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We study

the characteristics of solvability of systems of linear ordinary di�erential
equations of arbitrary order on a �nite interval with the most general
(generic) inhomogeneous boundary conditions in Sobolev spaces.
Boundary conditions can be both overdetermined and underdetermined.
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Let a �nite interval (a,b)⊂ R and parameters {m, n, r, l} ⊂ N, 1≤ p≤ ∞,
be given.

Linear boundary-value problem

(Ly)(t) := y(r)(t)+
r

∑
j=1

Ar−j(t)y(r−j)(t) = f (t), t ∈ (a,b), (1)

By = c. (2)

Here matrix-valued functions Ar−j(·) ∈ (Wn
p )

m×m, vector-valued function

f (·) ∈ (Wn
p )

m, vector c ∈ Cl, linear continuous operator

B : (Wn+r
p )m→ Cl (3)

are arbitrarily chosen; vector-valued function y(·) ∈ (Wn+r
p )m is unknown.
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If l < r, then the boundary conditions are underdetermined.
If l > r, then the boundary conditions are overdetermined.

The solutions of equation (1) �ll the space (Wn+r
p )m if its right-hand side

f (·) runs through the space (Wn
p )

m. Hence, the condition (2) with
operator (3) is generic condition for this equation.

It includes all known types of classical boundary conditions and numerous
nonclassical conditions containing the derivatives (in general fractional)
y(k)(·) with 0 < k ≤ n+ r.

Thus, boundary conditions can contain derivatives whose order is greater
than the order of the equation.
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In case 1≤ p < ∞, the linear continuous operator B : (Wn+r
p )m→ Cl

admits the unique analytic representation

By =
n+r−1

∑
k=0

αky(k)(a)+
∫ b

a
Φ(t)y(n+r)(t)dt, y(·) ∈ (Wn+r

p )m. (4)

Here, the matrices αk ∈ Cl×m, and the matrix-valued function
Φ(·) ∈ Lp′

(
[a,b];Cl×m

)
, 1/p+1/p

′
= 1.

For p = ∞ this formula also de�nes an operator B : (Wn+r
∞ )m→ Cl.

However, there exist other operators from this class generated by the
integrals over �nitely additive measures.
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Complex Sobolev space Wn+r
p := Wn+r

p
(
[a,b];C

)
Wn+r

p
(
[a,b];C

)
:=
{

y ∈ Cn+r−1[a,b] : y(n+r−1) ∈ AC[a,b], y(n+r) ∈ Lp[a,b]
}

This space is Banach one relative to the norm∥∥y
∥∥

n+r,p =
n+r−1

∑
k=0

∥∥y(k)
∥∥

p +
∥∥y(n+r)∥∥

p,

where ‖ · ‖p is the norm in Lp
(
[a,b];C

)
.

By ‖ · ‖n+r,p, we also denote the norms in Banach spaces

(
Wn+r

p
)m := Wn+r

p
(
[a,b];Cm) and

(
Wn+r

p
)m×m := Wn+r

p
(
[a,b];Cm×m).

They consist of the vector-valued functions and matrix-valued functions,
respectively, all components of which belong to Wn+r

p .
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With problem (1), (2), we associate the linear operator

(L,B) : (Wn+r
p )m→ (Wn

p )
m×Cl. (5)

A linear continuous operator T : X→ Y, where X and Y are Banach
spaces, is called a Fredholm operator if its kernel kerT and cokernel
Y/T(X) are �nite-dimensional. If this operator is Fredholm, then its range
T(X) is closed in Y and the index is �nite:

indT := dimkerT−dim(Y/T(X)) ∈ Z.

Theorem 1.

The linear operator (5) is a bounded Fredholm operator with index mr− l.
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Family of matrix Cauchy problems with the initial conditions

Y(r)
k (t)+

r

∑
j=1

Ar−j(t)Y
(r−j)
k (t) = Om, t ∈ (a,b),

Y(j−1)
k (a) = δk,jIm, j ∈ {1, . . . ,r}.

