Algebras and Automatic Continuity")
Let \mathcal{A} be a unital C^{*}-algebra. Then
(1) \mathcal{A} is DF as an algebra $\Leftrightarrow \mathcal{A}$ is $D F$ as a C^{*}-algebra;
(2) \mathcal{A} is PI as an algebra $\Leftrightarrow \mathcal{A}$ is PI as a C^{*}-algebra.
... But for unital C^{*}-algebras both versions make sense, which one to use??? It absolutely does not matter.

```
Proposition (folk, scattered through H.G. Dales' book "Banach
Algebras and Automatic Continuity")
Let }\mathcal{A}\mathrm{ be a unital C*-algebra. Then
(1) \mathcal{A is DF as an algebra }\Leftrightarrow\mathcal{A}\mathrm{ is DF as a C*-algebra;}
(2)}\mathcal{A}\mathrm{ is PI as an algebra }\Leftrightarrow\mathcal{A}\mathrm{ is PI as a C}\mp@subsup{C}{}{*}\mathrm{ -algebra.
```


Proof.

(Sketch.) The main ideas used:
... But for unital C^{*}-algebras both versions make sense, which one to use??? It absolutely does not matter.

Proposition (folk, scattered through H.G. Dales' book "Banach Algebras and Automatic Continuity")
Let \mathcal{A} be a unital C^{*}-algebra. Then
(1) \mathcal{A} is DF as an algebra $\Leftrightarrow \mathcal{A}$ is DF as a C^{*}-algebra;
(2) \mathcal{A} is PI as an algebra $\Leftrightarrow \mathcal{A}$ is PI as a C^{*}-algebra.

Proof.

(Sketch.) The main ideas used:

- If $p \in \mathcal{A}$ is an idempotent, there is a $q \in \mathcal{A}$ projection with

$$
p \sim q \text { and }(p q=q, q p=p \text { or } p q=p, q p=q) .
$$

... But for unital C^{*}-algebras both versions make sense, which one to use??? It absolutely does not matter.

Proposition (folk, scattered through H.G. Dales' book "Banach Algebras and Automatic Continuity")

Let \mathcal{A} be a unital C^{*}-algebra. Then
(1) \mathcal{A} is DF as an algebra $\Leftrightarrow \mathcal{A}$ is $D F$ as a C^{*}-algebra;
(2) \mathcal{A} is PI as an algebra $\Leftrightarrow \mathcal{A}$ is PI as a C^{*}-algebra.

Proof.

(Sketch.) The main ideas used:

- If $p \in \mathcal{A}$ is an idempotent, there is a $q \in \mathcal{A}$ projection with $p \sim q$ and $(p q=q, q p=p$ or $p q=p, q p=q)$.
- Let $p, q \in \mathcal{A}$ be projections. Then $p \sim q \Longleftrightarrow p \approx q$.

"Massive" Banach algebra constructions

"Massive" Banach algebra constructions

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras.

"Massive" Banach algebra constructions

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras. Define

$$
\ell^{\infty}\left(\mathcal{A}_{n}\right):=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \sup _{n \in \mathbb{N}}\left\|a_{n}\right\|<\infty\right\}
$$

"Massive" Banach algebra constructions

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras. Define

$$
\begin{aligned}
\ell^{\infty}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \sup _{n \in \mathbb{N}}\left\|a_{n}\right\|<\infty\right\} ; \\
c_{0}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} ;
\end{aligned}
$$

"Massive" Banach algebra constructions

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras. Define

$$
\begin{aligned}
\ell^{\infty}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \sup _{n \in \mathbb{N}}\left\|a_{n}\right\|<\infty\right\} ; \\
c_{0}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} ; \\
c_{\mathcal{U}}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}\left(\mathcal{A}_{n}\right): \lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0\right\} ;
\end{aligned}
$$

"Massive" Banach algebra constructions

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras. Define

$$
\begin{aligned}
\ell^{\infty}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \sup _{n \in \mathbb{N}}\left\|a_{n}\right\|<\infty\right\} ; \\
c_{0}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} ; \\
c_{\mathcal{U}}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}\left(\mathcal{A}_{n}\right): \lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0\right\} ;
\end{aligned}
$$

where \mathcal{U} is a free ultrafilter on \mathbb{N}.

"Massive" Banach algebra constructions

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras. Define

$$
\begin{aligned}
\ell^{\infty}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \sup _{n \in \mathbb{N}}\left\|a_{n}\right\|<\infty\right\} ; \\
c_{0}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0\right\} ; \\
c_{\mathcal{U}}\left(\mathcal{A}_{n}\right) & :=\left\{A:=\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}\left(\mathcal{A}_{n}\right): \lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0\right\} ;
\end{aligned}
$$

where \mathcal{U} is a free ultrafilter on \mathbb{N}.
$\ell^{\infty}\left(\mathcal{A}_{n}\right)$ is a unital Banach algebra endowed with pointwise operations and the sup norm

$$
\|A\|=\sup _{n \in \mathbb{N}}\left\|a_{n}\right\| \quad\left(A=\left(a_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)\right)
$$

In fact, $c_{0}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ and $c_{\mathcal{U}}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $c_{0}\left(\mathcal{A}_{n}\right) \subsetneq c_{\mathcal{U}}\left(\mathcal{A}_{n}\right)$.

In fact, $c_{0}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ and $c_{\mathcal{U}}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $c_{0}\left(\mathcal{A}_{n}\right) \subsetneq c_{\mathcal{U}}\left(\mathcal{A}_{n}\right)$.

Definition

The asymptotic sequence algebra and the ultraproduct of a sequence of unital Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ are defined as

$$
\begin{align*}
\operatorname{Asy}\left(\mathcal{A}_{n}\right) & :=\ell^{\infty}\left(\mathcal{A}_{n}\right) / c_{0}\left(\mathcal{A}_{n}\right), \text { and } \tag{1}\\
\left(\mathcal{A}_{n}\right) \mathcal{U} & :=\ell^{\infty}\left(\mathcal{A}_{n}\right) / \mathcal{c}_{\mathcal{U}}\left(\mathcal{A}_{n}\right), \tag{2}
\end{align*}
$$

respectively.

In fact, $c_{0}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ and $c_{\mathcal{U}}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $c_{0}\left(\mathcal{A}_{n}\right) \subsetneq c_{\mathcal{U}}\left(\mathcal{A}_{n}\right)$.

Definition

The asymptotic sequence algebra and the ultraproduct of a sequence of unital Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ are defined as

$$
\begin{align*}
\operatorname{Asy}\left(\mathcal{A}_{n}\right) & :=\ell^{\infty}\left(\mathcal{A}_{n}\right) / c_{0}\left(\mathcal{A}_{n}\right), \text { and } \tag{1}\\
\left(\mathcal{A}_{n}\right) \mathcal{U} & :=\ell^{\infty}\left(\mathcal{A}_{n}\right) / \mathcal{C}_{\mathcal{U}}\left(\mathcal{A}_{n}\right), \tag{2}
\end{align*}
$$

respectively.
Both $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$ are unital Banach algebras.

In fact, $c_{0}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ and $c_{\mathcal{U}}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $c_{0}\left(\mathcal{A}_{n}\right) \subsetneq c_{\mathcal{U}}\left(\mathcal{A}_{n}\right)$.

Definition

The asymptotic sequence algebra and the ultraproduct of a sequence of unital Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ are defined as

$$
\begin{align*}
\operatorname{Asy}\left(\mathcal{A}_{n}\right) & :=\ell^{\infty}\left(\mathcal{A}_{n}\right) / c_{0}\left(\mathcal{A}_{n}\right), \text { and } \tag{1}\\
\left(\mathcal{A}_{n}\right) \mathcal{U} & :=\ell^{\infty}\left(\mathcal{A}_{n}\right) / \mathcal{C}_{\mathcal{U}}\left(\mathcal{A}_{n}\right), \tag{2}
\end{align*}
$$

respectively.
Both $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$ are unital Banach algebras. Let $\pi: \ell^{\infty}\left(\mathcal{A}_{n}\right) \rightarrow \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\pi_{\mathcal{U}}: \ell^{\infty}\left(\mathcal{A}_{n}\right) \rightarrow\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$ denote the quotient maps.

