Hereditarily bounded sets

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/
Institute of Mathematics, Czech Academy of Sciences, Prague

Online International Workshop on Gödel's Incompleteness Theorems

20 August 2021

Essentially undecidable theories

T essentially undecidable
\Longleftrightarrow all consistent extensions of T are undecidable
\Longleftrightarrow no r.e. extension of T is complete and consistent

Typically: we verify T is ess. und. (Gödelian) by checking that it includes (or interprets) one of known ess. und. theories

Convenient weak ess. und. theories for the purpose:

- Robinson's arithmetic Q
- Robinson's theory R
- adjunctive set theory $A S$
- Vaught's set theory VS

Vaught's set theory

Weak set theory VS introduced in [Vau'67]
Language: \in
Axioms:
$\left(\mathrm{V}_{n}\right) \quad \forall x_{0}, \ldots, x_{n-1} \exists y \forall t\left(t \in y \leftrightarrow \bigvee_{i<n} t=x_{i}\right)$
for each standard $n \in \omega$
NB: $\left(V_{n}\right)$ implies $\left(V_{m}\right)$ for $n \geq m>0$

- VS is ess. und.
- finite fragments $V S_{n}=\left(V_{0}\right)+\left(V_{n}\right)$ not ess. und.
- $V S_{n}$ interpretable in any theory with pairing

Theories with pairing

Assume $T \vdash \exists x \exists y x \neq y$
Pairing function in T : definable function $p(x, y)$ s.t. T proves

$$
p(x, y)=p\left(x^{\prime}, y^{\prime}\right) \rightarrow x=x^{\prime} \wedge y=y^{\prime}
$$

Non-functional pairing: a formula $\pi(x, y, p)$ s.t. T proves

$$
\begin{gathered}
\forall x \forall y \exists p \pi(x, y, p) \\
\pi(x, y, p) \wedge \pi\left(x^{\prime}, y^{\prime}, p\right) \rightarrow x=x^{\prime} \wedge y=y^{\prime}
\end{gathered}
$$

Example: $V S_{2}$ has non-functional pairing $\{\{x\},\{x, y\}\}$
See [Vis'08] for more background

Decidable theories with pairing

Theories with variable-length sequence encoding (sequential theories [Pud'85]) interpret $Q \Longrightarrow$ ess. und.

In contrast: there are decidable theories with pairing

- [Mal'61,'62] theories of locally free algebras (\approx term algebras, also with "commutativity" constraints) incl. acyclic pairing functions: $\left\langle\mathbb{N}, 2^{x} 3^{y}\right\rangle$
- [Ten'72] p.f. acyclic up to a few exceptions e.g.: $2^{x}(2 y+1)-1, \max \left\{x^{2}, y^{2}+x\right\}+y,\binom{x+y+1}{2}+x$

Even with more arithmetical structure:
$-\left[\right.$ Sem'83] $\left\langle\mathbb{N},+, 2^{x}\right\rangle\left(\right.$ has p.f. $\left.2^{x}+2^{x+y}\left[C R^{\prime} 99\right]\right)$

- [CR'01] $\left\langle\mathbb{N}, S,\binom{x+y+1}{2}+x\right\rangle$

Pairing and k-sets

Let $\langle x, y\rangle$ be a pairing function, $k \geq 2$

- encode k-tuples by pairs:

$$
\left\langle x_{0}, \ldots, x_{k-1}\right\rangle=\left\langle\cdots\left\langle\left\langle x_{0}, x_{1}\right\rangle, x_{2}\right\rangle, \cdots, x_{k-1}\right\rangle
$$

- encode k-element sets by k-tuples:

$$
x \in y \Longleftrightarrow \exists x_{0}, \ldots, x_{k-1}\left(y=\left\langle x_{0}, \ldots, x_{k-1}\right\rangle \wedge \bigvee_{i<k} x=x_{i}\right)
$$

Satisfies $V S_{k}$ if $\langle x, y\rangle$ non-surjective (easily fixable)
Also works for non-functional pairing

