Elementary analytic functions in VTC⁰

Emil Jeřábek

Institute of Mathematics Czech Academy of Sciences jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Complexity Theory with a Human Face June 2022, Špindlerův Mlýn

TC⁰ and *VTC*⁰

2 Elementary analytic functions

Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and computational complexity classes C:

- Provably total computable functions of T are C-functions
- ► T can reason using C-predicates (comprehension, induction, minimization, ...)

Feasible reasoning:

• Given a concept $X \in C$, what can we prove about X while reasoning only with concepts from C?

Formalization: what does T prove about X?

This talk:

X = elementary integer arithmetic operations $+, \cdot, <$

$\boldsymbol{\mathsf{AC}}^0 \subseteq \boldsymbol{\mathsf{ACC}}^0 \subseteq \boldsymbol{\mathsf{TC}}^0 \subseteq \boldsymbol{\mathsf{NC}}^1 \subseteq \boldsymbol{\mathsf{L}} \subseteq \boldsymbol{\mathsf{NL}} \subseteq \boldsymbol{\mathsf{AC}}^1 \subseteq \cdots \subseteq \boldsymbol{\mathsf{P}}$

- $TC^{0} = dlogtime-uniform O(1)-depth n^{O(1)}-size$ unbounded fan-in circuits with threshold gates
 - = **FOM**-definable on finite structures

representing strings

(first-order logic with majority quantifiers)

 $= O(\log n)$ time, O(1) thresholds

on a threshold Turing machine

= Constable's $\mathcal{K}:$ closure of $+,-,\cdot,/$ under substitution and polynomially bounded \sum , \prod

TC⁰ and arithmetic operations

For integers given in binary:

- ▶ + and ≤ are in $AC^0 \subseteq TC^0$
- \blacktriangleright × is in **TC**⁰ (**TC**⁰-complete under **AC**⁰ reductions)

 \mathbf{TC}^0 can also do:

- iterated addition $\sum_{i < n} X_i$
- integer division and iterated multiplication [BCH'86,CDL'01,HAB'02]
- the corresponding operations on \mathbb{Q} , $\mathbb{Q}(\alpha)$, ...
- approximate functions given by nice power series:

 $\blacktriangleright \ \sin X, \ \log X, \ \sqrt[k]{X}, \ \dots$

sorting, ...

 \implies **TC**⁰ is the right class for basic arithmetic operations

The theory VTC^0

Zambella-style two-sorted bounded arithmetic

- unary (auxiliary) integers with $0, 1, +, \cdot, \leq$
- finite sets = binary integers = binary strings
- Noteworthy axioms:
 - Σ_0^B -comprehension (Σ_0^B = bounded, w/o SO q'fiers)
 - every set has a counting function
- ► Correspondence to **TC**⁰:
 - Provably total computable (i.e., ∃Σ^B₀-definable) functions are exactly the TC⁰-functions
 - ▶ has induction, minimization, ... for **TC**⁰-predicates
- Basic binary integer arithmetic in VTC⁰:
 - can define $+, \cdot, \leq$ on binary integers
 - proves integers form a discretely ordered ring (DOR)

TC⁰ feasible reasoning

What else can VTC^0 do with basic arithmetic operations?

 [J'22] Iterated multiplication and division
 formalize a variant of the [HAB'02] algorithm
 raised as a problem in [Ats'03,NC'06]
 [J'15] Open induction in ⟨+, ⋅, <⟩ (*IOpen*)
 ≈ constant-degree polynomial root approximation
 ideas of [Man'91] ⇒ (*RSUV* translation of) Σ^b₀-minimization in Buss's language

Elementary analytic functions

1 \mathbf{TC}^0 and VTC^0

2 Elementary analytic functions

TC⁰ analytic functions

Recall: TC^0 can compute approximations of analytic functions whose power series have TC^0 -computable coefficients

Question: Can VTC^0 prove their basic properties?