In fact, $c_{0}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ and $c_{\mathcal{U}}\left(\mathcal{A}_{n}\right) \unlhd \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $c_{0}\left(\mathcal{A}_{n}\right) \subsetneq c_{\mathcal{U}}\left(\mathcal{A}_{n}\right)$.

Definition

The asymptotic sequence algebra and the ultraproduct of a sequence of unital Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ are defined as

$$
\begin{align*}
\operatorname{Asy}\left(\mathcal{A}_{n}\right) & :=\ell^{\infty}\left(\mathcal{A}_{n}\right) / c_{0}\left(\mathcal{A}_{n}\right), \text { and } \tag{1}\\
\left(\mathcal{A}_{n}\right) \mathcal{U} & :=\ell^{\infty}\left(\mathcal{A}_{n}\right) / \mathcal{c}_{\mathcal{U}}\left(\mathcal{A}_{n}\right), \tag{2}
\end{align*}
$$

respectively.
Both $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$ are unital Banach algebras. Let $\pi: \ell^{\infty}\left(\mathcal{A}_{n}\right) \rightarrow \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\pi_{\mathcal{U}}: \ell^{\infty}\left(\mathcal{A}_{n}\right) \rightarrow\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$ denote the quotient maps. The norms on $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right) \mathcal{U}$ are given by

$$
\begin{aligned}
\|\pi(A)\| & =\limsup _{n \rightarrow \infty}\left\|a_{n}\right\|, \text { and } \\
\left\|\pi_{\mathcal{U}}(A)\right\| & =\lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\| \quad\left(A=\left(a_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)\right)
\end{aligned}
$$

A quick comparison of $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right) \mathcal{U}$

Typically, the Banach algebras $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$ are very different.
$\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is "much bigger" than $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$.

A quick comparison of $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right) \mathcal{U}$

Typically, the Banach algebras $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$ are very different.
$\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is "much bigger" than $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$.
For example, take $\mathcal{A}_{n}:=\mathbb{C}$ for each $n \in \mathbb{N}$. Then

A quick comparison of $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$

Typically, the Banach algebras $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right) \mathcal{U}$ are very different.
$\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is "much bigger" than $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$.
For example, take $\mathcal{A}_{n}:=\mathbb{C}$ for each $n \in \mathbb{N}$. Then

- $\operatorname{Asy}\left(\mathcal{A}_{n}\right)=\operatorname{Asy}(\mathbb{C})=\ell^{\infty} / c_{0} \cong C(\beta \mathbb{N})$;

A quick comparison of $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$

Typically, the Banach algebras $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right) \mathcal{U}$ are very different.
$\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is "much bigger" than $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$.
For example, take $\mathcal{A}_{n}:=\mathbb{C}$ for each $n \in \mathbb{N}$. Then

- $\operatorname{Asy}\left(\mathcal{A}_{n}\right)=\operatorname{Asy}(\mathbb{C})=\ell^{\infty} / c_{0} \cong C(\beta \mathbb{N})$;
- $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}=(\mathbb{C})_{\mathcal{U}}=\ell^{\infty} / \mathcal{c}_{\mathcal{U}} \cong \mathbb{C}$.

A word on reduced products

We will focus on the asymptotic sequence algebra $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ in this talk.

A word on reduced products

We will focus on the asymptotic sequence algebra $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ in this talk. Both the posive results and the counter-examples can be adjusted to the ultraproducts $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$, without any difficulties.

A word on reduced products

We will focus on the asymptotic sequence algebra $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ in this talk. Both the posive results and the counter-examples can be adjusted to the ultraproducts $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$, without any difficulties.

In fact, all our results hold for reduced products:

A word on reduced products

We will focus on the asymptotic sequence algebra $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ in this talk. Both the posive results and the counter-examples can be adjusted to the ultraproducts $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$, without any difficulties.

In fact, all our results hold for reduced products: If $\left(\mathcal{A}_{\gamma}\right)_{\gamma \in \Gamma}$ is a system of unital Banach algebras and \mathcal{F} is a filter on the indexing set Γ, we define the reduced product of $\left(\mathcal{A}_{\gamma}\right)_{\gamma \in \Gamma}$ as

$$
\left(\mathcal{A}_{\gamma}\right)_{\mathcal{F}}:=\ell^{\infty}\left(\mathcal{A}_{n}\right) / c_{\mathcal{F}}\left(\mathcal{A}_{n}\right)
$$

A word on reduced products

We will focus on the asymptotic sequence algebra $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ in this talk. Both the posive results and the counter-examples can be adjusted to the ultraproducts $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$, without any difficulties.

In fact, all our results hold for reduced products: If $\left(\mathcal{A}_{\gamma}\right)_{\gamma \in \Gamma}$ is a system of unital Banach algebras and \mathcal{F} is a filter on the indexing set Γ, we define the reduced product of $\left(\mathcal{A}_{\gamma}\right)_{\gamma \in \Gamma}$ as

$$
\left(\mathcal{A}_{\gamma}\right)_{\mathcal{F}}:=\ell^{\infty}\left(\mathcal{A}_{n}\right) / c_{\mathcal{F}}\left(\mathcal{A}_{n}\right) .
$$

Both $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ and $\left(\mathcal{A}_{n}\right)_{\mathcal{U}}$ are special cases of $\left(\mathcal{A}_{n}\right)_{\mathcal{F}}$.

Bringing things together- The results

Aim: To classify when $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is infinite in terms of the \mathcal{A}_{n} 's.

Bringing things together- The results

Aim: To classify when $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is infinite in terms of the \mathcal{A}_{n} 's.
Recall that a unital algebra \mathcal{A} is DF if for any idempotent $p \in \mathcal{A}$: $p \sim 1 \Longleftrightarrow p=1$.

Bringing things together- The results

Aim: To classify when $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is infinite in terms of the \mathcal{A}_{n} 's.
Recall that a unital algebra \mathcal{A} is DF if for any idempotent $p \in \mathcal{A}$: $p \sim 1 \Longleftrightarrow p=1$.

Theorem (Daws-H.)

Assume $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of DF Banach algebras. Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Bringing things together- The results

Aim: To classify when $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is infinite in terms of the \mathcal{A}_{n} 's.
Recall that a unital algebra \mathcal{A} is DF if for any idempotent $p \in \mathcal{A}$: $p \sim 1 \Longleftrightarrow p=1$.

```
Theorem (Daws-H.)
Assume (}\mp@subsup{\mathcal{A}}{n}{}\mp@subsup{)}{n\in\mathbb{N}}{}\mathrm{ is a sequence of DF Banach algebras. Then \(\operatorname{Asy}\left(\mathcal{A}_{n}\right)\) is \(D F\).
```

The converse is not true!

Bringing things together- The results

Aim: To classify when $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is infinite in terms of the \mathcal{A}_{n} 's.
Recall that a unital algebra \mathcal{A} is DF if for any idempotent $p \in \mathcal{A}$: $p \sim 1 \Longleftrightarrow p=1$.

Theorem (Daws-H.)

Assume $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of DF Banach algebras. Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

The converse is not true!

Theorem (Daws-H.)

There is a sequence of $D I\left(\Leftrightarrow\right.$ not DF) Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Bringing things together- The results

Aim: To classify when $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is infinite in terms of the \mathcal{A}_{n} 's.
Recall that a unital algebra \mathcal{A} is DF if for any idempotent $p \in \mathcal{A}$: $p \sim 1 \Longleftrightarrow p=1$.

Theorem (Daws-H.)

Assume $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of DF Banach algebras. Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

The converse is not true!

Theorem (Daws-H.)

There is a sequence of $D I\left(\Leftrightarrow\right.$ not $D F$) Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

More on the proofs to follow soon.

Bringing things together- The results

Aim: To classify when $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is infinite in terms of the \mathcal{A}_{n} 's.
Recall that a unital algebra \mathcal{A} is DF if for any idempotent $p \in \mathcal{A}$: $p \sim 1 \Longleftrightarrow p=1$.

Theorem (Daws-H.)

Assume $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of DF Banach algebras. Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

The converse is not true!

Theorem (Daws-H.)

