Descriptive complexity of Banach spaces

Martin Doležal

Czech Academy of Sciences

joint work with Marek Cúth, Michal Doucha and Ondřej Kurka

44th Summer Symposium in Real Analysis
Paris \& Orsay
June 20-24, 2022

Coding of separable Banach spaces

Notation

- a sBS \equiv a separable Banach space
- $\quad \mathrm{sBS} \equiv$ separable Banach spaces

Coding of separable Banach spaces

Notation

- a sBS \equiv a separable Banach space
- $\quad \mathrm{sBSs} \equiv$ separable Banach spaces

Coding of sBSs

- sBSs form a proper class
- we want to find a standard Borel space / Polish space such that each element is a code for a sBS determined uniquely up to isomorphism / isometry

Coding of separable Banach spaces

Notation

- a sBS \equiv a separable Banach space
- $\quad \mathrm{sBSs} \equiv$ separable Banach spaces

Coding of sBSs

- sBSs form a proper class
- we want to find a standard Borel space / Polish space such that each element is a code for a sBS determined uniquely up to isomorphism / isometry

Why?

- let P be a property of sBSs invariant under isomorphism / isometry
- then we may talk about the set of codes of those sBSs having property P
- we may investigate the complexity of this set (Borel, analytic, $\ldots /$ open, G_{δ}, \ldots)

Example

Theorem (Szlenk, 1968; Bossard, 1993)

There is no reflexive sBS containing an isomorphic copy of every reflexive sBS.

Proof: In a certain coding of sBSs it holds:

- the set of codes of all subspaces of a fixed sBS is analytic
- the set of codes of all reflexive sBSs is not analytic (Bossard, 1993)

The 'classical' coding of sBSs by a standard Borel space
$C([0,1])$ contains an isometric copy of every sBS
$\mathcal{F}(C([0,1])) \equiv$ the set of all closed subsets of $C([0,1])$
$\mathcal{F}(C([0,1]))$ is equipped with the Effros-Borel structure, that is, with the σ-algebra generated by the sets

$$
\{F \in \mathcal{F}(C([0,1])): F \cap U \neq \emptyset\}, \quad U \subseteq C([0,1]) \text { open }
$$

The 'classical' coding of sBSs by a standard Borel space

$C([0,1])$ contains an isometric copy of every sBS
$\mathcal{F}(C([0,1])) \equiv$ the set of all closed subsets of $C([0,1])$
$\mathcal{F}(C([0,1]))$ is equipped with the Effros-Borel structure, that is, with the σ-algebra generated by the sets

$$
\{F \in \mathcal{F}(C([0,1])): F \cap U \neq \emptyset\}, \quad U \subseteq C([0,1]) \text { open }
$$

Fact

$\mathcal{F}(C([0,1]))$ is a standard Borel space.

Fact

$S B:=\{F \in \mathcal{F}(C([0,1])): F$ is linear $\}$ is a Borel subset of $\mathcal{F}(C([0,1]))$. In particular, it is a standard Borel space.

Note that there is no canonical Polish topology on $S B$ compatible with the Effros-Borel structure.

Coding of sBSs by a Polish space (Godefroy, Saint-Raymond, 2018)

A Polish topology on $\mathcal{F}(C([0,1]))$ is called admissible if it satisfies certain natural axioms.

Properties of admissible topologies:

- The set $S B:=\{F \in \mathcal{F}(C([0,1])): F$ is linear $\}$ is a G_{δ}-set. In particular, it is a Polish space.
- The Borel σ-algebra generated by an admissible topology is the Effros-Borel structure.
- For two admissible topologies, the identity function is of Baire class 1.

Coding of sBSs by a Polish space (Godefroy, Saint-Raymond, 2018)

A Polish topology on $\mathcal{F}(C([0,1]))$ is called admissible if it satisfies certain natural axioms.

Properties of admissible topologies:

- The set $S B:=\{F \in \mathcal{F}(C([0,1])): F$ is linear $\}$ is a G_{δ}-set. In particular, it is a Polish space.
- The Borel σ-algebra generated by an admissible topology is the Effros-Borel structure.
- For two admissible topologies, the identity function is of Baire class 1.