Lemma

Any theory with pairing interprets $V S_{k}$ for each k

Decidable extensions of $V S_{k}$

Corollary

For any $k, V S_{k}$ has a decidable completion

The extensions of $V S_{k}$ we get from theories of pairing are quite unnatural as theories of sets

- Extensionality fails:
$\langle x, y\rangle$ and $\langle y, x\rangle$ represent the same set

Problem (informal)

Find a natural decidable extension of $V S_{k}$ with
a transparent meaning

Hereditarily finite sets

Work in $\mathrm{ZF}(\mathrm{C})$
The set H_{ω} of hereditarily finite sets:

- The smallest set s.t. $\forall x\left(x \subseteq H_{\omega} \wedge x\right.$ finite $\left.\Longrightarrow x \in H_{\omega}\right)$
- The unique set s.t. $\forall x\left(x \subseteq H_{\omega} \wedge x\right.$ finite $\left.\Longleftrightarrow x \in H_{\omega}\right)$
$-x \in H_{\omega} \Longleftrightarrow \operatorname{tc}(x)$ finite $\Longleftrightarrow \forall y \in \operatorname{tc}(\{x\}) y$ finite
- $H_{\omega}=V_{\omega}=\bigcup_{n \in \omega} V_{n}$, where $V_{0}=\varnothing, V_{n+1}=\mathcal{P}\left(V_{n}\right) \supseteq V_{n}$

Transitive closure $\operatorname{tc}(x)$: smallest transitive set that includes x $\operatorname{tc}(x)=\bigcup_{n} \operatorname{tc}_{n}(x)$, where $\operatorname{tc}_{0}(x)=x, \operatorname{tc}_{n+1}(x)=\operatorname{tc}_{n}(x) \cup \bigcup_{y \in \operatorname{tc}_{n}(x)} y$ $\mathbf{H}_{\omega}=\left\langle H_{\omega}, \in\right\rangle$ is bi-interpretable with $\langle\mathbb{N},+, \cdot\rangle$

Hereditarily bounded sets

The set H_{k} of sets hereditarily of size $\leq k$:

- The smallest set s.t. $\forall x\left(x \subseteq H_{k} \wedge|x| \leq k \Longrightarrow x \in H_{k}\right)$
- The unique set s.t. $\forall x\left(x \subseteq H_{k} \wedge|x| \leq k \Longleftrightarrow x \in H_{k}\right)$
- $x \in H_{k} \Longleftrightarrow \forall y \in \operatorname{tc}(\{x\})|y| \leq k$
- $H_{k}=\bigcup_{n} V_{n, \leq k}$, where $V_{0, \leq k}=\varnothing, V_{n+1, \leq k}=\left[V_{n, \leq k}\right] \leq k$

NB: $H_{\omega}=\bigcup_{k \in \omega} H_{k}$
$\mathbf{H}_{k}=\left\langle H_{k}, \in\right\rangle$ is a natural model of $V S_{k}$
Minimality: \mathbf{H}_{k} embeds (transitively) in any model of $V S_{k}$

Problem

What is $\operatorname{Th}\left(\mathbf{H}_{k}\right)$? Is it decidable?

Easy cases

- $k=0: \mathbf{H}_{0}$ is a one-element structure
- $k=1: H_{1}=\{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\{\{\varnothing\}\}\}, \ldots\}$
$\Longrightarrow \mathbf{H}_{1} \simeq\langle\mathbb{N}, S(x)=y\rangle$
- decidable, PSPACE-complete
- quantifier elimination in language $\langle\varnothing,\{x\}\rangle$
- strongly minimal, uncountably categorical, ...