By [BYk], we denote the numerical m× l matrix, in which j-th column is
result of the action of B on j-th column of Yk(·).

De�nition 1.

A block numerical matrix

M(L,B) := ([BY0] , . . . , [BYr−1]) ∈ Cmr×l (6)

is characteristic matrix to problem (1), (2). It consists of r rectangular
block columns [BYk(·)] ∈ Cm×l.
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Theorem 2.

The dimensions of kernel and cokernel of the operator (5) are equal to

the dimensions of kernel and cokernel of matrix (6), respectively:

dimker(L,B) = dimker
(
M(L,B)

)
,

dimcoker(L,B) = dimcoker
(
M(L,B)

)
.

Corollary 1.

The operator (5) is invertible if and only if l = mr and the square matrix

M(L,B) is nondegenerate.



Example 1 10/20

Consider problem (1), (2), where r = 1, putting A(t)≡ 0 with the next
boundary conditions:

By =
n−1

∑
k=0

αky(k)(a)+
∫ b

a
Φ(t)y(n)(t)dt, y(·) ∈ (Wn

p )
m.

Then we have

BY =
n−1

∑
s=0

αsY(s)(a)+
∫ b

a
Φ(t)Y(n)(t)dt, Y(·) = Im,

M(L,B) = α0.

The numerical matrix α0 does not depend on p, α1, . . . ,αn−1, and Φ(·).
Thus, the statement of Theorem 2 holds:

dimker(M(L,B)) = dimker(α0),

dimcoker(M(L,B)) = dimcoker(α0).
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Boundary-value problems depending on the parameter k ∈ N

L(k)y(t,k) := y(r)(t,k)+
r

∑
j=1

Ar−j(t,k)y(r−j)(t,k) = f (t,k), t ∈ (a,b), (7)

B(k)y(·,k) = c(k), k ∈ N, (8)

where Ar−j(·,k), f (·,k), c(k), and linear continuous operator B(k) satisfy
the above conditions to problem (1), (2).

The sequence of linear continuous operators

(L(k),B(k)) : (Wn+r
p )m→ (Wn

p )
m×Cl,

and characteristic matrices

M
(
L(k),B(k)

)
:=
(
[B(k)Y0(·,k)] , . . . , [B(k)Yr−1(·,k)]

)
⊂ Cmr×l.

Let`s formulate a su�cient condition for convergence of the characteristic
matrices.

Theorem 3.

If the sequence of operators
(
L(k),B(k)

)
converges strongly to the

operator
(
L,B
)
then the sequence of characteristic matrices

M
(
L(k),B(k)

)
converges to the matrix M

(
L,B
)
for k→ ∞.
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From Theorem 3 follows su�cient conditions of semicontinuity from
above the dimensions of the kernel and cokernel of the operator (L,B).

Corollary 2.

Under assumptions in Theorem 3, the following inequalities hold starting

with su�ciently large k:

dimker(L(k),B(k))≤ dimker(L,B) ,
dimcoker(L(k),B(k))≤ dimcoker(L,B) .

The Corollary 2 implies the consequences of the stability of the
invertibility of the sequence of operators (L(k),B(k)), the existence and
uniqueness of the solution to problem (7), (8). In particular, for
su�ciently large k, we have:

1) if l = mr and operator (L,B) is invertible, then the operators
(L(k),B(k)) are also invertible;

2) if problem (1), (2) has a solution, then problems (7), (8) also have a
solution;

3) if problem (1), (2) has a unique solution, then problems (7), (8) also
have a unique solution [1, 3].
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For each k→ ∞, we write the operator B(k) in the form (4), where
αs = αs(k), Φ(t) = Φ(t,k).
In the case of 1≤ p < ∞, based on a unique analytic representation of the
operator B in (4), we formulate necessary and su�cient conditions that
guarantees a strong convergence of the sequence of operators (L(k),B(k))
to the operator (L,B).

