Elementary analytic functions in VTC ${ }^{0}$

Emil Jeřábek

Institute of Mathematics
Czech Academy of Sciences
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Mathematical Approaches to Lower Bounds:
 Complexity of Proofs and Computation

ICMS, Bayes Centre, Edinburgh, July 2022

EUROPEAN UNION

European Structural and Investment Funds Operational Programme Research,
Development and Education

Participation in the conference is supported by the OPVVV project CZ.02.2.69/0.0/0.0/18_054/0014664 Institute of Mathematics CAS goes for HR Award - implementation of the professional HR management

$T C^{0}$ and $V T C^{0}$

(1) TC ${ }^{0}$ and $V T C^{0}$

2 Elementary analytic functions

Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and computational complexity classes C :

- Provably total computable functions of T are C-functions
- T can reason using C-predicates (comprehension, induction, minimization, ...)

Feasible reasoning:

- Given a concept $X \in C$, what can we prove about X while reasoning only with concepts from C ?
- Formalization: what does T prove about X ?

This talk:
$X=$ elementary integer arithmetic operations $+, \cdot, \leq$

The class TC^{0}

$\mathbf{A C}^{0} \subseteq \mathbf{A C C}^{0} \subseteq \mathbf{T C}^{0} \subseteq \mathbf{N C}^{1} \subseteq \mathbf{L} \subseteq \mathbf{N L} \subseteq \mathbf{A C}^{1} \subseteq \cdots \subseteq \mathbf{P}$

TC ${ }^{0}=$ dlogtime-uniform $O(1)$-depth $n^{O(1)}$-size unbounded fan-in circuits with threshold gates
$=$ FOM-definable on finite structures representing strings
(first-order logic with majority quantifiers)
$=O(\log n)$ time, $O(1)$ thresholds on a threshold Turing machine
$=$ Constable's \mathcal{K} : closure of $+,-, \cdot, /$ under substitution and polynomially bounded \sum, Π

TC ${ }^{0}$ and arithmetic operations

For integers given in binary:
-+ and \leq are in $\mathbf{A C}^{0} \subseteq \mathbf{T C}^{0}$
$-\times$ is in TC 0 (CC 0-complete under $\mathbf{A C}^{0}$ reductions)
TC ${ }^{0}$ can also do:

- iterated addition $\sum_{i<n} X_{i}$
- integer division and iterated multiplication [BCH'86,CDL'01,HAB'02]
- the corresponding operations on $\mathbb{Q}, \mathbb{Q}(\alpha), \ldots$
- approximate functions given by nice power series:
- $\sin X, \log X, \sqrt[k]{X}, \ldots$
- sorting, ...
\Longrightarrow TC 0 is the right class for basic arithmetic operations

The theory $V T C^{0}$

- Zambella-style two-sorted bounded arithmetic
- unary (auxiliary) integers with $0,1,+, \cdot, \leq$
- finite sets $=$ binary integers $=$ binary strings
- Noteworthy axioms:
- Σ_{0}^{B}-comprehension ($\Sigma_{0}^{B}=$ bounded, w/o SO q'fiers)
- every set has a counting function
- Correspondence to $\mathbf{T C}^{0}$:
- provably total computable (i.e., $\exists \Sigma_{0}^{B}$-definable) functions are exactly the $\mathbf{T C}^{0}$-functions
- has induction, minimization, ... for $\mathbf{T C}^{0}$-predicates
- Basic binary integer arithmetic in VTC ${ }^{0}$:
- can define $+, \cdot, \leq$ on binary integers
- proves integers form a discretely ordered ring (DOR)

TC^{0} feasible reasoning

What else can $V T C^{0}$ do with basic arithmetic operations?

- [J'22] Iterated multiplication and division
- formalize a variant of the [HAB'02] algorithm
- raised as a problem in [Ats'03,NC'06]
- [J'15] Open induction in $\langle+, \cdot,<\rangle$ (IOpen)
- \approx constant-degree polynomial root approximation
- ideas of [Man'91] \Longrightarrow (RSUV translation of) \sum_{0}^{b}-minimization in Buss's language

Elementary analytic functions

(1) TC ${ }^{0}$ and $V T C^{0}$

(2) Elementary analytic functions

TC 0 analytic functions

Recall: $\mathbf{T C}^{0}$ can compute approximations of analytic functions whose power series have $\mathbf{T C}^{0}$-computable coefficients
Question: Can VTC ${ }^{0}$ prove their basic properties?
There's a plethora of such functions \Longrightarrow let's start small:
Elementary analytic functions (real and complex)

- exp, log
- trigonometric: sin, cos, tan, cot, sec, csc
- inverse trig.: arcsin, arccos, arctan, arccot, arcsec, arccsc
- hyperbolic: sinh, cosh, tanh, coth, sech, csch
- inverse hyp.: arsinh, arcosh, artanh, arcoth, arsech, arcsch

All definable in terms of complex exp and log

Working with rational approximations only is quite tiresome $\mathfrak{M} \vDash V T C^{0} \leadsto D^{\prime} \mathbf{Z}^{\mathfrak{M}} \leadsto$ fraction field $\mathbf{Q}^{\mathfrak{M}}$
\leadsto completion $\mathbf{R}^{\mathfrak{M}} \leadsto$ alg. closure $\mathbf{C}^{\mathfrak{M}}=\mathbf{R}^{\mathfrak{M}}(i)$
Treat the functions as $f: \mathbf{C}^{\mathfrak{M}} \rightarrow \mathbf{C}^{\mathfrak{M}}$ (or on a subset)
This simplifies development, but approximations still needed:

- translate results back to the language of $V T C^{0}$
- use the functions in induction arguments, ...

