Perturbations of surjective algebra homomorphisms between algebras of operators on Banach spaces

Bence Horváth
(joint work with Zsigmond Tarcsay)

Institute of Mathematics of the Czech Academy of Sciences horvath@math.cas.cz

August 19, 2021

Some notation \& motivation

Lemma (Corollary of Carl Neumann series)
Let \mathcal{A} be a Banach algebra, let $\phi, \psi: \mathcal{A} \rightarrow \mathcal{A}$ be continuous algebra homomorphisms.

Some notation \& motivation

Lemma (Corollary of Carl Neumann series)

Let \mathcal{A} be a Banach algebra, let $\phi, \psi: \mathcal{A} \rightarrow \mathcal{A}$ be continuous algebra homomorphisms. If ψ is an automorphism with

$$
\begin{equation*}
\|\psi-\phi\|<1 /\left\|\psi^{-1}\right\| \tag{1}
\end{equation*}
$$

then ϕ is an automorphism too.

Some notation \& motivation

Lemma (Corollary of Carl Neumann series)

Let \mathcal{A} be a Banach algebra, let $\phi, \psi: \mathcal{A} \rightarrow \mathcal{A}$ be continuous algebra homomorphisms. If ψ is an automorphism with

$$
\begin{equation*}
\|\psi-\phi\|<1 /\left\|\psi^{-1}\right\| \tag{1}
\end{equation*}
$$

then ϕ is an automorphism too.
If X is a complex Banach space, then $\mathscr{B}(X)$ denotes the unital Banach algebra of bounded, linear operators on X.

Some notation \& motivation

Lemma (Corollary of Carl Neumann series)

Let \mathcal{A} be a Banach algebra, let $\phi, \psi: \mathcal{A} \rightarrow \mathcal{A}$ be continuous algebra homomorphisms. If ψ is an automorphism with

$$
\begin{equation*}
\|\psi-\phi\|<1 /\left\|\psi^{-1}\right\| \tag{1}
\end{equation*}
$$

then ϕ is an automorphism too.
If X is a complex Banach space, then $\mathscr{B}(X)$ denotes the unital Banach algebra of bounded, linear operators on X.

Theorem (Molnár, PAMS, 1998)

Let \mathcal{H} be a separable Hilbert space, let $\phi, \psi: \mathscr{B}(\mathcal{H}) \rightarrow \mathscr{B}(\mathcal{H})$ be continuous algebra homomorphisms.

Some notation \& motivation

Lemma (Corollary of Carl Neumann series)

Let \mathcal{A} be a Banach algebra, let $\phi, \psi: \mathcal{A} \rightarrow \mathcal{A}$ be continuous algebra homomorphisms. If ψ is an automorphism with

$$
\begin{equation*}
\|\psi-\phi\|<1 /\left\|\psi^{-1}\right\| \tag{1}
\end{equation*}
$$

then ϕ is an automorphism too.
If X is a complex Banach space, then $\mathscr{B}(X)$ denotes the unital Banach algebra of bounded, linear operators on X.

Theorem (Molnár, PAMS, 1998)

Let \mathcal{H} be a separable Hilbert space, let $\phi, \psi: \mathscr{B}(\mathcal{H}) \rightarrow \mathscr{B}(\mathcal{H})$ be continuous algebra homomorphisms. If ψ is surjective with

$$
\begin{equation*}
\|\psi(A)-\phi(A)\|<\|A\| \tag{2}
\end{equation*}
$$

for all non-zero $A \in \mathscr{B}(\mathcal{H})$, then ϕ is surjective too.

Motivation, the question

Remark

- Note that ψ and ϕ need not be $*$-homomorphisms.

Motivation, the question

Remark

- Note that ψ and ϕ need not be $*$-homomorphisms.
- Note that a priori (2) allows for $\|\psi-\phi\|=1$.

Motivation, the question

Remark

- Note that ψ and ϕ need not be $*$-homomorphisms.
- Note that a priori (2) allows for $\|\psi-\phi\|=1$.
- The condition (2) cannot be replaced with

$$
\begin{equation*}
\|\psi(A)-\phi(A)\| \leqslant\|A\| \quad(\forall A \in \mathscr{B}(\mathcal{H}) \backslash\{0\}) . \tag{3}
\end{equation*}
$$

Indeed, take $\psi=i d_{\mathscr{B}(\mathcal{H})}$ and $\phi=0$ for a counterexample.

Motivation, the question

Remark

- Note that ψ and ϕ need not be $*$-homomorphisms.
- Note that a priori (2) allows for $\|\psi-\phi\|=1$.
- The condition (2) cannot be replaced with

$$
\begin{equation*}
\|\psi(A)-\phi(A)\| \leqslant\|A\| \quad(\forall A \in \mathscr{B}(\mathcal{H}) \backslash\{0\}) . \tag{3}
\end{equation*}
$$

Indeed, take $\psi=i d_{\mathscr{B}(\mathcal{H})}$ and $\phi=0$ for a counterexample.

