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Aim

The aim of the talk is

to present the results about the character of solvability and continuity in the
parameters of solutions to systems of linear differential equations of arbitrary order
on a finite interval with the most general inhomogeneous boundary conditions.
These boundary-value problems have essential features and require new research
methods.
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Background

General boundary conditions

General boundary-value problems are a classic object of research in the theory of
ordinary differential equations.
In the paper of I. Kiguradze (1987), for the first time sufficient conditions were
obtained for uniform convergence of solutions to boundary-value problems with
general inhomogeneous boundary conditions:

y′(t;n) = A(t;n)y(t;n) + f(t;n), t ∈ [a, b],

Bny(t;n) = cn,

where A(·;n) ∈ (L1)
m×m, f(·;n) ∈ (L1)

m, cn ∈ Rm and linear continuous
operators

Bn : C
(
[a, b];Rm

)
→ Rm, n ∈ N ∪ {0}.

These boundary conditions include classical boundary conditions, but cannot
contain derivatives of the unknown function.
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Background

Kiguradze theorem

Suppose that a homogeneous boundary-value problem, where n = 0, has only a
trivial solution and the following conditions are satisfied:

1) sup
n

∥A(·;n)∥1 < ∞;

2) sup
n

∥f(·;n)∥1 < ∞;

3) sup
n

∥Bn∥ < ∞;

4) max
t∈[a,b]

∣∣ t∫
a

A(s;n)ds−
t∫
a

A(s; 0)ds
∣∣ → 0;

5) max
t∈[a,b]

∣∣ t∫
a

f(s;n)ds−
t∫
a

f(s; 0)ds
∣∣ → 0;

6) cn → c0;

7) Bny → B0y, y ∈ (W 1
1 )

m.

Then for sufficiently large n solutions to boundary-value problems exist, are
unique, and ∥∥y(·, 0)− y(·, n)

∥∥
∞ → 0, n → ∞.

Olena Atlasiuk Aspect‘22 26–30 September 2022 6 / 27



Background

Distributions in coefficients

The mathematical theory of differential operators with distributions in coefficients
(in particular, Schrödinger operators with potentials containing Dirac δ-measure,
or even its derivative) appeared at the beginning of this century.

Famous monographs:

1. S. Albeverio, F. Gesctezy, R. Hoegh–Krohn, and H. Holden, Solvable Models
in Quantum Mechanics. Springer, New York (1988).

2. S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators.
Cambridge Univ. Press, Cambridge (2000).

For ordinary differential operators, the idea is to define such operators as
quasi-differential with properly selected quasi–derivatives according to Shin-Zettl.
In this connection, we can interpret some classes of quasi-differential operators as
limits in the sense of norm or strong resolvent convergence of differential
operators with smooth coefficients.
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Background

One-dimensional Schrödinger operator

Let the formal differential expression

l(y) = −y′′(t) + q′(t)y(t), q(·) ∈ L2

(
[a, b],C

)
= L2 (1)

be given on a compact interval, where the derivative of a function q is understood
in the sense of distributions.
If q(·) ∈ BV [a, b], then q′ is a signed measur on [a, b].

This expression can be defined as the Shin–Zettl quasi-differential expression with
following quasi-derivatives:

D[0]y := y, D[1]y := y′ − qy,

l(y) = D[2]y := −
(
D[1]y

)′ − qD[1]y − q2y.

If the function q is smooth, then this definition is equivalent to the classical one.
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Background

One-dimensional Schrödinger operator

Let us consider the set of quasi-differential expressions lε(·) of the form (1) with
functions qε(·) ∈ L2, ε ∈ [0, ε0]. In the Hilbert space with norm

∥∥·∥∥
2
each of

these expressions generates a dense defined closed quasi-differential operator
Lεy := lε(y).

Dom
(
Lε

)
= {y ∈ L2 : D

[2]y ∈ L2; α(ε)Ya(ε) + β(ε)Yb(ε) = 0} ⊂ W 1
1 ,

where matrices α(ε), β(ε) ∈ C2×2, and vectors

Ya(ε) := {y(a), D[1]
ε (a)}, Yb(ε) := {y(b), D[1]

ε (b)} ∈ C2.

Note that the set Dom
(
Lε

)
may not contain any nontrivial function from C1.

Theorem (Mikhailets, Goriunov 2010)

Suppouse that the resolvent set of the operator L0 is not empty and

i)
∥∥qε − q0

∥∥
2
→ 0, ε → 0+;

ii) α(ε) → α(0), β(ε) → β(0).

Then Lε → L0 in the sense of norm resolvent convergence.

Thus, each of the introduced operators is the limit of similar operators with
smooth coefficients.
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Generic boundary conditions

Statement of the problem

Let (a, b) ⊂ R and {m, n, r} ⊂ N, 1 ≤ p ≤ ∞, be given.

Linear boundary-value problem

(Ly)(t) := y(r)(t) +

r∑
j=1

Ar−j(t)y
(r−j)(t) = f(t), t ∈ (a, b), (2)

By = c. (3)

Here, Ar−j(·) ∈ (Wn
p )

m×m, f(·) ∈ (Wn
p )

m, c ∈ Crm, linear continuous operator

B : (Wn+r
p )m → Crm (4)

are arbitrarily chosen; y(·) ∈ (Wn+r
p )m is unknown.

