Elementary analytic functions in $V T C^{0}$

Emil Jeřábek

Institute of Mathematics
Czech Academy of Sciences
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Czech Gathering of Logicians
June 2022, Prague

$T C^{0}$ and $V T C^{0}$

(1) TC ${ }^{0}$ and $V T C^{0}$
2) Iterated multiplication and division
3) Induction in $V T C^{0}$

4 Elementary analytic functions

Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and computational complexity classes C :

- Provably total computable functions of T are C-functions
- T can reason using C-predicates (comprehension, induction, minimization, ...)

Feasible reasoning:

- Given a concept $X \in C$, what can we prove about X while reasoning only with concepts from C ?
- Formalization: what does T prove about X ?

This talk:
$X=$ elementary integer arithmetic operations $+, \cdot, \leq$

The class TC^{0}

$\mathbf{A C}^{0} \subseteq \mathbf{A C C}^{0} \subseteq \mathbf{T C}^{0} \subseteq \mathbf{N C}^{1} \subseteq \mathbf{L} \subseteq \mathbf{N L} \subseteq \mathbf{A C}^{1} \subseteq \cdots \subseteq \mathbf{P}$

TC ${ }^{0}=$ dlogtime-uniform $O(1)$-depth $n^{O(1)}$-size unbounded fan-in circuits with threshold gates
$=$ FOM-definable on finite structures representing strings
(first-order logic with majority quantifiers)
$=O(\log n)$ time, $O(1)$ thresholds on a threshold Turing machine
$=$ Constable's \mathcal{K} : closure of $+,-, \cdot, /$ under substitution and polynomially bounded \sum, Π

TC ${ }^{0}$ and arithmetic operations

For integers given in binary:
-+ and \leq are in $\mathbf{A C}^{0} \subseteq \mathbf{T C}^{0}$
$-\times$ is in TC 0 (CC 0-complete under $\mathbf{A C}^{0}$ reductions)
TC ${ }^{0}$ can also do:

- iterated addition $\sum_{i<n} X_{i}$
- integer division and iterated multiplication [BCH'86,CDL'01,HAB'02]
- the corresponding operations on $\mathbb{Q}, \mathbb{Q}(\alpha), \ldots$
- approximate functions given by nice power series:
- $\sin X, \log X, \sqrt[k]{X}, \ldots$
- sorting, ...
\Longrightarrow TC 0 is the right class for basic arithmetic operations

The theory VTC ${ }^{0}$

- Zambella-style two-sorted bounded arithmetic
- unary (auxiliary) integers with $0,1,+, \cdot, \leq$
- finite sets $=$ binary integers $=$ binary strings
- Noteworthy axioms:
- Σ_{0}^{B}-comprehension ($\Sigma_{0}^{B}=$ bounded, w/o SO q'fiers)
- every set has a counting function
- Correspondence to $\mathbf{T C}^{0}$:
- provably total computable (i.e., $\exists \Sigma_{0}^{B}$-definable) functions are exactly the $\mathbf{T C}^{0}$-functions
- has induction, minimization, ... for $\mathbf{T C}^{0}$-predicates
- Basic binary integer arithmetic in VTC ${ }^{0}$:
- can define $+, \cdot, \leq$ on binary integers
- proves integers form a discretely ordered ring (DOR)

TC^{0} feasible reasoning

What else can $V T C^{0}$ do with basic arithmetic operations?

- [J'22] Iterated multiplication and division: formalize a variant of the [HAB'02] algorithm
- [J'15] Open induction in $\langle+, \cdot,<\rangle$ (IOpen), (translation of) \sum_{0}^{b}-minimization in Buss's language
- [J' ??] Elementary analytic functions: exp, log, sin, arcsin, sinh, arsinh, ...

Iterated multiplication and division

$$
\text { (1) } \mathrm{TC}^{0} \text { and } V T C^{0}
$$

(2) Iterated multiplication and division
3) Induction in $V T C^{0}$
4. Elementary analytic functions

History

[BCH'86]
$-\prod_{i<n} X_{i},\lfloor Y / X\rfloor, X^{n}$ are $\mathbf{T C}^{0}$-reducible to each other

- they are in P -uniform $\mathbf{T C}^{0}$
- compute the product in Chinese remainder representation:

$$
\operatorname{CRR}_{\vec{m}}(X)=\left\langle X \bmod m_{i}: i<k\right\rangle
$$

where $\vec{m}=\left\langle m_{i}: i<k\right\rangle$ small primes

- (NB: predates definition of $\mathbf{T C}^{0}$)

Improved CRR reconstruction procedures \Longrightarrow

- [CDL'01]: logspace-uniform $\mathbf{T C}^{0}$ (hence \mathbf{L})
- [HAB'02]: dlogtime-uniform TC 0