- Both ϕ and ψ are automatically injective.

Motivation, the question

Remark

- Note that ψ and ϕ need not be $*$-homomorphisms.
- Note that a priori (2) allows for $\|\psi-\phi\|=1$.
- The condition (2) cannot be replaced with

$$
\begin{equation*}
\|\psi(A)-\phi(A)\| \leqslant\|A\| \quad(\forall A \in \mathscr{B}(\mathcal{H}) \backslash\{0\}) . \tag{3}
\end{equation*}
$$

Indeed, take $\psi=i d_{\mathscr{B}(\mathcal{H})}$ and $\phi=0$ for a counterexample.

- Both ϕ and ψ are automatically injective.

Question

Can \mathcal{H} be replaced with some non-hilbertian Banach spaces X in Molnár's theorem?

Motivation, the question

Remark

- Note that ψ and ϕ need not be $*$-homomorphisms.
- Note that a priori (2) allows for $\|\psi-\phi\|=1$.
- The condition (2) cannot be replaced with

$$
\begin{equation*}
\|\psi(A)-\phi(A)\| \leqslant\|A\| \quad(\forall A \in \mathscr{B}(\mathcal{H}) \backslash\{0\}) . \tag{3}
\end{equation*}
$$

Indeed, take $\psi=i d_{\mathscr{B}(\mathcal{H})}$ and $\phi=0$ for a counterexample.

- Both ϕ and ψ are automatically injective.

Question

Can \mathcal{H} be replaced with some non-hilbertian Banach spaces X in Molnár's theorem?

Molnár's proof relies heavily on the C^{*}-algebra structure of $\mathscr{B}(\mathcal{H})$ and on the geometry of \mathcal{H}.

The main results, I.

Theorem A (H.-Tarcsay)

Let X and Y be non-zero Banach spaces such that Y is separable and reflexive. Assume X satisfies one of the following:
(1) $X=L_{p}[0,1]$, where $1<p<\infty$; or
(2) X is a reflexive Banach space with a subsymmetric Schauder basis.

Let $\psi, \phi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be algebra homomorphisms such that ψ is surjective. If

$$
\|\psi(A)-\phi(A)\|<\|A\|
$$

for each non-zero $A \in \mathscr{B}(X)$, then ϕ is an isomorphism.

The main results, II.

Theorem B (H.-Tarcsay)

Let X and Y be non-zero Banach spaces such that Y is separable and reflexive. Assume X satisfies one of the following:
(1) $X=L_{p}[0,1]$, where $1<p<\infty$; or
(2) X is a reflexive Banach space with a subsymmetric Schauder basis.

Let $\phi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a continuous, injective algebra homomorphism. If $\operatorname{Ran}(\phi)$ contains an operator with dense range, and ϕ maps rank one idempotents into rank one idempotents, then ϕ is an isomorphism.

The main results, II.

Theorem B (H.-Tarcsay)

Let X and Y be non-zero Banach spaces such that Y is separable and reflexive. Assume X satisfies one of the following:
(1) $X=L_{p}[0,1]$, where $1<p<\infty$; or
(2) X is a reflexive Banach space with a subsymmetric Schauder basis.

Let $\phi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a continuous, injective algebra homomorphism. If $\operatorname{Ran}(\phi)$ contains an operator with dense range, and ϕ maps rank one idempotents into rank one idempotents, then ϕ is an isomorphism.

The study of representations of $\mathscr{B}(X)$ on separable Banach spaces goes back to the work of Berkson and Porta (Representations of $\mathscr{B}(X)$, JFA, '69).

Examples and non-examples

Example

Each of the following spaces is reflexive and has a subsymmetric basis, hence satisfies the conditions of Theorems A and B:
(a) The sequence spaces ℓ_{p}, where $1<p<\infty$;
(b) every reflexive Orlicz sequence space I_{M} with Orlicz function M satisfying the Δ_{2}-condition $\lim \sup _{t \rightarrow 0} M(2 t) / M(t)<\infty$;
(c) every Lorentz sequence space $d(w, p)$, where $p>1$, $w=\left(w_{n}\right)_{n \in \mathbb{N}}$ is non-increasing, $w_{1}=1, \lim _{n \rightarrow \infty} w_{n}=0$ and $\sum_{n=1}^{\infty} w_{n}=\infty$.