Not really easy, but already known:

- $k=2: \mathbf{H}_{2}$ is definitionally equivalent to $\left\langle H_{2}, \varnothing,\{x, y\}\right\rangle$ $\{x, y\}$ free commutative operation [Mal'62]
- decidable, some form of quantifier elimination, stable

NB: For $k \geq 3$, Malcev's results do not apply
$\{x, x, y\}=\{x, y, y\}$

The general case

The rest of this talk:

- an explicit axiomatization S_{k} for $\operatorname{Th}\left(\mathbf{H}_{k}\right)$
- characterization of elementary equivalence of tuples
- S_{k} is decidable, with iterated exponential complexity
- quantifier elimination

The theory S_{k}

S_{k} is axiomatized by:

- the axioms $\left(V_{0}\right)$ and $\left(V_{k}\right)$ of $V S_{k}$
- extensionality
(E)

$$
\forall x, y(\forall t(t \in x \leftrightarrow t \in y) \rightarrow x=y)
$$

- boundedness (all sets have $\leq k$ elements)

$$
\left(B_{k}\right) \quad \forall x, u_{0}, \ldots, u_{k}\left(\bigwedge_{i \leq k} u_{i} \in x \rightarrow \bigvee_{i<j \leq k} u_{i}=u_{j}\right)
$$

- acyclicity: for each $n \in \omega$,

$$
\left(\mathrm{C}_{n}\right) \quad \forall x_{0}, \ldots, x_{n} \neg\left(\bigwedge_{i<n} x_{i} \in x_{i+1} \wedge x_{n} \in x_{0}\right)
$$

Basic strategy

Main goal: prove S_{k} is complete

$$
\Longrightarrow S_{k}=\operatorname{Th}\left(\mathbf{H}_{k}\right)
$$

$\Longrightarrow S_{k}$ is decidable

We use an Ehrenfeucht-Fraïssé argument:

- combinatorial description of $\mathbf{A}, \bar{a} \equiv \mathbf{B}, \bar{b}$ for $\mathbf{A}, \mathbf{B} \vDash S_{k}$
- for empty \bar{a}, \bar{b}, it gives $\mathbf{A} \equiv \mathbf{B}$

Bounded elementary equivalence

Quantifier rank:

$$
\begin{aligned}
\operatorname{rk}(\varphi) & =0 & & \varphi \text { atomic } \\
\operatorname{rk}\left(c\left(\varphi_{0}, \varphi_{1}, \ldots\right)\right) & =\max \left\{\operatorname{rk}\left(\varphi_{0}\right), \operatorname{rk}\left(\varphi_{1}\right), \ldots\right\} & & c \text { connective } \\
\operatorname{rk}(Q x \varphi) & =\operatorname{rk}(\varphi)+1 & & Q \in\{\exists, \forall\}
\end{aligned}
$$

$\mathbf{A}=\left\langle A, \in^{\mathbf{A}}\right\rangle, \mathbf{B}=\left\langle B, \in^{\mathbf{B}}\right\rangle, \bar{a} \in A, \bar{b} \in B:$
$\mathbf{A}, \bar{a} \equiv \mathbf{B}, \bar{b} \Longleftrightarrow \forall \varphi(\mathbf{A} \vDash \varphi(\bar{a}) \Longleftrightarrow \mathbf{B} \vDash \varphi(\bar{b}))$
$\mathbf{A}, \bar{a} \equiv_{n} \mathbf{B}, \bar{b} \Longleftrightarrow$ the same for φ s.t. $\mathrm{rk}(\varphi) \leq n$

Ehrenfeucht-Fraïssé games

$E F_{n}(\mathbf{A} ; \mathbf{B}):$

- players Spoiler, Duplicator
- n rounds, in round i :
- S chooses an element of one of A, B
- D responds by an element of the other one
- $\Longrightarrow \alpha_{i} \in A, \beta_{i} \in B$
- D wins iff $\alpha_{i} \mapsto \beta_{i}$ is a partial isomorphism (= preserves atomic predicates both ways)
$\mathrm{EF}_{n}(\mathbf{A}, \bar{a} ; \mathbf{B}, \bar{b}):$
-D wins iff $\alpha_{i} \mapsto \beta_{i}, a_{j} \mapsto b_{j}$ is a partial isomorphism

EF games vs. elementary equivalence

Theorem (Fraïssé, Ehrenfeucht)

$\mathbf{A}, \bar{a} \equiv_{n} \mathbf{B}, \bar{b}$ iff D has a winning strategy in $\mathrm{EF}_{n}(\mathbf{A}, \bar{a} ; \mathbf{B}, \bar{b})$

Graded back-and-forth system for \mathbf{A}, \mathbf{B} : relations E_{n} s.t.

