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Abstract

We combine the adaptive and multilevel approaches to the BDDC
and formulate a method which allows an adaptive selection of constraints
on each decomposition level. We also present a strategy for the solu-
tion of local eigenvalue problems in the adaptive algorithm using the
LOBPCG method with a preconditioner based on standard components
of the BDDC. The effectiveness of the method is illustrated on several
engineering problems. It appears that the Adaptive-Multilevel BDDC
algorithm is able to effectively detect troublesome parts on each decom-
position level and improve convergence of the method. The developed
open-source parallel implementation shows a good scalability as well as
applicability to very large problems and core counts.

Dedicated to Professor Ivo Marek on the occasion of his 80th birthday

1 Introduction

The Balancing Domain Decomposition by Constraints (BDDC) was developed
by Dohrmann [7] as a primal alternative to the Finite Element Tearing and
Interconnecting - Dual, Primal (FETI-DP) by Farhat et al. [8]. Both methods
use constraints to impose equality of new ‘coarse’ variables on substructure in-
terfaces, such as values at substructure corners or weighted averages over edges
and faces. Primal variants of the FETI-DP were also independently proposed by
Cros [5] and by Fragakis and Papadrakakis [9]. It has been shown in [24, 38] that
these methods are in fact the same as BDDC. Polylogarithmic condition number
bounds for FETI-DP were first proved in [28] and generalized to the case of coef-
ficient jumps between substructures in [15]. The same bounds were obtained for
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BDDC in [20, 21]. A proof that the eigenvalues of the preconditioned operators
of both methods are actually the same except for the eigenvalues equal to one
was given in [21] and then simplified in [3, 19, 24]. FETI-DP, and, equivalently,
BDDC are quite robust. It can be proved that the condition number remains
bounded even for large classes of subdomains with rough interfaces in 2D [13, 44]
as well as in many cases of strong discontinuities of coefficients, including some
configurations when the discontinuities cross substructure boundaries [29, 30].
However, the condition number does deteriorate in many situations of practical
importance and an adaptive method is warranted.

Adaptive enrichment for BDDC and FETI-DP was proposed in [22, 23], with
the added coarse functions built from eigenproblems based on adjacent pairs of
substructures in 2D formulated in terms of FETI-DP operators. The algorithm
has been developed directly in terms of BDDC operators and extended to 3D
by Mandel, Soused́ık and Š́ıstek [27, 35], resulting in a much simplified for-
mulation and implementation with global matrices, no explicit coarse problem,
and getting much of its parallelism through the direct solver used to solve an
auxiliary decoupled system. The only requirement for all these versions of the
adaptive algorithms is that there is a sufficient number of corner constraints to
prevent rigid body motions between any pair of adjacent substructures. This
requirement has been recognized in other contexts [4, 18], and in the context of
BDDC by Dohrmann [7], and recently by Š́ıstek et al. [33].

Moreover, solving the coarse problem exactly in the original BDDC method
becomes a bottleneck as the number of unknowns and, in particular, the number
of substructures gets too large. Since the coarse problem in BDDC, unlike in the
FETI-DP, has the same structure as the original problem, it is straightforward to
apply the method recursively to solve the coarse problem only approximately [7].
The original, two-level, BDDC has been extended into three-levels by Tu [41, 42]
and into a general multilevel method by Mandel, Soused́ık and Dohrmann [25,
26]. Recently the BDDC has been extended into three-level methods for mortar
discretizations [12], and into multiple levels for saddle point problems [37, 43].
The abstract condition number bounds deteriorate exponentially with increasing
number of levels.

Here we combine the adaptive and multilevel approaches to the BDDC
method in order to develop its variant that would preserve parallel scalability
with an increasing number of subdomains and also show its excellent conver-
gence properties. The adaptive method works as previously. It selects con-
straints associated with substructure faces, obtained from solution of local gen-
eralized eigenvalue problems for pairs of adjacent substructures, however this
time on each decomposition level. Because of the multilevel approach, the coarse
problems are treated explicitly (unlike in [27, 35]). The numerical examples show
that the heuristic eigenvalue-based estimates work reasonably well and that the
adaptive approach can result on each decomposition level in the concentration
of computational work in a small troublesome parts of the problem, which leads
to a good convergence behavior. The developed open-source parallel implemen-
tation shows a good scalability as well as applicability to very large problems
and core counts.
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The theoretical part of this paper presents a part of the work from the the-
sis [36] in a shorter, self-contained way. Also some results by the serial imple-
mentation of the algorithm from [36] are reproduced here for comparisons. The
two-dimensional version of the algorithm was described in conference proceed-
ings [39]. The main original contribution of this paper is the description of the
parallel implementation of the method, and numerical study of its performance.

The paper is organized as follows. In Section 2 we establish the notation
and introduce problem settings and preliminaries. In Section 3 we recall the
Multilevel BDDC originally introduced in [26]. In Section 4, we describe the
adaptive two-level method in terms of the BDDC operators with an explicit
coarse space. In Section 5 we discuss a preconditioner for LOBPCG used in the
solution of the local generalized eigenvalue problems in the adaptive method.
Section 6 contains an algorithm for the adaptive selection of components of the
Multilevel BDDC preconditioner. Numerical results are presented in Section 8,
and Section 9 contains summary and concluding remarks.

2 Notation and substructuring components

We first establish notation and briefly review standard substructuring concepts
and describe BDDC components. See, e.g., [17, 34, 40] for more details about
iterative substructuring in general, and in particular [7, 20, 24, 26] for the
BDDC. Consider a bounded domain Ω ⊂ R3 discretized by conforming finite
elements. The domain Ω is decomposed into N nonoverlapping subdomains Ωi,
i = 1, . . . N , also called substructures, so that each substructure Ωi is a union of
finite elements. Each node is associated with one degree of freedom in the scalar
case, and with 3 displacement degrees of freedom in the case of linear elasticity.
The nodes contained in the intersection of at least two substructures are called
boundary nodes. The union of all boundary nodes of all substructures is called
the interface, denoted by Γ, and Γi is the interface of substructure Ωi. The
interface Γ may also be classified as the union of three different types of sets:
faces, edges and corners. We will adopt here a simple (geometric) definition: a
face contains all nodes shared by the same two subdomains, an edge contains
all nodes shared by same set of more than two subdomains, and a corner is a
degenerate edge with only one node; for a more general definition see, e.g., [14].