Examples and non-examples

Example

Each of the following spaces is reflexive and has a subsymmetric basis, hence satisfies the conditions of Theorems A and B :
(a) The sequence spaces ℓ_{p}, where $1<p<\infty$;
(b) every reflexive Orlicz sequence space I_{M} with Orlicz function M satisfying the Δ_{2}-condition $\lim \sup _{t \rightarrow 0} M(2 t) / M(t)<\infty$;
(c) every Lorentz sequence space $d(w, p)$, where $p>1$, $w=\left(w_{n}\right)_{n \in \mathbb{N}}$ is non-increasing, $w_{1}=1, \lim _{n \rightarrow \infty} w_{n}=0$ and $\sum_{n=1}^{\infty} w_{n}=\infty$.

Proposition (H.-Tarcsay)

Let X be the $p^{\text {th }}$ James space $J_{p}($ where $1<p<\infty)$ or the Semadeni space $C\left[0, \omega_{1}\right]$. There is a continuous, injective algebra homomorphism $\phi: \mathscr{B}(X) \rightarrow \mathscr{B}(X)$ with $\phi\left(I_{X}\right)=I_{X}$ which maps rank one operators into rank one operators but ϕ is not surjective.

The proof of Theorem A, assuming Theorem B

Drop all assumptions on X and Y for now, except:

In the following, let X and Y be arbitrary non-zero Banach spaces, and let $\psi, \phi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be algebra homomorphisms such that

$$
\|\psi(A)-\phi(A)\|<\|A\|
$$

for each non-zero $A \in \mathscr{B}(X)$.

The proof of Theorem A, assuming Theorem B

Drop all assumptions on X and Y for now, except:

In the following, let X and Y be arbitrary non-zero Banach spaces, and let $\psi, \phi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be algebra homomorphisms such that

$$
\|\psi(A)-\phi(A)\|<\|A\|
$$

for each non-zero $A \in \mathscr{B}(X)$.
The triangle inequality yields

$$
\begin{equation*}
\|\psi(A)\| \leqslant\|\psi(A)-\phi(A)\|+\|\phi(A)\|<\|A\|+\|\phi(A)\| . \tag{4}
\end{equation*}
$$

Similarly, $\|\phi(A)\|<\|A\|+\|\psi(A)\|$. In particular, ϕ is continuous if and only if ψ is continuous.

The proof of Theorem A, assuming Theorem B

Drop all assumptions on X and Y for now, except:

In the following, let X and Y be arbitrary non-zero Banach spaces, and let $\psi, \phi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be algebra homomorphisms such that

$$
\|\psi(A)-\phi(A)\|<\|A\|
$$

for each non-zero $A \in \mathscr{B}(X)$.
The triangle inequality yields

$$
\begin{equation*}
\|\psi(A)\| \leqslant\|\psi(A)-\phi(A)\|+\|\phi(A)\|<\|A\|+\|\phi(A)\| \tag{4}
\end{equation*}
$$

Similarly, $\|\phi(A)\|<\|A\|+\|\psi(A)\|$. In particular, ϕ is continuous if and only if ψ is continuous.

Lemma (Injectivity Lemma)

Let $P \in \mathscr{B}(X)$ be a norm one idempotent. Then $P \in \operatorname{Ker}(\phi)$ if and only if $P \in \operatorname{Ker}(\psi)$. Consequently, ψ is injective if and only if ϕ is injective.

The proof of Theorem A, assuming Theorem B

Proof of Lemma

Assume $P \in \operatorname{Ker}(\phi)$. Then it follows from (4) that $\|\psi(P)\|<\|P\|=1$. As $\psi(P) \in \mathscr{B}(Y)$ is an idempotent, this is equivalent to saying $\psi(P)=0$. The other direction is analogous.

The proof of Theorem A, assuming Theorem B

Proof of Lemma

Assume $P \in \operatorname{Ker}(\phi)$. Then it follows from (4) that $\|\psi(P)\|<\|P\|=1$. As $\psi(P) \in \mathscr{B}(Y)$ is an idempotent, this is equivalent to saying $\psi(P)=0$. The other direction is analogous. For the "consequently" part suppose contrapositively that ψ is not injective. Let $x \in X$ and $f \in X^{*}$ be such that
$1=\|x\|=\langle x, f\rangle=\|f\|$. So $x \otimes f \in \mathscr{F}(X)$ is a norm one idempotent.

The proof of Theorem A, assuming Theorem B

Proof of Lemma

Assume $P \in \operatorname{Ker}(\phi)$. Then it follows from (4) that $\|\psi(P)\|<\|P\|=1$. As $\psi(P) \in \mathscr{B}(Y)$ is an idempotent, this is equivalent to saying $\psi(P)=0$. The other direction is analogous. For the "consequently" part suppose contrapositively that ψ is not injective. Let $x \in X$ and $f \in X^{*}$ be such that
$1=\|x\|=\langle x, f\rangle=\|f\|$. So $x \otimes f \in \mathscr{F}(X)$ is a norm one idempotent. In particular $x \otimes f \in \operatorname{Ker}(\psi)$, which by the first part of the lemma is equivalent to $x \otimes f \in \operatorname{Ker}(\phi)$. Thus ϕ is not injective. Similarly, injectivity of ψ implies injectivity of ϕ.

