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ON JOINT NUMERICAL RADIUS II

ROMAN DRNOVŠEK AND VLADIMIR MÜLLER

Abstract. Let T1, . . . , Tn be operators on a Hilbert space H. We continue the study of the

question whether it is possible to find a unit vector x ∈ H such that |〈Tjx, x〉| is large for all

j. Thus we are looking for a generalization of the well-known inequality w(T ) ≥ ‖T‖
2

for the

numerical radius w(T ) of a single operator T .

1. Introduction

Let H be a complex Hilbert space. Denote by B(H) the set of all bounded linear operators
on H. The numerical range of an operator T ∈ B(H) is defined by

W (T ) =
{
〈Tx, x〉 : x ∈ H, ‖x‖ = 1

}
and the numerical radius by

w(T ) = sup
{
|〈Tx, x〉| : x ∈ H, ‖x‖ = 1

}
= sup

{
|λ| : λ ∈ W (T )

}
.

It is well known that the numerical range W (T ) is a convex subset of the complex plane and
w(T ) ≥ ‖T‖

2 for all T . In other words, given a non-zero operator T ∈ B(H) and a number ε > 0,
there exists a unit vector x ∈ H such that |〈Tx, x〉| > (1− ε)‖T‖2 .

If dim H < ∞ then the numerical range W (T ) is compact, and so there exists a unit vector
x ∈ H such that |〈Tx, x〉| ≥ ‖T‖

2 .
In [M2] the following question was studied: Given T1, . . . , Tn ∈ B(H), does there exist a unit

vector x ∈ H such that |〈Tjx, x〉| is ”large” for all j = 1, . . . , n?
It is easy to see that it is possible to assume that dim H < ∞. Moreover, considering the real

and imaginary parts of each operator Tj it is possible to reduce the question (at least up to a
constant) to the case of n-tuples of selfadjoint operators.

In [M2] there were obtained sharp estimates in cases n = 2, 3. If T1, T2 is a pair of self-
adjoint operators on a finite-dimensional Hilbert space, then there exists a unit vector x such
that |〈Tjx, x〉| ≥ 1

3‖Tj‖ (j = 1, 2). For triples of selfadjoint operators the corresponding best
estimate is |〈Tjx, x〉| ≥ 1

5‖Tj‖.
For n ≥ 4 the question is essentially more difficult, among other reasons because the joint

numerical range W (T1, . . . , Tn) is no longer a convex set. In [M2] there were obtained only some
estimates: if T1, . . . , Tn ∈ B(H) then there exists a unit vector x ∈ H such that |〈Tjx, x〉| ≥
const
n3 · ‖Tj‖ for all j.
If T1, . . . , Tn are commuting selfadjoint operators, then there exists a unit vector x ∈ H with

|〈Tjx, x〉| ≥ const
n2 · ‖Tj‖ for all j.
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2 ROMAN DRNOVŠEK AND VLADIMIR MÜLLER

The purpose of this note is to improve the above estimates. We improve the estimate in the
general case to |〈Tjx, x〉| ≥ const

n2 · ‖Tj‖ and in the case of commuting selfadjoint operators to
|〈Tjx, x〉| ≥ const

n
√

n
· ‖Tj‖. Note that in [M2] it is conjectured that the best lower estimates are

1
2n−1‖Tj‖. So it is still a gap between these two lower estimates.

Similar estimates can be obtained also for other types of numerical ranges — for the essential
numerical range and the algebraic numerical range.

At the end of the paper we also give a short proof of the inequality between the norm and
the joint numerical radius of an n-tuple of operators. This estimate was given in [P], where the
joint numerical radius is called the Euclidean operator radius.

2. General case

Let H be a Hilbert space and T1, . . . , Tn ∈ B(H). Recall that the joint numerical range
W (T1, . . . , Tn) is defined by

W (T1, . . . , Tn) =
{(
〈T1x, x〉, . . . , 〈Tnx, x〉

)
: x ∈ H, ‖x‖ = 1

}
.

We study first the situation in 2-dimensional spaces. The estimates will be then used in
general case.

Let S be the unit sphere in C2, S =
{
(λ, µ) ∈ C2 : |λ|2 + |µ|2 = 1

}
. Let m be the Lebesgue

measure on S. Recall that m(S) = 2π2.

Lemma 1. Let a ∈ [−1, 1] and ε > 0. Let La,ε =
{
(λ, µ) ∈ S : −ε < |λ|2 + a|µ|2 < ε

}
. Then

m(La,ε) < 4π2ε.