We identify finite element functions with the vectors of their coefficients in
the standard finite element basis. These coefficients are also called variables
or degrees of freedom. We also identify linear operators with their matrices, in
bases that will be clear from the context.

Here, we find it more convenient to use the notation of abstract linear spaces
and linear operators between them instead of the space Rn and matrices. The
results can be easily converted to matrix language by choosing a finite element
basis. The space of the finite element functions on Ω will be denoted as U . Let
W s be the space of finite element functions on substructure Ωs, such that all of
their degrees of freedom on ∂Ωs ∩ ∂Ω are zero. Let

W = W 1 × · · · ×WN ,
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and consider a bilinear form a (·, ·) arising from the second-order elliptic problem
such as Poisson’s equation or a problem of linear elasticity.

Now U ⊂ W is the subspace of all functions from W that are continuous
across the substructure interfaces. We are interested in the solution of the
problem

u ∈ U : a(u, v) = 〈f, v〉 , ∀v ∈ U, (1)

where the bilinear form a is associated on the space U with the system
operator A, defined by

A : U 7→ U ′, a(u, v) = 〈Au, v〉 , ∀u, v ∈ U, (2)

and f ∈ U ′ is the right-hand side. Hence, (1) is equivalent to

Au = f. (3)

Define UI ⊂ U as the subspace of functions that are zero on the interface Γ,
i.e., the ‘interior’ functions. Denote by P the energy orthogonal projection from
W onto UI ,

P : w ∈W 7−→ vI ∈ UI : a (vI , zI) = a (w, zI) , ∀zI ∈ UI .

Functions from (I − P )W , i.e., from the nullspace of P, are called discrete
harmonic; these functions are a-orthogonal to UI and energy minimal with
respect to increments in UI . Next, let Ŵ be the space of all discrete harmonic
functions that are continuous across substructure boundaries, that is

Ŵ = (I − P )U. (4)

In particular,
U = UI ⊕ Ŵ , UI ⊥a Ŵ . (5)

The BDDC method [7, 24] is a two-level preconditioner characterized by the
selection of certain coarse degrees of freedom, such as values at the corners and
averages over edges or faces of substructures. Define W̃ ⊂ W as the subspace
of all functions such that the values of any coarse degrees of freedom have a
common value for all relevant substructures and vanish on ∂Ω, and W̃∆ ⊂ W̃ as
the subspace of all functions such that their coarse degrees of freedom vanish.
Next, define W̃Π as the subspace of all functions such that their coarse degrees
of freedom between adjacent substructures coincide, and such that their energy
is minimal. Clearly, functions in W̃Π are uniquely determined by the values of
their coarse degrees of freedom, and

W̃∆ ⊥a W̃Π, and W̃ = W̃∆ ⊕ W̃Π. (6)

The component of the BDDC preconditioner formulated in the space W̃Π is
called the coarse problem and the components in the space W̃∆ are called sub-
structure corrections.
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We assume that
a is positive definite on W̃ . (7)

This will be the case when a is positive definite on the space U and there are
sufficiently many coarse degrees of freedom [26]. We further assume that the
coarse degrees of freedom are zero on all functions from UI , that is,

UI ⊂ W̃∆. (8)

In other words, the coarse degrees of freedom depend on the values on substruc-
ture boundaries only. From (6) and (8), it follows that the functions in W̃Π are
discrete harmonic, that is,

W̃Π = (I − P ) W̃Π. (9)

Next, let E be a projection from W̃ onto U , defined by taking some weighted
average on substructure interfaces. That is, we assume that

E : W̃ → U, EU = U, E2 = E. (10)

Since a projection is the identity on its range, it follows that E does not change
the interior degrees of freedom,

EUI = UI , (11)

since UI ⊂ U . Finally, we recall that the operator (I − P )E is a projection [26].

3 Multilevel BDDC

We recall Multilevel BDDC which has been introduced as a particular instance
of Multispace BDDC in [26]. The substructuring components from Section 2
will be denoted by an additional subscript 1, as Ωs

1, s = 1, . . . N1, etc., and called
level 1. The level 1 coarse problem will be called the level 2 problem. It has the
same finite element structure as the original problem (1) on level 1, so we put

U2 = W̃Π1. Level 1 substructures are level 2 elements and level 1 coarse degrees
of freedom are level 2 degrees of freedom. Repeating this process recursively,
level i − 1 substructures become level i elements, and the level i substructures
are agglomerates of level i elements. Level i substructures are denoted by Ωs

i ,
s = 1, . . . , Ni, and they are assumed to form a conforming triangulation with
a characteristic substructure size Hi. For convenience, we denote by Ωs

0 the
original finite elements and put H0 = h. The interface Γi on level i is defined as
the union of all level i boundary nodes, i.e., nodes shared by at least two level i
substructures, and we note that Γi ⊂ Γi−1. Level i−1 coarse degrees of freedom
become level i degrees of freedom. The shape functions on level i are determined
by minimization of energy with respect to level i − 1 shape functions, subject
to the value of exactly one level i degree of freedom being one and the other
level i degrees of freedom being zero. The minimization is done on each level i
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element (level i−1 substructure) separately, so the values of level i−1 degrees of
freedom are in general discontinuous between level i−1 substructures, and only
the values of level i degrees of freedom between neighbouring level i elements
coincide.

The development of the spaces on level i now parallels the finite element
setting in Section 2. Denote Ui = W̃Π,i−1. Let W s

i be the space of functions on
the substructure Ωs

i , such that all of their degrees of freedom on ∂Ωs
i ∩ ∂Ω are

zero, and let
Wi = W 1

i × · · · ×W
Ni
i .

