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ON JOINT NUMERICAL RADIUS II

ROMAN DRNOVSEK AND VLADIMIR MULLER

ABSTRACT. Let Ti,...,T, be operators on a Hilbert space H. We continue the study of the
question whether it is possible to find a unit vector z € H such that |(Tjz,x)| is large for all
j. Thus we are looking for a generalization of the well-known inequality w(T") > ”—g” for the
numerical radius w(T') of a single operator T'.

1. INTRODUCTION

Let H be a complex Hilbert space. Denote by B(H) the set of all bounded linear operators
on H. The numerical range of an operator T' € B(H) is defined by

W(T)={(Tz,z):z € H,||z| =1}
and the numerical radius by
w(T) =sup{|(Tz,z)| : x € H, ||lz|| =1} =sup{|A| : A € W(T)}.

It is well known that the numerical range W (T') is a convex subset of the complex plane and
w(T) > @ for all T'. In other words, given a non-zero operator T' € B(H) and a number € > 0,

there exists a unit vector z € H such that |(Tz,z)| > (1 — 5)@

If dim H < oo then the numerical range W (T') is compact, and so there exists a unit vector
x € H such that |(Tz,z)| > @

In [M2] the following question was studied: Given T1,...,T, € B(H), does there exist a unit
vector z € H such that |(T)x,x)| is "large” for all j =1,...,n?

It is easy to see that it is possible to assume that dim H < co. Moreover, considering the real
and imaginary parts of each operator Tj it is possible to reduce the question (at least up to a
constant) to the case of n-tuples of selfadjoint operators.

In [M2] there were obtained sharp estimates in cases n = 2,3. If 77,75 is a pair of self-
adjoint operators on a finite-dimensional Hilbert space, then there exists a unit vector x such
that [(Tjz,x)| > 2||T;|| (j = 1,2). For triples of selfadjoint operators the corresponding best
estimate is [(Tjz, )| > 1|75

For n > 4 the question is essentially more difficult, among other reasons because the joint
numerical range W (11, ...,T,) is no longer a convex set. In [M2] there were obtained only some
estimates: if T1,...,T,, € B(H) then there exists a unit vector € H such that [(Tjz,z)| >
oSt | Ty || for all 5.

IfTy,...,T, are commuting selfadjoint operators, then there exists a unit vector x € H with
(Tjz, )| = <95 - || Ty|| for all j.
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2 ROMAN DRNOVSEK AND VLADIMIR MULLER

The purpose of this note is to improve the above estimates. We improve the estimate in the
general case to [(Tjz,z)| > 2%t . ||T}|| and in the case of commuting selfadjoint operators to
[(Tjx,x)| > Zo—\j% -||[T5]|. Note that in [M2] it is conjectured that the best lower estimates are
5251 T5]|. So it is still a gap between these two lower estimates.

Similar estimates can be obtained also for other types of numerical ranges — for the essential
numerical range and the algebraic numerical range.

At the end of the paper we also give a short proof of the inequality between the norm and
the joint numerical radius of an n-tuple of operators. This estimate was given in [P], where the
joint numerical radius is called the Euclidean operator radius.

2. GENERAL CASE

Let H be a Hilbert space and T1,...,T, € B(H). Recall that the joint numerical range
W(Ty,...,T,) is defined by

W(T,...,T,) = {((Tlm,:v>, Ty, 2)) s € H, 2| = 1}.

We study first the situation in 2-dimensional spaces. The estimates will be then used in
general case.

Let S be the unit sphere in C2, S = {(\, ) € C*: |A]* + [u|* = 1}. Let m be the Lebesgue
measure on S. Recall that m(S) = 272

Lemma 1. Let a € [-1,1] and € > 0. Let L. = {(\,n) € S : —e < [A|? + a|u|* < £}. Then
m(Lae) < 4m’e.