There is a sequence of $D I\left(\Leftrightarrow\right.$ not $D F$) Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

More on the proofs to follow soon. (Wishful thinking.)

However, something can be rectified in certain specific cases, when we have "nice norm control".

However, something can be rectified in certain specific cases, when we have "nice norm control". The following is simple corollary of a more general (but less visual) result:

Corollary (Daws-H.)

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is DF. Moreover, suppose that one of the following two conditions hold:
(1) $\mathcal{A}_{n}=\mathcal{A}_{m}$ for every $n, m \in \mathbb{N}$;
(2) \mathcal{A}_{n} is a C^{*}-algebra for each $n \in \mathbb{N}$.

Then there is $N \in \mathbb{N}$ such that \mathcal{A}_{n} is $D F$ for $n \geq N$.

However, something can be rectified in certain specific cases, when we have "nice norm control". The following is simple corollary of a more general (but less visual) result:

Corollary (Daws-H.)

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is DF. Moreover, suppose that one of the following two conditions hold:
(1) $\mathcal{A}_{n}=\mathcal{A}_{m}$ for every $n, m \in \mathbb{N}$;
(2) \mathcal{A}_{n} is a C^{*}-algebra for each $n \in \mathbb{N}$.

Then there is $N \in \mathbb{N}$ such that \mathcal{A}_{n} is $D F$ for $n \geq N$.
The C^{*}-case is very well known.

The situation regarding proper infiniteness is "reversed".
Recall that a unital algebra \mathcal{A} is PI if there exist idempotents $p, q \in \mathcal{A}$ such that $p \sim 1 \sim q$ and $p \perp q$.

The situation regarding proper infiniteness is "reversed".
Recall that a unital algebra \mathcal{A} is PI if there exist idempotents $p, q \in \mathcal{A}$ such that $p \sim 1 \sim q$ and $p \perp q$.

Theorem (Daws-H.)

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is properly infinite. Then there is an $N \in \mathbb{N}$ such that \mathcal{A}_{n} is properly infinite for every $n \geq N$.

The situation regarding proper infiniteness is "reversed".
Recall that a unital algebra \mathcal{A} is PI if there exist idempotents $p, q \in \mathcal{A}$ such that $p \sim 1 \sim q$ and $p \perp q$.

Theorem (Daws-H.)

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is properly infinite. Then there is an $N \in \mathbb{N}$ such that \mathcal{A}_{n} is properly infinite for every $n \geq N$.

The converse is, again, false.

The situation regarding proper infiniteness is "reversed".
Recall that a unital algebra \mathcal{A} is PI if there exist idempotents $p, q \in \mathcal{A}$ such that $p \sim 1 \sim q$ and $p \perp q$.

Theorem (Daws-H.)

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is properly infinite. Then there is an $N \in \mathbb{N}$ such that \mathcal{A}_{n} is properly infinite for every $n \geq N$.

The converse is, again, false.

Theorem (Daws-H.)

There is a sequence of PI Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is not properly infinite.

The situation regarding proper infiniteness is "reversed".
Recall that a unital algebra \mathcal{A} is PI if there exist idempotents $p, q \in \mathcal{A}$ such that $p \sim 1 \sim q$ and $p \perp q$.

Theorem (Daws-H.)

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unital Banach algebras such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is properly infinite. Then there is an $N \in \mathbb{N}$ such that \mathcal{A}_{n} is properly infinite for every $n \geq N$.

The converse is, again, false.

Theorem (Daws-H.)

There is a sequence of PI Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is not properly infinite.

Both of these results are somewhat harder to prove than their respective DF-counterparts.

Having "nice norm control" can save the day again.

Having "nice norm control" can save the day again. The following is simple corollary of a more general result:

Corollary (Daws-H.)

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of PI Banach algebras. Moreover, suppose that one of the following two conditions hold:
(1) $\mathcal{A}_{n}=\mathcal{A}_{m}$ for every $n, m \in \mathbb{N}$;
(2) \mathcal{A}_{n} is a C^{*}-algebra for each $n \in \mathbb{N}$.

Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is PI.

Having "nice norm control" can save the day again. The following is simple corollary of a more general result:

Corollary (Daws-H.)

Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of PI Banach algebras. Moreover, suppose that one of the following two conditions hold:
(1) $\mathcal{A}_{n}=\mathcal{A}_{m}$ for every $n, m \in \mathbb{N}$;
(2) \mathcal{A}_{n} is a C^{*}-algebra for each $n \in \mathbb{N}$.

Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is PI.
The C^{*}-case is very well known.

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\operatorname{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\mathrm{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.
Proposition (Daws-H.)
Let \mathcal{A} be a unital Banach algebra such that $\operatorname{Asy}(\mathcal{A})$ has stable rank one. Then \mathcal{A} has stable rank one.

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\mathrm{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.
Proposition (Daws-H.)
Let \mathcal{A} be a unital Banach algebra such that $\operatorname{Asy}(\mathcal{A})$ has stable rank one. Then \mathcal{A} has stable rank one.

The converse is...

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\operatorname{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.
Proposition (Daws-H.)
Let \mathcal{A} be a unital Banach algebra such that $\operatorname{Asy}(\mathcal{A})$ has stable rank one. Then \mathcal{A} has stable rank one.

The converse is... (*drumroll*)

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\operatorname{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.
Proposition (Daws-H.)
Let \mathcal{A} be a unital Banach algebra such that $\operatorname{Asy}(\mathcal{A})$ has stable rank one. Then \mathcal{A} has stable rank one.

The converse is... (*drumroll*) False!

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\operatorname{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.

Proposition (Daws-H.)

Let \mathcal{A} be a unital Banach algebra such that $\operatorname{Asy}(\mathcal{A})$ has stable rank one. Then \mathcal{A} has stable rank one.

The converse is... (*drumroll*) False!

Theorem (Daws-H.)

Let $\mathcal{A}:=\ell^{1}(\mathbb{Z})$. Then \mathcal{A} has stable rank one, but $\operatorname{Asy}(\mathcal{A})$ does not have stable rank one.

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\operatorname{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.

Proposition (Daws-H.)

Let \mathcal{A} be a unital Banach algebra such that $\operatorname{Asy}(\mathcal{A})$ has stable rank one. Then \mathcal{A} has stable rank one.

The converse is... (*drumroll*) False!

Theorem (Daws-H.)

Let $\mathcal{A}:=\ell^{1}(\mathbb{Z})$. Then \mathcal{A} has stable rank one, but $\operatorname{Asy}(\mathcal{A})$ does not have stable rank one.

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\operatorname{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.

Proposition (Daws-H.)

Let \mathcal{A} be a unital Banach algebra such that $\operatorname{Asy}(\mathcal{A})$ has stable rank one. Then \mathcal{A} has stable rank one.

The converse is... (*drumroll*) False!

Theorem (Daws-H.)

Let $\mathcal{A}:=\ell^{1}(\mathbb{Z})$. Then \mathcal{A} has stable rank one, but $\operatorname{Asy}(\mathcal{A})$ does not have stable rank one.

Fun facts

- The positive result (Proposition) only uses elementary methods;

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\operatorname{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.

Proposition (Daws-H.)

Let \mathcal{A} be a unital Banach algebra such that $\operatorname{Asy}(\mathcal{A})$ has stable rank one. Then \mathcal{A} has stable rank one.

The converse is... (*drumroll*) False!

Theorem (Daws-H.)

Let $\mathcal{A}:=\ell^{1}(\mathbb{Z})$. Then \mathcal{A} has stable rank one, but $\operatorname{Asy}(\mathcal{A})$ does not have stable rank one.

Fun facts

- The positive result (Proposition) only uses elementary methods;
- but the counter-example (Theorem) relies on sledgehammers.

We might also ask what happens when considering stable rank one.
A unital Ban. alg. \mathcal{A} has stable rank one $\operatorname{if} \operatorname{inv}(\mathcal{A})$ is dense in \mathcal{A}.

Proposition (Daws-H.)

Let \mathcal{A} be a unital Banach algebra such that $\operatorname{Asy}(\mathcal{A})$ has stable rank one. Then \mathcal{A} has stable rank one.

The converse is... (*drumroll*) False!

