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We study

continuity in a parameter of solutions of the most general (generic)
classes of one-dimensional inhomogeneous boundary-value problems for
systems of linear ordinary di�erential equations of an arbitrary order in
Sobolev spaces on a �nite interval.
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Let a �nite interval (a,b)⊂ R and parameters {m, n, r} ⊂ N, 1≤ p≤ ∞,
be given.

Linear boundary-value problem

(Ly)(t) := y(r)(t)+
r

∑
j=1

Ar−j(t)y(r−j)(t) = f (t), t ∈ (a,b), (1)

By = c. (2)

Here matrix-valued functions Ar−j(·) ∈ (Wn
p )

m×m, vector-valued function
f (·) ∈ (Wn

p )
m, vector c ∈ Crm, linear continuous operator

B : (Wn+r
p )m→ Crm (3)

are arbitrarily chosen; vector-valued function y(·) ∈ (Wn+r
p )m is unknown.

The solutions of equation (1) �ll the space (Wn+r
p )m if its right-hand side

f (·) runs through the space (Wn
p )

m. Hence, the condition (2) with
operator (3) is generic condition for this equation.

It includes all known types of classical boundary conditions and numerous
nonclassical conditions containing the derivatives (in general fractional)
y(k)(·) with 0 < k ≤ n+ r.
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Complex Sobolev space Wn+r
p := Wn+r

p
(
[a,b];C

)
Wn+r

p
(
[a,b];C

)
:=
{

y ∈ Cn+r−1[a,b] : y(n+r−1) ∈ AC[a,b], y(n+r) ∈ Lp[a,b]
}

This space is Banach relative to the norm∥∥y
∥∥

n+r,p =
n+r−1

∑
k=0

∥∥y(k)
∥∥

p +
∥∥y(n+r)∥∥

p,

where ‖ · ‖p is the norm in Lp
(
[a,b];C

)
.

By ‖ · ‖n+r,p, we also denote the norms in Banach spaces

(
Wn+r

p
)m := Wn+r

p
(
[a,b];Cm) and

(
Wn+r

p
)m×m := Wn+r

p
(
[a,b];Cm×m).

They consist of the vector-valued functions and matrix-valued functions,
respectively, all components of which belong to Wn+r

p .
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With problem (1), (2), we associate the linear operator

(L,B) : (Wn+r
p )m→ (Wn

p )
m×Crm. (4)

A linear continuous operator T : X→ Y, where X and Y are Banach
spaces, is called a Fredholm operator if its kernel kerT and cokernel
Y/T(X) are �nite-dimensional. If this operator is Fredholm, then its range
T(X) is closed in Y and the index indT := dimkerT−dim(Y/T(X)) ∈ Z.
By [BYk], we denote the numerical m×m matrix, in which j-th column is
result of the action of B on j-th column of Yk(·).
De�nition 1.

A block numerical matrix

M(L,B) := ([BY0] , . . . , [BYr−1]) ∈ Crm×rm (5)

is characteristic matrix to problem (1), (2). It consists of r rectangular
block columns [BYk(·)] ∈ Cm×m.

Theorem 1.

The operator (4) is invertible if and only if the matrix M(L,B) is
nondegenerate.
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Boundary-value problem depending on a parameter ε ∈ [0,ε0), ε0 > 0

L(ε)y(t,ε) := y(r)(t,ε)+
r

∑
j=1

Ar−j(t,ε)y(r−j)(t,ε) = f (t,ε), t ∈ (a,b), (6)

B(ε)y(·;ε) = c(ε). (7)

Here Ar−j(·,ε) ∈ (Wn
p )

m×m, f (·,ε) ∈ (Wn
p )

m, c(ε) ∈ Crm, linear continuous
operator B(ε) : (Wn+r

p )m→ Crm are arbitrarily chosen; vector-valued
function y(·,ε) ∈ (Wn+r

p )m is unknown.

Problem (6), (7) is a Fredholm one with zero index for every ε ∈ [0,ε0).

De�nition 2.