The proof of Theorem A, assuming Theorem B

Proof of Lemma

Assume $P \in \operatorname{Ker}(\phi)$. Then it follows from (4) that $\|\psi(P)\|<\|P\|=1$. As $\psi(P) \in \mathscr{B}(Y)$ is an idempotent, this is equivalent to saying $\psi(P)=0$. The other direction is analogous. For the "consequently" part suppose contrapositively that ψ is not injective. Let $x \in X$ and $f \in X^{*}$ be such that
$1=\|x\|=\langle x, f\rangle=\|f\|$. So $x \otimes f \in \mathscr{F}(X)$ is a norm one idempotent. In particular $x \otimes f \in \operatorname{Ker}(\psi)$, which by the first part of the lemma is equivalent to $x \otimes f \in \operatorname{Ker}(\phi)$. Thus ϕ is not injective. Similarly, injectivity of ψ implies injectivity of ϕ.

Proposition (A preserver result)

Let $P \in \mathscr{B}(X)$ be a norm one idempotent. Then
$\operatorname{Ran}(\psi(P)) \cong \operatorname{Ran}(\phi(P))$. If ψ is surjective, then $\phi\left(I_{X}\right)=I_{Y}$. Moreover, if ψ is an isomorphism, then $\operatorname{Ran}(\phi(P)) \cong \operatorname{Ran}(P)$.

The proof of the preserver result

Fact (corollary of a result of Zemánek)
If X is a Banach space and $P, Q \in \mathscr{B}(X)$ are idempotents with $\|P-Q\|<1$, then $\operatorname{Ran}(P) \cong \operatorname{Ran}(Q)$.

The proof of the preserver result

Fact (corollary of a result of Zemánek)
If X is a Banach space and $P, Q \in \mathscr{B}(X)$ are idempotents with $\|P-Q\|<1$, then $\operatorname{Ran}(P) \cong \operatorname{Ran}(Q)$.

As $\|P\|=1$, the estimate $\|\psi(P)-\phi(P)\|<1$ and Fact imply $\operatorname{Ran}(\psi(P)) \cong \operatorname{Ran}(\phi(P))$.

The proof of the preserver result

Fact (corollary of a result of Zemánek)
If X is a Banach space and $P, Q \in \mathscr{B}(X)$ are idempotents with $\|P-Q\|<1$, then $\operatorname{Ran}(P) \cong \operatorname{Ran}(Q)$.

As $\|P\|=1$, the estimate $\|\psi(P)-\phi(P)\|<1$ and Fact imply $\operatorname{Ran}(\psi(P)) \cong \operatorname{Ran}(\phi(P))$. Suppose ψ is surjective, then $\psi\left(I_{X}\right)=I_{Y}$. Therefore

$$
\left\|I_{Y}-\phi\left(I_{X}\right)\right\|=\left\|\psi\left(I_{X}\right)-\phi\left(I_{X}\right)\right\|<1
$$

which by the Carl Neumann series implies that $\phi\left(I_{X}\right)$ is invertible in $\mathscr{B}(Y)$. As $\phi\left(I_{X}\right)$ is an idempotent, $\phi\left(I_{X}\right)=I_{Y}$ must hold.

The proof of the preserver result

Fact (corollary of a result of Zemánek)

If X is a Banach space and $P, Q \in \mathscr{B}(X)$ are idempotents with $\|P-Q\|<1$, then $\operatorname{Ran}(P) \cong \operatorname{Ran}(Q)$.

As $\|P\|=1$, the estimate $\|\psi(P)-\phi(P)\|<1$ and Fact imply $\operatorname{Ran}(\psi(P)) \cong \operatorname{Ran}(\phi(P))$. Suppose ψ is surjective, then $\psi\left(I_{X}\right)=I_{Y}$. Therefore

$$
\left\|I_{Y}-\phi\left(I_{X}\right)\right\|=\left\|\psi\left(I_{X}\right)-\phi\left(I_{X}\right)\right\|<1
$$

which by the Carl Neumann series implies that $\phi\left(I_{X}\right)$ is invertible in $\mathscr{B}(Y)$. As $\phi\left(I_{X}\right)$ is an idempotent, $\phi\left(I_{X}\right)=I_{Y}$ must hold. Suppose ψ is an isomorphism. By Eidelheit's Theorem there is an isomorphism $S \in \mathscr{B}(X, Y)$ such that $\psi(A)=S A S^{-1}$ for each $A \in \mathscr{B}(X)$. In particular, $(S P)\left(P S^{-1}\right)=S P S^{-1}=\psi(P)$ and $\left(P S^{-1}\right)(S P)=P$ imply that $\operatorname{Ran}(P) \simeq \operatorname{Ran}(\psi(P))$. By the first part of the proposition $\operatorname{Ran}(\phi(P)) \simeq \operatorname{Ran}(P)$ follows.

