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Rayleigh–Bénard problem

Navier–Stokes–Fourier system

∂tϱ+ divx(ϱu) = 0

∂t(ϱu) + divx(ϱu⊗ u) +∇xp(ϱ, ϑ) = divxS(∇xu) + ϱ∇xG

∂t(ϱe(ϱ, ϑ)) + divx(ϱe(ϱ, ϑ)u) +∇xq(∇xϑ) = S : Dxu− p(ϱ, ϑ)divxu

Boundary conditions
Ω = T2 × (0, 1)

u|x3=0 = u|x3=1 = 0,

ϑ|x3=0 = ΘB , ϑ|x3=1 = ΘU .

S(ϑ,Dxu) = µ(ϑ)

(
∇xu+∇t

xu− 2

3
divxuI

)
+ η(ϑ)divxuI

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ



Long–time behavior

Levinson dissipativity or bounded absorbing set. Any
global–in–time weak solution to the Navier–Stokes–Fourier system in
a domain with impermeable boundary endowed with the Dirichlet
boundary conditions for the temperature enters eventually a
bounded absorbing set.

Asymptotic compactness. Any bounded family of global solutions
is precompact in a suitable topology of the trajectory space, whereas
any of its accumulation points represents a weak solution of the
same problem.



Weak solutions, I

Equation of continuity

∂tϱ+ divx(ϱu) = 0,

∂tb(ϱ) + divx(b(ϱ)u) +
(
b′(ϱ)ϱ− b(ϱ)

)
divxu = 0

for any b ∈ C 1(R), b′ ∈ Cc(R)

Momentum equation

∂t(ϱu) + divx(ϱu⊗ u) +∇xp = divxS(∇xu) + ϱ∇xG

Entropy inequality

∂t(ϱs) + divx(ϱsu) + divx

(q

ϑ

)
≥ 1

ϑ

[
S(Dxu) : Dxu− q · ∇xϑ

ϑ

]
Gibbs’ law

ϑDs = De + pD

(
1

ϱ

)



Weak solutions, II

Total energy balance

∂t

(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ)

)
+ divx

[(
1

2
ϱ|u|2 + ϱe(ϱ, ϑ)

)
u

]
+ divx(pu) + divxq

= divx(S · u) + ϱG · u

Ballistic energy

Eϑ̃ =

[
1

2
ϱ|u|2 + ϱe − ϑ̃ϱs

]
ϑ̃ > 0, ϑ̃|x3=0 = ΘB , ϑ̃|x3=1 = ΘU .

Ballistic energy boundary flux

q · n− ϑ̃

ϑ
q · n|∂Ω = 0



Weak solutions, III

Ballistic energy balance

d

dt

∫
Ω

[
1

2
ϱ|u|2 + ϱe − ϑ̃ϱs

]
dx

+

∫
Ω

ϑ̃

ϑ

[
S : Dxu− q · ∇xϑ

ϑ

]
dx

≤
∫
Ω

[
ϱu · ∇xG − ϱsu · ∇x ϑ̃− q

ϑ
· ∇x ϑ̃

]
dx

for any ϑ̃ ∈ C 1([0,T ]× Ω), ϑ̃ > 0 satisfying the boundary conditions

Compatibility [Chaudhuri–EF 2021]. Smooth weak solutions are classical
solutions

Weak–strong uniqueness [Chaudhuri–EF 2021]. A weak solution
coincides with the strong solution as long as the latter exists



Bounded absorbing set

Bounded absorbing set [EF - A. Świerczewska-Gwiazda]
For any global–in–time weak solution (ϱ, ϑ, u) defined on a time interval
(T ,∞), there exists a constant E∞ that depends only on the boundary
data and the total mass of the fluid

M =

∫
Ω

ϱ dx ,

such that

ess lim sup
t→∞

∫
Ω

E(ϱ, ϑ, u)(t, ·) dx ≤ E∞, E(ϱ, ϑ, u) ≡ 1

2
ϱ|u|2 + ϱe(ϱ, ϑ)

If, moreover,

ess lim sup
t→T+

∫
Ω

E(ϱ, ϑ, u)(t, ·) dx ≤ E0 < ∞,

then the convergence is uniform in E0. Specifically, for any ε > 0, there
exists a time T (ε, E0) such that

ess sup
t>T (ε,E0)

∫
Ω

E(ϱ, ϑ, u)(t, ·) dx ≤ E∞ + ε.