Then Ui ⊂ Wi is the subspace of all functions from Wi that are continuous
across the interfaces Γi. Define UIi ⊂ Ui as the subspace of functions that are
zero on Γi, i.e., the functions ‘interior’ to the level i substructures. Denote by
Pi the energy orthogonal projection from Wi onto UIi,

Pi : wi ∈Wi 7−→ vIi ∈ UIi : a (vIi, zIi) = a (wi, zIi) , ∀zIi ∈ UIi.

Functions from (I − Pi)Wi, i.e., from the nullspace of Pi, are called discrete
harmonic on level i; these functions are a-orthogonal to UIi and energy minimal
with respect to increments in UIi. Denote by Ŵi ⊂ Ui the subspace of discrete
harmonic functions on level i, that is

Ŵi = (I − Pi)Ui. (12)

In particular, UIi ⊥a Ŵi. Define W̃i ⊂ Wi as the subspace of all functions
such that each coarse degree of freedom on level i has a common value for all
relevant level i substructures, and W̃∆i ⊂ W̃i as the subspace of all functions
such that their level i coarse degrees of freedom have zero value. Define W̃Πi

as the subspace of all functions such that their level i coarse degrees of freedom
between adjacent substructures coincide, and such that their energy is minimal.
Clearly, functions in W̃Πi are uniquely determined by the values of their level i
coarse degrees of freedom, and

W̃∆i ⊥a W̃Πi, W̃i = W̃∆i ⊕ W̃Πi. (13)

We assume that the level i coarse degrees of freedom are zero on all functions
from UIi, that is,

UIi ⊂ W̃∆i. (14)

In other words, level i coarse degrees of freedom depend on the values on level i
substructure boundaries only. From (13) and (14), it follows that the functions

in W̃Πi are discrete harmonic on level i, that is

W̃Πi = (I − Pi) W̃Πi. (15)

Let E be a projection from W̃i onto Ui, defined by taking some weighted average
on Γi

Ei : W̃i → Ui, E2
i = Ei.
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Since projection is the identity on its range, Ei does not change the level i
interior degrees of freedom, in particular

EiUIi = UIi. (16)

The Multilevel BDDC method is now defined recursively [7, 26] by solving
the coarse problem on level i only approximately, by one application of the
preconditioner on level i + 1. Eventually, at the top level L − 1, the coarse
problem, which is the level L problem, is solved exactly. A formal description
of the method is provided by the following algorithm.

Algorithm 1 (Multilevel BDDC, [26, Algorithm 17]) Define the precon-
ditioner r1 ∈ U ′1 7−→ u1 ∈ U1 as follows:
for i = 1, . . . , L− 1,

Compute interior pre-correction on level i,

uIi ∈ UIi : a (uIi, zIi) = 〈ri, zIi〉 , ∀zIi ∈ UIi. (17)

Get an updated residual on level i,

rBi ∈ Ui, 〈rBi, vi〉 = 〈ri, vi〉 − a (uIi, vi) , ∀vi ∈ Ui. (18)

Find the substructure correction on level i:

w∆i ∈W∆i : a (w∆i, z∆i) = 〈rBi, Eiz∆i〉 , ∀z∆i ∈W∆i. (19)

Formulate the coarse problem on level i,

wΠi ∈WΠi : a (wΠi, zΠi) = 〈rBi, EizΠi〉 , ∀zΠi ∈WΠi. (20)

If i = L− 1, solve the coarse problem directly and set uL = wΠL−1,
otherwise set up the right-hand side for level i+ 1,

ri+1 ∈ W̃ ′Πi, 〈ri+1, zi+1〉 = 〈rBi, Eizi+1〉 , ∀zi+1 ∈ W̃Πi = Ui+1, (21)

end.

for i = L− 1, . . . , 1,

Average the approximate corrections on substructure interfaces on level i,

uBi = Ei (w∆i + ui+1) . (22)

Compute the interior post-correction on level i,

vIi ∈ UIi : a (vIi, zIi) = a (uBi, zIi) , ∀zIi ∈ UIi. (23)
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Apply the combined corrections,

ui = uIi + uBi − vIi. (24)

end.

The condition number bound for Multilevel BDDC is given as follows.

Lemma 1 ([26, Lemma 20]) The condition number κ of Multilevel BDDC
from Algorithm 1 satisfies

κ ≤ ω ≡ ΠL−1
i=1 ωi , (25)

where

ωi = sup
w∈W̃i

‖(I − Pi)Eiw‖2a
‖w‖2a

. (26)

For the purpose of the adaptive selection of constraints, we use the bound
based on jump at the interface defined on the subspace of discrete harmonic
functions from W̃i. More precisely, we modify (26) using the identity

(I − Pi)Ei(I − Pi) = (I − Pi)Ei (27)

and the fact that Pi is an a-orthogonal projection, as

ωi = sup
w∈W̃i

‖(I − Pi)Eiw‖2a
‖w‖2a

= sup
w∈W̃i

‖(I − Pi)Ei (I − Pi)w‖2a
‖w‖2a

= sup
w∈W̃i

‖(I − Pi)Ei (I − Pi)w‖2a
‖Piw‖2a + ‖(I − Pi)w‖2a

= sup
w∈W̃i

‖(I − Pi)Ei (I − Pi)w‖2a
‖(I − Pi)w‖2a

= sup
w∈(I−Pi)W̃i

‖(I − Pi)Eiw‖2a
‖w‖2a

= sup
w∈(I−Pi)W̃i

‖(I − (I − Pi)Ei)w‖2a
‖w‖2a

.

(28)

The last equality in (28) holds because (I − Pi)Ei is a projection and the
norm of a nontrivial projection in an inner product space depends only on the
angle between its range and its nullspace [10].