- $\bar{a}_{n} \bar{b} \Longrightarrow a_{i} \mapsto b_{i}$ is a partial isomorphism
- $\bar{a} E_{n+1} \bar{b} \Longrightarrow \forall c \in A \exists d \in B\left(\bar{a}, c E_{n} \bar{b}, d\right)$ and v.v.

Corollary

If $\left\{E_{n}: n<\omega\right\}$ is a graded back-and-forth system, then

$$
\bar{a} E_{n} \bar{b} \Longrightarrow \mathbf{A}, \bar{a} \equiv_{n} \mathbf{B}, \bar{b}
$$

Transitive closures

$\mathbf{A} \vDash S_{k}, \bar{a} \in A, I=\operatorname{lh}(\bar{a}):$ define $\operatorname{tc}_{n}^{\mathrm{A}}(\bar{a}) \subseteq A$

$$
\begin{aligned}
\operatorname{tc}_{0}^{\mathbf{A}}(\bar{a}) & =\left\{a_{i}: i<l\right\} \\
\operatorname{tc}_{n+1}^{\mathrm{A}}(\bar{a}) & =\operatorname{tc}_{n}^{\mathbf{A}}(\bar{a}) \cup \bigcup_{u \in \operatorname{tc}_{n}^{\mathbf{A}}(\bar{a})}\left\{v \in A: v \in^{\mathbf{A}} u\right\} \\
\operatorname{tc}^{\mathbf{A}}(\bar{a}) & =\bigcup_{n \in \omega} \operatorname{tc}_{n}^{\mathbf{A}}(\bar{a})
\end{aligned}
$$

NB: $\operatorname{tc}_{n}^{\mathbf{A}}(\bar{a})$ finite

$$
\left|t c_{n}^{\mathrm{A}}(\bar{a})\right| \leq 1 \cdot k^{\leq n}, \quad k^{\leq n}=\sum_{i=0}^{n} k^{i}=\frac{k^{n+1}-1}{k-1}
$$

Similarity relations

When considered as structures:

$$
\operatorname{tc}_{n}^{\mathbf{A}}(\bar{a})=\left\langle\operatorname{tc}_{n}^{\mathbf{A}}(\bar{a}), \in^{\mathbf{A}}, \bar{a}\right\rangle, \quad \operatorname{tc}^{\mathbf{A}}(\bar{a})=\left\langle\operatorname{tc}^{\mathbf{A}}(\bar{a}), \in^{\mathbf{A}}, \bar{a}\right\rangle
$$

We define

$$
\begin{aligned}
& \mathbf{A}, \bar{a} \sim \mathbf{B}, \bar{b} \Longleftrightarrow \mathbf{t c}^{\mathbf{A}}(\bar{a}) \simeq \mathbf{t c}^{\mathbf{B}}(\bar{b}) \\
& \mathbf{A}, \bar{a} \sim_{n} \mathbf{B}, \bar{b} \Longleftrightarrow \mathbf{t c}_{n}^{\mathbf{A}}(\bar{a}) \simeq \mathbf{t c}_{n}^{\mathbf{B}}(\bar{b})
\end{aligned}
$$

NB: Using the finiteness of tc_{n}, Kőnig's lemma implies

$$
\mathbf{A}, \bar{a} \sim \mathbf{B}, \bar{b} \Longleftrightarrow \forall n\left(\mathbf{A}, \bar{a} \sim_{n} \mathbf{B}, \bar{b}\right)
$$

Definability of tc_{n}

The finiteness of tc_{n} easily implies:

Lemma

$\mathbf{A} \vDash S_{k}, \bar{a} \in A, I=\operatorname{lh}(\bar{a}), n<\omega$
$\Longrightarrow \exists$ formula $\varphi_{\bar{a}, n}(\bar{x})$ s.t. $\forall \mathbf{B} \vDash S_{k}, \bar{b} \in B$:

$$
\mathbf{B} \vDash \varphi_{\bar{a}, n}(\bar{b}) \Longleftrightarrow \mathbf{A}, \bar{a} \sim_{n} \mathbf{B}, \bar{b}
$$