Asymptotic compactness, attractor

Attractor.

A =
{
(ϱ, S ,m)

∣∣∣ (ϱ, S ,m) a weak solution of the Navier–Stokes–Fourier system

for any t ∈ R, sup
t∈R

∫
Ω

E(ϱ, S , u)(t, ·) dx < E∞

}
,

Trajectory attractor [EF - A. Świerczewska-Gwiazda 2021]
Let M > 0, E0 be given. Let F [M, E0] be a family of weak solutions to
the Rayleigh–Bénard problem for the Navier–Stokes–Fourier system on the
time interval (0,∞) satisfying∫

Ω

ϱ dx = M, ess lim sup
τ→0+

∫
Ω

E(ϱ, S ,m)(τ, ·) dx ≤ E0.

We identify the set F [M, E0] with a subset of the entire trajectories space
extending them by constant values for τ < 0.

Then for any ε > 0, there exists a time T (ε) such that

dT [(ϱ, S ,m)(·+T );A] < ε for any (ϱ, S ,m) ∈ F [M, E0] and any T > T (ε).



Stationary statistical solutions

Stationary statistical solutions [EF - A. Świerczewska-Gwiazda 2021]
Let U ⊂ A be a non-empty time–shift invariant set, meaning

(ϱ, S ,m) ∈ U ⇒ (ϱ,S ,m)(·+ T ) ∈ U for any T ∈ R.

Then there exists a stationary statistical solution V supported by U :
V is a Borel probability measure, V ∈ P(U);
suppV ⊂ U , where the closure of a U is a compact invariant set;

V is shift invariant, i.e., V[B] = V[B(·+ T )] for any Borel set
B ⊂ T and any T ∈ R.



Ergodic means
Phase space

H = W−k,2(Ω)×W−k,2(Ω)×W−k,2(Ω;R3).

Convergence of ergodic means [application of Birkhoff–Khinchin er-
godic theorem]
Let V be a stationary statistical solution and (ϱ, S ,m) the associated sta-
tionary process. Let F : H → R be a Borel measurable function such that∫

T
|F (ϱ(0, ·), S(0, ·),m(0, ·)| dV < ∞.

Then there exists a measurable function F ,

F : (T ,V) → R

such that

1

T

∫ T

0

F (ϱ(t, ·), S(t, ·),m(t, ·))dt → F as T → ∞

V−a.s. and in L1(T ,V).



Scaled system

Mass conservation:
∂tϱ+ divx(ϱu) = 0

Momentum balance:

∂t(ϱu) + divx(ϱu⊗ u) +
1

ε2
∇xp(ϱ, ϑ) = divxS(ϑ,∇xu) +

1

ε
ϱ∇xG

Boundary conditions:
ΘB −ΘU ≈ εθ



Limit system – Oberbeck–Boussinesq approximation

Incompressibility:
divxU = 0

Momentum balance:

ϱ
(
∂tU+U · ∇xU

)
+∇xΠ = µ(ϑ)∆xU+ r∇xG

Heat equation:

ϱcp(ϱ, ϑ)
(
∂tΘ+U · ∇xΘ

)
− ϱ ϑα(ϱ, ϑ)U · ∇xG = κ(ϑ)∆xΘ

Boussinesq relation:

∂p(ϱ, ϑ)

∂ϱ
∇x r +

∂p(ϱ, ϑ)

∂ϑ
∇xΘ = ϱ∇xG .

Nonlocal boundary conditions

Θ|∂Ω = θ − λ(ϱ, ϑ)

1− λ(ϱ, ϑ)

1

|Ω|

∫
Ω

Θ dx , 0 < λ(ϱ, ϑ) < 1