4 Adaptive Coarse Degrees of Freedom

To simplify notation, we formulate the algorithm for the adaptive selection of
the coarse degrees of freedom for one level at a time and drop the subscript i.
The basic idea of the method is still the same as in [23, 27, 35]. However,
the current formulation in terms of the BDDC method, though equivalent and
written similarly as in [27], is different enough to allow for an explicit treatment
of the coarse space correction. Therefore, it is suitable for multilevel extension
which will be introduced later in Section 6.
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As mentioned before, the space W̃ is constructed using coarse degrees of
freedom. These can be, e.g., values at corners, and averages over edges or faces.
The space W̃ is then given by the requirement that the coarse degrees of freedom
on adjacent substructures coincide; for this reason, the terms coarse degrees of
freedom and constraints are used interchangeably. The edge (or face) averages
are necessary in 3D problems to obtain scalability with subdomain size. Ideally,
one can prove the polylogarithmic condition number bound

κ ≤ const
(

1 + log
H

h

)2

, (29)

where H is the subdomain size and h is the finite element size.

Remark 1 The initial selection of constraints in the proposed adaptive ap-
proach will be done in a way such that (29) is satisfied for problems with suffi-
ciently regular structure. See, e.g., [15] for a theoretical justification.

To choose the space W̃ , cf. [23, Section 2.3], suppose we are given a space X
and a linear operator C : W → X and define,

W̃ = {w ∈W : C (I − E)w = 0} . (30)

The values Cw will be called local coarse degrees of freedom, and the space W̃
consists of all functions w whose local coarse degrees of freedom on adjacent
substructures have zero jumps. To represent their common values, i.e., the
global coarse degrees of freedom of vectors u ∈ W̃ , we use a space Uc and a
one-to-one linear operator Rc : Uc → X such that

W̃ = {w ∈W : ∃uc ∈ Uc : Cw = Rcuc} .

Observe that (I − E)Pv = 0 for all v ∈W , so we can define the space W̃ in
(30) using discrete harmonic functions w ∈WΓ = (I − P )W , for which

(I − (I − P )E)w = (I − P ) (I − E)w. (31)

Let us denote W̃Γ = (I −P )W̃ = W̃ ∩WΓ. Then the bound (26) in the form of
the last term in equation (28) can be found, for a fixed level i, as a maximum
eigenvalue of an associated eigenvalue problem, which can be using (31) written
as

a ((I − P ) (I − E)w, (I − P ) (I − E) z) = λa (w, z) ∀z ∈ W̃Γ. (32)

We can then control the condition number bound by adding constraints
adaptively by taking advantage of the Courant-Fisher-Weyl minimax principle,
cf., e.g., [6, Theorem 5.2], in the same way as in [23, 27, 35].

Corollary 1 ([27]) The generalized eigenvalue problem (32) has eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Denote the corresponding eigenvectors by w`. Then,
for any k = 1, . . . , n− 1, and any linear functionals L`, ` = 1, . . . , k,

max

{
‖(I − P ) (I − E)w‖2a

‖w‖2a
: w ∈ W̃Γ, L` (w) = 0 ∀` = 1, . . . , k

}
≥ λk+1,
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with equality if

L` (w) = a ((I − P ) (I − E)w`, (I − P ) (I − E)w) . (33)

Therefore, because (I − E) is a projection, the optimal decrease of the con-
dition number bound (26) can be achieved by adding to the constraint matrix

C in the definition of W̃ the rows c` defined by cT` w = L` (w).
Solving the global eigenvalue problem (32) is expensive, and the vectors c`

are not of the form required for substructuring, i.e., each c` with nonzero entries
corresponding to only one corner, an edge or a face at a time. For these reasons,
we replace (32) by a collection of local problems, each defined by considering
only two adjacent subdomains Ωs and Ωt. Subdomains are called adjacent if
they share a face. All quantities associated with such pairs will be denoted by
a superscript st. In particular, we define

W st = W s ×W t, W st
Γ = (I − P st)W st, (34)

where (I−P st) realizes the discrete harmonic extension from the local interfaces
Γs and Γt to interiors. Thus, functions from W st

Γ are fully determined by their
values at the local interfaces Γs and Γt, and they may be discontinuous at the
common part Γst = Γs ∩ Γt.

The bilinear form ast(·, ·) is associated on the space W st
Γ with the opera-

tor Sst of Schur complement with respect to the local interfaces, defined by

Sst : W st
Γ 7→W st

Γ
′
, ast(u, v) = 〈Sstu, v〉, ∀u, v ∈W st

Γ . (35)

Operator Sst is represented by a block-diagonal matrix composed of symmetric
positive semi-definite matrices Ss and St of individual Schur complements of
the subdomain matrices with respect to local interfaces Γs and Γt, resp.,

Sst =

[
Ss

St

]
. (36)

The action of the local projection operator Est is realized as a (weighted)
average at Γst and as an identity operator at (Γs ∪ Γt)\Γst.

Let Cst be the operator defining the initial coarse degrees of freedom that are
common to both subdomains of the pair. We define the local space of functions
with the shared coarse degrees of freedom continuous as

W̃ st =
{
w ∈W st : Cst(I − Est)w = 0

}
. (37)

Finally, we introduce the space W̃ st
Γ = W̃ st ∩W st

Γ .
Now the generalized eigenvalue problem (32) becomes a localized problem to

find w ∈ W̃ st
Γ such that

ast
((
I − P st

) (
I − Est

)
w,
(
I − P st

) (
I − Est

)
z
)

= λ ast (w, z) ∀z ∈ W̃ st
Γ .
(38)
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Assumption 1 The corner constraints are already sufficient to prevent relative
rigid body motions of any pair of adjacent substructures, so

∀w ∈ W̃ st : ast(w,w) = 0⇒
(
I − Est

)
w = 0,

i.e., the corner degrees of freedom are sufficient to constrain the rigid body modes
of the two substructures into a single set of rigid body modes, which are contin-
uous across the interface Γst.

The maximal eigenvalue ωst of (38) is finite due to Assumption 1, and we
define the heuristic condition number indicator

ω̃ = max
{
ωst : Ωs and Ωt are adjacent

}
. (39)

Considering two adjacent subdomains Ωs and Ωt only, we get the added
constraints L` (w) = 0 from (33) as

ast
((
I − P st

) (
I − Est

)
w`,
(
I − P st

) (
I − Est

)
w
)

= 0 ∀` = 1, . . . , k, (40)

where w` are the eigenvectors corresponding to the k largest eigenvalues
from (38).

