Hereditarily bounded sets

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics, Czech Academy of Sciences, Prague

Complexity Theory with a Human Face (2nd ed.) Špindlerův Mlýn, October 2021

Essentially undecidable theories

Incompleteness/undecidability theorems:

- any consistent r.e. theory extending XXXX is incomplete
- any consistent theory extending XXXX is undecidable

What can serve as XXXX ?
T essentially undecidable [TMR'53]
\Longleftrightarrow all consistent extensions of T are undecidable
\Longleftrightarrow no r.e. extension of T is complete and consistent
Convenient weak essentially undecidable theories:

- Robinson's arithmetic Q
- Robinson's theory R
- adjunctive set theory $A S$
- Vaught's set theory VS

Vaught's set theory

Weak set theory VS introduced in [Vau'67]
Language: \in
Axioms:
$\left(\mathrm{V}_{n}\right) \quad \forall x_{0}, \ldots, x_{n-1} \exists y \forall t\left(t \in y \leftrightarrow \bigvee_{i<n} t=x_{i}\right)$
for each standard $n \in \omega$
NB: $\left(V_{n}\right)$ implies $\left(V_{m}\right)$ for $n \geq m>0$

- $V S$ is essentially undecidable
- finite fragments $V S_{n}=\left(\mathrm{V}_{0}\right)+\left(\mathrm{V}_{n}\right)$ not ess. und.
- $V S_{n}$ interpretable in any theory with pairing

Theories with pairing

Assume $T \vdash \exists x \exists y x \neq y$
Pairing function in T : definable function $p(x, y)$ s.t. T proves

$$
p(x, y)=p\left(x^{\prime}, y^{\prime}\right) \rightarrow x=x^{\prime} \wedge y=y^{\prime}
$$

Non-functional pairing: a formula $\pi(x, y, p)$ s.t. T proves

$$
\begin{gathered}
\forall x \forall y \exists p \pi(x, y, p) \\
\pi(x, y, p) \wedge \pi\left(x^{\prime}, y^{\prime}, p\right) \rightarrow x=x^{\prime} \wedge y=y^{\prime}
\end{gathered}
$$

Example: $V S_{2}$ has non-functional pairing $\{\{x\},\{x, y\}\}$
See [Vis'08] for more background

Decidable theories with pairing

Theories with variable-length sequence encoding (sequential theories [Pud'85]) interpret $Q \Longrightarrow$ ess. und.

In contrast: there are decidable theories with pairing

- [Mal'61,'62] theories of locally free algebras (\approx term algebras, also with "commutativity" constraints) incl. acyclic pairing functions: $\left\langle\mathbb{N}, 2^{x} 3^{y}\right\rangle$
- [Ten'72] p.f. acyclic up to a few exceptions e.g.: $2^{x}(2 y+1)-1, \max \left\{x^{2}, y^{2}+x\right\}+y,\binom{x+y+1}{2}+x$

Even with more arithmetical structure:
$-\left[\right.$ Sem'83] $\left\langle\mathbb{N},+, 2^{x}\right\rangle\left(\right.$ has p.f. $\left.2^{x}+2^{x+y}\left[C R^{\prime} 99\right]\right)$

- [CR'01] $\left\langle\mathbb{N}, S,\binom{x+y+1}{2}+x\right\rangle$

Decidable extensions of $V S_{k}$

Encode k-sets by pairs:

Corollary

- Any theory with pairing interprets $V S_{k}$ for each k
- For any $k, V S_{k}$ has a decidable completion

These extensions of $V S_{k}$ are quite unnatural as theories of sets

- e.g., extensionality fails: consider $\langle x, y\rangle$ and $\langle y, x\rangle$

Problem (informal)

Find a natural decidable extension of $V S_{k}$
with a transparent meaning

Hereditarily finite/bounded sets

The set H_{ω} of hereditarily finite sets:

- The smallest set s.t. $\forall x\left(x \subseteq H_{\omega} \wedge x\right.$ finite $\left.\Longrightarrow x \in H_{\omega}\right)$
- $x \in H_{\omega} \Longleftrightarrow \forall y \in \operatorname{tc}(\{x\})$ y finite
- $H_{\omega}=V_{\omega}=\bigcup_{n \in \omega} V_{n}$, where $V_{0}=\varnothing, V_{n+1}=\mathcal{P}\left(V_{n}\right)$
$\mathbf{H}_{\omega}=\left\langle H_{\omega}, \in\right\rangle$ is bi-interpretable with $\langle\mathbb{N},+, \cdot\rangle$
The set H_{k} of sets hereditarily of size $\leq k$:
- The smallest set s.t. $\forall x\left(x \subseteq H_{k} \wedge|x| \leq k \Longrightarrow x \in H_{k}\right)$
$\Rightarrow x \in H_{k} \Longleftrightarrow \forall y \in \operatorname{tc}(\{x\})|y| \leq k$
- $H_{k}=\bigcup_{n} V_{n, \leq k}$, where $V_{0, \leq k}=\varnothing, V_{n+1, \leq k}=\mathcal{P}_{\leq k}\left(V_{n, \leq k}\right)$

