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Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and
computational complexity classes C:

» Provably total computable functions of T are C-functions

» T can reason using C-predicates
(comprehension, induction, minimization, ...)

Feasible reasoning:

» Given a concept X € C, what can we prove about X
while reasoning only with concepts from C?

» Formalization: what does T prove about X?

This talk:
X = elementary integer arithmetic operations +, -, <
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The class TC’

AC°CACC°CTC°CNC*CLCNLCAC!C...CP

TC° = dlogtime-uniform O(1)-depth n°M)-size
unbounded fan-in circuits with threshold gates
= FOM-definable on finite structures
representing strings
(first-order logic with majority quantifiers)
= O(log n) time, O(1) thresholds
on a threshold Turing machine

= Constable's /C: closure of +, —, -, / under substitution
and polynomially bounded >, ]
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TC? and arithmetic operations

For integers given in binary:

» + and < are in AC° C TC®
> x isin TC® (TCcomplete under AC® reductions)

TCO can also do:

> iterated addition >, , X;
» integer division and iterated multiplication
[BCH'86,CDL'01,HAB'02]
» the corresponding operations on Q, Q(«), ...
» approximate functions given by nice power series:
> sin X, log X, VX, L.
» sorting, ...
— TCC is the right class for basic arithmetic operations
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The theory VTC°

» Zambella-style two-sorted bounded arithmetic
» unary (auxiliary) integers with 0,1, +,-, <
> finite sets = binary integers = binary strings
» Noteworthy axioms:
> ¥ B_comprehension (£ = bounded, w/o SO q'fiers)
> every set has a counting function
» Correspondence to TC®:
> provably total computable (i.e., 3X5-definable)
functions are exactly the TCfunctions
» has induction, minimization, ... for TC%predicates
» Basic binary integer arithmetic in VTC?:
> can define +, -, < on binary integers
> proves integers form a discretely ordered ring (DOR)
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TC° feasible reasoning

What else can VTC° do with basic arithmetic operations?

» [J'22] Iterated multiplication and division

> formalize a variant of the [HAB'02] algorithm
> raised as a problem in [Ats'03,NC'06]

» [J'15] Open induction in (+,-, <) (/Open)
» = constant-degree polynomial root approximation
> ideas of [Man'91] = (RSUV translation of)
Zé’—minimization in Buss's language
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TC° and VTC°

2 Elementary analytic functions



TCO

analytic functions

Recall: TC® can compute approximations of analytic functions
whose power series have TC°-computable coefficients

Question: Can VTCP prove their basic properties?

There's a plethora of such functions = let's start small:

Elementary analytic functions (real and complex)

| 4
>
>
>
>

exp, log

trigonometric: sin, cos, tan, cot, sec, csc

inverse trig.: arcsin, arccos, arctan, arccot, arcsec, arccsc
hyperbolic: sinh, cosh, tanh, coth, sech, csch

inverse hyp.: arsinh, arcosh, artanh, arcoth, arsech, arcsch

All definable in terms of complex exp and log
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VTC setup

Working with rational approximations only is quite tiresome

M E VTC® ~» DOR Z™ ~s fraction field Q™
~+ completion R™ ~ alg. closure C™ = R(/)

Treat the functions as f: C™ — C™ (or on a subset)

This simplifies development, but approximations still needed:

> translate results back to the language of VTC°

» use the functions in induction arguments, ...

Further notation: unary integers embed as L™ C Z™

Ciﬁ:{zecm:ﬂneLm|z|§n}, R =R™NnC"™, ...
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Main results

We can define 7 € R™,

exp: Rm—}—lRfm—>C¢0,
log: C o — R+ i(—m, 7]

such that

> exp(zo + z1) = exp zgexp z;

exp is 2mi-periodic

explogz =z

logexpz = z for z € R + i(—m, 7]

exp | RY" increasing bijection R — RY%, convex

vvyyVvyvyy
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Construction of exp

Mostly straightforward:

> define exp: Q)" (i) — C™ as lim, Zj<,, i

» extend to C" using (local) uniform continuity

» show exp(zy + z1) = exp zp exp z; in the usual way
But we can finish only after proving explog z = z:

» 7 := Imlog(—1) satisfies exp(27i) =1
= exp 2mi-periodic
= extend exp to RY" + /R

» can further extend it to {z € C™ : In € L™ Rez < n}
by putting expz = 0 when Rez < —L™
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Construction of log

A lot of work:

> define log for |z — 1| <* 1 using lim,c — > o), @

» show log(zyz1) = log zy + log z; for z; close to 1
by messy calculation

extend log to R} using 2": L™ — Z™

extend log to an angular sector by combining the two
develop /z

extend log to C7{ using 8log y/z

log(2021) = log zo + log z; when Rez; > 0

vVvyVvyvVvyyy

log exp(zo + z1) = log exp zy + logexp z; when |Im z;| < 1
— logexpz =z when |[Imz| < 1
—> explogz = z using injectivity of log
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Applications

Define

> 7" =exp(wlogz), /z = z!/"

> [,z for a sequence of z; € Q™(/) coded in M
> wlog z; € Z™[i] = result also in Z7[i]
> round appx. of exp(zj<nappx. of log z))
» trigonometric, inverse trigonometric,
hyperbolic, inverse hyperbolic functions

» Q: Can VTC® prove 7 is irrational?
Model-theoretic consequence:

» Every countable model of VTC? is an exponential integer
part of a real-closed exponential field
(even though exp is not total on R™!)
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Exponential integer parts

(R,+,-, <) ordered field, D C R subring:
» R real-closed: R = R (odd-degree poly have roots, Vx > 0 3y/x)
> (R,exp) exponential field if exp: (R, +, <) ~ (R~q, -, <)
» D integer part (IP): discrete, Vx e RJue D |x —u| <1
» [Res'93] exponential IP: D-q closed under exp
(exp(1) = 2, exp(n) > n)
NB: exp | D~o may be different from the usual 2" function
Motivation:

» [Shep'64] M E [Open <= M is an IP of a RCF

» What models are EIP of RCEF? Do they satisfy some
nontrivial consequences of totality of exponentiation?
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Models of VTC° as EIP

ME VTC® = IP of RCF R™
Catch: our exp or 2% is (R, +, <) ~ (RY, -, <)
Solution:
> (Q™ ZM L™ +, <) is recursively saturated
> quantifier elimination for Th(Q™, Z™ L™, +, <)
> O countable = (Q™ N + <) ~ (Q", L™ +, <)
» continuous extension (R N™ + <)~ (R, L™ + <)

> compose with 2* = (R™, N, 4. <) ~ (R%. PJ" ., <)
P = {x € N™: x is a power of 2}
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