Let us denote D the matrix corresponding to Cst(I − Est). We define the
orthogonal projection onto nullD by

Π = I −DT
(
DDT

)−1
D.

The generalized eigenvalue problem (32) now becomes

Π
(
I − P st

)T (
I − Est

)T
Sst
(
I − Est

) (
I − P st

)
Πw = λΠSstΠw. (41)

Since

nullΠSstΠ ⊂ nullΠ
(
I − P st

)T (
I − Est

)T
Sst
(
I − Est

) (
I − P st

)
Π, (42)

the eigenvalue problem (41) reduces in the factorspace modulo nullΠSstΠ to
a problem with the operator on the right-hand side positive definite. In our
computations, we have used the subspace iteration method LOBPCG [16] to
find the dominant eigenvalues and their eigenvectors. The LOBPCG iterations
then simply run in the factorspace.

From (41), the constraints to be added are

L` (w) = wT
` Π
(
I − P st

)T (
I − Est

)T
Sst
(
I − Est

) (
I − P st

)
Πw = 0.

That is, we wish to add to the constraint matrix C the rows

cst` = wT
` Π
(
I − P st

)T (
I − Est

)T
Sst
(
I − Est

) (
I − P st

)
Π. (43)

Proposition 1 ([27]) The vectors cst` , constructed for a domain consisting of
only two substructures Ωs and Ωt, have matching entries on the interface between
the two substructures, with opposite signs.
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That is, each row cst` can be split into two blocks and written as

cst` =
[
cs` −cs`

]
.

Either half of each row from the block cst` is then added into the matrices Cs

and Ct corresponding to the subdomains Ωs and Ωt. Unfortunately, the added
rows will generally have nonzero entries over the whole Γs and Γt, including the
edges in 3D where Ωs and Ωt intersect other substructures. Consequently, the
added rows are not of the form required for substructuring, i.e., each row with
nonzeros in one edge or face only. In the computations reported in Section 8,
we drop the adaptively generated edge constraints in 3D. Then it is no longer
guaranteed that the condition number indicator ω̃ ≤ τ . However, the method
is still observed to perform well.

The proposed adaptive algorithm follows.

Algorithm 2 (Adaptive BDDC [23]) Find the smallest k for every two ad-
jacent substructures Ωs and Ωt to guarantee that λstk+1 ≤ τ , where τ is a given

tolerance, and add the constraints (40) to the definition of W̃ .

5 Preconditioned LOBPCG

As pointed out already for adaptive 2-level BDDC method in [27], an important
step for a parallel implementation of the adaptive selection of constraints is an
efficient solution of the generalized eigenvalue problem (41) for each pair of
adjacent subdomains.

There are several aspects of the method immediately making such implemen-
tation challenging: (i) parallel layout of pairs of subdomains does not follow the
natural layout of a domain decomposition computation with distribution of data
based on subdomains, (ii) the multiplication by Sst on both sides of equation
(41) is done only implicitly, since action of Ss and St is available only through
solution of local discrete Dirichlet problems on subdomains Ωs

i and Ωt
i, (iii)

the process responsible for solving an st-eigenproblem typically does not have
data for subdomains Ωs

i and Ωt
i, and thus it has to communicate the vector for

multiplication to processors able to compute the actions of Ss and St.
With respect to these issues, it is necessary to use an inverse-free method for

the solution of each of these problems. In our case, the LOBPCG method [16] is
applied to find several largest eigenvalues λ` and corresponding eigenvectors w`

solving the homogeneous problem

M(A− λ`B)w` = 0, (44)

with

A = Π
(
I − P st

)T (
I − Est

)T
Sst
(
I − Est

) (
I − P st

)
Π, B = ΠSstΠ,

and M a suitable preconditioner. The LOBPCG method requires only multi-
plications by matrices M, A, and B, and it can run in the factorspace with B

12



only positive semi-definite. This is important for our situation – although each
pair of subdomains has enough initial constraints by corners and edge averages
to avoid mechanisms between the two substructures (enforced by the projection
Π), no essential boundary conditions are applied to the pair as a whole, and
matrix B of such ‘floating’ pair typically has nontrivial nullspace (e.g. rigid
body modes for elasticity problems).

Initial experiments in [27, 35, 36] revealed that while the unpreconditioned
LOBPCG (M = I) works reasonably well for simple problems, it requires pro-
hibitively many iterations for problems with very irregular substructures and/or
high jumps in coefficients. Since each iteration requires communicating the vec-
tor for multiplication, reducing the iteration counts of LOBPCG by precondi-
tioning is a very sensible way of accelerating the adaptive BDDC method.

Recall, that the BDDC method provides a preconditioner for the inter-
face problem of the Schur complement by the exact solution of the problem
at the larger space W̃ . As such, components of a BDDC implementation, the
coarse solver and subdomain corrections, can be used to determine the approx-
imate action of the Moore-Penrose pseudoinverse of the matrix B, denoted as
M loc

BDDC ≈ (ΠSstΠ)+. This operator can be used as the preconditioner M
for problem (44), effectively converting the generalized eigenvalue problem to
an ordinary eigenproblem inside the iterations. Using notation from (36), the
preconditioner is formally written as

M loc
BDDC = Π

([
I 0

] [Sst CT

C 0

]−1 [
I
0

]
+ Ψ(ΨTSstΨ)+ΨT

)
Π, (45)

where in addition C =

[
Cs

Ct

]
is the matrix of initial constraints (continuity

at corners and arithmetic averages on edges), and Ψ =

[
ΨsRs

c

ΨtRt
c

]
denotes the

matrix of coarse basis functions for the two subdomains. Here Ri
c, i = s, t,

is the zero-one matrix of restriction of the vector of global coarse degrees of
freedom of the pair to subdomain coarse degrees of freedom. Since some coarse
degrees of freedom are shared by the two subdomains, corresponding columns
in Ψ are nonzero in both parts, while columns of coarse degrees of freedom not
common to the two subdomains are only nonzero in either ΨsRs

c or ΨtRt
c. Let

us recall that in BDDC, the local coarse basis functions are computed as the
solution to the problem with multiple right hand sides