The proof of Theorem A, assuming Theorem B

Proposition (Johnson-Phillips-Schechtman, H.-Tarcsay)

Let X be a Banach space such that one of the following two conditions is satisfied.
(1) X has a subsymmetric Schauder basis; or
(2) $X=L_{p}[0,1]$ where $1 \leqslant p<\infty$.

Then $\mathscr{B}(X)$ admits a bounded set \mathcal{Q} of commuting idempotents such that \mathcal{Q} has cardinality \mathfrak{c} and $\operatorname{Ran}(P) \cong X$ for every $P \in \mathcal{Q}$ and $P Q$ is finite-rank for each distinct $P, Q \in \mathcal{Q}$.

The proof of Theorem A, assuming Theorem B

Proposition (Johnson-Phillips-Schechtman, H.-Tarcsay)

Let X be a Banach space such that one of the following two conditions is satisfied.
(1) X has a subsymmetric Schauder basis; or
(2) $X=L_{p}[0,1]$ where $1 \leqslant p<\infty$.

Then $\mathscr{B}(X)$ admits a bounded set \mathcal{Q} of commuting idempotents such that \mathcal{Q} has cardinality \mathfrak{c} and $\operatorname{Ran}(P) \cong X$ for every $P \in \mathcal{Q}$ and $P Q$ is finite-rank for each distinct $P, Q \in \mathcal{Q}$.
In particular, there is a family of subspaces $\left(X_{i}\right)_{i \in \Gamma}$ of X such that

- there is $K>0$ such that X_{i} is K-complemented in $X(\forall i \in \Gamma)$;
- $X_{i} \cong X$ for each $i \in \Gamma$;
- $X_{i} \cap X_{j}$ is finite-dimensional for all distinct $i, j \in \Gamma$;
- I has cardinality \mathbf{c}.

Proof idea for $X=L_{p}[0,1]$

Recall that $L_{p}[0,1]$ is isometrically isomorphic to $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right)$, where

$$
\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right):=(\{0,1\}, \mathcal{P}(\{0,1\}), \mu)^{\mathbb{N}}, \quad \mu(\{0\})=1 / 2=\mu(\{1\})
$$

Proof idea for $X=L_{p}[0,1]$

Recall that $L_{p}[0,1]$ is isometrically isomorphic to $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right)$, where
$\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right):=(\{0,1\}, \mathcal{P}(\{0,1\}), \mu)^{\mathbb{N}}, \quad \mu(\{0\})=1 / 2=\mu(\{1\})$.
For any $S \subseteq \mathbb{N}$ let us define

$$
\pi_{S}:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{S} ; \quad\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(x_{n}\right)_{n \in S}
$$

and

$$
\Lambda_{S}=\left\{A \in \Lambda: A=\pi_{S}^{-1}\left[\pi_{S}[A]\right]\right\}
$$

Proof idea for $X=L_{p}[0,1]$

Recall that $L_{p}[0,1]$ is isometrically isomorphic to $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right)$, where
$\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right):=(\{0,1\}, \mathcal{P}(\{0,1\}), \mu)^{\mathbb{N}}, \quad \mu(\{0\})=1 / 2=\mu(\{1\})$.
For any $S \subseteq \mathbb{N}$ let us define

$$
\pi_{S}:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{S} ; \quad\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(x_{n}\right)_{n \in S}
$$

and

$$
\Lambda_{S}=\left\{A \in \Lambda: A=\pi_{S}^{-1}\left[\pi_{S}[A]\right]\right\}
$$

If S is an infinite, $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda_{S},\left.\nu\right|_{\Lambda_{S}}\right)$ and $L_{p}[0,1]$ are isometrically isomorphic.

Proof idea for $X=L_{p}[0,1]$

Recall that $L_{p}[0,1]$ is isometrically isomorphic to $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right)$, where $\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right):=(\{0,1\}, \mathcal{P}(\{0,1\}), \mu)^{\mathbb{N}}, \quad \mu(\{0\})=1 / 2=\mu(\{1\})$.
For any $S \subseteq \mathbb{N}$ let us define

$$
\pi_{S}:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{S} ; \quad\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(x_{n}\right)_{n \in S}
$$

and

$$
\Lambda_{S}=\left\{A \in \Lambda: A=\pi_{S}^{-1}\left[\pi_{S}[A]\right]\right\}
$$

If S is an infinite, $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda_{S},\left.\nu\right|_{\Lambda_{s}}\right)$ and $L_{p}[0,1]$ are isometrically isomorphic. If S is a finite, then $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda_{S},\left.\nu\right|_{\Lambda_{S}}\right)$ is a finite-dimensional (as Λ_{S} is a finite set).