Proof. Note that for a > 0 we have La,ε ⊂ L0,ε, so it is enough to consider the case when a ≤ 0.
Write λ = r cos α + ir sinα, µ =

√
1− r2 cos β + i

√
1− r2 sinβ with 0 ≤ α < 2π, 0 ≤ β < 2π,

0 ≤ r ≤ 1. An elementary calculation gives dm = rdr dα dβ.
We distinguish two cases:
A. −ε ≤ a ≤ 0.
Then (λ, µ) ∈ La,ε if and only if 0 ≤ r2 < ε−a

1−a . So

m(La,ε) =
∫ q ε−a

1−a

0
rdr

∫ 2π

0
dα

∫ 2π

0
dβ = 4π2

[r2

2

]q ε−a
1−a

0
= 2π2 ε− a

1− a
< 4π2ε.

B. −1 ≤ a < −ε.
Then (λ, µ) ∈ La,ε if and only if −ε−a

1−a < r2 < ε−a
1−a . So

m(La,ε) =
∫ q ε−a

1−a

q
−ε−a
1−a

rdr

∫ 2π

0
dα

∫ 2π

0
dβ = 2π2

(ε− a

1− a
− −ε− a

1− a

)
= 2π2 2ε

1− a
< 4π2ε.

So m(La,ε) < 4π2ε for all a ∈ [−1, 1] and ε > 0. �

Proposition 2. Let dim H = 2, let T1, T2, · · · ∈ B(H) be a sequence of selfadjoint operators
satisfying ‖Tj‖ = 1 (j = 1, 2, . . . ). Let αj ≥ 0 (j ∈ N) satisfy

∑∞
j=1 αj = 1. Then there exists

a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ αj

2
(j = 1, 2, . . . ).
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Proof. Let SH be the unit sphere in H. We may assume that αj > 0 for all j. For each j there
exist an orthonormal basis {ej , fj} in H and aj ∈ [−1, 1] such that Tjej = ±ej and Tjfj = ajfj . If
Tjej = ej and x = αej +βfj ∈ SH we have

∣∣〈Tjx, x〉
∣∣ =

∣∣|α|2+aj |β|2
∣∣. So |〈Tjx, x〉| < αj/2 if and

only if (λ, µ) ∈ Laj ,αj/2 (we use the notation from the previous lemma). Similarly, if Tjej = −ej

then
∣∣〈Tjx, x〉

∣∣ =
∣∣−|α|2 + aj |β|2

∣∣ and |〈Tjx, x〉| < αj/2 if and only if (λ, µ) ∈ L−aj ,αj/2. By

Lemma 1, we have in both cases m
({

x ∈ SH : |〈Tjx, x〉| < αj/2
})

< 2π2αj . Thus

∞∑
j=1

m
({

x ∈ SH : |〈Tjx, x〉| < αj/2
})

<
∞∑

j=1

2π2αj = 2π2 = m(SH).

So there exists a unit vector x ∈ SH \
⋃∞

j=1

{
x ∈ SH : |〈Tjx, x〉| < αj/2

}
. Clearly this x satisfies

|〈Tjx, x〉| ≥ αj

2
(j = 1, 2, . . . ).

�

Theorem 3. Let H be a Hilbert space, let T1, T2, · · · ∈ B(H). Let αj ≥ 0 satisfy
∑∞

j=1 α
1/2
j < 1.

Then there exist a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ αj

4
‖Tj‖ (j = 1, 2, . . . ).

If the operators T1, T2, . . . are selfadjoint, then there exist a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ αj

2
‖Tj‖ (j = 1, 2, . . . ).

Proof. We prove first the second statement. Let T ∗j = Tj for all j and
∑∞

j=1 α
1/2
j < 1. By [M1],

Theorem 39.8, there exist vectors u, v ∈ H such that

|〈Tju, v〉| ≥ α
1/2
j ‖Tj‖ (j = 1, 2, . . . ).

Moreover, it is clear from the proof (cf. [M1], Theorem 37.17) that the vectors u, v can be taken
of norm 1.

If the vectors u, v are linearly dependent then

|〈Tju, u〉| = |〈Tju, v〉| ≥ α
1/2
j ‖Tj‖ ≥ αj‖Tj‖.