Theorem (Daws-H.)

Let $\mathcal{A}:=\ell^{1}(\mathbb{Z})$. Then \mathcal{A} has stable rank one, but $\operatorname{Asy}(\mathcal{A})$ does not have stable rank one.

Fun facts

- The positive result (Proposition) only uses elementary methods;
- but the counter-example (Theorem) relies on sledgehammers.
- If \mathcal{A} is a C^{*}-algebra, then \mathcal{A} has stable rank one $\Leftrightarrow \operatorname{Asy}(\mathcal{A})$ has stable rank one. [follows from work of e.g. Farah-Rørdam]

Ideas \& tools behind some of the simpler proofs

We went to prove:

Theorem

Assume $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of DF Banach algebras. Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Ideas \& tools behind some of the simpler proofs

We went to prove:

Theorem

Assume $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of DF Banach algebras. Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Some of the ingredients:

Ideas \& tools behind some of the simpler proofs

We went to prove:

Theorem

Assume $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of DF Banach algebras. Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Some of the ingredients: Let \mathcal{A} be a unital Banach algebra.
Very simple but very important fact
If $p \in \mathcal{A}$ is an idempotent with $\|p\|<1$, then $p=0$.

Ideas \& tools behind some of the simpler proofs

We went to prove:

Theorem

Assume $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of DF Banach algebras. Then $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Some of the ingredients: Let \mathcal{A} be a unital Banach algebra.
Very simple but very important fact
If $p \in \mathcal{A}$ is an idempotent with $\|p\|<1$, then $p=0$.
The Approximate Idempotent Lemma:

Proposition (folk)

Let $a \in \mathcal{A}$ be such that $\nu:=\left\|a^{2}-a\right\|<1 / 4$. Then there is an idempotent $p \in \mathcal{A}$ such that $\|p-a\| \leq f_{\|a\|}(\nu)$ holds. Moreover, if $y \in \mathcal{A}$ is such that ay $=$ ya then $y p=p y$.

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.
(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$.

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.
Proof of Theorem.
(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent.

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.

(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent. Choose $X=\left(x_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $\pi(X)=p$,

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.

(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent. Choose $X=\left(x_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $\pi(X)=p$, so

$$
\pi\left(X^{2}\right)=\pi(X)^{2}=p^{2}=p=\pi(X)
$$

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.

(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent. Choose $X=\left(x_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $\pi(X)=p$, so

$$
\pi\left(X^{2}\right)=\pi(X)^{2}=p^{2}=p=\pi(X) \Longleftrightarrow X-X^{2} \in c_{0}\left(\mathcal{A}_{n}\right)
$$

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.

(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent. Choose $X=\left(x_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $\pi(X)=p$, so

$$
\pi\left(X^{2}\right)=\pi(X)^{2}=p^{2}=p=\pi(X) \Longleftrightarrow X-X^{2} \in c_{0}\left(\mathcal{A}_{n}\right)
$$

Let us introduce $\nu_{n}:=\left\|x_{n}-x_{n}^{2}\right\|$ for every $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} \nu_{n}=0$.

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.

(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent. Choose $X=\left(x_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $\pi(X)=p$, so

$$
\pi\left(X^{2}\right)=\pi(X)^{2}=p^{2}=p=\pi(X) \Longleftrightarrow X-X^{2} \in c_{0}\left(\mathcal{A}_{n}\right)
$$

Let us introduce $\nu_{n}:=\left\|x_{n}-x_{n}^{2}\right\|$ for every $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} \nu_{n}=0$. In particular, there is $N \in \mathbb{N}$ such that for every $n \geq N$ we have $\nu_{n}<1 / 8$.

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.

(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent. Choose $X=\left(x_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $\pi(X)=p$, so

$$
\pi\left(X^{2}\right)=\pi(X)^{2}=p^{2}=p=\pi(X) \Longleftrightarrow X-X^{2} \in c_{0}\left(\mathcal{A}_{n}\right)
$$

Let us introduce $\nu_{n}:=\left\|x_{n}-x_{n}^{2}\right\|$ for every $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} \nu_{n}=0$. In particular, there is $N \in \mathbb{N}$ such that for every $n \geq N$ we have $\nu_{n}<1 / 8$. In view of the Approximate Idempotent Lemma, for every $n \geq N$ there is an idempotent $p_{n}^{\prime} \in \mathcal{A}_{n}$ with

$$
\left\|x_{n}-p_{n}^{\prime}\right\| \leq f_{\left\|x_{n}\right\|}\left(\nu_{n}\right)
$$

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.

(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent. Choose $X=\left(x_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $\pi(X)=p$, so

$$
\pi\left(X^{2}\right)=\pi(X)^{2}=p^{2}=p=\pi(X) \Longleftrightarrow X-X^{2} \in c_{0}\left(\mathcal{A}_{n}\right)
$$

Let us introduce $\nu_{n}:=\left\|x_{n}-x_{n}^{2}\right\|$ for every $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} \nu_{n}=0$. In particular, there is $N \in \mathbb{N}$ such that for every $n \geq N$ we have $\nu_{n}<1 / 8$. In view of the Approximate Idempotent Lemma, for every $n \geq N$ there is an idempotent $p_{n}^{\prime} \in \mathcal{A}_{n}$ with

$$
\left\|x_{n}-p_{n}^{\prime}\right\| \leq f_{\left\|x_{n}\right\|}\left(\nu_{n}\right) \leq f_{\|X\|}\left(\nu_{n}\right)
$$

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.

(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent. Choose $X=\left(x_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $\pi(X)=p$, so

$$
\pi\left(X^{2}\right)=\pi(X)^{2}=p^{2}=p=\pi(X) \Longleftrightarrow X-X^{2} \in c_{0}\left(\mathcal{A}_{n}\right)
$$

Let us introduce $\nu_{n}:=\left\|x_{n}-x_{n}^{2}\right\|$ for every $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} \nu_{n}=0$. In particular, there is $N \in \mathbb{N}$ such that for every $n \geq N$ we have $\nu_{n}<1 / 8$. In view of the Approximate Idempotent Lemma, for every $n \geq N$ there is an idempotent $p_{n}^{\prime} \in \mathcal{A}_{n}$ with

$$
\left\|x_{n}-p_{n}^{\prime}\right\| \leq f_{\left\|x_{n}\right\|}\left(\nu_{n}\right) \leq f_{\|X\|}\left(\nu_{n}\right) \leq f_{\|x\|}(1 / 8)
$$

In the Proposition above, $f_{M}:[0,1 / 4) \rightarrow \mathbb{R}$ is some monotone increasing, non-negative continuous function for each $M>0$. Also, $f_{M} \leq f_{N}$ when $N>M>0$.

Proof of Theorem.

(Step 1.) Idempotents in $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ can be lifted to idempotents in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. Let $p \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ be an idempotent. Choose $X=\left(x_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ with $\pi(X)=p$, so

$$
\pi\left(X^{2}\right)=\pi(X)^{2}=p^{2}=p=\pi(X) \Longleftrightarrow X-X^{2} \in c_{0}\left(\mathcal{A}_{n}\right)
$$

Let us introduce $\nu_{n}:=\left\|x_{n}-x_{n}^{2}\right\|$ for every $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} \nu_{n}=0$. In particular, there is $N \in \mathbb{N}$ such that for every $n \geq N$ we have $\nu_{n}<1 / 8$. In view of the Approximate Idempotent Lemma, for every $n \geq N$ there is an idempotent $p_{n}^{\prime} \in \mathcal{A}_{n}$ with

$$
\left\|x_{n}-p_{n}^{\prime}\right\| \leq f_{\left\|x_{n}\right\|}\left(\nu_{n}\right) \leq f_{\|X\|}\left(\nu_{n}\right) \leq f_{\|X\|}(1 / 8)
$$

By continuity of $f_{\|X\|}$, it follows that $\lim _{n \geq N} f_{\|X\|}\left(\nu_{n}\right)=0$; consequently $\lim _{n \geq N}\left\|x_{n}-p_{n}^{\prime}\right\|=0$.

Proof of Theorem (con't).