Proof. Note that for a > 0 we have L, C Lg, so it is enough to consider the case when a < 0.
Write A = rcosa +irsina, p=+v1 —r2cosf8+iv1 —r2sinf8 with 0 < a < 27, 0 < 38 < 2,
0 <r < 1. An elementary calculation gives dm = rdr da dS.
We distinguish two cases:
A —e<a<0.
Then (A, 1) € Lq if and only if 0 < r? < £=%. So

a’

2 2 2 e—a _
rdr / da / 43 = 4x? [r—] Vice _9p28 79 g2
0 0 2 0 1 a

E—a

miLag) = [V

B. -1<a< —e¢.
Then (A, 1) € Lq if and only if 552 <7 < £=2. So

1—a-
£=a 27 27
Ve — —e— 2
m(La,a) = 1 Td?“/ da/ g = 27"'2(6 i a) = 21° c < 47’e.
—=—a 0 0 1—-a 1—-a 1—a
So m(Lae) < 472 for all a € [-1,1] and & > 0. O

Proposition 2. Let dim H = 2, let T},T5,--- € B(H) be a sequence of selfadjoint operators
satisfying || 75| =1 (j=1,2,...). Let a; >0 (j € N) satisfy 3 72, a; = 1. Then there exists
a unit vector x € H such that

(o' i
(Tyza)l = 5 (G=12...).
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Proof. Let Sy be the unit sphere in H. We may assume that o; > 0 for all j. For each j there
exist an orthonormal basis {e;, f;} in H and a; € [—1,1] such that Tje; = +e; and T} f; = a; f;. If
Tje; = ej and z = ae;+(f; € Sy we have |(Tjz, z)| = ||a/*+a;|8]?|. So |[(Tjz,z)| < oj/2 if and
only if (A, 1) € Ly, ;2 (We use the notation from the previous lemma). Similarly, if Tje; = —e;
then |(Tjz,z)| = |—|a* + a;]8|?| and |(Tjz,z)| < a;/2 if and only if (A, p) € L_4;a;/2- By

Lemma 1, we have in both cases m({x € Su : |(Tjz,x)| < aj/2}> < 2m%a;. Thus

Zm({fc € Su : |(Tjz,x)| < aj/2}> < 22772aj =272 = m(Sy).
j=1

j=1
So there exists a unit vector z € Sg \ U;’;l{x € Sy : |[(Tjz, z)| < aj/2}. Clearly this z satisfies
Oéj 3
O

Theorem 3. Let H be a Hilbert space, let T1,T5, - -- € B(H). Let o; > 0 satisfy Z;; o? < 1.

J
Then there exist a unit vector x € H such that
Qo ,
(Tyz )l = Tl G=12...).
If the operators 11,75, ... are selfadjoint, then there exist a unit vector € H such that

(67 .
(Tyz,2)l = ST G =1,2...).

Proof. We prove first the second statement. Let T = Tj for all j and > 72, a? <1, By [M1],

J
Theorem 39.8, there exist vectors u,v € H such that
1/2 .
(Tu, o) = o IT51 - (G =12....).

Moreover, it is clear from the proof (cf. [M1], Theorem 37.17) that the vectors u,v can be taken
of norm 1.
If the vectors u,v are linearly dependent then

1/2
(T, w)| = [(Tyu,v)| = ol * T3] = oyl|Ty]-

Suppose that u, v are linearly independent. Let Hy be the 2-dimensional subspace generated by
u,v and let P be the orthogonal projection onto Hy. Then the operators PT;|Hy € B(Hy) are
selfadjoint and ||PTj|Hol| > [(Tju,v)| > Oz;/2||TjH. By Proposition 2, there exists a unit vector
x € Hy C H such that
1/2
% @
(T, 2)] = PTye,2)] > “L- | PTy Holl > T3]

for all j.
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Let Th,Ts,--- € B(H) be now general ope/:rators. We may assume that T; # 0 for all j.
11/2
J
w(Tj) > @, there exists A\; € W (T}) with |\;] > L”é‘&”. Consider the selfadjoint operators
J
T, 1,7T; 1}
S; =R J:f(i _i).
1R T2y T,

Then 1 € W(S;) and so ||S;|| > 1. By the previous statement there exists a unit vector x € H
such that

Choose numbers o > a; such that Z;’;l e < 1. Since the numerical radius of T} satisfies

o
(85,2 > 211
for all 7. Then

— Qs O/~ o
[Ty, )| 2 Pl - ReN Ty, 2] = Il (85,200 > STy - 2151 = S5
j
for all j € N. O

Corollary 4. Let dimH < oo, n € N, let T1,...,T,, € B(H). Then there exists a unit vector

x € H such that 7
T; .
2 (j=1,...,n).