Suppose that u, v are linearly independent. Let H0 be the 2-dimensional subspace generated by
u, v and let P be the orthogonal projection onto H0. Then the operators PTj |H0 ∈ B(H0) are
selfadjoint and ‖PTj |H0‖ ≥ |〈Tju, v〉| ≥ α

1/2
j ‖Tj‖. By Proposition 2, there exists a unit vector

x ∈ H0 ⊂ H such that

|〈Tjx, x〉| = |〈PTjx, x〉| ≥
α

1/2
j

2
‖PTj |H0‖ ≥

αj

2
‖Tj‖

for all j.
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Let T1, T2, · · · ∈ B(H) be now general operators. We may assume that Tj 6= 0 for all j.
Choose numbers α′j > αj such that

∑∞
j=1 α′j

1/2 < 1. Since the numerical radius of Tj satisfies

w(Tj) ≥ ‖Tj‖
2 , there exists λj ∈ W (Tj) with |λj | ≥ αj‖Tj‖

2α′j
. Consider the selfadjoint operators

Sj = Re
Tj

λj
=

1
2

(Tj

λj
+

T ∗j

λ̄j

)
.

Then 1 ∈ W (Sj) and so ‖Sj‖ ≥ 1. By the previous statement there exists a unit vector x ∈ H

such that

|〈Sjx, x〉| ≥
α′j
2
‖Sj‖

for all j. Then

|〈Tjx, x〉| ≥ |λj | · |Re〈λ−1
j Tjx, x〉| = |λj | · |〈Sj , x, x〉| > αj

2α′j
‖Tj‖ ·

α′j
2
‖Sj‖ ≥

αj

4
‖Tj‖

for all j ∈ N. �

Corollary 4. Let dim H < ∞, n ∈ N, let T1, . . . , Tn ∈ B(H). Then there exists a unit vector
x ∈ H such that

|〈Tjx, x〉| ≥ ‖Tj‖
4n2

(j = 1, . . . , n).

If the operators T1, . . . , Tn ∈ B(H) are selfadjoint, then there exists a unit vector x ∈ H such
that

|〈Tjx, x〉| ≥ ‖Tj‖
2n2

(j = 1, . . . , n).

Proof. It follows from the previous Theorem and the compactness of the unit sphere in H. �

3. Convex case

The following lemma is an improvement of Lemma 13 of [M2].

Lemma 5. Let n ∈ N and let K ⊂ [−1, 1]n be a convex set. Let uj = (uj1, . . . , ujn) ∈ K satisfy
ujj = 1 (j = 1, . . . , n). Then there exists v = (v1, . . . , vn) ∈ K such that

|vj | ≥
1

2n
√

n
(j = 1, . . . , n).

Proof. Let M =
{

(m1, . . . ,mn) ∈ [0, 1]n :
∑n

j=1 mj ≤ 1
}

. Clearly M is a compact convex set.
Define the width of M by

width (M) = inf
{

sup
v∈M

〈v, f〉 − inf
v∈M

〈v, f〉 : f ∈ Rn, ‖f‖ = 1
}

.

Then width (M) = 1√
n
. Indeed, for f = ( 1√

n
, . . . , 1√

n
) ∈ Rn we have ‖f‖ = 1 and supv∈M 〈v, f〉 =

1√
n
, infv∈M 〈v, f〉 = 0. So width (M) ≤ 1√

n
.

On the other hand, let f = (f1, . . . , fn) ∈ Rn, ‖f‖ =
(∑n

j=1 f2
j

)1/2
= 1. Let J1 =

{
j ∈

{1, . . . , n} : fj ≥ 0
}

and J2 = {1, . . . , n} \ J1.
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Then
sup
v∈M

〈v, f〉 = sup
v∈M

∑
j∈J1

vjfj = max
j∈J1

fj

and
inf

v∈M
〈v, f〉 = inf

v∈M

∑
j∈J2

vjfj = min
j∈J2

fj ,

and so
sup
v∈M

〈v, f〉 − inf
v∈M

〈v, f〉 = max
j∈J1

fj + max
j∈J2

(−fj) ≥ max
j

|fj | ≥
1√
n

.

Hence width (M) = 1√
n
.