For every $n \in \mathbb{N}$ we define

$$
p_{n}:= \begin{cases}p_{n}^{\prime} & \text { if } n \geq N \\ 0 & \text { otherwise. }\end{cases}
$$

Proof of Theorem (con't).

For every $n \in \mathbb{N}$ we define

$$
p_{n}:= \begin{cases}p_{n}^{\prime} & \text { if } n \geq N \\ 0 & \text { otherwise } .\end{cases}
$$

Since

$$
\left\|p_{n}^{\prime}\right\| \leq\left\|p_{n}^{\prime}-x_{n}\right\|+\left\|x_{n}\right\| \leq f_{\|X\|}(1 / 8)+\|X\| \quad(n \geq N)
$$

Proof of Theorem (con't).

For every $n \in \mathbb{N}$ we define

$$
p_{n}:= \begin{cases}p_{n}^{\prime} & \text { if } n \geq N \\ 0 & \text { otherwise } .\end{cases}
$$

Since

$$
\left\|p_{n}^{\prime}\right\| \leq\left\|p_{n}^{\prime}-x_{n}\right\|+\left\|x_{n}\right\| \leq f_{\|X\|}(1 / 8)+\|X\| \quad(n \geq N)
$$

it follows that $P:=\left(p_{n}\right)$ is an idempotent in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$.

Proof of Theorem (con't).

For every $n \in \mathbb{N}$ we define

$$
p_{n}:= \begin{cases}p_{n}^{\prime} & \text { if } n \geq N \\ 0 & \text { otherwise }\end{cases}
$$

Since

$$
\left\|p_{n}^{\prime}\right\| \leq\left\|p_{n}^{\prime}-x_{n}\right\|+\left\|x_{n}\right\| \leq f_{\|X\|}(1 / 8)+\|X\| \quad(n \geq N)
$$

it follows that $P:=\left(p_{n}\right)$ is an idempotent in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. We observe that $p=\pi(P)$ by $\lim _{n \geq N}\left\|x_{n}-p_{n}^{\prime}\right\|=0$.

Proof of Theorem (con't).

For every $n \in \mathbb{N}$ we define

$$
p_{n}:= \begin{cases}p_{n}^{\prime} & \text { if } n \geq N \\ 0 & \text { otherwise }\end{cases}
$$

Since

$$
\left\|p_{n}^{\prime}\right\| \leq\left\|p_{n}^{\prime}-x_{n}\right\|+\left\|x_{n}\right\| \leq f_{\|X\|}(1 / 8)+\|X\| \quad(n \geq N)
$$

it follows that $P:=\left(p_{n}\right)$ is an idempotent in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. We observe that $p=\pi(P)$ by $\lim _{n \geq N}\left\|x_{n}-p_{n}^{\prime}\right\|=0$.
(Step 2.) Now suppose further that $p \sim 1$.

Proof of Theorem (con't).

For every $n \in \mathbb{N}$ we define

$$
p_{n}:= \begin{cases}p_{n}^{\prime} & \text { if } n \geq N \\ 0 & \text { otherwise }\end{cases}
$$

Since

$$
\left\|p_{n}^{\prime}\right\| \leq\left\|p_{n}^{\prime}-x_{n}\right\|+\left\|x_{n}\right\| \leq f_{\|X\|}(1 / 8)+\|X\| \quad(n \geq N)
$$

it follows that $P:=\left(p_{n}\right)$ is an idempotent in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. We observe that $p=\pi(P)$ by $\lim _{n \geq N}\left\|x_{n}-p_{n}^{\prime}\right\|=0$.
(Step 2.) Now suppose further that $p \sim 1$. So there exist $a, b \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ such that $1=a b$ and $p=b a$.

Proof of Theorem (con't).

For every $n \in \mathbb{N}$ we define

$$
p_{n}:= \begin{cases}p_{n}^{\prime} & \text { if } n \geq N \\ 0 & \text { otherwise }\end{cases}
$$

Since

$$
\left\|p_{n}^{\prime}\right\| \leq\left\|p_{n}^{\prime}-x_{n}\right\|+\left\|x_{n}\right\| \leq f_{\|X\|}(1 / 8)+\|X\| \quad(n \geq N)
$$

it follows that $P:=\left(p_{n}\right)$ is an idempotent in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. We observe that $p=\pi(P)$ by $\lim _{n \geq N}\left\|x_{n}-p_{n}^{\prime}\right\|=0$.
(Step 2.) Now suppose further that $p \sim 1$. So there exist
$a, b \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ such that $1=a b$ and $p=b a$. There are $A=\left(a_{n}\right)$, $B=\left(b_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ such that $a=\pi(A)$ and $b=\pi(B)$,

Proof of Theorem (con't).

For every $n \in \mathbb{N}$ we define

$$
p_{n}:= \begin{cases}p_{n}^{\prime} & \text { if } n \geq N \\ 0 & \text { otherwise }\end{cases}
$$

Since

$$
\left\|p_{n}^{\prime}\right\| \leq\left\|p_{n}^{\prime}-x_{n}\right\|+\left\|x_{n}\right\| \leq f_{\|X\|}(1 / 8)+\|X\| \quad(n \geq N)
$$

it follows that $P:=\left(p_{n}\right)$ is an idempotent in $\ell^{\infty}\left(\mathcal{A}_{n}\right)$. We observe that $p=\pi(P)$ by $\lim _{n \geq N}\left\|x_{n}-p_{n}^{\prime}\right\|=0$.
(Step 2.) Now suppose further that $p \sim 1$. So there exist
$a, b \in \operatorname{Asy}\left(\mathcal{A}_{n}\right)$ such that $1=a b$ and $p=b a$. There are $A=\left(a_{n}\right)$,
$B=\left(b_{n}\right) \in \ell^{\infty}\left(\mathcal{A}_{n}\right)$ such that $a=\pi(A)$ and $b=\pi(B)$,
consequently

$$
\lim _{n \rightarrow \infty}\left\|1_{n}-a_{n} b_{n}\right\|=0 \text { and } \lim _{n \rightarrow \infty}\left\|p_{n}-b_{n} a_{n}\right\|=0
$$

Proof of Theorem (con't).

Now let $\delta \in(0,1)$ be such that

$$
\|A\|\|B\| \delta /(1-\delta)+2 \delta<1
$$

Proof of Theorem (con't).

Now let $\delta \in(0,1)$ be such that

$$
\|A\|\|B\| \delta /(1-\delta)+2 \delta<1
$$

Let $M \geq N$ be such that for all $n \geq M$ the inequality
$\left\|1_{n}-a_{n} b_{n}\right\|<\delta$ holds,

Proof of Theorem (con't).

Now let $\delta \in(0,1)$ be such that

$$
\|A\|\|B\| \delta /(1-\delta)+2 \delta<1
$$

Let $M \geq N$ be such that for all $n \geq M$ the inequality
$\left\|1_{n}-a_{n} b_{n}\right\|<\delta$ holds, then $u_{n}:=a_{n} b_{n} \in \operatorname{inv}\left(\mathcal{A}_{n}\right)$ with $\left\|1_{n}-u_{n}^{-1}\right\|<\delta /(1-\delta)$.

Proof of Theorem (con't).

Now let $\delta \in(0,1)$ be such that

$$
\|A\|\|B\| \delta /(1-\delta)+2 \delta<1
$$

Let $M \geq N$ be such that for all $n \geq M$ the inequality $\left\|1_{n}-a_{n} b_{n}\right\|<\delta$ holds, then $u_{n}:=a_{n} b_{n} \in \operatorname{inv}\left(\mathcal{A}_{n}\right)$ with $\left\|1_{n}-u_{n}^{-1}\right\|<\delta /(1-\delta)$. Define

$$
q_{n}:=b_{n} u_{n}^{-1} a_{n} \quad(n \geq M)
$$

then $q_{n} \in \mathcal{A}_{n}$ is an idempotent with $q_{n} \sim 1_{n}$.

Proof of Theorem (con't).