Examples of admissible topologies on $\mathcal{F}(C([0,1]))$

- the Vietoris topology 'inherited' from $F(\hat{C}([0,1]))$, where a compatible totally bounded metric on $C([0,1])$ is fixed and $\hat{C}([0,1])$ is the corresponding metric completion
- the Wijsman topology generated by the maps $F \in \mathcal{F}(C([0,1])) \mapsto d(F, f)$,
$f \in \mathcal{C}([0,1])$, where d is a compatible metric on $\mathcal{C}([0,1])$

Coding of sBSs by the Polish space of (pseudo)norms

Let V be the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

Definition

Let $\mathcal{P} \subseteq \mathbb{R}^{V}$ be the set of all pseudonorms on V. Then $\mu \in \mathcal{P}$ is a code for the sBS X_{μ} obtained as follows:

1. extend μ to a pseudonorm on c_{00} (over \mathbb{R})
2. take the quotient $\left(c_{00}, \mu\right) /\left\{x \in c_{00}: \mu(x)=0\right\}$
3. let X_{μ} be the completion

Coding of sBSs by the Polish space of (pseudo)norms

Let V be the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

Definition

Let $\mathcal{P} \subseteq \mathbb{R}^{V}$ be the set of all pseudonorms on V.
Then $\mu \in \mathcal{P}$ is a code for the sBS X_{μ} obtained as follows:

1. extend μ to a pseudonorm on c_{00} (over \mathbb{R})
2. take the quotient $\left(c_{00}, \mu\right) /\left\{x \in c_{00}: \mu(x)=0\right\}$
3. let X_{μ} be the completion

Fact

- $\mathcal{P} \subseteq \mathbb{R}^{V}$ is a closed set
- $\mathcal{P}_{\infty}:=\left\{\mu \in \mathcal{P}: X_{\mu}\right.$ is infinite-dimensional $\}$ is a G_{δ}-set
- $\mathcal{B}:=\left\{\mu \in \mathcal{P}: \mu\right.$ is a norm on $\left.c_{00}\right\}$ is a G_{δ}-set

Fact

For every infinite-dimensional sBS X there is $\mu \in \mathcal{B}$ such that $X \equiv X_{\mu}$.

Proof: Let f_{1}, f_{2}, \ldots be linearly independent vectors in X such that $\overline{\operatorname{span}}\left(f_{1}, f_{2}, \ldots\right)=X$.
Define $\mu: V \rightarrow \mathbb{R}$ by

$$
\mu\left(\sum_{i \in F} \alpha_{i} e_{i}\right):=\left\|\sum_{i \in F} \alpha_{i} f_{i}\right\|_{X}
$$

Three ways of coding infinite-dimensional sBSs by a Polish space: (a) $S B_{\infty}$ with an admissible topology, (b) \mathcal{P}_{∞}, (c) \mathcal{B}.

Theorem (Informal statement)

For a given class of Banach spaces, the Borel complexity of the set of the corresponding codes depends only a little on the choice of the coding.

Three ways of coding infinite-dimensional sBSs by a Polish space: (a) $S B_{\infty}$ with an admissible topology, (b) \mathcal{P}_{∞}, (c) \mathcal{B}.

Theorem (Informal statement)

For a given class of Banach spaces, the Borel complexity of the set of the corresponding codes depends only a little on the choice of the coding.

Theorem (Formal statement)

- There is a continuous map $\varphi: S B_{\infty} \rightarrow \mathcal{P}_{\infty}$ such that $Y \equiv X_{\varphi(Y)}, Y \in S B_{\infty}$.
- There is a Baire class 1 map $\psi: \mathcal{P}_{\infty} \rightarrow \mathcal{B}$ such that $X_{\mu} \equiv X_{\psi(\mu)}, \mu \in \mathcal{P}_{\infty}$.
- There is a Baire class 1 map $\chi: \mathcal{B} \rightarrow S B_{\infty}$ such that $X_{\mu} \equiv \chi(\mu), \mu \in \mathcal{B}$.

Three ways of coding infinite-dimensional sBSs by a Polish space: (a) $S B_{\infty}$ with an admissible topology, (b) \mathcal{P}_{∞}, (c) \mathcal{B}.