Theorem 4.

Condition (L(k),B(k)) s−→ (L,B) is equivalent to conditions:

1. ‖L(k)−L‖→ 0;
2. L(k)y→ Ly for each y ∈ (Wn+r

p )m;

3. αs(k)→ αs in Cl×m for each s ∈ {0, . . . ,n−1};
4. ‖Φ(·,k)‖q = O(1);

5.
t∫

a
Φ(τ,k)dτ →

t∫
a

Φ(τ)dτ â Cl×m for each t ∈ (a,b].
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In the case of 1≤ p < ∞, we formulate necessary and su�cient conditions
that guarantees the uniform convergence of the sequence of operators
(L(k),B(k)) to the operator (L,B).

Theorem 5.

Condition
∥∥(L(k),B(k))− (L,B)

∥∥→ 0 is equivalent to conditions:

1. ‖L(k)−L‖→ 0;
6. ‖Φ(·,k)−Φ(·)‖q→ 0.

The condition 6 is stronger than conditions 4 and 5.
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L(k)y(t,k) := y′(t,k)+A(t,k)y(t,k) = f (t,k), B(k)y(·,k) = c(k). (9)

Denote by Y(·,k) ∈ (Wn
p )

m×m, respectively, the solution of the sequence of
matrix di�erential equations

Y ′(t,k)+A(t,k)Y(t,k) = 0, t ∈ (a,b), k ∈ N, Y(a,k) = Im. (10)

Denote by M(L(k),B(k)) := [B(k)Y(·,k)] ∈ Cm×l.
From (4), we have

B(k)Y =
n−1

∑
s=0

αs(k)Y(s)(a)+
∫ b

a
Φ(t,k)Y(n)(t)dt. (11)

Suppose that for the problem (9) the conditions of the Theorem 4 are
satis�ed:

a) αs(k)→ αs in Cl×m for each s ∈ {0, . . . ,n−1};
b) ‖Φ(·,k)‖q = O(1);

c)
t∫

a
Φ(τ,k)dτ →

t∫
a

Φ(τ)dτ in Cl×m for each t ∈ (a,b].
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Then we have a strong convergence of the sequence of operators
(L(k),B(k)) to the operator (L,B).
Then by the Theorem 3 we have the convergence of the sequence of
characteristic matrices.
In (10), put A(t,k)→ 0, then Y(t,k)→ Im. Substituting this value into
equality (11), we have

M(L(k),B(k))→ α0.

Therefore, starting with some number k

dimker
(
M(L(k),B(k))

)
≤ dimker(α0),

dimcoker
(
M(L(k),B(k))

)
≤ dimcoker(α0).

In particular, if the numerical matrix α0 is square and nondegenerate,
then starting from some number k0 all boundary-value problems are
well-posedness.
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This results can be used in:

�nding approximate solutions of complex boundary-value problems,
reducing this problem to �nding solutions of simpler multipoint
boundary-value problems.

Linear boundary-value problem

(Ly)(t) := y(r)(t)+
r

∑
j=1

Ar−j(t)y(r−j)(t) = f (t), t ∈ (a,b), (12)

By = c, (13)

where B : (Wn+r
p )m→ Crm.

A sequence of multipoint boundary-value problems

(Lkyk)(t) := y(r)k (t)+
r

∑
j=1

Ar−j(t)y
(r−j)
k (t) = f (t), t ∈ (a,b), (14)

Bkyk :=
N

∑
j=0

n+r−1

∑
l=0

β
(l,j)
k y(l)(tk,j) = c. (15)
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Theorem 6.

In case 1≤ p < ∞, for the boundary-value problem (12), (13) there is a
sequence of multipoint boundary-value problems of the form (14), (15)
such that they are well-posedness for su�ciently large k and the
asymptotic property is ful�lled

yk→ y in (Wn+r
p )m for k→ ∞.

The sequence can be chosen independently of f and c, and constructed
explicitly.
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