Now let $\delta \in(0,1)$ be such that

$$
\|A\|\|B\| \delta /(1-\delta)+2 \delta<1
$$

Let $M \geq N$ be such that for all $n \geq M$ the inequality $\left\|1_{n}-a_{n} b_{n}\right\|<\delta$ holds, then $u_{n}:=a_{n} b_{n} \in \operatorname{inv}\left(\mathcal{A}_{n}\right)$ with $\left\|1_{n}-u_{n}^{-1}\right\|<\delta /(1-\delta)$. Define

$$
q_{n}:=b_{n} u_{n}^{-1} a_{n} \quad(n \geq M)
$$

then $q_{n} \in \mathcal{A}_{n}$ is an idempotent with $q_{n} \sim 1_{n}$. Since \mathcal{A}_{n} is DF, it follows for all $n \geq M$ that $q_{n}=1_{n}$.

Proof of Theorem (con't).

Now let $\delta \in(0,1)$ be such that

$$
\|A\|\|B\| \delta /(1-\delta)+2 \delta<1
$$

Let $M \geq N$ be such that for all $n \geq M$ the inequality
$\left\|1_{n}-a_{n} b_{n}\right\|<\delta$ holds, then $u_{n}:=a_{n} b_{n} \in \operatorname{inv}\left(\mathcal{A}_{n}\right)$ with $\left\|1_{n}-u_{n}^{-1}\right\|<\delta /(1-\delta)$. Define

$$
q_{n}:=b_{n} u_{n}^{-1} a_{n} \quad(n \geq M)
$$

then $q_{n} \in \mathcal{A}_{n}$ is an idempotent with $q_{n} \sim 1_{n}$. Since \mathcal{A}_{n} is DF, it follows for all $n \geq M$ that $q_{n}=1_{n}$. We need to show that $p=1$ holds,

Proof of Theorem (con't).

Now let $\delta \in(0,1)$ be such that

$$
\|A\|\|B\| \delta /(1-\delta)+2 \delta<1
$$

Let $M \geq N$ be such that for all $n \geq M$ the inequality
$\left\|1_{n}-a_{n} b_{n}\right\|<\delta$ holds, then $u_{n}:=a_{n} b_{n} \in \operatorname{inv}\left(\mathcal{A}_{n}\right)$ with $\left\|1_{n}-u_{n}^{-1}\right\|<\delta /(1-\delta)$. Define

$$
q_{n}:=b_{n} u_{n}^{-1} a_{n} \quad(n \geq M)
$$

then $q_{n} \in \mathcal{A}_{n}$ is an idempotent with $q_{n} \sim 1_{n}$. Since \mathcal{A}_{n} is DF, it follows for all $n \geq M$ that $q_{n}=1_{n}$. We need to show that $p=1$ holds, which is equivalent to showing $\lim _{n \rightarrow \infty}\left\|1_{n}-p_{n}\right\|=0$.

Proof of Theorem (con't).

Now let $\delta \in(0,1)$ be such that

$$
\|A\|\|B\| \delta /(1-\delta)+2 \delta<1
$$

Let $M \geq N$ be such that for all $n \geq M$ the inequality
$\left\|1_{n}-a_{n} b_{n}\right\|<\delta$ holds, then $u_{n}:=a_{n} b_{n} \in \operatorname{inv}\left(\mathcal{A}_{n}\right)$ with $\left\|1_{n}-u_{n}^{-1}\right\|<\delta /(1-\delta)$. Define

$$
q_{n}:=b_{n} u_{n}^{-1} a_{n} \quad(n \geq M)
$$

then $q_{n} \in \mathcal{A}_{n}$ is an idempotent with $q_{n} \sim 1_{n}$. Since \mathcal{A}_{n} is DF, it follows for all $n \geq M$ that $q_{n}=1_{n}$. We need to show that $p=1$ holds, which is equivalent to showing $\lim _{n \rightarrow \infty}\left\|1_{n}-p_{n}\right\|=0$. Since $1_{n}-p_{n} \in \mathcal{A}_{n}$ is an idempotent for all $n \in \mathbb{N}$, it is enough to show that eventually $\left\|1_{n}-p_{n}\right\|<1$.

Proof of Theorem (con't).

Let $K \geq M$ be such that for every $n \geq K$

$$
\left\|x_{n}-b_{n} a_{n}\right\|<\delta, \quad\left\|x_{n}-p_{n}^{\prime}\right\|<\delta .
$$

Proof of Theorem (con't).

Let $K \geq M$ be such that for every $n \geq K$

$$
\left\|x_{n}-b_{n} a_{n}\right\|<\delta, \quad\left\|x_{n}-p_{n}^{\prime}\right\|<\delta
$$

Then for every $n \geq K$ we have $p_{n}=p_{n}^{\prime}$ and $1_{n}=q_{n}$, thus

Proof of Theorem (con't).

Let $K \geq M$ be such that for every $n \geq K$

$$
\left\|x_{n}-b_{n} a_{n}\right\|<\delta, \quad\left\|x_{n}-p_{n}^{\prime}\right\|<\delta
$$

Then for every $n \geq K$ we have $p_{n}=p_{n}^{\prime}$ and $1_{n}=q_{n}$, thus

$$
\left\|1_{n}-p_{n}\right\|=\left\|q_{n}-p_{n}^{\prime}\right\|
$$

Proof of Theorem (con't).

Let $K \geq M$ be such that for every $n \geq K$

$$
\left\|x_{n}-b_{n} a_{n}\right\|<\delta, \quad\left\|x_{n}-p_{n}^{\prime}\right\|<\delta
$$

Then for every $n \geq K$ we have $p_{n}=p_{n}^{\prime}$ and $1_{n}=q_{n}$, thus

$$
\begin{aligned}
\left\|1_{n}-p_{n}\right\| & =\left\|q_{n}-p_{n}^{\prime}\right\| \\
& =\left\|b_{n} u_{n}^{-1} a_{n}-p_{n}^{\prime}\right\|
\end{aligned}
$$

Proof of Theorem (con't).

Let $K \geq M$ be such that for every $n \geq K$

$$
\left\|x_{n}-b_{n} a_{n}\right\|<\delta, \quad\left\|x_{n}-p_{n}^{\prime}\right\|<\delta
$$

Then for every $n \geq K$ we have $p_{n}=p_{n}^{\prime}$ and $1_{n}=q_{n}$, thus

$$
\begin{aligned}
\left\|1_{n}-p_{n}\right\| & =\left\|q_{n}-p_{n}^{\prime}\right\| \\
& =\left\|b_{n} u_{n}^{-1} a_{n}-p_{n}^{\prime}\right\| \\
& \leq\left\|b_{n} u_{n}^{-1} a_{n}-b_{n} a_{n}\right\|+\left\|b_{n} a_{n}-x_{n}\right\|+\left\|x_{n}-p_{n}^{\prime}\right\|
\end{aligned}
$$

Proof of Theorem (con't).

Let $K \geq M$ be such that for every $n \geq K$

$$
\left\|x_{n}-b_{n} a_{n}\right\|<\delta, \quad\left\|x_{n}-p_{n}^{\prime}\right\|<\delta
$$

Then for every $n \geq K$ we have $p_{n}=p_{n}^{\prime}$ and $1_{n}=q_{n}$, thus

$$
\begin{aligned}
\left\|1_{n}-p_{n}\right\| & =\left\|q_{n}-p_{n}^{\prime}\right\| \\
& =\left\|b_{n} u_{n}^{-1} a_{n}-p_{n}^{\prime}\right\| \\
& \leq\left\|b_{n} u_{n}^{-1} a_{n}-b_{n} a_{n}\right\|+\left\|b_{n} a_{n}-x_{n}\right\|+\left\|x_{n}-p_{n}^{\prime}\right\| \\
& \leq\left\|b_{n}\right\|\left\|u_{n}^{-1}-1_{n}\right\|\left\|a_{n}\right\|+\left\|b_{n} a_{n}-x_{n}\right\|+\left\|x_{n}-p_{n}^{\prime}\right\|
\end{aligned}
$$

Proof of Theorem (con't).