Theorem (Informal statement)

For a given class of Banach spaces, the Borel complexity of the set of the corresponding codes depends only a little on the choice of the coding.

Theorem (Formal statement)

- There is a continuous map $\varphi: S B_{\infty} \rightarrow \mathcal{P}_{\infty}$ such that $Y \equiv X_{\varphi(Y)}, Y \in S B_{\infty}$.
- There is a Baire class 1 map $\psi: \mathcal{P}_{\infty} \rightarrow \mathcal{B}$ such that $X_{\mu} \equiv X_{\psi(\mu)}, \mu \in \mathcal{P}_{\infty}$.
- There is a Baire class 1 map $\chi: \mathcal{B} \rightarrow S B_{\infty}$ such that $X_{\mu} \equiv \chi(\mu), \mu \in \mathcal{B}$.

From now on we use the coding \mathcal{B} only.

Relationship to finite representability

Definition

Let X, Y be Banach spaces. We say that X is finitely representable in Y if for every finite-dimensional subspace $E \subseteq X$ and every $\varepsilon>0$ there exists an isomorphic embedding $T: E \rightarrow Y$ such that $\|T\|\left\|T^{-1}\right\| \leq 1+\varepsilon$.

For a sBS X we denote by $\langle X\rangle \stackrel{\mathcal{B}}{\mathcal{B}}$ the set $\left\{\mu \in \mathcal{B}: X_{\mu} \equiv X\right\}$.

Fact

Let X be a sBS. Then

$$
\overline{\langle X\rangle \stackrel{\mathcal{B}}{\underline{\underline{S}}}}=\left\{\mu \in \mathcal{B}: X_{\mu} \text { is finitely representable in } X\right\} .
$$

Complexity of isometry classes and isomorphism classes

For a sBS X we denote

- $\langle X\rangle \underset{\equiv}{\mathcal{B}}=\left\{\mu \in \mathcal{B}: X_{\mu} \equiv X\right\}$
- $\langle X\rangle \underset{\simeq}{\mathcal{B}}=\left\{\mu \in \mathcal{B}: X_{\mu} \simeq X\right\}$

Fact

Let X be a $s B S$. Then $\langle X\rangle \underset{\equiv}{\mathcal{B}}$ is a Borel set.

Fact

Let X be a sBS. Then $\langle X\rangle \underset{\sim}{\mathcal{B}}$ is an analytic set but not necessarily Borel.

Complexity of isometry classes and isomorphism classes

For a sBS X we denote

- $\langle X\rangle \xlongequal{\mathcal{B}}=\left\{\mu \in \mathcal{B}: X_{\mu} \equiv X\right\}$
- $\langle X\rangle \underset{\sim}{\mathcal{B}}=\left\{\mu \in \mathcal{B}: X_{\mu} \simeq X\right\}$

Fact

Let X be a $s B S$. Then $\langle X\rangle \underset{\equiv}{\mathcal{B}}$ is a Borel set.

Proof:

- the relation of linear isometry is Borel bireducible with an orbit equivalence relation (Melleray, 2007)
- orbit equivalence relations have Borel equivalence classes

Fact

Let X be a $s B S$. Then $\langle X\rangle \underset{\simeq}{\mathcal{B}}$ is an analytic set but not necessarily Borel.

Proof: These spaces do not have a Borel isomorphism class:
$C\left(2^{\omega}\right), \quad L_{p}([0,1])(1<p<\infty, p \neq 2), \quad c_{0}, \ldots$,

Hilbert space and isometry classes

Theorem

ℓ_{2} is the unique, up to isometry, infinite-dimensional sBS X such that $\langle X\rangle \stackrel{\mathcal{B}}{\equiv}$ is a closed set.

Note that $\langle X\rangle \stackrel{\mathcal{\equiv}}{\mathcal{B}}$ is never an open set.

Hilbert space and isometry classes

Theorem

ℓ_{2} is the unique, up to isometry, infinite-dimensional sBS X such that $\langle X\rangle \stackrel{\mathcal{B}}{\equiv}$ is a closed set.