Proof idea for $X=L_{p}[0,1]$

Recall that $L_{p}[0,1]$ is isometrically isomorphic to $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right)$, where

$$
\left(\{0,1\}^{\mathbb{N}}, \Lambda, \nu\right):=(\{0,1\}, \mathcal{P}(\{0,1\}), \mu)^{\mathbb{N}}, \quad \mu(\{0\})=1 / 2=\mu(\{1\}) .
$$

For any $S \subseteq \mathbb{N}$ let us define

$$
\pi_{S}:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{S} ; \quad\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(x_{n}\right)_{n \in S}
$$

and

$$
\Lambda_{S}=\left\{A \in \Lambda: A=\pi_{S}^{-1}\left[\pi_{S}[A]\right]\right\}
$$

If S is an infinite, $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda_{S},\left.\nu\right|_{\Lambda_{s}}\right)$ and $L_{p}[0,1]$ are isometrically isomorphic. If S is a finite, then $L_{p}\left(\{0,1\}^{\mathbb{N}}, \Lambda_{S},\left.\nu\right|_{\Lambda_{S}}\right)$ is a finite-dimensional (as Λ_{S} is a finite set). Let \mathcal{D} be an almost disjoint family of continuum cardinality consisting of infinite subsets of \mathbb{N}. Take

$$
\mathcal{Q}:=\left\{\mathbb{E}\left(\cdot \mid \Lambda_{N}\right): N \in \mathcal{D}\right\}
$$

The proof of Theorem A, assuming Theorem B

Lemma (Folklore)
Let X be a Banach space and let \mathcal{Q} be a bounded family of non-zero, mutually orthogonal idempotents in $\mathscr{B}(X)$. Then the density of X is at least the cardinality of \mathcal{Q}.

The proof of Theorem A, assuming Theorem B

Lemma (Folklore)

Let X be a Banach space and let \mathcal{Q} be a bounded family of non-zero, mutually orthogonal idempotents in $\mathscr{B}(X)$. Then the density of X is at least the cardinality of \mathcal{Q}.

As a corollary of the previous Proposition and Lemma, we obtain:

Corollary (Dichotomy result)

Let X be a Banach space such that one of the following two conditions is satisfied.
(1) X has a subsymmetric Schauder basis; or
(2) $X=L_{p}[0,1]$ where $1 \leqslant p<\infty$.

Let Y be a separable Banach space. Let $\theta: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a continuous algebra homomorphism. Then θ is either injective or $\theta=0$.

From this point on, we assume that the properties prescribed by the conditions of Theorem A hold for the Banach spaces X and Y, and $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is assumed to be surjective. We recall that due to the deep automatic continuity result of B . E . Johnson, any surjective homomorphism between algebras of operators of Banach spaces is automatically continuous.

From this point on, we assume that the properties prescribed by the conditions of Theorem A hold for the Banach spaces X and Y, and $\psi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is assumed to be surjective. We recall that due to the deep automatic continuity result of B. E. Johnson, any surjective homomorphism between algebras of operators of Banach spaces is automatically continuous.

Proof of Theorem A.

We first observe that ψ is automatically injective. Indeed, Y is non-zero, hence ψ is non-zero, since it is surjective. By the "Dichotomy result" it follows that ψ is injective.
Thus by "Injectivity Lemma" ϕ is injective too. Continuity of ψ implies that ϕ is continuous. Furthermore, from the "Preserver result" we conclude that $\phi\left(I_{X}\right)=I_{Y}$ (which witnesses that $\operatorname{Ran}(\phi)$ contains an operator with dense range), and ϕ preserves rank one idempotents. Hence Theorem B applies.

Ingredients for the proof of Theorem B

Recall:

Theorem B (H.-Tarcsay)

Let X and Y be non-zero Banach spaces such that Y is separable and reflexive. Assume X satisfies one of the following:
(1) $X=L_{p}[0,1]$, where $1<p<\infty$; or
(2) X is a reflexive Banach space with a subsymmetric Schauder basis.

Let $\phi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ be a continuous, injective algebra homomorphism. If $\operatorname{Ran}(\phi)$ contains an operator with dense range, and ϕ maps rank one idempotents into rank one idempotents, then ϕ is an isomorphism.

Ingredients for the proof of Theorem B

Strategy

By Eidelheit's Theorem we know that if $\phi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is a (ring) isomorphism, then there is a (Banach space) isomorphism $S: X \rightarrow Y$ such that

$$
\phi(A)=S A S^{-1} \quad(\forall A \in \mathscr{B}(X))
$$

Ingredients for the proof of Theorem B

Strategy

By Eidelheit's Theorem we know that if $\phi: \mathscr{B}(X) \rightarrow \mathscr{B}(Y)$ is a (ring) isomorphism, then there is a (Banach space) isomorphism $S: X \rightarrow Y$ such that

$$
\phi(A)=S A S^{-1} \quad(\forall A \in \mathscr{B}(X))
$$

In the setup of Theorem A, we will see that the operator S is of the form

$$
S: X \rightarrow Y ; \quad x \mapsto \phi\left(x \otimes f_{0}\right) y_{0}
$$

for some $f_{0} \in X^{*}$ and $y_{0} \in Y$.