Further notation: unary integers embed as $\mathbf{L}^{\mathfrak{M}} \subseteq \mathbf{Z}^{\mathfrak{M}}$

$$
\mathbf{C}_{\mathrm{L}}^{\mathfrak{M}}=\left\{z \in \mathbf{C}^{\mathfrak{M}}: \exists n \in \mathbf{L}^{\mathfrak{M}}|z| \leq n\right\}, \mathbf{R}_{\mathrm{L}}^{\mathfrak{M}}=\mathbf{R}^{\mathfrak{M}} \cap \mathbf{C}_{\mathrm{L}}^{\mathfrak{M}}, \ldots
$$

Main results

We can define $\pi \in \mathbf{R}^{\mathfrak{M}}$,

$$
\begin{aligned}
& \exp : \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i \mathbf{R}^{\mathfrak{M}} \rightarrow \mathbf{C}_{\neq 0}^{\mathfrak{M}}, \\
& \log : \mathbf{C}_{\neq 0}^{\mathfrak{M}} \rightarrow \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i(-\pi, \pi]
\end{aligned}
$$

such that
$-\exp \left(z_{0}+z_{1}\right)=\exp z_{0} \exp z_{1}$

- \exp is $2 \pi i$-periodic
- $\exp \log z=z$
- $\log \exp z=z$ for $z \in \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i(-\pi, \pi]$
$-\exp \upharpoonright \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}$ increasing bijection $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} \rightarrow \mathbf{R}_{>0}^{\mathfrak{M}}$, convex
- for small $z: \exp z=1+z+O\left(z^{2}\right), \log (1+z)=z+O\left(z^{2}\right)$

Construction of exp

Mostly straightforward:

- define exp: $\mathbf{Q}_{\mathbf{L}}^{\mathfrak{M}}(i) \rightarrow \mathbf{C}^{\mathfrak{M}}$ as $\lim _{n \rightarrow \infty} \sum_{j<n} \frac{z^{j}}{j!}$
- extend to $\mathrm{C}_{\mathrm{L}}^{\mathfrak{M}}$ using (local) uniform continuity
- show $\exp \left(z_{0}+z_{1}\right)=\exp z_{0} \exp z_{1}$ in the usual way

But we can finish only after proving $\exp \log z=z$:

- $\pi:=\operatorname{Im} \log (-1)$ satisfies $\exp (2 \pi i)=1$
$\Longrightarrow \exp 2 \pi i$-periodic \Longrightarrow extend \exp to $\mathbf{R}_{\mathrm{L}}^{\mathfrak{M}}+i \mathbf{R}^{\mathfrak{M}}$
- can further extend it to $\left\{z \in \mathbf{C}^{\mathfrak{M}}: \exists n \in \mathbf{L}^{\mathfrak{M}} \operatorname{Re} z \leq n\right\}$ by putting $\exp z=0$ when $\operatorname{Re} z<-\mathbf{L}^{\mathfrak{M}}$

Construction of log

A lot of work:

- define log for $|z-1|<{ }^{*} 1$ using $\lim _{n \rightarrow \infty}-\sum_{0<j \leq n} \frac{(1-z)^{j}}{j}$
- show $\log \left(z_{0} z_{1}\right)=\log z_{0}+\log z_{1}$ for z_{j} close to 1 by messy calculation
- extend \log to $\mathbf{R}_{>0}^{\mathfrak{M}}$ using $2^{n}: \mathbf{L}^{\mathfrak{M}} \rightarrow \mathbf{Z}^{\mathfrak{M}}$
- extend \log to an angular sector by combining the two
- develop \sqrt{z}
- extend \log to $\mathbf{C}_{\neq 0}^{\mathfrak{M r}}$ using $8 \log \sqrt[8]{z}$
- $\log \left(z_{0} z_{1}\right)=\log z_{0}+\log z_{1}$ when $\operatorname{Re} z_{j}>0$
$-\log \exp \left(z_{0}+z_{1}\right)=\log \exp z_{0}+\log \exp z_{1}$ when $\left|\operatorname{lm} z_{j}\right|<1$
$\Longrightarrow \log \exp z=z$ when $|\operatorname{lm} z|<1$
$\Longrightarrow \exp \log z=z$ using injectivity of \log

Applications

Define

- $z^{w}=\exp (w \log z), \sqrt[n]{z}=z^{1 / n}$
- $\prod_{j<n} z_{j}$ for a sequence of $z_{j} \in \mathbf{Q}^{\mathfrak{M}}(i)$ coded in \mathfrak{M}
- wlog $z_{j} \in \mathbf{Z}^{\mathfrak{M}}[i] \Longrightarrow$ result also in $\mathbf{Z}^{\mathfrak{M}}[i]$
- round appx. of $\exp \left(\sum_{j<n}\right.$ appx. of $\left.\log z_{j}\right)$
- trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic functions
- Q: Can VTC ${ }^{0}$ prove π is irrational?