Formalization in $V T C^{0}$

Raised as a problem by Atserias [Ats'03,NC'06]
Obstacles:

- complex structure with interdependent parts
- analysis elementary, but chicken-and-egg problems: uses iterated products and divisions all over the place

Results [J'22]:

- $V T C^{0}$ proves IMUL and DIV
- I $\Delta_{0}+\operatorname{WPHP}\left(\Delta_{0}\right)$ has a well-behaved Δ_{0} definition of $a^{r} \bmod m$

Induction in $V T C^{0}$

(1) TC^{0} and $V T C^{0}$
2) Iterated multiplication and division
(3) Induction in $V T C^{0}$
4. Elementary analytic functions

Open induction

Question: Can $V T C^{0}$ prove some amount of induction for binary numbers?

The weakest nontrivial fragment of induction: IOpen

- induction for quantifier-free formulas in language $\langle+, \cdot,<\rangle$
- [Shep'64] $\mathfrak{M} \vDash$ IOpen \Longleftrightarrow \mathfrak{M} is an integer part of a real-closed field
$V T C^{0}$-provable $\forall \exists \Sigma_{0}^{B}$ statements witnessed by $\mathbf{T C}^{0}$ functions \Longrightarrow the following are equivalent:
- $V T C^{0} \vdash$ IOpen
- for every constant $d, V T C^{0}$ can formalize a $\mathbf{T C}^{0}$ root approximation algorithm for degree- d polynomials

Results [J'15]

$V T C^{0}$ does prove IOpen:

- Largange inversion formula \Longrightarrow approximation of roots of polynomials with "small" constant coefficient
- model-theoretic argument using Shepherdson's criterion
- $\mathfrak{M} \leadsto$ DOR $\mathbf{Z}^{\mathfrak{M}} \leadsto$ fraction field $\mathbf{Q}^{\mathfrak{M}} \leadsto$ completion $\mathbf{R}^{\mathfrak{M}}$
- $\mathfrak{M} \vDash D I V \Longrightarrow \mathbf{Z}^{\mathfrak{M}}$ integer part of $\mathbf{Q}^{\mathfrak{M}}$ and $\mathbf{R}^{\mathfrak{M}}$
- LIF $\Longrightarrow \mathbf{R}^{\mathfrak{M}}$ henselian $\Longrightarrow \mathbf{R}^{\mathfrak{M}}$ real-closed

Extend the argument using ideas of [Man'91]:

- $V T C^{0}$ proves induction and minimization for translations of \sum_{0}^{b} formulas in Buss's language

Elementary analytic functions

(1) TC^{0} and $V T C^{0}$

(2) Iterated multiplication and division
3. Induction in $V T C^{0}$
(4) Elementary analytic functions

TC 0 analytic functions

Recall: $\mathbf{T C}^{0}$ can compute approximations of analytic functions whose power series have $\mathbf{T C}^{0}$-computable coefficients
Question: Can VTC ${ }^{0}$ prove their basic properties?
There's a plethora of such functions \Longrightarrow let's start small:
Elementary analytic functions (real and complex)

- exp, log
- trigonometric: sin, cos, tan, cot, sec, csc
- inverse trig.: arcsin, arccos, arctan, arccot, arcsec, arccsc
- hyperbolic: sinh, cosh, tanh, coth, sech, csch
- inverse hyp.: arsinh, arcosh, artanh, arcoth, arsech, arcsch

All definable in terms of complex exp and log

Working with rational approximations only is quite tiresome
Recall: $\mathfrak{M} \vDash V T C^{0} \leadsto \operatorname{DOR} \mathbf{Z}^{\mathfrak{M}} \leadsto$ fraction field $\mathbf{Q}^{\mathfrak{M}}$
\leadsto completion $\mathbf{R}^{\mathfrak{M}} \leadsto \mathbf{C}^{\mathfrak{M}}=\mathbf{R}^{\mathfrak{M}}(i)$
Treat the functions as $f: \mathbf{C}^{\mathfrak{M}} \rightarrow \mathbf{C}^{\mathfrak{M}}$ (or on a subset)
This simplifies development, but approximations still needed:

- translate results back to the language of $V T C^{0}$
- use the functions in induction arguments, ...

