Elementary analytic functions in VTC^0

Emil Jeřábek

Institute of Mathematics Czech Academy of Sciences jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Czech Gathering of Logicians June 2022, Prague

\mathbf{TC}^0 and VTC^0

- **1** \mathbf{TC}^0 and VTC^0
- 2 Iterated multiplication and division
- 3 Induction in VTC⁰
- 4 Elementary analytic functions

Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and computational complexity classes C:

- ▶ Provably total computable functions of *T* are *C*-functions
- ► T can reason using C-predicates (comprehension, induction, minimization, . . .)

Feasible reasoning:

- ▶ Given a concept $X \in C$, what can we prove about X while reasoning only with concepts from C?
- ► Formalization: what does *T* prove about *X*?

This talk:

X = elementary integer arithmetic operations $+, \cdot, \leq$

The class TC⁰

$$AC^0 \subset ACC^0 \subset TC^0 \subset NC^1 \subset L \subset NL \subset AC^1 \subset \cdots \subset P$$

- TC^0 = dlogtime-uniform O(1)-depth $n^{O(1)}$ -size unbounded fan-in circuits with threshold gates
 - FOM-definable on finite structures
 representing strings
 (first-order logic with majority quantifiers)
 - $= O(\log n)$ time, O(1) thresholds on a threshold Turing machine
 - = Constable's \mathcal{K} : closure of $+,-,\cdot,/$ under substitution and polynomially bounded \sum , \prod

TC⁰ and arithmetic operations

For integers given in binary:

- ightharpoonup + and < are in $AC^0 \subset TC^0$
- \triangleright x is in TC^0 (TC^0 -complete under AC^0 reductions)

TC⁰ can also do:

- \blacktriangleright iterated addition $\sum_{i < n} X_i$
- integer division and iterated multiplication [BCH'86,CDL'01,HAB'02]
- \blacktriangleright the corresponding operations on \mathbb{Q} , $\mathbb{Q}(\alpha)$, ...
- approximate functions given by nice power series:
 - $ightharpoonup \sin X$, $\log X$, $\sqrt[k]{X}$, ...
- sorting, . . .
- \Rightarrow **TC**⁰ is the right class for basic arithmetic operations

The theory VTC⁰

- ► Zambella-style two-sorted bounded arithmetic
 - unary (auxiliary) integers with $0, 1, +, \cdot, \leq$
 - ► finite sets = binary integers = binary strings
- ► Noteworthy axioms:
 - $ightharpoonup \Sigma_0^B$ -comprehension (Σ_0^B = bounded, w/o SO q'fiers)
 - every set has a counting function
- ► Correspondence to **TC**⁰:
 - provably total computable (i.e., $\exists \Sigma_0^B$ -definable) functions are exactly the TC^0 -functions
 - ▶ has induction, minimization, ... for **TC**⁰-predicates
- ▶ Basic binary integer arithmetic in VTC⁰:
 - ▶ can define $+, \cdot, \le$ on binary integers
 - proves integers form a discretely ordered ring (DOR)

TC⁰ feasible reasoning

What else can VTC^0 do with basic arithmetic operations?

- ► [J'22] Iterated multiplication and division: formalize a variant of the [HAB'02] algorithm
- ▶ [J'15] Open induction in $\langle +, \cdot, < \rangle$ (*IOpen*), (translation of) Σ_0^b -minimization in Buss's language
- ► [J'??] Elementary analytic functions: exp, log, sin, arcsin, sinh, arsinh, . . .

Iterated multiplication and division

- 1 TC^0 and VTC^0
- 2 Iterated multiplication and division
- 3 Induction in VTC⁰
- 4 Elementary analytic functions

History

[BCH'86]

- $ightharpoonup \prod_{i \le n} X_i$, |Y/X|, X^n are TC^0 -reducible to each other
- ► they are in P-uniform **TC**⁰
- compute the product in Chinese remainder representation:

$$CRR_{\vec{m}}(X) = \langle X \mod m_i : i < k \rangle$$

where $\vec{m} = \langle m_i : i < k \rangle$ small primes

► (NB: predates definition of **TC**⁰)

Improved CRR reconstruction procedures \Longrightarrow

- ► [CDL'01]: logspace-uniform **TC**⁰ (hence **L**)
- ► [HAB'02]: dlogtime-uniform **TC**⁰

Formalization in VTC⁰

Raised as a problem by Atserias [Ats'03,NC'06]

Obstacles:

- complex structure with interdependent parts
- analysis elementary, but chicken-and-egg problems: uses iterated products and divisions all over the place

Results [J'22]:

- ► VTC⁰ proves IMUL and DIV
- \blacktriangleright $I\Delta_0 + WPHP(\Delta_0)$ has a well-behaved Δ_0 definition of $a^r \mod m$

Induction in VTC⁰

- **1** TC^0 and VTC^0
- 2 Iterated multiplication and division
- 3 Induction in VTC⁰
- 4 Elementary analytic functions

Open induction

Question: Can VTC^0 prove some amount of induction for binary numbers?