Let $K \geq M$ be such that for every $n \geq K$

$$
\left\|x_{n}-b_{n} a_{n}\right\|<\delta, \quad\left\|x_{n}-p_{n}^{\prime}\right\|<\delta .
$$

Then for every $n \geq K$ we have $p_{n}=p_{n}^{\prime}$ and $1_{n}=q_{n}$, thus

$$
\begin{aligned}
\left\|1_{n}-p_{n}\right\| & =\left\|q_{n}-p_{n}^{\prime}\right\| \\
& =\left\|b_{n} u_{n}^{-1} a_{n}-p_{n}^{\prime}\right\| \\
& \leq\left\|b_{n} u_{n}^{-1} a_{n}-b_{n} a_{n}\right\|+\left\|b_{n} a_{n}-x_{n}\right\|+\left\|x_{n}-p_{n}^{\prime}\right\| \\
& \leq\left\|b_{n}\right\|\left\|u_{n}^{-1}-1_{n}\right\|\left\|a_{n}\right\|+\left\|b_{n} a_{n}-x_{n}\right\|+\left\|x_{n}-p_{n}^{\prime}\right\| \\
& \leq\|A\|\|B\| \delta /(1-\delta)+2 \delta
\end{aligned}
$$

Proof of Theorem (con't).

Let $K \geq M$ be such that for every $n \geq K$

$$
\left\|x_{n}-b_{n} a_{n}\right\|<\delta, \quad\left\|x_{n}-p_{n}^{\prime}\right\|<\delta
$$

Then for every $n \geq K$ we have $p_{n}=p_{n}^{\prime}$ and $1_{n}=q_{n}$, thus

$$
\begin{aligned}
\left\|1_{n}-p_{n}\right\| & =\left\|q_{n}-p_{n}^{\prime}\right\| \\
& =\left\|b_{n} u_{n}^{-1} a_{n}-p_{n}^{\prime}\right\| \\
& \leq\left\|b_{n} u_{n}^{-1} a_{n}-b_{n} a_{n}\right\|+\left\|b_{n} a_{n}-x_{n}\right\|+\left\|x_{n}-p_{n}^{\prime}\right\| \\
& \leq\left\|b_{n}\right\|\left\|u_{n}^{-1}-1_{n}\right\|\left\|a_{n}\right\|+\left\|b_{n} a_{n}-x_{n}\right\|+\left\|x_{n}-p_{n}^{\prime}\right\| \\
& \leq\|A\|\|B\| \delta /(1-\delta)+2 \delta \\
& <1 .
\end{aligned}
$$

Proof of Theorem (con't).

Let $K \geq M$ be such that for every $n \geq K$

$$
\left\|x_{n}-b_{n} a_{n}\right\|<\delta, \quad\left\|x_{n}-p_{n}^{\prime}\right\|<\delta .
$$

Then for every $n \geq K$ we have $p_{n}=p_{n}^{\prime}$ and $1_{n}=q_{n}$, thus

$$
\begin{aligned}
\left\|1_{n}-p_{n}\right\| & =\left\|q_{n}-p_{n}^{\prime}\right\| \\
& =\left\|b_{n} u_{n}^{-1} a_{n}-p_{n}^{\prime}\right\| \\
& \leq\left\|b_{n} u_{n}^{-1} a_{n}-b_{n} a_{n}\right\|+\left\|b_{n} a_{n}-x_{n}\right\|+\left\|x_{n}-p_{n}^{\prime}\right\| \\
& \leq\left\|b_{n}\right\|\left\|u_{n}^{-1}-1_{n}\right\|\left\|a_{n}\right\|+\left\|b_{n} a_{n}-x_{n}\right\|+\left\|x_{n}-p_{n}^{\prime}\right\| \\
& \leq\|A\|\|B\| \delta /(1-\delta)+2 \delta \\
& <1 .
\end{aligned}
$$

This concludes the proof.
...But why is the converse not true? What goes wrong?
...But why is the converse not true? What goes wrong?
Idempotents in Banach algebras can have arbitrarily big norm!
...But why is the converse not true? What goes wrong?
Idempotents in Banach algebras can have arbitrarily big norm!

Example

Consider $\mathcal{A}:=\ell^{1}(\mathbb{N})$ with the pointwise product.
...But why is the converse not true? What goes wrong?
Idempotents in Banach algebras can have arbitrarily big norm!

Example

Consider $\mathcal{A}:=\ell^{1}(\mathbb{N})$ with the pointwise product. Define

$$
p_{n}:=(\underbrace{1,1,1, \ldots, 1}_{n \text { terms }}, 0,0, \ldots) \quad(n \in \mathbb{N}) .
$$

...But why is the converse not true? What goes wrong?
Idempotents in Banach algebras can have arbitrarily big norm!

Example

Consider $\mathcal{A}:=\ell^{1}(\mathbb{N})$ with the pointwise product. Define

$$
p_{n}:=(\underbrace{1,1,1, \ldots, 1}_{n \text { terms }}, 0,0, \ldots) \quad(n \in \mathbb{N}) .
$$

Clearly $p_{n} \in \mathcal{A}$ is an idempotent for each $n \in \mathbb{N}$,
...But why is the converse not true? What goes wrong?
Idempotents in Banach algebras can have arbitrarily big norm!

Example

Consider $\mathcal{A}:=\ell^{1}(\mathbb{N})$ with the pointwise product. Define

$$
p_{n}:=(\underbrace{1,1,1, \ldots, 1}_{n \text { terms }}, 0,0, \ldots) \quad(n \in \mathbb{N}) .
$$

Clearly $p_{n} \in \mathcal{A}$ is an idempotent for each $n \in \mathbb{N}$, but $\left\|p_{n}\right\|=n$ and hence $\left(p_{n}\right) \notin \ell^{\infty}(\mathcal{A})$.

About the counter-example

Theorem (Daws-H.)

There is a sequence of $D I\left(\Leftrightarrow\right.$ not $D F$) Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

About the counter-example

Theorem (Daws-H.)

There is a sequence of $D I(\Leftrightarrow$ not $D F)$ Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Let I be a non-empty set, let $\nu: I \rightarrow(0, \infty)$ be a function.

About the counter-example

Theorem (Daws-H.)

There is a sequence of $D I\left(\Leftrightarrow\right.$ not DF) Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Let I be a non-empty set, let $\nu: I \rightarrow(0, \infty)$ be a function. Define

$$
\ell^{1}(I, \nu):=\left\{f: I \rightarrow \mathbb{C}:\|f\|_{\nu}:=\sum_{s \in I}|f(s)| \nu(s)<+\infty\right\}
$$

About the counter-example

Theorem (Daws-H.)

There is a sequence of $D I\left(\Leftrightarrow\right.$ not DF) Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Let I be a non-empty set, let $\nu: I \rightarrow(0, \infty)$ be a function. Define

$$
\ell^{1}(I, \nu):=\left\{f: I \rightarrow \mathbb{C}:\|f\|_{\nu}:=\sum_{s \in I}|f(s)| \nu(s)<+\infty\right\} .
$$

- $\left(\ell^{1}(I, \nu),\|\cdot\|_{\nu}\right)$ is a Banach space;

About the counter-example

Theorem (Daws-H.)

There is a sequence of $D I\left(\Leftrightarrow\right.$ not DF) Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Let I be a non-empty set, let $\nu: I \rightarrow(0, \infty)$ be a function. Define

$$
\ell^{1}(I, \nu):=\left\{f: I \rightarrow \mathbb{C}:\|f\|_{\nu}:=\sum_{s \in I}|f(s)| \nu(s)<+\infty\right\}
$$

- $\left(\ell^{1}(I, \nu),\|\cdot\|_{\nu}\right)$ is a Banach space;
- $\ell^{1}(I, \nu)=\overline{\operatorname{span}\left\{\delta_{s}: s \in I\right\}}{ }^{\|\cdot\|_{\nu}}$,

About the counter-example

Theorem (Daws-H.)

There is a sequence of $D I\left(\Leftrightarrow\right.$ not DF) Banach algebras $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ such that $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is $D F$.

Let I be a non-empty set, let $\nu: I \rightarrow(0, \infty)$ be a function. Define

$$
\ell^{1}(I, \nu):=\left\{f: I \rightarrow \mathbb{C}:\|f\|_{\nu}:=\sum_{s \in I}|f(s)| \nu(s)<+\infty\right\}
$$

- $\left(\ell^{1}(I, \nu),\|\cdot\|_{\nu}\right)$ is a Banach space;
- $\ell^{1}(I, \nu)=\overline{\operatorname{span}\left\{\delta_{s}: s \in I\right\}^{\|}}{ }^{\| \nu}$, hence

$$
f=\sum_{s \in I} f(s) \delta_{s} \quad\left(f \in \ell^{1}(I, \nu)\right)
$$

where the sum converges in the norm $\|\cdot\|_{\nu}$.

