Elementary analytic functions in VTC^0 Emil Jeřábek Institute of Mathematics Czech Academy of Sciences jerabek@math.cas.cz http://math.cas.cz/~jerabek/ Czech Gathering of Logicians June 2022, Prague ### \mathbf{TC}^0 and VTC^0 - **1** \mathbf{TC}^0 and VTC^0 - 2 Iterated multiplication and division - 3 Induction in VTC⁰ - 4 Elementary analytic functions # Theories vs. complexity classes Correspondence of theories of bounded arithmetic T and computational complexity classes C: - ▶ Provably total computable functions of *T* are *C*-functions - ► T can reason using C-predicates (comprehension, induction, minimization, . . .) #### Feasible reasoning: - ▶ Given a concept $X \in C$, what can we prove about X while reasoning only with concepts from C? - ► Formalization: what does *T* prove about *X*? #### This talk: X = elementary integer arithmetic operations $+, \cdot, \leq$ ### The class TC⁰ $$AC^0 \subset ACC^0 \subset TC^0 \subset NC^1 \subset L \subset NL \subset AC^1 \subset \cdots \subset P$$ - TC^0 = dlogtime-uniform O(1)-depth $n^{O(1)}$ -size unbounded fan-in circuits with threshold gates - FOM-definable on finite structures representing strings (first-order logic with majority quantifiers) - $= O(\log n)$ time, O(1) thresholds on a threshold Turing machine - = Constable's \mathcal{K} : closure of $+,-,\cdot,/$ under substitution and polynomially bounded \sum , \prod # TC⁰ and arithmetic operations #### For integers given in binary: - ightharpoonup + and < are in $AC^0 \subset TC^0$ - \triangleright x is in TC^0 (TC^0 -complete under AC^0 reductions) #### **TC**⁰ can also do: - \blacktriangleright iterated addition $\sum_{i < n} X_i$ - integer division and iterated multiplication [BCH'86,CDL'01,HAB'02] - \blacktriangleright the corresponding operations on \mathbb{Q} , $\mathbb{Q}(\alpha)$, ... - approximate functions given by nice power series: - $ightharpoonup \sin X$, $\log X$, $\sqrt[k]{X}$, ... - sorting, . . . - \Rightarrow **TC**⁰ is the right class for basic arithmetic operations # The theory VTC⁰ - ► Zambella-style two-sorted bounded arithmetic - unary (auxiliary) integers with $0, 1, +, \cdot, \leq$ - ► finite sets = binary integers = binary strings - ► Noteworthy axioms: - $ightharpoonup \Sigma_0^B$ -comprehension (Σ_0^B = bounded, w/o SO q'fiers) - every set has a counting function - ► Correspondence to **TC**⁰: - provably total computable (i.e., $\exists \Sigma_0^B$ -definable) functions are exactly the TC^0 -functions - ▶ has induction, minimization, ... for **TC**⁰-predicates - ▶ Basic binary integer arithmetic in VTC⁰: - ▶ can define $+, \cdot, \le$ on binary integers - proves integers form a discretely ordered ring (DOR) # TC⁰ feasible reasoning What else can VTC^0 do with basic arithmetic operations? - ► [J'22] Iterated multiplication and division: formalize a variant of the [HAB'02] algorithm - ▶ [J'15] Open induction in $\langle +, \cdot, < \rangle$ (*IOpen*), (translation of) Σ_0^b -minimization in Buss's language - ► [J'??] Elementary analytic functions: exp, log, sin, arcsin, sinh, arsinh, . . . ### Iterated multiplication and division - 1 TC^0 and VTC^0 - 2 Iterated multiplication and division - 3 Induction in VTC⁰ - 4 Elementary analytic functions # History #### [BCH'86] - $ightharpoonup \prod_{i \le n} X_i$, |Y/X|, X^n are TC^0 -reducible to each other - ► they are in P-uniform **TC**⁰ - compute the product in Chinese remainder representation: $$CRR_{\vec{m}}(X) = \langle X \mod m_i : i < k \rangle$$ where $\vec{m} = \langle m_i : i < k \rangle$ small primes ► (NB: predates definition of **TC**⁰) #### Improved CRR reconstruction procedures \Longrightarrow - ► [CDL'01]: logspace-uniform **TC**⁰ (hence **L**) - ► [HAB'02]: dlogtime-uniform **TC**⁰ ### Formalization in VTC⁰ Raised as a problem by Atserias [Ats'03,NC'06] #### Obstacles: - complex structure with interdependent parts - analysis elementary, but chicken-and-egg problems: uses iterated products and divisions all over the place #### Results [J'22]: - ► VTC⁰ proves IMUL and DIV - \blacktriangleright $I\Delta_0 + WPHP(\Delta_0)$ has a well-behaved Δ_0 definition of $a^r \mod m$ ### Induction in VTC⁰ - **1** TC^0 and VTC^0 - 2 Iterated multiplication and division - 3 Induction in VTC⁰ - 4 Elementary analytic functions # **Open induction** Question: Can VTC^0 prove some amount of induction for binary numbers? The weakest nontrivial fragment of induction: IOpen - ightharpoonup induction for quantifier-free formulas in language $\langle +, \cdot, < \rangle$ - ► [Shep'64] $\mathfrak{M} \models IOpen \iff \mathfrak{M}$ is an integer part of a real-closed field VTC^0 -provable $\forall \exists \Sigma_0^B$ statements witnessed by \mathbf{TC}^0 functions \implies the following are equivalent: - ▶ $VTC^0 \vdash IOpen$ - ▶ for every constant d, VTC^0 can formalize a TC^0 root approximation algorithm for degree-d polynomials # Results [J'15] ### VTC⁰ does prove *IOpen*: - ► Largange inversion formula ⇒ approximation of roots of polynomials with "small" constant coefficient - model-theoretic argument using Shepherdson's criterion - ▶ $\mathfrak{M} \sim \mathsf{DOR} \ \mathbf{Z}^{\mathfrak{M}} \sim \mathsf{fraction} \ \mathsf{field} \ \mathbf{Q}^{\mathfrak{M}} \sim \mathsf{completion} \ \mathbf{R}^{\mathfrak{M}}$ - $ightharpoonup \mathfrak{M} \vDash DIV \implies \mathbf{Z}^{\mathfrak{M}}$ integer part of $\mathbf{Q}^{\mathfrak{M}}$ and $\mathbf{R}^{\mathfrak{M}}$ - ightharpoonup LIF \Longrightarrow $\mathbf{R}^{\mathfrak{M}}$ henselian \Longrightarrow $\mathbf{R}^{\mathfrak{M}}$ real-closed #### Extend the argument using ideas of [Man'91]: ► VTC^0 proves induction and minimization for translations of Σ_0^b formulas in Buss's language ### **Elementary analytic functions** - **1** TC^0 and VTC^0 - 2 Iterated multiplication and division - 3 Induction in VTC^0 - 4 Elementary analytic functions # **TC**⁰ analytic functions Recall: \mathbf{TC}^0 can compute approximations of analytic functions whose power series have \mathbf{TC}^0 -computable coefficients Question: Can VTC⁰ prove their basic properties? There's a plethora of such functions \implies let's start small: Elementary analytic functions (real and complex) - ► exp, log - trigonometric: sin, cos, tan, cot, sec, csc - ▶ inverse trig.: arcsin, arccos, arctan, arccot, arcsec, arccsc - hyperbolic: sinh, cosh, tanh, coth, sech, csch - inverse hyp.: arsinh, arcosh, artanh, arcoth, arsech, arcsch All definable in terms of complex exp and log # VTC^0 setup Working with rational approximations only is quite tiresome Recall: $$\mathfrak{M} \models VTC^0 \rightsquigarrow \mathsf{DOR} \ \mathbf{Z}^{\mathfrak{M}} \rightsquigarrow \mathsf{fraction} \ \mathsf{field} \ \mathbf{Q}^{\mathfrak{M}} \rightsquigarrow \mathsf{completion} \ \mathbf{R}^{\mathfrak{M}} \rightsquigarrow \mathbf{C}^{\mathfrak{M}} = \mathbf{R}^{\mathfrak{M}}(i)$$ Treat the functions as $f: \mathbb{C}^{\mathfrak{M}} \to \mathbb{C}^{\mathfrak{M}}$ (or on a subset) This simplifies development, but approximations still needed: - ► translate results back to the language of VTC⁰ - use the functions in induction arguments, . . . Further notation: unary integers embed as $L^{\mathfrak{M}} \subseteq Z^{\mathfrak{M}}$ $$\mathbf{C}_{\mathbf{L}}^{\mathfrak{M}} = \{z \in \mathbf{C}^{\mathfrak{M}} : \exists n \in \mathbf{L}^{\mathfrak{M}} |z| \leq n\}, \ \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} = \mathbf{R}^{\mathfrak{M}} \cap \mathbf{C}_{\mathbf{L}}^{\mathfrak{M}}, \ldots$$ #### Main results We can define $\pi \in \mathbf{R}^{\mathfrak{M}}$, exp: $$\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i\mathbf{R}^{\mathfrak{M}} \to \mathbf{C}_{\neq 0}^{\mathfrak{M}},$$ log: $\mathbf{C}_{\neq 0}^{\mathfrak{M}} \to \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i(-\pi, \pi]$ #### such that - \triangleright exp is $2\pi i$ -periodic - ightharpoonup exp $\log z = z$ - log exp z = z for $z \in \mathbf{R}^{\mathfrak{M}}_{\mathbf{L}} + i(-\pi, \pi]$ - ightharpoonup exp vert $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}$ increasing bijection $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} ightarrow \mathbf{R}_{>0}^{\mathfrak{M}}$, convex - for small z: $\exp z = 1 + z + O(z^2)$, $\log(1+z) = z + O(z^2)$ ### Outline of the construction - ▶ Define exp: $\mathbf{C}_{L}^{\mathfrak{M}} \to \mathbf{C}^{\mathfrak{M}}$ using $\sum_{n} \frac{z^{n}}{n!}$ show exp $(z_{0} + z_{1}) = \exp z_{0} \exp z_{1}$ - ▶ Define log on a nbh of 1 using $-\sum_n \frac{(1-z)^n}{n}$ show $\log(z_0 z_1) = \log z_0 + \log z_1$ for z_i close enough to 1 - Extend log - ▶ to $\mathbb{R}_{>0}^{\mathfrak{M}}$ using $2^n \colon \mathbb{L}^{\mathfrak{M}} \to \mathbb{Z}^{\mathfrak{M}}$ - to an angular sector by combining the two - ightharpoonup to $\mathbf{C}_{\neq 0}^{\mathfrak{M}}$ using $8 \log \sqrt[8]{z}$ - ▶ $\log \exp(z_0 + z_1) = \log \exp z_0 + \log \exp z_1$ when $|\operatorname{Im} z_j|$ small ⇒ $\log \exp z = z$ when $|\operatorname{Im} z|$ small ⇒ $\exp \log z = z$ using injectivity of \log - exp is $2\pi i$ -periodic for $\pi := \operatorname{Im} \log(-1)$ \implies extend exp to $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i\mathbf{R}^{\mathfrak{M}}$ # **Applications** #### Define - $z^w = \exp(w \log z), \sqrt[n]{z} = z^{1/n}$ - $ightharpoonup \prod_{j < n} z_j$ for a sequence of $z_j \in \mathbf{Q}^{\mathfrak{M}}(i)$ coded in \mathfrak{M} - trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic functions #### Model-theoretic consequence: Every countable model of VTC^0 is an exponential integer part of a real-closed exponential field (even though exp is not total on $\mathbf{R}^{\mathfrak{M}}$!) #### References - A. Atserias: Improved bounds on the Weak Pigeonhole Principle and infinitely many primes from weaker axioms, Theoret. Comput. Sci. 295 (2003), 27–39 - P. Beame, S. Cook, H. Hoover: Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994–1003 - ► A. Chiu, G. Davida, B. Litow: Division in logspace-uniform **NC**¹, RAIRO Theoret. Inf. Appl. 35 (2001), 259–275 - S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010 - ▶ W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695–716 # References (cont'd) - ► E. Jeřábek: Open induction in a bounded arithmetic for **TC**⁰, Arch. Math. Logic 54 (2015), 359-394 - ► E. Jeřábek: Iterated multiplication in VTC⁰, Arch. Math. Logic (2022), https://doi.org/10.1007/s00153-021-00810-6 - ► E. Jeřábek: Elementary analytic functions in VTC⁰, in preparation - ► E. Jeřábek: Models of VTC⁰ as exponential integer parts. ? - ► S.-G. Mantzivis: Circuits in bounded arithmetic part I, Ann. Math. Artif. Intel. 6 (1991), 127-156 - ▶ P. Nguyen, S. Cook: Theories for TC⁰ and other small complexity classes, Log. Methods Comput. Sci. 2 (2006), art. 3 - ▶ J. Shepherdson: A nonstandard model for a free variable fragment of number theory, Bull. Acad. Polon. Sci. 12 (1964), 79-86