The weakest nontrivial fragment of induction: IOpen

- ightharpoonup induction for quantifier-free formulas in language $\langle +, \cdot, < \rangle$
- ► [Shep'64] $\mathfrak{M} \models IOpen \iff \mathfrak{M}$ is an integer part of a real-closed field

 VTC^0 -provable $\forall \exists \Sigma_0^B$ statements witnessed by \mathbf{TC}^0 functions \implies the following are equivalent:

- ▶ $VTC^0 \vdash IOpen$
- ▶ for every constant d, VTC^0 can formalize a TC^0 root approximation algorithm for degree-d polynomials

Results [J'15]

VTC⁰ does prove *IOpen*:

- ► Largange inversion formula ⇒ approximation of roots of polynomials with "small" constant coefficient
- model-theoretic argument using Shepherdson's criterion
 - ▶ $\mathfrak{M} \sim \mathsf{DOR} \ \mathbf{Z}^{\mathfrak{M}} \sim \mathsf{fraction} \ \mathsf{field} \ \mathbf{Q}^{\mathfrak{M}} \sim \mathsf{completion} \ \mathbf{R}^{\mathfrak{M}}$
 - $ightharpoonup \mathfrak{M} \vDash DIV \implies \mathbf{Z}^{\mathfrak{M}}$ integer part of $\mathbf{Q}^{\mathfrak{M}}$ and $\mathbf{R}^{\mathfrak{M}}$
 - ightharpoonup LIF \Longrightarrow $\mathbf{R}^{\mathfrak{M}}$ henselian \Longrightarrow $\mathbf{R}^{\mathfrak{M}}$ real-closed

Extend the argument using ideas of [Man'91]:

► VTC^0 proves induction and minimization for translations of Σ_0^b formulas in Buss's language

Elementary analytic functions

- **1** TC^0 and VTC^0
- 2 Iterated multiplication and division
- 3 Induction in VTC^0
- 4 Elementary analytic functions

TC⁰ analytic functions

Recall: \mathbf{TC}^0 can compute approximations of analytic functions whose power series have \mathbf{TC}^0 -computable coefficients

Question: Can VTC⁰ prove their basic properties?

There's a plethora of such functions \implies let's start small:

Elementary analytic functions (real and complex)

- ► exp, log
- trigonometric: sin, cos, tan, cot, sec, csc
- ▶ inverse trig.: arcsin, arccos, arctan, arccot, arcsec, arccsc
- hyperbolic: sinh, cosh, tanh, coth, sech, csch
- inverse hyp.: arsinh, arcosh, artanh, arcoth, arsech, arcsch

All definable in terms of complex exp and log

VTC^0 setup

Working with rational approximations only is quite tiresome

Recall:
$$\mathfrak{M} \models VTC^0 \rightsquigarrow \mathsf{DOR} \ \mathbf{Z}^{\mathfrak{M}} \rightsquigarrow \mathsf{fraction} \ \mathsf{field} \ \mathbf{Q}^{\mathfrak{M}} \rightsquigarrow \mathsf{completion} \ \mathbf{R}^{\mathfrak{M}} \rightsquigarrow \mathbf{C}^{\mathfrak{M}} = \mathbf{R}^{\mathfrak{M}}(i)$$

Treat the functions as $f: \mathbb{C}^{\mathfrak{M}} \to \mathbb{C}^{\mathfrak{M}}$ (or on a subset)

This simplifies development, but approximations still needed:

- ► translate results back to the language of VTC⁰
- use the functions in induction arguments, . . .