Let S be a monoid. Let $\omega: S \rightarrow[1, \infty)$ be a weight on S,

Let S be a monoid. Let $\omega: S \rightarrow[1, \infty)$ be a weight on S, that is,

- $\omega(s t) \leq \omega(s) \omega(t)$ for all $s, t \in S$;
- $\omega(e)=1$, where e is the mutiplicative identity of S.

Let S be a monoid. Let $\omega: S \rightarrow[1, \infty)$ be a weight on S, that is,

- $\omega(s t) \leq \omega(s) \omega(t)$ for all $s, t \in S$;
- $\omega(e)=1$, where e is the mutiplicative identity of S.

The convolution product on $\ell^{1}(S, \omega)$ is defined by

$$
(f * g)(r):=\sum_{s t=r} f(s) g(t) \quad\left(f, g \in \ell^{1}(S, \omega), r \in S\right)
$$

Let S be a monoid. Let $\omega: S \rightarrow[1, \infty)$ be a weight on S, that is,

- $\omega(s t) \leq \omega(s) \omega(t)$ for all $s, t \in S$;
- $\omega(e)=1$, where e is the mutiplicative identity of S.

The convolution product on $\ell^{1}(S, \omega)$ is defined by

$$
(f * g)(r):=\sum_{s t=r} f(s) g(t) \quad\left(f, g \in \ell^{1}(S, \omega), r \in S\right)
$$

Thus
$\left(\ell^{1}(S, \omega), *\right)$ is a unital Banach algebra.

We know that non-trivial idempotents in Banach algebras have norm at least 1. For $\left(\ell^{1}(S, \omega), *\right)$ we can do better:

We know that non-trivial idempotents in Banach algebras have norm at least 1 . For $\left(\ell^{1}(S, \omega), *\right)$ we can do better:

Proposition (Daws-H.)

Let S be a monoid with unit $e \in S$ and let $\omega: S \rightarrow[1, \infty)$ be a weight on S.

We know that non-trivial idempotents in Banach algebras have norm at least 1 . For $\left(\ell^{1}(S, \omega), *\right)$ we can do better:

Proposition (Daws-H.)

Let S be a monoid with unit $e \in S$ and let $\omega: S \rightarrow[1, \infty)$ be a weight on S. Let $p \in\left(\ell^{1}(S, \omega), *\right)$ be a non-zero idempotent such that $p \neq \delta_{e}$.

We know that non-trivial idempotents in Banach algebras have norm at least 1 . For $\left(\ell^{1}(S, \omega), *\right)$ we can do better:

Proposition (Daws-H.)

Let S be a monoid with unit $e \in S$ and let $\omega: S \rightarrow[1, \infty)$ be a weight on S. Let $p \in\left(\ell^{1}(S, \omega), *\right)$ be a non-zero idempotent such that $p \neq \delta_{e}$. Then

$$
\|p\|_{\omega} \geq \frac{1}{2} \inf \{\omega(s): s \in S, s \neq e\}
$$

We know that non-trivial idempotents in Banach algebras have norm at least 1. For $\left(\ell^{1}(S, \omega), *\right)$ we can do better:

Proposition (Daws-H.)

Let S be a monoid with unit $e \in S$ and let $\omega: S \rightarrow[1, \infty)$ be a weight on S. Let $p \in\left(\ell^{1}(S, \omega), *\right)$ be a non-zero idempotent such that $p \neq \delta_{e}$. Then

$$
\|p\|_{\omega} \geq \frac{1}{2} \inf \{\omega(s): s \in S, s \neq e\}
$$

For our counter-example, we need the bicyclic monoid BC.

We know that non-trivial idempotents in Banach algebras have norm at least 1 . For $\left(\ell^{1}(S, \omega), *\right)$ we can do better:

Proposition (Daws-H.)

Let S be a monoid with unit $e \in S$ and let $\omega: S \rightarrow[1, \infty)$ be a weight on S. Let $p \in\left(\ell^{1}(S, \omega), *\right)$ be a non-zero idempotent such that $p \neq \delta_{e}$. Then

$$
\|p\|_{\omega} \geq \frac{1}{2} \inf \{\omega(s): s \in S, s \neq e\}
$$

For our counter-example, we need the bicyclic monoid $B C$. That is, the free monoid generated by elements p, q subject to the single relation that $p q=e$:

$$
B C=\langle p, q: p q=e\rangle .
$$

The last slide, I promise!

Fix $n \in \mathbb{N}$.

The last slide, I promise!

Fix $n \in \mathbb{N}$. Define the weight $\omega_{n}: B C \rightarrow[1, \infty)$ on $B C$ the following way:

$$
\omega_{n}(s):= \begin{cases}n & \text { if } s \in B C \backslash\{e\} \\ 1 & \text { if } s=e\end{cases}
$$

Fix $n \in \mathbb{N}$. Define the weight $\omega_{n}: B C \rightarrow[1, \infty)$ on $B C$ the following way:

$$
\omega_{n}(s):= \begin{cases}n & \text { if } s \in B C \backslash\{e\} \\ 1 & \text { if } s=e\end{cases}
$$

Then with $\mathcal{A}_{n}:=\left(\ell^{1}\left(B C, \omega_{n}\right), *\right)$ for each $n \in \mathbb{N}$, we obtain

Fix $n \in \mathbb{N}$. Define the weight $\omega_{n}: B C \rightarrow[1, \infty)$ on $B C$ the following way:

$$
\omega_{n}(s):= \begin{cases}n & \text { if } s \in B C \backslash\{e\} \\ 1 & \text { if } s=e .\end{cases}
$$

Then with $\mathcal{A}_{n}:=\left(\ell^{1}\left(B C, \omega_{n}\right), *\right)$ for each $n \in \mathbb{N}$, we obtain
(1) \mathcal{A}_{n} is DI for each $n \in \mathbb{N}$; and

Fix $n \in \mathbb{N}$. Define the weight $\omega_{n}: B C \rightarrow[1, \infty)$ on $B C$ the following way:

$$
\omega_{n}(s):= \begin{cases}n & \text { if } s \in B C \backslash\{e\} \\ 1 & \text { if } s=e .\end{cases}
$$

Then with $\mathcal{A}_{n}:=\left(\ell^{1}\left(B C, \omega_{n}\right), *\right)$ for each $n \in \mathbb{N}$, we obtain
(1) \mathcal{A}_{n} is DI for each $n \in \mathbb{N}$; and
(3) $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is DF.

Fix $n \in \mathbb{N}$. Define the weight $\omega_{n}: B C \rightarrow[1, \infty)$ on $B C$ the following way:

$$
\omega_{n}(s):= \begin{cases}n & \text { if } s \in B C \backslash\{e\} \\ 1 & \text { if } s=e .\end{cases}
$$

Then with $\mathcal{A}_{n}:=\left(\ell^{1}\left(B C, \omega_{n}\right), *\right)$ for each $n \in \mathbb{N}$, we obtain
(1) \mathcal{A}_{n} is DI for each $n \in \mathbb{N}$; and
(2) $\operatorname{Asy}\left(\mathcal{A}_{n}\right)$ is DF. (Follows from Prop. and some actual work.)

OK, the very last one, really

Köszönöm szépen a figyelmet! :)

OK, the very last one, really

Köszönöm szépen a figyelmet! :)

Sources

- I. Farah, "Combinatorial Set Theory of C^{*}-algebras", available on Farah's website, and forthcoming from Springer;
- I. Farah, B. Hart, D. Sherman, a series of papers titled "Model theory of operator algebras";
- I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, W. Winter, "Model Theory of Nuclear C*-algebras", to appear in Memoirs of the AMS;
- M. Daws, B. Horváth, "Ring-theoretic (in)finiteness in reduced products of Banach algebras", Canad. J. Math., 36 pp. (2020), available on the arXiv.