We may take $\varphi_{n, \bar{a}}$ as a Boolean combination of bounded existential formulas of rank $I\left(k^{\leq n}-1\right)$

Bounded quantifiers: $\exists y \in x \varphi \equiv \exists y(y \in x \wedge \varphi)$

Elementary equivalence implies similarity

Corollary

$$
\text { If } \mathbf{A}, \mathbf{B} \vDash S_{k}, \bar{a} \in A, \bar{b} \in B, I=\operatorname{lh}(\bar{a})=\operatorname{lh}(\bar{b}), n<\omega:
$$

$$
\begin{aligned}
\mathbf{A}, \bar{a} \equiv \mathbf{B}, \bar{b} & \Longrightarrow \mathbf{A}, \bar{a} \sim \mathbf{B}, \bar{b} \\
\mathbf{A}, \bar{a} \equiv_{I(k \leq n-1)} \mathbf{B}, \bar{b} & \Longrightarrow \mathbf{A}, \bar{a} \sim_{n} \mathbf{B}, \bar{b}
\end{aligned}
$$

The converse is more difficult, and will require an Ehrenfeucht-Fraïssé argument

Extending tc ${ }_{n}$ isomorphisms

The crux of the argument:

Lemma

Let $\mathbf{A}, \mathbf{B} \vDash S_{k}, \bar{a} \in A, \bar{b} \in B, I=\operatorname{lh}(\bar{a})=\operatorname{lh}(\bar{b}), n>0$.
If

$$
\mathbf{A}, \bar{a} \sim_{k \leq n+n} \mathbf{B}, \bar{b}
$$

then

$$
\forall c \in A \quad \exists d \in B \quad \mathbf{A}, \bar{a}, c \sim_{n-1} \mathbf{B}, \bar{b}, d
$$

This gives a graded back-and-forth system ...

Characterization of elementary equivalence

Theorem

Let $\mathbf{A}, \mathbf{B} \vDash S_{k}, \bar{a} \in A, \bar{b} \in B, I=\operatorname{lh}(\bar{a})=\operatorname{lh}(\bar{b}), n<\omega$.
Then

$$
\mathbf{A}, \bar{a} \equiv \mathbf{B}, \bar{b} \Longleftrightarrow \mathbf{A}, \bar{a} \sim \mathbf{B}, \bar{b}
$$

More precisely, for all $n \in \omega$,

$$
\begin{aligned}
\mathbf{A}, \bar{a} \equiv_{I\left(k n_{n}-1\right)} \mathbf{B}, \bar{b} & \Longrightarrow \mathbf{A}, \bar{a} \sim_{n} \mathbf{B}, \bar{b} \\
\mathbf{A}, \bar{a} \sim_{t_{k}(n)} \mathbf{B}, \bar{b} & \Longrightarrow \mathbf{A}, \bar{a} \equiv_{n} \mathbf{B}, \bar{b}
\end{aligned}
$$

where $t_{k}(0)=0, t_{k}(n+1)=k^{\leq t_{k}(n)+1}+t_{k}(n)+1$.

Completeness and decidability

Since $\operatorname{tc}^{\mathbf{A}}(\langle \rangle)=\varnothing$, we have $\mathbf{A},\langle \rangle \sim \mathbf{B},\langle \rangle$ for any $\mathbf{A}, \mathbf{B} \vDash S_{k}$:

Corollary

S_{k} is a complete theory, thus $S_{k}=\operatorname{Th}\left(\mathbf{H}_{k}\right)$

Any recursively axiomatizable complete theory is decidable:

Corollary

$S_{k}=\operatorname{Th}\left(\mathbf{H}_{k}\right)$ is decidable

In particular, S_{k} is a decidable extension of $V S_{k}$

Quantifier elimination

Corollary

In S_{k}, any formula is equivalent to a Boolean combination of bounded existential formulas.

If we expand the language with the predicates $y=\varnothing$ and $y=\left\{x_{0}, \ldots, x_{k-1}\right\}$, every formula is equivalent to a bounded existential and a bounded universal formula.