Further notation: unary integers embed as $L^{\mathfrak{M}} \subseteq Z^{\mathfrak{M}}$

$$\mathbf{C}_{\mathbf{L}}^{\mathfrak{M}} = \{z \in \mathbf{C}^{\mathfrak{M}} : \exists n \in \mathbf{L}^{\mathfrak{M}} |z| \leq n\}, \ \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} = \mathbf{R}^{\mathfrak{M}} \cap \mathbf{C}_{\mathbf{L}}^{\mathfrak{M}}, \ldots$$

Main results

We can define $\pi \in \mathbf{R}^{\mathfrak{M}}$,

exp:
$$\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i\mathbf{R}^{\mathfrak{M}} \to \mathbf{C}_{\neq 0}^{\mathfrak{M}},$$

log: $\mathbf{C}_{\neq 0}^{\mathfrak{M}} \to \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i(-\pi, \pi]$

such that

- \triangleright exp is $2\pi i$ -periodic
- ightharpoonup exp $\log z = z$
- log exp z = z for $z \in \mathbf{R}^{\mathfrak{M}}_{\mathbf{L}} + i(-\pi, \pi]$
- ightharpoonup exp vert $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}$ increasing bijection $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}
 ightarrow \mathbf{R}_{>0}^{\mathfrak{M}}$, convex
- for small z: $\exp z = 1 + z + O(z^2)$, $\log(1+z) = z + O(z^2)$

Outline of the construction

- ▶ Define exp: $\mathbf{C}_{L}^{\mathfrak{M}} \to \mathbf{C}^{\mathfrak{M}}$ using $\sum_{n} \frac{z^{n}}{n!}$ show exp $(z_{0} + z_{1}) = \exp z_{0} \exp z_{1}$
- ▶ Define log on a nbh of 1 using $-\sum_n \frac{(1-z)^n}{n}$ show $\log(z_0 z_1) = \log z_0 + \log z_1$ for z_i close enough to 1
- Extend log
 - ▶ to $\mathbb{R}_{>0}^{\mathfrak{M}}$ using $2^n \colon \mathbb{L}^{\mathfrak{M}} \to \mathbb{Z}^{\mathfrak{M}}$
 - to an angular sector by combining the two
 - ightharpoonup to $\mathbf{C}_{\neq 0}^{\mathfrak{M}}$ using $8 \log \sqrt[8]{z}$
- ▶ $\log \exp(z_0 + z_1) = \log \exp z_0 + \log \exp z_1$ when $|\operatorname{Im} z_j|$ small ⇒ $\log \exp z = z$ when $|\operatorname{Im} z|$ small ⇒ $\exp \log z = z$ using injectivity of \log
- exp is $2\pi i$ -periodic for $\pi := \operatorname{Im} \log(-1)$ \implies extend exp to $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i\mathbf{R}^{\mathfrak{M}}$

Applications

Define

- $z^w = \exp(w \log z), \sqrt[n]{z} = z^{1/n}$
- $ightharpoonup \prod_{j < n} z_j$ for a sequence of $z_j \in \mathbf{Q}^{\mathfrak{M}}(i)$ coded in \mathfrak{M}
- trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic functions

Model-theoretic consequence:

Every countable model of VTC^0 is an exponential integer part of a real-closed exponential field (even though exp is not total on $\mathbf{R}^{\mathfrak{M}}$!)

References

- A. Atserias: Improved bounds on the Weak Pigeonhole Principle and infinitely many primes from weaker axioms, Theoret. Comput. Sci. 295 (2003), 27–39
- P. Beame, S. Cook, H. Hoover: Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994–1003
- ► A. Chiu, G. Davida, B. Litow: Division in logspace-uniform **NC**¹, RAIRO Theoret. Inf. Appl. 35 (2001), 259–275
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- ▶ W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695–716

References (cont'd)

- ► E. Jeřábek: Open induction in a bounded arithmetic for **TC**⁰, Arch. Math. Logic 54 (2015), 359-394
- ► E. Jeřábek: Iterated multiplication in VTC⁰, Arch. Math. Logic (2022), https://doi.org/10.1007/s00153-021-00810-6
- ► E. Jeřábek: Elementary analytic functions in VTC⁰, in preparation
- ► E. Jeřábek: Models of VTC⁰ as exponential integer parts. ?
- ► S.-G. Mantzivis: Circuits in bounded arithmetic part I, Ann. Math. Artif. Intel. 6 (1991), 127-156
- ▶ P. Nguyen, S. Cook: Theories for TC⁰ and other small complexity classes, Log. Methods Comput. Sci. 2 (2006), art. 3
- ▶ J. Shepherdson: A nonstandard model for a free variable fragment of number theory, Bull. Acad. Polon. Sci. 12 (1964), 79-86