For j = 1, . . . , n let Lj =
{

(t1, . . . , tn) ∈ Rn :
∣∣∣∑n

k=1 tkukj

∣∣∣ < 1
2n
√

n

}
. Since

(∑n
k=1 |ukj |2

)1/2
≥

|ujj | = 1, we have width (Lj) ≤ 1
n
√

n
. For each ε > 0 we have

n∑
j=1

width
(
(1− ε)Lj

)
< width (M),

so by the plank theorem [B] there exists t(ε) = (t(ε)1 , . . . , t
(ε)
n ) ∈ M \

⋃n
j=1(1 − ε)Lj . By a

compactness argument, there exists t = (t1, . . . , tn) ∈ M \
⋃n

j=1 Lj , i.e.,
n∑

k=1

|tkukj | ≥
1

2n
√

n

for all j = 1, . . . , n.

Let s = tPn
j=1 tj

. Then
∑n

k=1 sk = 1 and for each j = 1, . . . , n we have∣∣∣ n∑
k=1

skukj

∣∣∣ =

∣∣∑n
k=1 tkukj

∣∣∑n
k=1 tk

≥ 1
2n
√

n
.

So v =
∑n

k=1 skuk ∈ K and

|vj | ≥
1

2n
√

n
(j = 1, . . . , n).

�

Corollary 6. Let dim H < ∞ and let T1, . . . , Tn ∈ B(H) be commuting selfadjoint operators.
Then there exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ ‖Tj‖
2n
√

n
(j = 1, . . . , n).

Proof. Without loss of generality we may assume that ‖Tj‖ = 1 and 1 ∈ σ(Tj) for all j. The
joint numerical range W (T1, . . . , Tn) = conv σ(T1, . . . , Tn) is a closed convex subset of [−1, 1]n.
For each j = 1, . . . , n there exists a unit vector xj ∈ H with 〈Tjxj , xj〉 = 1, so there exists
λj = (λj1, . . . , λjn) ∈ W (T1, . . . , Tn) with |λjj | = 1.

By Lemma 5, there exists v ∈ W (T1, . . . , Tn) with |vj | ≥ ‖Tj‖
2n
√

n
(j = 1, . . . , n). �

Lemma 5 can be also applied for other types of convex numerical ranges.
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Let H be an infinite-dimensional Hilbert space and let T1, . . . , Tn ∈ B(H). Recall that the
joint essential numerical range We(T1, . . . , Tn) is the set of all λ = (λ1, . . . , λn) ∈ Cn such that
there exists an orthonormal sequence (xk) ⊂ H with

λj = lim
k→∞

〈Tjxk, xk〉.

The joint essential numerical range is always a closed convex set, see [LP].
For a single selfadjoint operator S ∈ B(H) we have sup{|µ| : µ ∈ We(S)} = ‖S‖e, the essential

norm of S. So an easy application of Lemma 5 gives

Theorem 7. Let H be an infinite-dimensional Hilbert space, let T1, . . . , Tn ∈ B(H). Then
there exists an orthonormal sequence (xk) ⊂ H such that aj := limk→∞〈Tjxk, xk〉 exists and

|aj | ≥
‖Tj‖e

4n
√

n

for all j = 1, . . . , n.
If the operators Tj are selfadjoint then there exists an orthonormal sequence (xk) ⊂ H with

|aj | ≥
‖Tj‖e

2n
√

n

for all j = 1, . . . , n.

Proof. We prove first the second statement. Let T ∗j = Tj for all j. Without loss of generality
we may assume that ‖Tj‖e = 1 for all j and 1 ∈ We(Tj). Since the set We(T1, . . . , Tn) is convex,
by Lemma 5 there exists an element λ = (λ1, . . . , λn) ∈ We(T1, . . . , Tn) satisfying |λj | ≥ 1

2n
√

n

for all j = 1, . . . , n.
Let now T1, . . . , Tn ∈ B(H) be arbitrary operators; we may assume that ‖Tj‖e 6= 0 for all j.

For each j there exists λj ∈ We(Tj) with |λj | ≥ ‖Tj‖e

2 . Let Sj = Re Tj

λj
= 1

2

(
Tj

λj
+

T ∗
j

λ̄j

)
. Then

S∗j = Sj and 1 ∈ We(Sj). By the previous statement, there exists an orthonormal sequence
(xk) ⊂ H with limk→∞ |〈Sjxk, xk〉| ≥ 1

2n
√

n
‖Sj‖e ≥ 1

2n
√

n
for all j. Hence

lim inf
k→∞

|〈Tjxk, xk〉| ≥ |λj | · lim inf
k→∞

|Re〈λ−1
j Tjxk, xk〉| = |λj | · lim

k→∞
|〈Sjxk, xk〉| ≥

‖Tj‖e

4n
√

n
.