If X has a subsymmetric basis, let this be denoted by $\left(b_{n}\right)$. If $X=L_{p}[0,1]$, where $1<p<\infty$, then $\left(b_{n}\right)$ denotes the Haar basis. In both cases $\left(P_{n}\right)$ stands for the sequence of coordinate projections associated to $\left(b_{n}\right)$. As X is reflexive, $\left(P_{n}\right)$ is a b.a.i. for the compact operators $\mathscr{K}(X)$.

The proof of Theorem A

If X has a subsymmetric basis, let this be denoted by $\left(b_{n}\right)$. If $X=L_{p}[0,1]$, where $1<p<\infty$, then $\left(b_{n}\right)$ denotes the Haar basis. In both cases $\left(P_{n}\right)$ stands for the sequence of coordinate projections associated to $\left(b_{n}\right)$. As X is reflexive, $\left(P_{n}\right)$ is a b.a.i. for the compact operators $\mathscr{K}(X)$.

Lemma (H.-Tarcsay, folklore(?))

Let Y be a reflexive Banach space and let $\left(Q_{n}\right)$ be a bounded, monotone increasing sequence ($Q_{n} Q_{m}=Q_{m}=Q_{m} Q_{n}$ for $m \leqslant n$) of idempotents in $\mathscr{B}(Y)$. There exists and idempotent $Q \in \mathscr{B}(Y)$ such that $\left(Q_{n}\right)$ converges to Q in the strong operator topology.

The proof of Theorem A

If X has a subsymmetric basis, let this be denoted by $\left(b_{n}\right)$. If $X=L_{p}[0,1]$, where $1<p<\infty$, then $\left(b_{n}\right)$ denotes the Haar basis. In both cases $\left(P_{n}\right)$ stands for the sequence of coordinate projections associated to $\left(b_{n}\right)$. As X is reflexive, $\left(P_{n}\right)$ is a b.a.i. for the compact operators $\mathscr{K}(X)$.

Lemma (H.-Tarcsay, folklore(?))

Let Y be a reflexive Banach space and let $\left(Q_{n}\right)$ be a bounded, monotone increasing sequence ($Q_{n} Q_{m}=Q_{m}=Q_{m} Q_{n}$ for $m \leqslant n$) of idempotents in $\mathscr{B}(Y)$. There exists and idempotent $Q \in \mathscr{B}(Y)$ such that $\left(Q_{n}\right)$ converges to Q in the strong operator topology.

Proof sketch

- $\mathscr{B}(Y)$ is a dual Banach algebra with predual $Y \widehat{\otimes}_{\pi} Y^{*}$;
- standard convex combination trick;
- Mazur's Theorem.

Since $\left(\phi\left(P_{n}\right)\right)$ is a bounded, monotone increasing sequence of idempotents in $\mathscr{B}(Y)$ it follows from the Lemma that there exists an idempotent $P \in \mathcal{B}(Y)$ such that $\left(\phi\left(P_{n}\right)\right)$ converges to P in the strong operator topology.

Since $\left(\phi\left(P_{n}\right)\right)$ is a bounded, monotone increasing sequence of idempotents in $\mathscr{B}(Y)$ it follows from the Lemma that there exists an idempotent $P \in \mathcal{B}(Y)$ such that $\left(\phi\left(P_{n}\right)\right)$ converges to P in the strong operator topology.
We show that $P=I_{Y}$. To this end we consider the map

$$
\theta: \mathscr{B}(X) \rightarrow \mathscr{B}(Y) ; \quad A \mapsto\left(I_{Y}-P\right) \phi(A)\left(I_{Y}-P\right)
$$

It can be shown that the map θ is a continuous algebra homomorphism with $\left.\theta\right|_{\mathscr{K}(X)}=0$.

Back to the proof of Theorem A

Clearly θ is not injective. As Y is separable, the "Dichotomy result" implies $\theta=0$. By the assumption, we can take $T \in \mathscr{B}(X)$ such that $\phi(T)$ has dense range. Consequently

$$
0=\theta(T)=\left(I_{Y}-P\right) \phi(T)\left(I_{Y}-P\right)=\left(I_{Y}-P\right) \phi(T)
$$

So $\left.\left(I_{Y}-P\right)\right|_{\operatorname{Ran}(\phi(T))}=0$ and $\operatorname{Ran}(\phi(T))$ is dense in Y, hence $P=I_{Y}$.