Note that $\langle X\rangle \stackrel{\mathcal{B}}{\equiv}$ is never an open set.
Proof: ℓ_{2} is characterized by the parallelogram law

$$
2\|x\|^{2}+2\|y\|^{2}=\|x+y\|^{2}+\|x-y\|^{2}, \quad x, y \in \ell_{2} .
$$

Thus $\left\langle\ell_{2}\right\rangle \stackrel{\mathcal{B}}{\equiv}$ is a closed set.
Now suppose that $\langle X\rangle \stackrel{\mathcal{B}}{\equiv}$ is a closed set.
By Dvoretzky's theorem, ℓ_{2} is finitely representable in X.
So $\overline{\langle X\rangle} \overline{\underline{\underline{\mathcal{B}}}}$ contains all $\mu \in \mathcal{B}$ for which $X_{\mu} \equiv \ell_{2}$.
 spaces isometric to X.

Hilbert space and isomorphism classes

Theorem

ℓ_{2} is the unique, up to isomorphism, infinite-dimensional sBS X such that $\langle X\rangle \underset{\sim}{\mathcal{B}}$ is an F_{σ} set.

Note that $\langle X\rangle \underset{\sim}{\mathcal{B}}$ is never an open/closed set. We do not know whether $\langle X\rangle \underset{\sim}{\mathcal{B}}$ can be a G_{δ} set but the only candidate is the Gurariï space.

Hilbert space and isomorphism classes

Theorem

ℓ_{2} is the unique, up to isomorphism, infinite-dimensional sBS X such that $\langle X\rangle \underset{\sim}{\mathcal{B}}$ is an F_{σ} set.

Note that $\langle X\rangle \underset{\sim}{\mathcal{B}}$ is never an open/closed set.
We do not know whether $\langle X\rangle \underset{\sim}{\mathcal{B}}$ can be a G_{δ} set but the only candidate is the Gurariï space.
Proof: By Kwapien's theorem, ℓ_{2} is the unique (up to isomorphism) sBS that has type 2
$\left(\exists C>0 \forall x_{1}, \ldots, x_{n} \in X:\left(\mathbb{E}\left\|\sum_{i=1}^{n} \pm x_{i}\right\|^{2}\right)^{1 / 2} \leq C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2}\right)$ and cotype 2 $\left(\exists c>0 \forall x_{1}, \ldots, x_{n} \in X:\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2} \leq c\left(\mathbb{E}\left\|\sum_{i=1}^{n} \pm x_{i}\right\|^{2}\right)^{1 / 2}\right)$.
'Having type/cotype 2' are F_{σ} conditions.
So $\left\langle\ell_{2}\right\rangle \underset{\sim}{\mathcal{B}}$ is an F_{σ} set.
The other implication is based on the solution to the homogeneous subspace problem (Komorowski, Tomczak-Jaegermann, 1995; Gowers, 2002).

The Gurariõ space

Definition

The Gurariĭ space is the unique, up to isometry, sBS \mathbb{G} such that for every $\varepsilon>0$, every finite-dimensional Banach spaces $A \subseteq B$ and every isometric embedding $e: A \rightarrow \mathbb{G}$ there is an extension $f: B \rightarrow \mathbb{G}$ of e such that f is an ε-isometric embedding.

Theorem

The isometry class $\langle\mathbb{G}\rangle \xlongequal[\equiv]{\mathcal{B}}$ is a dense G_{δ} set.
We do not know the descriptive complexity of the isomorphism class $\langle\mathbb{G}\rangle \underset{\sim}{\mathcal{B}}$.

The isometry class of L_{p}

Theorem

For every $1 \leq p<\infty, p \neq 2$, the isometry class $\left\langle L_{p}([0,1])\right\rangle \stackrel{\mathcal{B}}{\equiv}$ is a G_{δ}-complete set.

The isometry class of L_{p}

Theorem

For every $1 \leq p<\infty, p \neq 2$, the isometry class $\left\langle L_{p}([0,1])\right\rangle \equiv$ 크 is a G_{δ}-complete set.