Taking a subsequence of (xk) if necessary we can assume that all the sequences in the above
formula converge.

�

Another situation where the results can be applied is the algebraic numerical range.
Let A be a unital Banach algebra, let a1, . . . , an ∈ A. The algebraic numerical range is defined

by
V (a1, . . . , an,A) =

{
(f(a1), . . . , f(an)) : f ∈ A∗, ‖f‖ = 1 = f(1A)

}
,

where 1A denotes the unit in A.
It is well known that V (a1, . . . , an,A) is always a closed convex subset of Cn. For a single

element a1 ∈ A we have

sup
{
|µ| : µ ∈ V (a1,A)

}
≥ ‖a1‖

e
(where e = 2.71...), see [BD], p. 34.
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Corollary 8. Let A be a unital Banach algebra, let a1, . . . , an ∈ A. Then there exists f ∈ A∗,
‖f‖ = 1 = f(1A) such that

|f(aj)| ≥
‖aj‖

2en
√

n
(j = 1, . . . , n).

Proof. For j = 1, . . . , n there exists fj ∈ A∗ with ‖fj‖ = 1 = fj(1A), |fj(aj)| ≥ ‖aj‖
e . Let αj

be the complex unit such that fj(αjaj) ≥ ‖aj‖
e . The numerical range V (α1a1, . . . αnan,A) is a

convex set, and so is the set K :=
{
(Re λ1, . . . ,Re λn) : (λ1, . . . , λn) ∈ V (α1a1, . . . , αnan,A)

}
.

By Lemma 5, there exists µ ∈ K ⊂ Rn with |µj | ≥ ‖aj‖
2en

√
n

for all j. So there exists λ ∈

V (a1, . . . , an,A) with |λj | ≥ ‖aj‖
2en

√
n

(j = 1, . . . , n). �

4. Joint numerical radius

Let T = (T1, . . . , Tn) ∈ B(H)n. The norm of T is defined as

‖T‖ = sup
{( n∑

i=1

‖Tix‖2
)1/2

: x ∈ H, ‖x‖ = 1
}

.

The joint numerical radius of T is defined by

w(T ) = sup
{( n∑

i=1

|λi|2
)1/2

: (λ1, . . . , λn) ∈ W (T )
}

.

The latter unitary invariant of T is called the Euclidean operator radius (and denoted we(T )) by
Popescu [P]. We provide a short proof of the following theorem given in [P], Proposition 1.21.

Theorem 9. Let T = (T1, . . . , Tn) ∈ B(H)n. Then

w(T ) ≥ ‖T‖
2
√

n
.

Moreover, the estimate is sharp.

Proof. Without loss of generality we may assume that ‖T‖ = 1. For each ε > 0 there exists

a unit vector x ∈ H such that
(∑n

i=1 ‖Tix‖2
)1/2

> 1 − ε. So there exists j0 ∈ {1, . . . , n} such

that ‖Tj0x‖2 > (1−ε)2

n . It follows that

w(Tj0) ≥
1
2
‖Tj0‖ ≥

1
2
‖Tj0x‖ >

1− ε

2
√

n
.

Consequently, w(T ) > 1−ε
2
√

n
. Since ε > 0 was arbitrary, we have w(T ) ≥ 1

2
√

n
.

To show that the estimate is sharp, let H be the (n + 1)-dimensional Hilbert space with an
orthonormal basis e0, e1, . . . , en. Define T = (T1, . . . , Tn) ∈ B(H)n by

Tje0 =
ej√
n

, Tjei = 0 (i, j = 1, . . . , n).

Then ‖T‖ ≥
(∑n

j=1 ‖Tje0‖2
)1/2

= 1 (in fact it is easy to show that ‖T‖ = 1).
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Let x =
∑n

i=0 αiei ∈ H be a unit vector. So
∑n

i=0 |αi|2 = 1. We have
n∑

j=1

|〈Tjx, x〉|2 =
n∑

j=1

( |α0αj |√
n

)2
=
|α0|2(1− |α0|2)

n
.

So

sup
{ n∑

i=1

|λi|2 : (λ1, . . . , λn) ∈ W (T )
}

=
1
n

sup
{
|α0|2(1− |α0|2) : α0 ∈ C, |α0| ≤ 1

}
=

1
4n

.

Hence w(T ) = 1
2
√

n
. �
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