Ss CsT

St CtT

Cs

Ct




Ψs

Ψt

µs

µt

 =

Is
It

 , (46)

which represents an independent saddle-point problem with invertible matrix
for each subdomain, and factorization of which is later reused in applications
of the preconditioner (45). We also note that the coarse matrix is in the im-
plementation explicitly computed using the second part of the solution of (46)
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as
ΨTSstΨ = −RsT

c µsRs
c −RtT

c µtRt
c. (47)

The coarse matrix of the st-pair ΨTSstΨ has dimension of the union of the
coarse degrees of freedom of the subdomains of the pair, and it is typically only
positive semi-definite for a floating pair. Due to its small dimension, we compute
its pseudoinverse by means of dense eigenvalue decomposition performed by the
LAPACK library,

ΨTSstΨ = V ΛV T , (ΨTSstΨ)+ ≈ V Λ′−1V T , (48)

where diagonal matrix Λ′ arises from Λ by dropping eigenvalues lower than a
prescribed tolerance.

Unlike in the standard BDDC preconditioner, no interface averaging is ap-
plied to the function before and after the action of M loc

BDDC , because problem

(41) is defined in the space W̃ st
Γ . Correspondingly, the only approximation is

due to using Λ′ instead of Λ.

6 Adaptive-Multilevel BDDC

We build on Sections 3 and 4 to propose a new variant of the Multilevel BDDC
with adaptive selection of constraints on each level.

The development of adaptive selection of constraints in Multilevel BDDC
now proceeds similarly as in Section 4. We formulate (26) as a set of eigen-
value problems for each decomposition level. On each level we solve for every
two adjacent substructures a generalized eigenvalue problem and we add the
constraints to the definitions of W̃i.

The heuristic condition number indicator is defined as

ω̃ = ΠL−1
i=1 ω̃i, ω̃i = max

{
ωst
i : Ωs

i and Ωt
i are adjacent

}
. (49)

We now describe the Adaptive-Multilevel BDDC in more detail. The al-
gorithm consists of two main steps: (i) set-up (including adaptive selection of
constraints), and (ii) loop of the preconditioned conjugate gradients (PCG) with
the Multilevel BDDC from Algorithm 1 as a preconditioner. The set-up can be
summarized as follows (cf. [36, Algorithm 4] for the 2D case):

Algorithm 3 (Set-up of Adaptive-Multilevel BDDC) Adding of coarse
degrees of freedom to guarantee that the condition number indicator ω̃ ≤ τL−1,
for a given target value τ :

for levels i = 1 : L− 1,

Create substructures with roughly the same numbers of degrees of freedom.

Find a set of initial constraints (in particular sufficient number of corners),
and set up the BDDC structures for the adaptive algorithm (the next loop
over faces).
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for all faces Fi on level i,

Compute the largest local eigenvalues and corresponding eigenvectors, until
the first mst is found such that λstmst ≤ τ .

Compute the constraint weights and add these rows to the subdomain ma-
trices of constraints Cs and Ct.

end.

Set-up the BDDC structures for level i.
If the prescribed number of levels is reached, solve the problem directly.

end.

7 Implementation remarks

Serial implementation has been developed in Matlab in the thesis [36]. Parallel
results use the open-source package BDDCML1 (version 2.0). This solver is
written in Fortran 95 programming language and parallelized using MPI library.
Apart of symmetric positive definite problems studied in this paper, the solver
also supports symmetric indefinite and general non-symmetric linear systems
arising from discretizations of PDEs.

The matrices of the averaging operator E were constructed with entries pro-
portional to the diagonal entries of the substructure matrices before elimination
of interiors, which is also known as the stiffness scaling [13].

7.1 Initial constraints

Following Remark 1, in order to satisfy the polylogarithmic condition number
bounds, we have used corners and arithmetic averages over edges as initial
constraints. It is essential (Assumption 1) to generate a sufficient number of
initial constraints to prevent rigid body motions between any pair of adjacent
substructures. The selection of corners in our parallel implementation follows
the recent face-based algorithm from [33].

7.2 Adaptive constraints

The adaptive algorithm uses matrices and operators that are readily available
in an implementation of the BDDC method with an explicit coarse space, with
one exception: in order to satisfy the local partition of unity, cf. [24, eq. (9)],

Est
i R

st
i = I,

we need to generate locally the weight matrices Est
i to act as an identity operator

at (Γs ∪ Γt)\Γst (cf. Section 4).

1 http://www.math.cas.cz/~sistek/software/bddcml.html
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In the computations reported in Section 8, we drop the adaptively generated
edge constraints in 3D. Then, it is no longer guaranteed that the condition
number indicator ω̃ ≤ τL−1. However, the method is still observed to perform
well. Since the constraint weights are thus supported only on faces, and the
entries corresponding to edges are set to be zero, we orthogonalize and normalize
the vectors of constraint weights (by reduced QR decomposition from LAPACK)
to preserve numerical stability.

In our experience, preconditioning of the LOBPCG method as described in
Sec. 5 led to a considerable reduction of the number of LOBPCG iterations. Or
in other words, since we usually put a limit of maximum 15 iterations for an
eigenproblem, the resulting eigenvectors are much better converged than with-
out preconditioning. In the parallel implementation of the adaptive selection
of constraints, pairs are assigned to processors independently of assignment of
subdomains. The BDDCML package uses the open-source implementation of
LOBPCG method [16] available in the BLOPEX package2. Details of the paral-
lel implementation of adaptive selection of constrains were described for 2-level
BDDC method in detail in [31].

7.3 Multilevel implementation

The BDDCML library allows assignment of multiple subdomains at each pro-
cess. At each level, subdomains are assigned to available processors, always
starting from root. Distribution of subdomains on the first level is either pro-
vided by user’s application, or created by the solver using ParMETIS library
(version 3.2). On higher levels, where the mesh is considerably smaller, METIS
(version 4.0) [11] is internally used by BDDCML to create mesh partitions. This
means, that on higher levels, where number of subdomains is lower than number
of processors, cores with higher ranks are left idle by the preconditioner.