Proof:

- The class of $\mathscr{L}_{p, 1+} \mathrm{sBSs}$ is a G_{δ} set (AsBS x is called an $\mathscr{L}_{p, 1+\text {-space if for }}$ every finite-dimensional $E \subseteq X$ and $\varepsilon>0$ there is a finite-dimensional $E \subseteq F \subseteq X$ and a linear isomorphism $T: F \rightarrow \ell_{p}^{n}$ with $\|T\|\left\|T^{-1}\right\| \leq 1+\varepsilon$.)
- An $\mathscr{L}_{p, 1+} \mathrm{sBS} X$ is isometric to $L_{p}([0,1])$ if and only if

$$
\begin{aligned}
& \forall x \in S_{X} \forall \varepsilon>0 \forall \delta>0 \exists x_{1}, x_{2} \in X: \\
& \quad\left(x_{1}, x_{2}\right) \stackrel{1+\varepsilon}{\sim} \ell_{p}^{2} \text { and }\left\|2^{1 / p_{x}}-x_{1}-x_{2}\right\|<\delta .
\end{aligned}
$$

The isometry class of ℓ_{p}

Theorem

For every $1 \leq p<\infty, p \neq 2$, the isometry class $\left\langle\ell_{p}\right\rangle \underset{\equiv}{\mathcal{B}}$ is an $F_{\sigma \delta}$-complete set.

The isometry class of ℓ_{p}

Theorem

For every $1 \leq p<\infty, p \neq 2$, the isometry class $\left\langle\ell_{p}\right\rangle \bar{\equiv}$ 을 $F_{\sigma \delta}$-complete set.

Proof:

- The class of $\mathscr{L}_{p, 1+} \mathrm{sBSs}$ is a G_{δ} set.
- An $\mathscr{L}_{p, 1+} \mathrm{sBS} X$ is isometric to ℓ_{p} if and only if

$$
\begin{aligned}
& \forall x \in S_{X} \forall \delta \in(0,1) \exists \varepsilon>0 \exists N \in \mathbb{N} \forall x_{1}, \ldots, x_{N} \in X: \\
& \quad\left(N^{1 / p} x_{i}\right)_{i=1}^{N} \stackrel{1+\varepsilon}{\sim} \ell_{p}^{N} \Rightarrow\left\|x-\sum_{i=1}^{N} x_{i}\right\|>\delta .
\end{aligned}
$$

The isometry class of c_{0}

Theorem
 The isometry class $\left\langle c_{0}\right\rangle \stackrel{\mathcal{B}}{\mathcal{B}}$ is an $F_{\sigma \delta}$-complete set.

The isometry class of c_{0}

Theorem

The isometry class $\left\langle c_{0}\right\rangle \stackrel{\mathcal{B}}{\mathcal{B}}$ is an $F_{\sigma \delta}$-complete set.

Proof:

- The class of $\mathscr{L}_{\infty, 1+} \mathrm{sBSs}$ is a G_{δ} set (AsBS x is called an $\mathscr{L}_{\infty, 1+\text {-space if for }}$ every finite-dimensional $E \subseteq X$ and $\varepsilon>0$ there is a finite-dimensional $E \subseteq F \subseteq X$ and a linear isomorphism $T: F \rightarrow \ell_{\infty}^{n}$ with $\|T\|\left\|T^{-1}\right\| \leq 1+\varepsilon$.)
- Let $0<\varepsilon<1$. An $\mathscr{L}_{\infty, 1+} \mathrm{sBS} X$ is isometric to c_{0} if and only if

$$
\left(B_{X^{*}}\right)_{2 \varepsilon}^{\prime}=(1-\varepsilon) B_{X^{*}},
$$

where $F_{\varepsilon}^{\prime}=\left\{x^{*} \in F: U \ni x^{*}\right.$ is w^{*}-open $\left.\Rightarrow \operatorname{diam}(U \cap F) \geq \varepsilon\right\}$ is the Szlenk derivative.

- Let $\varepsilon>0$. The mapping

$$
F \mapsto F_{\varepsilon}^{\prime}, \quad F \subset X^{*} \text { is } w^{*} \text {-compact }
$$

is of Baire class 2.

Bibliography

雷 M. Cúth, M. Doležal, M. Doucha, O. Kurka.
Polish spaces of Banach spaces.
Forum of Mathematics, Sigma, 10, 2022.
嗇 M. Cúth, M. Doležal, M. Doucha, O. Kurka.
Polish spaces of Banach spaces. Complexity of isometry and isomorphism classes.
arXiv:2204.06834.