The solution to the problem (6), (7) depends continuously
on a parameter ε at ε = 0 if the conditions are satis�ed:

(∗) there exists a positive number ε1 < ε0 such that, for any ε ∈ [0,ε1)
and arbitrary chosen f (·;ε) ∈ (Wn

p )
m, c(ε) ∈ Crm, this problem has a

unique solution y(·;ε) ∈ (Wn+r
p )m;

(∗∗) the convergence of right-hand sides f (·;ε)→ f (·;0) and c(ε)→ c(0)
implies the convergence of solutions

y(·;ε)→ y(·;0) in (Wn+r
p )m as ε → 0+ .
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Consider the following conditions:

(0) the homogeneous boundary-value problem

L(0)y(t,0) = 0, t ∈ (a,b), B(0)y(·,0) = 0

has only the trivial solution;

(I) Ar−j(·;ε)→ Ar−j(·;0) in (Wn
p )

m×m for every j ∈ {1, . . . ,r};
(II) B(ε)y→ B(0)y in Crm for every y ∈ (Wn+r

p )m.

Theorem 2.

The solution to the problem (6), (7) depends continuously on the
parameter ε at ε = 0 if and only if this problem satis�es Conditions (0),
(I), and (II).
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Gnyp, Mikhailets, and Murach (2016) gave a constructive criterion of
continuous dependence on a parameter in Sobolev spaces Wn+r

p , where
1≤ p < ∞. The proof of criterion is based on the fact that the linear
continuous operator B : (Wn+r

p )m→ Crm admits the unique analytic
representation

By =
n+r−1

∑
k=0

αky(k)(a)+
∫ b

a
Φ(t)y(n+r)(t)dt, y(·) ∈ (Wn+r

p )m. (8)

Here, the matrices αk ∈ Crm×m, and the matrix-valued function
Φ(·) ∈ Lp′

(
[a,b];Crm×m

)
, 1/p+1/p

′
= 1.

Our method of proof allows to investigate such problems in Sobolev
spaces Wn+r

p , where 1≤ p≤ ∞, and some others function spaces.
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We supplement our result with a two-sided estimate of the error∥∥y(·;0)− y(·;ε)
∥∥

n+r,p of solution y(·;ε) via its discrepancy

d̃n,p(ε) :=
∥∥L(ε)y(·;0)− f (·;ε)

∥∥
n,p +

∥∥B(ε)y(·;0)− c(ε)
∥∥
Crm .

Here, we interpret y(·;0) as an approximate solution to problem (6), (7).

Theorem 3.

Let the problem (6), (7) satis�es Conditions (0), (I), and (II). Then there
exist positive numbers ε2 < ε1, γ1, and γ2, such that

γ1 d̃n,p(ε)≤
∥∥y(·;0)− y(·;ε)

∥∥
n+r,p ≤ γ2 d̃n,p(ε)

for any ε ∈ (0,ε2). Here, the numbers ε2, γ1, and γ2 do not depend on
y(·;0), and y(·;ε).

Thus, the error and discrepancy of the solution to problem (6), (7) are of
the same degree of smallness [2, 5].
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For any ε ∈ [0,ε0), ε0 > 0, we associate with the system (6)

multi-point Fredholm boundary condition

B(ε)y(·,ε) =
N

∑
j=0

ωj(ε)

∑
k=1

n+r−1

∑
l=0

β
(l)
j,k (ε)y

(l)(tj,k(ε),ε) = q(ε), (9)

where the numbers {N,ωj(ε)} ⊂ N, vectors q(ε) ∈ Crm, matrices

β
(l)
j,k (ε) ∈ Cm×m, and points {tj, tj,k(ε)} ⊂ [a,b] are arbitrarily given.

It is not assumed that the coe�cients Ar−j(·,ε), β
(l)
j,k (ε) or points tj,k(ε)

have a certain regularity on the parameter ε as ε > 0. It will be required
that for each �xed j ∈ {1, . . . ,N} all the points tj,k(ε) have a common
limit as ε → 0+, but for the zero-point series t0,k(ε) this requirement will
not be necessary. We consider the case where the points of the interval
[a,b] appearing in boundary conditions are not �xed and depend on a
numerical parameter and the number of these points may change.