The solutions of equation (2) fill the space (Wn+r
p )m if its right-hand side f(·)

runs through the space (Wn
p )

m. Hence, the condition (3) with operator (4) is
generic condition for this equation.

It includes all known types of classical boundary conditions and numerous
nonclassical conditions containing the derivatives (in general fractional) of an
order ≥ r .
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Generic boundary conditions

Invertibility of the operator

With problem (2), (3), we associate the linear operator

(L,B) : (Wn+r
p )m → (Wn

p )
m × Crm. (5)

By [BYk], we denote the numerical m×m matrix, in which j-th column is result
of the action of B on j-th column of Yk(·).
Definition 1.

A block numerical matrix

M(L,B) := ([BY0] , . . . , [BYr−1]) ∈ Crm×rm (6)

is characteristic matrix to problem (2), (3). It consists of r rectangular block
columns [BYk(·)] ∈ Cm×m.

Theorem 1.

The operator (5) is invertible if and only if the matrix M(L,B) is nondegenerate.
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Continuity in a parameter

Parameterized boundary-value problem

Boundary-value problem depending in a parameter ε ∈ [0, ε0), ε0 > 0

L(ε)y(t, ε) := y(r)(t, ε) +

r∑
j=1

Ar−j(t, ε)y
(r−j)(t, ε) = f(t, ε), t ∈ (a, b), (7)

B(ε)y(·; ε) = c(ε). (8)

Problem (7), (8) is a Fredholm one with zero index for every ε.

Definition 2.

The solution to the problem (7), (8) depends continuously in a parameter ε at
ε = 0 if the conditions are satisfied:

(∗) there exists a positive number ε1 < ε0 such that, for any ε ∈ [0, ε1) and
arbitrary chosen f(·; ε) ∈ (Wn

p )
m, c(ε) ∈ Crm, this problem has a unique

solution y(·; ε) ∈ (Wn+r
p )m;

(∗∗) the convergence of right-hand sides f(·; ε) → f(·; 0) and c(ε) → c(0) implies
the convergence of solutions

y(·; ε) → y(·; 0) in (Wn+r
p )m as ε → 0 + .

Olena Atlasiuk Aspect‘22 26–30 September 2022 14 / 27



Continuity in a parameter

Parameterized boundary-value problem

Boundary-value problem depending in a parameter ε ∈ [0, ε0), ε0 > 0

L(ε)y(t, ε) := y(r)(t, ε) +

r∑
j=1

Ar−j(t, ε)y
(r−j)(t, ε) = f(t, ε), t ∈ (a, b), (7)

B(ε)y(·; ε) = c(ε). (8)

Problem (7), (8) is a Fredholm one with zero index for every ε.

Definition 2.

The solution to the problem (7), (8) depends continuously in a parameter ε at
ε = 0 if the conditions are satisfied:

(∗) there exists a positive number ε1 < ε0 such that, for any ε ∈ [0, ε1) and
arbitrary chosen f(·; ε) ∈ (Wn

p )
m, c(ε) ∈ Crm, this problem has a unique

solution y(·; ε) ∈ (Wn+r
p )m;

(∗∗) the convergence of right-hand sides f(·; ε) → f(·; 0) and c(ε) → c(0) implies
the convergence of solutions

y(·; ε) → y(·; 0) in (Wn+r
p )m as ε → 0 + .

Olena Atlasiuk Aspect‘22 26–30 September 2022 14 / 27



Continuity in a parameter

The continuous dependence in a parameter

Consider the following conditions:

(0) the homogeneous boundary-value problem

L(0)y(t, 0) = 0, t ∈ (a, b), B(0)y(·, 0) = 0

has only the trivial solution;

(I) Ar−j(·; ε) → Ar−j(·; 0) in (Wn
p )

m×m for every j ∈ {1, . . . , r};
(II) B(ε)y → B(0)y in Crm for every y ∈ (Wn+r

p )m.

Theorem 2.

The solution to the problem (7), (8) depends continuously in the parameter ε at
ε = 0 if and only if this problem satisfies Conditions (0), (I), and (II).
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Continuity in a parameter

Remark

Gnyp, Mikhailets, and Murach (2016) gave a constructive criterion in Sobolev
spaces Wn+r

p , where 1 ≤ p < ∞. The proof based on the unique analytic
representation

By =

n+r−1∑
k=0

αky
(k)(a) +

∫ b

a

Φ(t)y(n+r)(t)dt, y(·) ∈ (Wn+r
p )m. (9)

Here, αk ∈ Crm×m, Φ(·) ∈ Lp′
(
[a, b];Crm×m

)
, 1/p+ 1/p

′
= 1.

Our method of proof allows to investigate such problems in Sobolev spaces Wn+r
p ,

where 1 ≤ p ≤ ∞, and some others function spaces.
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Continuity in a parameter

Degree of convergence of the solutions

We supplement our result with a two-sided estimate of the error∥∥y(·; 0)− y(·; ε)
∥∥
n+r,p

of solution y(·; ε) via its discrepancy

d̃n,p(ε) :=
∥∥L(ε)y(·; 0)− f(·; ε)

∥∥
n,p

+
∥∥B(ε)y(·; 0)− c(ε)

∥∥
Crm .