For solving local discrete Dirichlet and Neumann problems on each subdo-
main, BDDCML relies on a sequential instance of direct solver MUMPS [1]. A
parallel instance of MUMPS is also invoked for factorization and repeated solu-
tion of the final coarse problem at the top level. More details on implementation
of the (non-adaptive) multilevel approach in BDDCML can be found in [32].

8 Numerical Examples

To study the properties of the Adaptive-Multilevel BDDC method numerically,
we have selected four problems of structural analysis – two artificial bench-
mark problems and two realistic engineering problems. Some of the results were
obtained by our serial implementation written in Matlab and reported in the-
sis [36]. This implementation is mainly used to study convergence behaviour
with respect to prescribed tolerance on the condition number indicator τ . The
other set of results is obtained using our newly developed parallel implementa-
tion within the BDDCML library. Parallel results were obtained on Cray XE6

2 http://code.google.com/p/blopex
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supercomputer Hector at the Edinburgh Parallel Computing Centre. In the
computations, one step of the Adaptive-Multilevel BDDC method is used as the
preconditioner in the preconditioned conjugate gradient (PCG) method, which
is run until the (relative) norm of residual decreases below 10−8 (in Matlab
tests) or 10−6 (in BDDCML runs).

8.1 Elasticity in a cube without and with jump in material
coefficients

As the first problem, we use the standard benchmark problem of a unit cube.
In our setting, we solve the elastic response of the cube under loading by its
own weight, when it is fixed at one vertical edge. There are nine bars cutting
horizontally through the cube. We test the case when the bars are of the same
material as the rest of the cube (homogeneous material) and the case when
Young’s modulus of the outer material E1 is 106 times smaller than that of
the bars E2, creating contrast in coefficients E2/E1 = 106. In Fig. 1 (right),
the (magnified) deformed shape of the cube is shown for this jump in Young’s
modulus. We have recently presented a detailed study of behaviour of the
standard (2-level) BDDC method and its adaptive extension with respect to
contrast on the same problem in [31]. It was shown in that reference, that while
convergence of BDDC with the standard choice of arithmetic averages on faces
quickly deteriorates with increasing contrast, adaptive version of the algorithm
is capable of maintaining good convergence also for large values of contrast, at
the cost of quite expensive set-up phase.

The multilevel approach (without adaptivity), although it may lead to faster
solution, suffers from exponentially growing condition number and related num-
ber of iterations, as reported in [26], or recently in [32]. Here, we investigate
the effect of constraints adaptively generated at higher levels in the multilevel
algorithm. We also study the parallel performance of our solver on this test
problem.

The cube is discretized using uniform mesh of tri-linear finite elements and
divided into an increasing number of subdomains. On the first level, subdomains
are cubic with constant H/h = 16 ratio (see Fig. 1 left for an example of a
division into 64 subdomains). On higher levels, divisions into subdomains are
created automatically inside BDDCML by the METIS package, in general not
preserving cubic shape of subdomains.

In Tabs. 1 and 2, we present results of a weak scaling test for the case of
the homogeneous cube, i.e. E2/E1 = 1. This problem is very well suited for
the BDDC method, and the performance is generally very good. The growing
problem is solved on 8 to 32768 processors (with each core handling one subdo-
main of the first level). In these tables, N denotes the number of subdomains
(and computer cores), n denotes global problem size, nΓ represents the size of
the reduced problem defined at the interface Γ, nf is the number of faces in
divisions on the levels (corresponding to number of generalized eigenproblems
solved in the adaptive approach), ‘its.’ is the number of iterations needed by
the PCG method, and ‘cond.’ is the estimated condition number obtained from
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Figure 1: Example of a division of the cube into 64 subdomains (left) and
(magnified) deformed shape for contrast E2/E1 = 106 coloured by vertical dis-
placement (right).

the tridiagonal matrix generated in PCG. We report times needed by the set-up
phase (‘set-up’), by PCG iterations (‘PCG’) and their sum (‘solve’).

In Tab. 1, no adaptivity is used, and only the number of levels is varying.
We can see, that for the standard (2-level) BDDC, we obtain the well-known
independence of number of iterations on problem size. We can also see, how
condition number (and number of PCG iterations) grows when using more lev-
els. Although this can lead to savings in time in certain circumstances (due-to
cheaper set-up), no such benefits are seen here and these are more common in
tests of strong scaling with fixed problem size [32].

The independence on problem size is slightly biased on higher levels, prob-
ably due to the irregular subdomains. Computational times slightly grow with
problem size, suggesting sub-optimal scaling of BDDCML, especially when go-
ing from 512 to 4096 computing cores. For the largest problem of 32×32×32
subdomains with 405 million degrees of freedom solved on 32768 cores, all times
grow considerably. This is most likely due to the higher cost of global com-
munication functions at this core count, and these results will serve for future
performance analysis and optimization of the BDDCML solver. Note, that in
the case of two levels, parallel direct solver MUMPS failed to solve the result-
ing coarse problem at this level of parallelism, which is marked by ‘n/a’ in the
tables.

We are now interested in the effect of adaptively generated constraints on
convergence of the multilevel BDDC method. Based on recommendations from
[31], we limit number of LOBPCG iterations to 15 and maximal number of
computed eigenvectors to 10 to maintain the cost of LOBPCG solution low.
The target condition number limit is set low, τ = 1.5, which leads to using
most of the adaptively generated constraints in actual computation. Results
are reported in Tab. 2. We can see, that the adaptive approach is capable
of keeping the iteration counts lower, and although the independence of the
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number of levels is not achieved, the growth is slower than for the non-adaptive
approach. While the scalability of the solver is similar to the non-adaptive case,
it is not surprising that the computational time is now dominated by the solution
of the generalized eigenvalue problems. This fact makes the adaptive method
unsuitable for simple problems like this one, in agreement with conclusions for
the 2-level BDDC in [31].