The solution y(·,ε) to problem (6), (9) is continuous on the parameter ε

if it exists, is unique, and satis�es the limit relation∥∥y(·,ε)− y(·,0)
∥∥

n+r,p→ 0 as ε → 0+ . (10)
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Assumptions as ε → 0+:

(α) tj,k(ε)→ tj for all j ∈ {1, . . . ,N}, and k ∈ {1, . . . ,ωj(ε)};

(β )
ωj(ε)

∑
k=1

β
(l)
j,k (ε)→ β

(l)
j for all j ∈ {1, . . . ,N}, and l ∈ {0, . . . ,n+ r−1};

(γ)
ωj(ε)

∑
k=1

∥∥β
(l)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣→ 0 for all j ∈ {1, . . . ,N},

k ∈ {1, . . . ,ωj(ε)}, and l ∈ {0, . . . ,n+ r−1};

(δ )
ω0(ε)

∑
k=1

∥∥β
(l)
0,k(ε)

∥∥→ 0 for all k ∈ {1, . . . ,ω0(ε)}, and

l ∈ {0, . . . ,n+ r−1}.

Assumptions (β ) and (γ) imply that the norms of the coe�cients β
(l)
j,k (ε)

can increase as ε → 0+, but not too fast.

Theorem 4.

Let the boundary-value problem (6), (9) for p = ∞ satis�es the
assumptions (α), (β ), (γ), (δ ). Then it satis�es the limit condition (II).
If, moreover, the conditions (0) and (I) are ful�lled, then for a su�ciently
small ε its solution exists, is unique and satis�es the limit relation (10).
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Assumptions as ε → 0+:

(γp)
ωj(ε)

∑
k=1

∥∥β
(n+r−1)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣1/p

′

= O(1) for all j ∈ {1, . . . ,N}, and

k ∈ {1, . . . ,ωj(ε)};

(γ ′)
ωj(ε)

∑
k=1

∥∥β
(l)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣→ 0 for all j ∈ {1, . . . ,N},

k ∈ {1, . . . ,ωj(ε)}, and l ∈ {0, . . . ,n+ r−2}.

Theorem 7.

Let the boundary-value problem (6), (9) for 1≤ p < ∞ satis�es the
assumptions (α), (β ), (γp), (γ

′), (δ ). Then it satis�es the limit
condition (II). If, moreover, the conditions (0) and (I) are ful�lled, then
for a su�ciently small ε its solution exists, is unique and satis�es the
limit relation (10) [4, 6].

Remark 5.

The systems of conditions (α), (β ), (γ), (δ ) and (α), (β ), (γp), (γ
′), (δ )

do not guarantee uniform convergence of continuous operators B(ε) to
B(0) as ε → 0+.
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Linear boundary-value problem

(Ly)(t) := y(r)(t)+
r

∑
j=1

Ar−j(t)y(r−j)(t) = f (t), t ∈ (a,b), (11)

By = c, (12)

where 1≤ p < ∞, Ar−j(·), f (·), c, and linear continuous operator B satisfy
the above conditions to problem (1), (2).

A sequence of multipoint boundary-value problems

(Lkyk)(t) := y(r)k (t)+
r

∑
j=1

Ar−j(t)y
(r−j)
k (t) = f (t), t ∈ (a,b), (13)

Bkyk :=
N

∑
j=0

n+r−1

∑
l=0

β
(l,j)
k y(l)(tk,j) = c. (14)
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Theorem 6.

For the boundary-value problem (11), (12) there is a sequence of
multipoint boundary-value problems of the form (13), (14) such that they
are well-posedness for su�ciently large k and the asymptotic property is
ful�lled

yk→ y in (Wn+r
p )m for k→ ∞.

The sequence can be chosen independently of f and c, and constructed
explicitly.
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Analysis of di�erential operators with distributions in coe�cients

For some classes of ordinary di�erential operators with distributions in
coe�cients, they can be speci�cally de�ned as quasi-di�erential
operators. Therefore, each of these operators is a limit in the sense of
uniform resolvent convergence of di�erential operators with smooth
coe�cients. Due to this, some properties of di�erential operators with
distributions in coe�cients can be obtained based on known results of
di�erential operators with smooth coe�cients by the limit transition.
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