Further notation: unary integers embed as $\mathbf{L}^{\mathfrak{M}} \subseteq \mathbf{Z}^{\mathfrak{M}}$

$$
\mathbf{C}_{\mathrm{L}}^{\mathfrak{M}}=\left\{z \in \mathbf{C}^{\mathfrak{M}}: \exists n \in \mathbf{L}^{\mathfrak{M}}|z| \leq n\right\}, \mathbf{R}_{\mathrm{L}}^{\mathfrak{M}}=\mathbf{R}^{\mathfrak{M}} \cap \mathbf{C}_{\mathrm{L}}^{\mathfrak{M}}, \ldots
$$

Main results

We can define $\pi \in \mathbf{R}^{\mathfrak{M}}$,

$$
\begin{aligned}
& \exp : \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i \mathbf{R}^{\mathfrak{M}} \rightarrow \mathbf{C}_{\neq 0}^{\mathfrak{M}}, \\
& \log : \mathbf{C}_{\neq 0}^{M} \rightarrow \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i(-\pi, \pi]
\end{aligned}
$$

such that
$-\exp \left(z_{0}+z_{1}\right)=\exp z_{0} \exp z_{1}$

- \exp is $2 \pi i$-periodic
- $\exp \log z=z$
- $\log \exp z=z$ for $z \in \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i(-\pi, \pi]$
$-\exp \upharpoonright \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}$ increasing bijection $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} \rightarrow \mathbf{R}_{>0}^{\mathfrak{M}}$, convex
- for small $z: \exp z=1+z+O\left(z^{2}\right), \log (1+z)=z+O\left(z^{2}\right)$

Outline of the construction

- Define $\exp : \mathbf{C}_{\mathrm{L}}^{\mathfrak{M}} \rightarrow \mathbf{C}^{\mathfrak{M}}$ using $\sum_{n} \frac{z^{n}}{n!}$ show $\exp \left(z_{0}+z_{1}\right)=\exp z_{0} \exp z_{1}$
- Define log on a nbh of 1 using $-\sum_{n} \frac{(1-z)^{n}}{n}$ show $\log \left(z_{0} z_{1}\right)=\log z_{0}+\log z_{1}$ for z_{j} close enough to 1
- Extend log
- to $\mathbf{R}_{>0}^{\mathfrak{M}}$ using $2^{n}: \mathbf{L}^{\mathfrak{M}} \rightarrow \mathbf{Z}^{\mathfrak{M}}$
- to an angular sector by combining the two
- to $\mathbf{C}_{\neq 0}^{\mathfrak{M}}$ using $8 \log \sqrt[8]{z}$
- $\log \exp \left(z_{0}+z_{1}\right)=\log \exp z_{0}+\log \exp z_{1}$ when $\left|\operatorname{lm} z_{j}\right|$ small
$\Longrightarrow \log \exp z=z$ when $|\operatorname{lm} z|$ small
$\Longrightarrow \exp \log z=z$ using injectivity of \log
- \exp is $2 \pi i$-periodic for $\pi:=\operatorname{Im} \log (-1)$
\Longrightarrow extend \exp to $\mathbf{R}_{\mathrm{L}}^{\mathfrak{M}}+i \mathbf{R}^{\mathfrak{M}}$

Applications

Define

- $z^{w}=\exp (w \log z), \sqrt[n]{z}=z^{1 / n}$
- $\prod_{j<n} z_{j}$ for a sequence of $z_{j} \in \mathbf{Q}^{\mathfrak{M}}(i)$ coded in \mathfrak{M}
- trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic functions

Model-theoretic consequence:

- Every countable model of $V T C^{0}$ is an exponential integer part of a real-closed exponential field (even though exp is not total on $\mathbf{R}^{\mathfrak{M}}$!)

References

- A. Atserias: Improved bounds on the Weak Pigeonhole Principle and infinitely many primes from weaker axioms, Theoret. Comput. Sci. 295 (2003), 27-39
- P. Beame, S. Cook, H. Hoover: Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994-1003
- A. Chiu, G. Davida, B. Litow: Division in logspace-uniform NC ${ }^{1}$, RAIRO - Theoret. Inf. Appl. 35 (2001), 259-275
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695-716

References (cont'd)

- E. Jeřábek: Open induction in a bounded arithmetic for $\mathbf{T C}^{0}$, Arch. Math. Logic 54 (2015), 359-394
- E. Jeřábek: Iterated multiplication in $V T C^{0}$, Arch. Math. Logic (2022), https://doi.org/10.1007/s00153-021-00810-6
- E. Jeřábek: Elementary analytic functions in $V T C^{0}$, in preparation
- E. Jeřábek: Models of $V T C^{0}$ as exponential integer parts, ?
- S.-G. Mantzivis: Circuits in bounded arithmetic part I, Ann. Math. Artif. Intel. 6 (1991), 127-156
- P. Nguyen, S. Cook: Theories for $T C^{0}$ and other small complexity classes, Log. Methods Comput. Sci. 2 (2006), art. 3
- J. Shepherdson: A nonstandard model for a free variable fragment of number theory, Bull. Acad. Polon. Sci. 12 (1964), 79-86