NB: $H_{\omega}=\bigcup_{k \in \omega} H_{k}$
$\mathbf{H}_{k}=\left\langle H_{k}, \in\right\rangle$ is a natural (minimal!) model of $V S_{k}$

The theory of \mathbf{H}_{k}

The goal of this talk:

- an explicit axiomatization S_{k} for $\operatorname{Th}\left(\mathbf{H}_{k}\right)$
- characterization of elementary equivalence of tuples
- S_{k} is decidable, with insane lowest possible complexity

NB: some cases are easy/already understood

- \mathbf{H}_{0} is a one-element structure
- $\mathbf{H}_{1} \simeq\langle\mathbb{N}, S(x)=y\rangle$
- \mathbf{H}_{2} is definitionally equivalent to $\left\langle H_{2}, \varnothing,\{x, y\}\right\rangle$ $\{x, y\}$ free commutative operation [Mal'62]

The theory S_{k}

S_{k} is axiomatized by:

- the axioms $\left(\mathrm{V}_{0}\right)$ and $\left(\mathrm{V}_{k}\right)$ of $V S_{k}$
- extensionality
(E)

$$
\forall x, y(\forall t(t \in x \leftrightarrow t \in y) \rightarrow x=y)
$$

- boundedness (all sets have $\leq k$ elements)

$$
\left(\mathrm{B}_{k}\right) \quad \forall x, u_{0}, \ldots, u_{k}\left(\bigwedge_{i \leq k} u_{i} \in x \rightarrow \bigvee_{i<j \leq k} u_{i}=u_{j}\right)
$$

- acyclicity: for each $n \in \omega$,

$$
\left(\mathrm{C}_{n}\right) \quad \forall x_{0}, \ldots, x_{n} \neg\left(\bigwedge_{i<n} x_{i} \in x_{i+1} \wedge x_{n} \in x_{0}\right)
$$

Transitive closures

$\mathbf{A} \vDash S_{k}, \bar{a} \in A, \ell=\operatorname{lh}(\bar{a}):$ define $\operatorname{tc}_{n}^{A}(\bar{a}) \subseteq A$

$$
\begin{aligned}
\operatorname{tc}_{0}^{\mathbf{A}}(\bar{a}) & =\left\{a_{i}: i<\ell\right\} \\
\operatorname{tc}_{n+1}^{\mathbf{A}}(\bar{a}) & =\operatorname{tc}_{n}^{\mathbf{A}}(\bar{a}) \cup \bigcup_{u \in \operatorname{tc}_{n}^{\mathbf{A}}(\bar{a})}\left\{v \in A: v \in^{\mathbf{A}} u\right\} \\
\operatorname{tc}^{\mathbf{A}}(\bar{a}) & =\bigcup_{n \in \omega} \operatorname{tc}_{n}^{\mathbf{A}}(\bar{a})
\end{aligned}
$$

As structures: $\mathbf{t c}_{n}^{\mathbf{A}}(\bar{a})=\left\langle\operatorname{tc}_{n}^{\mathbf{A}}(\bar{a}), \in^{\mathbf{A}}, \bar{a}\right\rangle$
NB: $\left|\operatorname{tc}_{n}^{\mathbf{A}}(\bar{a})\right| \leq \ell \cdot k^{\leq n}$ where $k^{\leq n}=\sum_{i=0}^{n} k^{i}=\frac{k^{n+1}-1}{k-1}$

$$
\mathbf{A}, \bar{a} \sim \mathbf{B}, \bar{b} \Longleftrightarrow \mathbf{t c}^{\mathbf{A}}(\bar{a}) \simeq \mathbf{t c}^{\mathbf{B}}(\bar{b})
$$

$\mathbf{A}, \bar{a} \sim_{n} \mathbf{B}, \bar{b} \Longleftrightarrow \mathbf{t c}_{n}^{\mathbf{A}}(\bar{a}) \simeq \mathbf{t c}_{n}^{\mathbf{B}}(\bar{b})$

Characterization of elementary equivalence

Ehrenfeucht-Fraïssé argument:

Theorem

Let $\mathbf{A}, \mathbf{B} \vDash S_{k}, \bar{a} \in A, \bar{b} \in B, \ell=\operatorname{lh}(\bar{a})=\operatorname{lh}(\bar{b}), n<\omega$.
Then

$$
\mathbf{A}, \bar{a} \equiv \mathbf{B}, \bar{b} \Longleftrightarrow \mathbf{A}, \bar{a} \sim \mathbf{B}, \bar{b} .
$$

More precisely, for all $n \in \omega$,

$$
\begin{aligned}
\mathbf{A}, \bar{a} \equiv_{\ell(k \leq n-1)} \mathbf{B}, \bar{b} & \Longrightarrow \mathbf{A}, \bar{a} \sim_{n} \mathbf{B}, \bar{b} \\
\mathbf{A}, \bar{a} \sim_{t_{k}(n)} \mathbf{B}, \bar{b} & \Longrightarrow \mathbf{A}, \bar{a} \equiv_{n} \mathbf{B}, \bar{b}
\end{aligned}
$$

where $t_{k}(0)=0, t_{k}(n+1)=k^{\leq t_{k}(n)+1}+t_{k}(n)+1$.

Completeness, decidability, q. elimination

Corollary

- S_{k} is a complete theory, thus $S_{k}=\operatorname{Th}\left(\mathbf{H}_{k}\right)$
- $S_{k}=\operatorname{Th}\left(\mathbf{H}_{k}\right)$ is decidable
- in S_{k}, any formula is equivalent to a Boolean combination of bounded existential formulas

In particular: $\mathrm{Th}\left(\mathbf{H}_{k}\right)$ is a decidable extension of $V S_{k}$

Complexity

Superexponential function: $2_{0}^{\times}=x, 2_{n+1}^{x}=2^{2 \times}$

Theorem [FR'79]

T consistent theory with pairing $\Longrightarrow \exists \gamma>0$ s.t. any decision procedure for T has complexity $\geq 2_{\gamma n}^{0}$
$t_{k}(n) \leq 2_{n}^{c_{k}}$ for some constant c_{k}
Turning the Ehrenfeucht-Fraïssé argument into an algorithm:

Theorem

S_{k} is decidable in time $2_{n / 4}^{c_{k}}$

Fine-tuned algorithm

Handle blocks of quantifiers in one go:

Theorem

Given a sentence φ with

- $\varphi \in \exists_{r}$
- n : number of symbols
- q: max length of quantifier blocks
we can decide whether $S_{k} \vdash \varphi$ in

$$
\begin{cases}\operatorname{NTIME}\left(n^{O(1)}\right) & r=1 \\ \operatorname{NTIME}\left((k q)^{O(k q)} n^{O(1)}\right) & r=2 \\ \operatorname{NTIME}\left(2_{r-1}^{O(q k \log k)} n^{O(1)}\right) & r \geq 3\end{cases}
$$

Summary

We identified $\operatorname{Th}\left(\mathbf{H}_{k}\right)$ as a natural extension of $V S_{k}$:

- decidable, of iterated exponential complexity
- transparent explicit axiomatization
- combinatorial characterization of elementary equivalence
- quantifier elimination

References (1)

- P. Cégielski, D. Richard: On arithmetical first-order theories allowing encoding and decoding of lists, Theoret. Comput. Sci. 222 (1999), 55-75
- P. Cégielski, D. Richard: Decidability of the theory of the natural integers with the Cantor pairing function and the successor, Theoret. Comput. Sci. 257 (2001), 51-77
- J. Ferrante, C. W. Rackoff: The computational complexity of logical theories, Springer-Verlag, 1979
- E. J.: The theory of hereditarily bounded sets, 2021, arXiv:2104.06932 [math.LO]
- A. I. Mal'cev: On the elementary theories of locally free universal algebras, Dokl. Akad. Nauk SSSR 138:5 (1961), 1009-1012, English transl.: Soviet Math. Dokl. 2:3 (1961), 768-771
- A. I. Mal'cev: Axiomatizable classes of locally free algebras of several types, Sibirsk. Mat. Zh. 3:5 (1962), 729-743

References (2)

- P. Pudlák: Cuts, consistency statements and interpretations, J. Symb. Log. 50:2 (1985), 423-441
- A. L. Semënov: Logical theories of one-place functions on the set of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 47:3 (1983), 623-658, English transl.: Math. USSR Izv. 22:3 (1984), 587-618
- A. Tarski, A. Mostowski, R. M. Robinson: Undecidable theories, North-Holland, Amsterdam, 1953
- R. L. Tenney: Decidable pairing functions, Ph.D. thesis, Cornell Univ., 1972
- R. L. Vaught: Axiomatizability by a schema, J. Symb. Log. 32:4 (1967), 473-479
- A. Visser: Pairs, sets and sequences in first-order theories, Arch. Math. Logic 47:4 (2008), 299-326