If the operators T1,...,T, € B(H) are selfadjoint, then there exists a unit vector x € H such
that

[(Tjz, x)| =

1 Z5]]
2n?2

|<le‘ax>|Z (G=1...,n).

Proof. It follows from the previous Theorem and the compactness of the unit sphere in H. [

3. CONVEX CASE

The following lemma is an improvement of Lemma 13 of [M2].

Lemma 5. Let n € N and let K C [—1,1]" be a convex set. Let u; = (uj1,...,u;,) € K satisfy
uj; =1 (j=1,...,n). Then there exists v = (v1,...,v,) € K such that
1
| > —— j=1,... .
‘U]‘ = 2n\/7z (] ’ ,TL)

Proof. Let M = {(ml, coymp) € [0,1]" 370 my < 1}. Clearly M is a compact convex set.
Define the width of M by

width (M) = inf{ sup (v, f) — 1é11\f/[
veM v

(v, f): f € R |f] = 1.

1

Then width (M) = --. Indeed, for f = (ﬁ, ..., =) € R" we have || f|| = 1 and sup,¢ (v, f) =

So width (M) < ﬁ

1/2
On the other hand, let f = (f1,...,fn) € R"||f]] = (Z?Zl sz) =1 Let J = {j €
{1,...,n}: fj >0} and Jo = {1,...,n}\ Ji.

ﬁv inf’UEM</Uv f> =
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Then
sup (v, f) = sup Z vj fj = max f;
veM UEMjeJl jeI
and
inf — inf £ min £
o 1= ol 2 vl = mig f
Jj€J2
and so )
sup{v, f) — inf (v, f) = max f; + max(—f;) > max |f;| > —.
veJ\I/)I< f) veM< f) Pk fj jer( f]) ¢ ‘fj‘ NG
Hence width (M) = 2.

v

Forj=1,...,nlet L; = {(tl, coytp) ER™: ‘22:1 tkukj‘ < ﬁ} Since (Zzzl |ukj|2>
lujj| =1, we have width (L;) < %ﬁ For each € > 0 we have

1/2

Y

Zn: width ((1 —¢)L;) < width (M),
j=1

so by the plank theorem [B] there exists t(5) = (tgg), e ,t,(f)) € M\U;_;(1 —¢)L;. By a
compactness argument, there exists ¢t = (¢1,...,t,) € M\ U?Zl Lj,ie.,

n

1
T ———
’ kUk]’ - 2n\/ﬁ

k=1
forall j=1,...,n.

Let s = Ent —. Then 7, s = 1 and for each j = 1,...,n we have
j=1%j

}zn:SkUk"— St | > ! )
= Shoite T 2nyn

Sov =73 p_;skur € K and
1
2ny/n

[0j] > (j=1...,n).

g

Corollary 6. Let dim H < oo and let T1,...,T, € B(H) be commuting selfadjoint operators.
Then there exists a unit vector x € H such that
175
2n/n

’<T]$,I>’2 (j:1,...,n).

Proof. Without loss of generality we may assume that ||T;|| = 1 and 1 € o(7}) for all j. The
joint numerical range W (T1,...,T;,) = conv o(11,...,T,) is a closed convex subset of [—1,1]".
For each j = 1,...,n there exists a unit vector x; € H with (Tjx;,2;) = 1, so there exists
Aj = ()\jh RN )\jn) e W(T,...,T,) with ’/\jj‘ =1.

By Lemma 5, there exists v € W(T1,...,T,) with |v;| > AT =1,...,n). O

2ny/n (J

Lemma 5 can be also applied for other types of convex numerical ranges.
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Let H be an infinite-dimensional Hilbert space and let T1,...,T,, € B(H). Recall that the
joint essential numerical range W, (11,...,T),) is the set of all A = (A1,...,\,) € C" such that
there exists an orthonormal sequence (z3) C H with

Aj = lim (Tjxy, xp).
k—oo
The joint essential numerical range is always a closed convex set, see [LP].

For a single selfadjoint operator S € B(H) we have sup{|u| : u € We(S)} = ||S]le, the essential

norm of S. So an easy application of Lemma 5 gives

Theorem 7. Let H be an infinite-dimensional Hilbert space, let Ty,...,T,, € B(H). Then
there exists an orthonormal sequence (x;) C H such that a; := limy_oo(Tjzk, x)) exists and

forall j=1,...,n.
If the operators T} are selfadjoint then there exists an orthonormal sequence (x) C H with

forallj=1,...,n.