Back to the proof of Theorem A

Clearly θ is not injective. As Y is separable, the "Dichotomy result" implies $\theta=0$. By the assumption, we can take $T \in \mathscr{B}(X)$ such that $\phi(T)$ has dense range. Consequently

$$
0=\theta(T)=\left(I_{Y}-P\right) \phi(T)\left(I_{Y}-P\right)=\left(I_{Y}-P\right) \phi(T)
$$

So $\left.\left(I_{Y}-P\right)\right|_{\operatorname{Ran}(\phi(T))}=0$ and $\operatorname{Ran}(\phi(T))$ is dense in Y, hence $P=I_{Y}$.
Let $x_{0} \in X$ be such that $\left\|x_{0}\right\|=1$, and choose $f_{0} \in X^{*}$ such that $\left\langle x_{0}, f_{0}\right\rangle=1=\left\|f_{0}\right\|$. As ϕ is injective, we can pick $y_{0} \in Y^{*}$ with $\left\|y_{0}\right\|=1$ such that $\phi\left(x_{0} \otimes f_{0}\right) y_{0} \neq 0$. Thus we can define the non-zero map

$$
S: X \rightarrow Y ; \quad x \mapsto \phi\left(x \otimes f_{0}\right) y_{0}
$$

which is easily seen to be linear and bounded. It can be shown that

$$
\begin{equation*}
S A=\phi(A) S \quad(\forall A \in \mathscr{B}(X)) \tag{5}
\end{equation*}
$$

It remains to show that S is an isomorphism.

Injectivity of S is straightforward. Surjectivity of S is in two steps:

Injectivity of S is straightforward.
Surjectivity of S is in two steps:
(1) S has closed range. Here we use

- the injectivity of S; and
- that X is reflexive, hence weakly sequentially complete.

Injectivity of S is straightforward.
Surjectivity of S is in two steps:
(1) S has closed range. Here we use

- the injectivity of S; and
- that X is reflexive, hence weakly sequentially complete.
S has dense range. Here we use
- that ϕ maps rank one idempotents to rank one idempotents;
- that $\left(\phi\left(P_{n}\right)\right)$ converges to I_{Y} in the strong operator topology; and
- the injectivity of S.

Injectivity of S is straightforward.
Surjectivity of S is in two steps:
(1) S has closed range. Here we use

- the injectivity of S; and
- that X is reflexive, hence weakly sequentially complete.
S has dense range. Here we use
- that ϕ maps rank one idempotents to rank one idempotents;
- that $\left(\phi\left(P_{n}\right)\right)$ converges to I_{Y} in the strong operator topology; and
- the injectivity of S.

Thus S is invertible, hence

$$
\begin{equation*}
\phi(A)=S A S^{-1} \quad(\forall A \in \mathscr{B}(X)) \tag{6}
\end{equation*}
$$

as claimed.

Almost done...

Something that's not in the paper:

Remark

The conclusion of Theorems A and B holds for the following Banach spaces X :

Almost done...

Something that's not in the paper:

Remark

The conclusion of Theorems A and B holds for the following Banach spaces X :

- $X=\mathcal{X}_{p},(2<p<\infty)$ the complemented subspace of $L_{p}[0,1]$ which is not isomorphic to $\ell_{2}, \ell_{p}, \ell_{2} \oplus \ell_{p}$ or $L_{p}[0,1]$. Proof uses recent results of Johnson-Phillips-Schechtman;

Almost done...

Something that's not in the paper:

Remark

The conclusion of Theorems A and B holds for the following Banach spaces X :

- $X=\mathcal{X}_{p},(2<p<\infty)$ the complemented subspace of $L_{p}[0,1]$ which is not isomorphic to $\ell_{2}, \ell_{p}, \ell_{2} \oplus \ell_{p}$ or $L_{p}[0,1]$. Proof uses recent results of Johnson-Phillips-Schechtman;
- $X=T$, the Tsirelson space. (Health warning: details need to be checked. Joint with N. J. Laustsen.)

OK, the very last slide, really

Thank you for your attention :)

Sources

- L. Molnár, "Stability of the surjectivity of endomorphisms and isometries of $\mathscr{B}(\mathcal{H})$ ", PAMS (1998);
- L. Molnár, "The set of automorphisms of $\mathscr{B}(\mathcal{H})$ is topologically relfexive in $\mathscr{B}(\mathscr{B}(\mathcal{H}))$ ", Studia Math. (1997);
- E. Berkson and H. Porta, "Representations of $\mathscr{B}(X)$ ", JFA (1967);
- B. Horváth and Zs. Tarcsay, "Perturbations of surjective homomorphisms between algebras of operators on Banach spaces", To appear in PAMS, available on the arXiv;
- W. B. Johnson, N. C. Phillips and G. Schechtman, "The SHAI property for the operators on $L^{p "}$, preprint, available on the arXiv.