NB: $y=\varnothing$ and $y=\left\{x_{0}, \ldots, x_{k-1}\right\}$ have bounded universal definitions in the original language

Further properties

Proposition

S_{k} is a stable theory

Proposition

$k \geq 1 \Longrightarrow S_{k}$ is not finitely axiomatizable

Problem (A. Visser)

Is there a consistent finitely axiomatized decidable theory with pairing?

Complexity: lower bound

Superexponential function: $2_{0}^{\times}=x, 2_{n+1}^{x}=2^{2 \times}$

Theorem [FR'79]

T consistent theory with pairing $\Longrightarrow \exists \gamma>0$ s.t. any decision procedure for T has complexity $\geq 2_{\gamma n}^{0}$

- complexity measure: take your pick
- theories of [Mal'62], [Ten'72] meet the bound

Corollary

$\exists \gamma>0$ s.t. any decision procedure for a consistent extension of $V S_{2}$ has complexity $\geq 2_{\gamma n}^{0}$

Complexity: upper bound

$t_{k}(n) \leq 2_{n}^{c_{k}}$ for some constant c_{k}
Turning the Ehrenfeucht-Fraïssé argument into an algorithm:

Theorem

S_{k} is decidable in time $2_{n / 4}^{c_{k}}$

- matches the [FR'79] lower bound for $k \geq 2$
- S_{1} is PSPACE-complete, S_{0} is NC^{1}-complete
- overestimates the complexity for formulas with a small number of quantifier alternations

Improved algorithm

Handle blocks of quantifiers in one go:

Theorem

Given a sentence φ with

- $\varphi \in \exists_{r}$
- n : number of symbols
- q: max length of quantifier blocks
we can decide whether $S_{k} \vdash \varphi$ in

$$
\begin{cases}\operatorname{NTIME}\left(n^{O(1)}\right) & r=1 \\ \operatorname{NTIME}\left((k q)^{O(k q)} n^{O(1)}\right) & r=2 \\ \operatorname{NTIME}\left(2_{r-1}^{O(q k \log k)} n^{O(1)}\right) & r \geq 3\end{cases}
$$

Summary

We identified $\operatorname{Th}\left(\mathbf{H}_{k}\right)$ as a natural extension of $V S_{k}$:

- decidable (of lowest possible complexity)
- transparent explicit axiomatization
- combinatorial characterization of elementary equivalence
- quantifier elimination

References (1)

- P. Cégielski, D. Richard: On arithmetical first-order theories allowing encoding and decoding of lists, Theoret. Comput. Sci. 222 (1999), 55-75
- P. Cégielski, D. Richard: Decidability of the theory of the natural integers with the Cantor pairing function and the successor, Theoret. Comput. Sci. 257 (2001), 51-77
- J. Ferrante, C. W. Rackoff: The computational complexity of logical theories, Springer-Verlag, 1979
- E. J.: The theory of hereditarily bounded sets, 2021, arXiv:2104.06932 [math.LO]
- A. I. Mal'cev: On the elementary theories of locally free universal algebras, Dokl. Akad. Nauk SSSR 138:5 (1961), 1009-1012, English transl.: Soviet Math. Dokl. 2:3 (1961), 768-771
- A. I. Mal'cev: Axiomatizable classes of locally free algebras of several types, Sibirsk. Mat. Zh. 3:5 (1962), 729-743

References (2)

- P. Pudlák: Cuts, consistency statements and interpretations, J. Symb. Log. 50:2 (1985), 423-441
- A. L. Semënov: Logical theories of one-place functions on the set of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 47:3 (1983), 623-658, English transl.: Math. USSR Izv. 22:3 (1984), 587-618
- A. Tarski, A. Mostowski, R. M. Robinson: Undecidable theories, North-Holland, Amsterdam, 1953
- R. L. Tenney: Decidable pairing functions, Ph.D. thesis, Cornell Univ., 1972
- R. L. Vaught: Axiomatizability by a schema, J. Symb. Log. 32:4 (1967), 473-479
- A. Visser: Pairs, sets and sequences in first-order theories, Arch. Math. Logic 47:4 (2008), 299-326
- https://uyghurtribunal.com