Model-theoretic consequence:

- Every countable model of $V T C^{0}$ is an exponential integer part of a real-closed exponential field (even though exp is not total on $\mathbf{R}^{\mathfrak{M}}$!)

Exponential integer parts

$\langle R,+, \cdot,<\rangle$ ordered field, $D \subseteq R$ subring:

- R real-closed: $R \equiv \mathbb{R}$ (odd-degree poly have roots, $\forall x>0 \exists \sqrt{x}$)
- $\langle R, \exp \rangle$ exponential field if $\exp :\langle R,+,<\rangle \simeq\left\langle R_{>0}, \cdot,<\right\rangle$
- D integer part (IP): discrete, $\forall x \in R \exists u \in D|x-u|<1$
- [Res'93] exponential IP: $D_{>0}$ closed under exp $(\exp (1)=2, \exp (n)>n)$
$N B: \exp \upharpoonright D_{>0}$ may be different from the usual 2^{n} function Motivation:
- [Shep'64] $\mathfrak{M} \vDash$ IOpen $\Longleftrightarrow \mathfrak{M}$ is an IP of a RCF
- What models are EIP of RCEF? Do they satisfy some nontrivial consequences of totality of exponentiation?

Models of $V T C^{0}$ as EIP

$\mathfrak{M} \vDash V T C^{0} \Longrightarrow I P$ of RCF $R^{\mathfrak{M}}$
Catch: our \exp or 2^{\times}is $\left\langle\mathbf{R}_{\mathrm{L}}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{R}_{>0}^{\mathfrak{M}}, \cdot,<\right\rangle$
Solution:

- $\left\langle\mathbf{Q}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}}, \mathbf{L}^{\mathfrak{M}},+,<\right\rangle$ is recursively saturated
- quantifier elimination for $\operatorname{Th}\left(\mathbf{Q}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}}, \mathbf{L}^{\mathfrak{M}},+,<\right)$
$-\mathfrak{M}$ countable $\Longrightarrow\left\langle\mathbf{Q}^{\mathfrak{M}}, \mathbf{N}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{Q}_{\mathbf{L}}^{\mathfrak{M}}, \mathbf{L}^{\mathfrak{M}},+,<\right\rangle$
- continuous extension $\left\langle\mathbf{R}^{\mathfrak{M}}, \mathbf{N}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}, \mathbf{L}^{\mathfrak{M}},+,<\right\rangle$
- compose with $2^{x} \Rightarrow\left\langle\mathbf{R}^{\mathfrak{M}}, \mathbf{N}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{R}_{>0}^{\mathfrak{M}}, P_{2}^{\mathfrak{M}}, \cdot,<\right\rangle$ $P_{2}^{\mathfrak{M}}=\left\{x \in \mathbf{N}^{\mathfrak{M}}: x\right.$ is a power of 2$\}$

References

- A. Atserias: Improved bounds on the Weak Pigeonhole Principle and infinitely many primes from weaker axioms, Theoret. Comput. Sci. 295 (2003), 27-39
- P. Beame, S. Cook, H. Hoover: Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994-1003
- A. Chiu, G. Davida, B. Litow: Division in logspace-uniform NC ${ }^{1}$, RAIRO - Theoret. Inf. Appl. 35 (2001), 259-275
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695-716
- E. Jeřábek: Open induction in a bounded arithmetic for TC 0, Arch. Math. Logic 54 (2015), 359-394

References (cont'd)

- E. Jeřábek: Iterated multiplication in $V T C^{0}$, Arch. Math. Logic (2022), https://doi.org/10.1007/s00153-021-00810-6
\rightarrow E. Jeřábek: Elementary analytic functions in VTC ${ }^{0}$, 2022, 55pp., arXiv:2206.12164 [cs.CC]
- E. Jeřábek: Models of $V T C^{0}$ as exponential integer parts, ?
- S.-G. Mantzivis: Circuits in bounded arithmetic part I, Ann. Math. Artif. Intel. 6 (1991), 127-156
- P. Nguyen, S. Cook: Theories for $T C^{0}$ and other small complexity classes, Log. Methods Comput. Sci. 2 (2006), art. 3
- J.-P. Ressayre: Integer parts of real closed exponential fields, in: Arithmetic, proof theory, and computational complexity, Oxford Univ. Press, 1993, 278-288
- J. Shepherdson: A nonstandard model for a free variable fragment of number theory, Bull. Acad. Polon. Sci. 12 (1964), 79-86