There's a plethora of such functions \implies let's start small:

Elementary analytic functions (real and complex)

- exp, log
- trigonometric: sin, cos, tan, cot, sec, csc
- inverse trig.: arcsin, arccos, arctan, arccot, arcsec, arccsc
- hyperbolic: sinh, cosh, tanh, coth, sech, csch
- ▶ inverse hyp.: arsinh, arcosh, artanh, arcoth, arsech, arcsch

All definable in terms of complex exp and log

VTC⁰ setup

Working with rational approximations only is quite tiresome

 $\mathfrak{M} \vDash VTC^{0} \rightsquigarrow \mathsf{DOR} \ \mathbf{Z}^{\mathfrak{M}} \rightsquigarrow \mathsf{fraction} \ \mathsf{field} \ \mathbf{Q}^{\mathfrak{M}} \\ \rightsquigarrow \mathsf{completion} \ \mathbf{R}^{\mathfrak{M}} \rightsquigarrow \mathsf{alg. closure} \ \mathbf{C}^{\mathfrak{M}} = \mathbf{R}^{\mathfrak{M}}(i)$

Treat the functions as $f: \mathbb{C}^{\mathfrak{M}} \to \mathbb{C}^{\mathfrak{M}}$ (or on a subset)

This simplifies development, but approximations still needed:

- translate results back to the language of VTC⁰
- use the functions in induction arguments, ...

Further notation: unary integers embed as $\mathbf{L}^{\mathfrak{M}} \subseteq \mathbf{Z}^{\mathfrak{M}}$ $\mathbf{C}^{\mathfrak{M}}_{\mathbf{L}} = \{ z \in \mathbf{C}^{\mathfrak{M}} : \exists n \in \mathbf{L}^{\mathfrak{M}} | z | \leq n \}, \ \mathbf{R}^{\mathfrak{M}}_{\mathbf{L}} = \mathbf{R}^{\mathfrak{M}} \cap \mathbf{C}^{\mathfrak{M}}_{\mathbf{L}}, \ldots$

Main results

We can define $\pi \in \mathbf{R}^{\mathfrak{M}}$,

exp:
$$\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i\mathbf{R}^{\mathfrak{M}} \rightarrow \mathbf{C}_{\neq 0}^{\mathfrak{M}},$$

log: $\mathbf{C}_{\neq 0}^{\mathfrak{M}} \rightarrow \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i(-\pi, \pi]$

such that

$$\blacktriangleright \exp(z_0 + z_1) = \exp z_0 \exp z_1$$

• exp log z = z

• log exp
$$z = z$$
 for $z \in \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i(-\pi, \pi]$

▶ exp $\upharpoonright \mathbf{R}_{L}^{\mathfrak{M}}$ increasing bijection $\mathbf{R}_{L}^{\mathfrak{M}} \rightarrow \mathbf{R}_{>0}^{\mathfrak{M}}$, convex

• for small z: $\exp z = 1 + z + O(z^2)$, $\log(1 + z) = z + O(z^2)$

Construction of exp

Mostly straightforward:

- define exp: $\mathbf{Q}_{\mathbf{L}}^{\mathfrak{M}}(i) \to \mathbf{C}^{\mathfrak{M}}$ as $\lim_{n \to \infty} \sum_{j < n} \frac{z^j}{j!}$
- extend to C^m_L using (local) uniform continuity
- show $\exp(z_0 + z_1) = \exp z_0 \exp z_1$ in the usual way

But we can finish only after proving $\exp \log z = z$:

•
$$\pi := \text{Im } \log(-1) \text{ satisfies } \exp(2\pi i) = 1$$

 \implies exp $2\pi i$ -periodic

 \implies extend exp to $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} + i\mathbf{R}^{\mathfrak{M}}$

► can further extend it to $\{z \in \mathbf{C}^{\mathfrak{M}} : \exists n \in \mathbf{L}^{\mathfrak{M}} \text{ Re } z \leq n\}$ by putting exp z = 0 when $\operatorname{Re} z < -\mathbf{L}^{\mathfrak{M}}$

Construction of log

A lot of work:

- define log for $|z-1| <^* 1$ using $\lim_{n\to\infty} -\sum_{0 < j \le n} \frac{(1-z)^j}{j}$
- ▶ show log(z₀z₁) = log z₀ + log z₁ for z_j close to 1 by messy calculation
- extend log to $\mathbf{R}_{>0}^{\mathfrak{M}}$ using $2^n \colon \mathbf{L}^{\mathfrak{M}} \to \mathbf{Z}^{\mathfrak{M}}$
- extend log to an angular sector by combining the two
- develop \sqrt{z}
- extend log to $C_{\neq 0}^{\mathfrak{M}}$ using $8 \log \sqrt[8]{z}$
- ▶ $\log(z_0z_1) = \log z_0 + \log z_1$ when $\text{Re} z_j > 0$
- ► $\log \exp(z_0 + z_1) = \log \exp z_0 + \log \exp z_1$ when $|\text{Im } z_j| < 1$ $\implies \log \exp z = z$ when |Im z| < 1 $\implies \exp \log z = z$ using injectivity of log

Applications

Define

$$z^w = \exp(w \log z), \sqrt[n]{z} = z^{1/n}$$

▶ $\prod_{j < n} z_j$ for a sequence of $z_j \in \mathbf{Q}^{\mathfrak{M}}(i)$ coded in \mathfrak{M}

- ▶ wlog $z_j \in \mathbf{Z}^{\mathfrak{M}}[i] \implies$ result also in $\mathbf{Z}^{\mathfrak{M}}[i]$
- ▶ round appx. of $exp(\sum_{j < n} appx. of \log z_j)$
- trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic functions
- ▶ Q: Can VTC^0 prove π is irrational?