Proof. We prove first the second statement. Let T} = Tj for all j. Without loss of generality
we may assume that ||Tj||e = 1 for all j and 1 € W,(Tj). Since the set W(T1,...,T},) is convex,
by Lemma 5 there exists an element A = (A1,...,\,) € We(Th,...,T,) satisfying || > ﬁ
forall j=1,...,n.

Let now T1,...,T, € B(H) be arbitrary operators; we may assume that |7}l # 0 for all j.

For each j there exists \; € W,(Tj) with |X;| > % Let S; = Re% = %(E\% + i) Then
S;=05and 1€ We(S;j). By the previous statement, there exists an orthonormal sequence

(k) C H with limy_.o [(Sjzr, 2)| > ﬁHSjHe > ﬁ for all j. Hence

HTJ'He
dn/n’

Taking a subsequence of (z) if necessary we can assume that all the sequences in the above

liminf [(Tjzy, k)| 2 || '1iggf|Re<A]1E$k7$k>| = ] - im [{Sjae, ax)| 2

formula converge.
O

Another situation where the results can be applied is the algebraic numerical range.
Let A be a unital Banach algebra, let ay, ..., a, € A. The algebraic numerical range is defined
by
Viar,...,an, A) = {(f(a1),.... flan)) : f € A" [If = 1= f(La)},
where 14 denotes the unit in A.
It is well known that V(aq,...,an,.A) is always a closed convex subset of C". For a single
element a1 € A we have

a
sup{lf o € V(ar, A)} > 1]
(where e = 2.71...), see [BD], p. 34.
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Corollary 8. Let A be a unital Banach algebra, let a1, ...,a, € A. Then there exists f € A*,
Il =1 = f(14) such that

|f(aj)| = QEZ% (j=1,...,n).

Proof. For j =1,...,n there exists f; € A* with || f;|| = 1 = f;(14), |fi(a;)] >
be the complex unit such that fj(aj a;) > @ The numerical range V(aqaq, ... apan, .A) is a

convex set, and so is the set K := {(ReA1,...,ReX,) : (A1,..., \n) € V(ay, ..., anan, A)}.
By Lemma 5, there exists p € K C R™ with |u;| > ”aiy for all j. So there exists A €

- 2

V(ay, ..., an, A) with yA|>26'j;} (G=1,...,n). O

4. JOINT NUMERICAL RADIUS

Let T'= (T1,...,T,) € B(H)™. The norm of T is defined as

n 5\ 1/2
1711 = sup{ (3" ITiall?) " s € Hjo] = 1}
=1

The joint numerical radius of T is defined by

_sup{(Zm ) Al,...,)\n)GW(T)}.

The latter unitary invariant of 7" is called the Euclidean operator radius (and denoted w,(T")) by
Popescu [P]. We provide a short proof of the following theorem given in [P], Proposition 1.21.

Theorem 9. Let T'= (T1,...,T,) € B(H)". Then

17
T

w(T) > 2

Moreover, the estimate is sharp.

Proof. Without loss of generality we may assume that ||T|| = 1. For each € > 0 there exists

1/2
a unit vector x € H such that (E”_l ||TZ£L'H2) > 1 —e. So there exists jp € {1,...,n} such

(- 5) . It follows that

that ||Tj,z|* >
1—-¢

2y/n

Consequently, w(T) > 3 f Since € > 0 was arbitrary, we have w(7T) > ﬁ

1 1

To show that the estimate is sharp, let H be the (n + 1)-dimensional Hilbert space with an
orthonormal basis eq, €1, ...,e,. Define T'= (T1,...,T,) € B(H)" by

e

Tjje() = ﬁa

1/2
Then ||T|| > (Z?:l HTjeOHQ) =1 (in fact it is easy to show that ||T']| = 1).

Tije; =0  (i,j=1,...,n).
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Let z =Y ;ase; € H be a unit vector. So > |a;|? = 1. We have

- "~ (laoag[\2 _ |aol*(1 — |aof?)
= j:l( Vn > n
So
- 2 1 2 2 1
sup{z IAi]* s (A1, M) € W(T)} = Esup{\aol (1—aol?) t a0 € C,|ag| <1} = e
i=1
Hence w(T) = 51-. O

2v/n
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