Here,y(·; 0) is an approximate solution to problem (7), (8).

Theorem 3.

Let the problem (7), (8) satisfies Conditions (0), (I), and (II). Then there exist
positive numbers ε2 < ε1, γ1, and γ2, such that

γ1 d̃n,p(ε) ≤
∥∥y(·; 0)− y(·; ε)

∥∥
n+r,p

≤ γ2 d̃n,p(ε)

for any ε ∈ (0, ε2). Here, the numbers ε2, γ1, and γ2 do not depend on y(·; 0),
and y(·; ε).

Thus, the error and discrepancy of the solution to problem (7), (8) are of
the same degree of smallness.
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Continuity in a parameter

Multipoint boundary-value problem

For any ε ∈ [0, ε0), ε0 > 0, we associate with the system (7)

multipoint Fredholm boundary condition

B(ε)y(·, ε) =
N∑
j=0

ωj(ε)∑
k=1

n+r−1∑
l=0

β
(l)
j,k(ε)y

(l)(tj,k(ε), ε) = q(ε), (10)

where the numbers {N,ωj(ε)} ⊂ N, vectors q(ε) ∈ Crm, matrices

β
(l)
j,k(ε) ∈ Cm×m, and points {tj , tj,k(ε)} ⊂ [a, b] are arbitrarily given.

The solution y(·, ε) to problem (7), (10) is continuous in the parameter ε if it
exists, is unique, and satisfies the limit relation

∥∥y(·, ε)− y(·, 0)
∥∥
n+r,p

→ 0 as ε → 0 + . (11)
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Continuity in a parameter

The limit theorem, p = ∞

Assumptions as ε → 0+:

(α) tj,k(ε) → tj for all j ∈ {1, . . . , N}, and k ∈ {1, . . . , ωj(ε)};

(β)
ωj(ε)∑
k=1

β
(l)
j,k(ε) → β

(l)
j for all j ∈ {1, . . . , N}, and l ∈ {0, . . . , n+ r − 1};

(γ)
ωj(ε)∑
k=1

∥∥β(l)
j,k(ε)

∥∥∣∣tj,k(ε)− tj
∣∣ → 0 for all j ∈ {1, . . . , N}, k ∈ {1, . . . , ωj(ε)},

and l ∈ {0, . . . , n+ r − 1};

(δ)
ω0(ε)∑
k=1

∥∥β(l)
0,k(ε)

∥∥ → 0 for all k ∈ {1, . . . , ω0(ε)}, and l ∈ {0, . . . , n+ r − 1}.

Theorem 4.

Let the boundary-value problem (7), (10) for p = ∞ satisfies the assumptions (α),
(β), (γ), (δ). Then it satisfies the limit condition (II). If, moreover, the conditions
(0) and (I) are fulfilled, then for a sufficiently small ε its solution exists, is unique
and satisfies the limit relation (11).
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Continuity in a parameter

The limit theorem, 1 ≤ p < ∞

Assumptions as ε → 0+:

(γp)
ωj(ε)∑
k=1

∥∥β(n+r−1)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣1/p′

= O(1) for all j ∈ {1, . . . , N}, and

k ∈ {1, . . . , ωj(ε)};

(γ′)
ωj(ε)∑
k=1

∥∥β(l)
j,k(ε)

∥∥∣∣tj,k(ε)− tj
∣∣ → 0 for all j ∈ {1, . . . , N}, k ∈ {1, . . . , ωj(ε)},

and l ∈ {0, . . . , n+ r − 2}.

Theorem 5.

Let the boundary-value problem (7), (10) for 1 ≤ p < ∞ satisfies the assumptions
(α), (β), (γp), (γ

′), (δ). Then it satisfies the limit condition (II). If, moreover, the
conditions (0) and (I) are fulfilled, then for a sufficiently small ε its solution exists,
is unique and satisfies the limit relation (11).
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Applications

Applications
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Applications

Approximation

Linear boundary-value problem

(Ly)(t) := y(r)(t) +

r∑
j=1

Ar−j(t)y
(r−j)(t) = f(t), t ∈ (a, b), (12)

By = c, (13)

where 1 ≤ p < ∞.

A sequence of multipoint boundary-value problems

(Lkyk)(t) := y
(r)
k (t) +

r∑
j=1

Ar−j(t)y
(r−j)
k (t) = f(t), t ∈ (a, b), (14)

Bkyk :=

N∑
j=0

n+r−1∑
l=0

β
(l,j)
k y(l)(tk,j) = c. (15)
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Applications

Approximation

Theorem 6.

For the boundary-value problem (12), (13) there is a sequence of multipoint
boundary-value problems of the form (14), (15) such that they are well-posedness
for sufficiently large k and the asymptotic property is fulfilled

yk → y in (Wn+r
p )m for k → ∞.

The sequence can be chosen independently of f and c, and constructed explicitly.
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