Model-theoretic consequence:

Every countable model of VTC⁰ is an exponential integer part of a real-closed exponential field (even though exp is not total on R^m!)

Exponential integer parts

 $\langle R, +, \cdot, < \rangle$ ordered field, $D \subseteq R$ subring:

- ▶ *R* real-closed: $R \equiv \mathbb{R}$ (odd-degree poly have roots, $\forall x > 0 \exists \sqrt{x}$)
- $\blacktriangleright \ \langle R, \exp \rangle \text{ exponential field if } \exp : \ \langle R, +, < \rangle \simeq \langle R_{>0}, \cdot, < \rangle$
- ▶ *D* integer part (IP): discrete, $\forall x \in R \exists u \in D | x u | < 1$
- [Res'93] exponential IP: D_{>0} closed under exp (exp(1) = 2, exp(n) > n)

NB: $\exp \upharpoonright D_{>0}$ may be different from the usual 2^n function Motivation:

- ▶ [Shep'64] $\mathfrak{M} \models IOpen \iff \mathfrak{M}$ is an IP of a RCF
- What models are EIP of RCEF? Do they satisfy some nontrivial consequences of totality of exponentiation?

Models of VTC^0 as EIP

 $\mathfrak{M} \vDash VTC^{0} \implies \mathsf{IP} \text{ of RCF } \mathbf{R}^{\mathfrak{M}}$ Catch: our exp or 2^x is $\langle \mathbf{R}^{\mathfrak{M}}_{\mathbf{L}}, +, < \rangle \simeq \langle \mathbf{R}^{\mathfrak{M}}_{>0}, \cdot, < \rangle$ Solution:

⟨Q^m, Z^m, L^m, +, <⟩ is recursively saturated
quantifier elimination for Th(Q^m, Z^m, L^m, +, <)
M countable ⇒ ⟨Q^m, N^m, +, <⟩ ≃ ⟨Q^m_L, L^m, +, <⟩
continuous extension ⟨R^m, N^m, +, <⟩ ≃ ⟨R^m_L, L^m, +, <⟩
compose with 2^x ⇒ ⟨R^m, N^m, +, <⟩ ≃ ⟨R^m_{≥0}, P^m₂, ·, <⟩
P^m₂ = {x ∈ N^m : x is a power of 2}

References

- A. Atserias: Improved bounds on the Weak Pigeonhole Principle and infinitely many primes from weaker axioms, Theoret. Comput. Sci. 295 (2003), 27–39
- P. Beame, S. Cook, H. Hoover: Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994–1003
- A. Chiu, G. Davida, B. Litow: Division in logspace-uniform NC¹, RAIRO – Theoret. Inf. Appl. 35 (2001), 259–275
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695–716
- E. Jeřábek: Open induction in a bounded arithmetic for TC⁰, Arch. Math. Logic 54 (2015), 359–394

References (cont'd)

- E. Jeřábek: Iterated multiplication in VTC⁰, Arch. Math. Logic (2022), https://doi.org/10.1007/s00153-021-00810-6
- E. Jeřábek: Elementary analytic functions in VTC⁰, 2022, 55pp., arXiv:2206.12164 [cs.CC]
- E. Jeřábek: Models of VTC⁰ as exponential integer parts, ?
- S.-G. Mantzivis: Circuits in bounded arithmetic part I, Ann. Math. Artif. Intel. 6 (1991), 127–156
- P. Nguyen, S. Cook: Theories for TC⁰ and other small complexity classes, Log. Methods Comput. Sci. 2 (2006), art. 3
- J.-P. Ressayre: Integer parts of real closed exponential fields, in: Arithmetic, proof theory, and computational complexity, Oxford Univ. Press, 1993, 278–288
- J. Shepherdson: A nonstandard model for a free variable fragment of number theory, Bull. Acad. Polon. Sci. 12 (1964), 79–86