The situation changes however, when some numerical difficulties appear in
the problem of interest. One source of such difficulties may be presented by
jumps in material coefficients. To model this effect, we increased the jump
between Young’s moduli of the stiff rods and soft outer material to E2/E1 = 106,
and these results are reported in Tabs. 3 and 4. For the non-adaptive method
(Tab. 3) we can see growth of number of iterations and condition number not
only with adding levels, but also for growing problem size. This growth is
translated to large time spent in PCG iterations, which now dominate the whole
solution.

Results are very different for the adaptive approach in Table 4, for which the
main cost is still presented by the solution of the related eigenproblems (included
into time of ‘set-up’). Since we keep the number of computed eigenvectors con-
stant (ten) for each pair of subdomains, the method is not able to maintain a
low condition number after all these eigenvectors are used for generating con-
straints. However, number of iterations is always significantly lower than in the
non-adaptive approach, and the method typically requires about one half of the
computational time. While this is an important saving of computational time,
it is also shown in [31], that the adaptive approach can solve even problems with
contrasts such high, that they are not solvable by the non-adaptive approach
with arithmetic averages on all faces and edges.

Finally, we compare properties of the coarse basis functions on the first
and the second level on this problem. We consider homogeneous material of
the cube which is divided into regular cubic subdomains both on the first and
the second (unlike in the previous test) level. Namely, the cube is divided
into 4×4×4=64 subdomains on the second level. Each of these subdomains is
composed again of 4×4×4=64 subdomains of the first level, which gives 4096
subdomains. Each of these first-level subdomains is composed of 4×4×4=64
tri-linear finite elements. The problem has in total 262144 elements and 823872
unknowns. Table 5 summarizes results of the adaptive 3-level BDDC method
for different values of prescribed tolerance τ . For comparison, the non-adaptive
3-level BDDC method with three arithmetic averages on each face requires 19
PCG iterations and the resulting estimated condition number is 6.88.

We can see, that significantly (roughly five times) more constraints are se-
lected on the second level than on the first one, which suggests that the discrete
harmonic basis functions of the first level lead to worse conditioned coarse prob-
lem on the second level. Thus, it underlines the importance of adaptive selection
of constraints on higher levels. For τ2 = 2.25, the maximal number of adap-
tive constraints (ten) is used on each pair, and the algorithm is ‘saturated’.
Consequently, more constraints would be necessary on each pair to satisfy the
condition ω̃ ≤ τ2 from Algorithm 3.
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N
n nΓ

nf its. cond.
time (sec)

` = 1(/2/3) ` = 1(/2/3) set-up PCG solve

2 levels
8 0.1M 9.5k 12 15 6.7 3.9 1.6 5.5
64 0.8M 0.1M 0.1k 19 7.3 4.6 2.1 6.7
512 6.4M 1.0M 1.3k 20 6.8 9.4 3.2 12.6
4096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels
64/8 0.8M 0.1M 0.1k/18 23 9.6 4.5 2.4 7.0

512/64 6.4M 1.0M 1.3k/295 30 16.9 5.7 3.6 9.3
4096/512 50.9M 8.4M 11.5k/2930 31 13.2 19.0 7.3 26.3
32768/128 405.0M 69.1M 95.2k/664 36 24.7 165.8 20.0 185.7

4 levels
512/64/8 6.4M 1.0M 1.3k/295/23 41 24.5 5.5 4.8 10.4

4096/512/64 50.9M 8.4M 11.5k/2930/380 64 87.7 9.2 11.5 20.8
32768/512/8 405.0M 69.1M 95.2k/2921/23 45 33.0 156.5 24.7 181.2

Table 1: Weak scaling for the cube problem with homogeneous material, non-
adaptive multilevel BDDC.

N
n nΓ

nf its. cond.
time (sec)

` = 1(/2/3) ` = 1(/2/3) set-up PCG solve

2 levels
8 0.1M 9.5k 12 11 2.5 56.1 1.2 57.3
64 0.8M 0.1M 0.1k 13 3.1 119.3 1.5 120.9
512 6.4M 1.0M 1.3k 14 3.1 160.8 2.4 163.3
4096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels
64/8 0.8M 0.1M 0.1k/18 14 3.3 121.0 1.6 122.7

512/64 6.4M 1.0M 1.3k/295 17 4.2 166.9 2.4 169.3
4096/512 50.9M 8.4M 11.5k/2930 18 4.4 221.7 5.5 227.3
32768/128 405.0M 69.1M 95.2k/664 20 4.8 940.3 23.6 963.9

4 levels
512/64/8 6.4M 1.0M 1.3k/295/23 22 6.9 175.3 3.1 178.4

4096/512/64 50.9M 8.4M 11.5k/2930/380 31 12.2 289.5 7.9 297.5
32768/512/8 405.0M 69.1M 95.2k/2921/23 30 10.6 723.1 40.9 764.0

Table 2: Weak scaling for the cube problem with homogeneous material, adap-
tive multilevel BDDC.
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N
n nΓ

nf its. cond.
time (sec)

` = 1(/2/3) ` = 1(/2/3) set-up PCG solve

2 levels
8 0.1M 9.5k 12 582 236k 4.0 59.4 63.4
64 0.8M 0.1M 0.1k 1611 233k 4.7 171.9 176.6
512 6.4M 1.0M 1.3k 2195 240k 9.5 340.4 350.0
4096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels
64/8 0.8M 0.1M 0.1k/18 2218 239k 4.7 234.1 238.8

512/64 6.4M 1.0M 1.3k/295 2830 250k 5.5 328.2 333.7
4096/512 50.9M 8.4M 11.5k/2930 4636 587k 19.3 1096.2 1115.5
32768/128 405.0M 69.1M 95.2k/664 6914 737k 155.0 3820.8 3975.8

4 levels
512/64/8 6.4M 1.0M 1.3k/295/23 3771 729k 5.4 434.4 439.8

4096/512/64 50.9M 8.4M 11.5k/2930/380 8548 1860k 9.3 1502.3 1511.6
32768/512/8 405.0M 69.1M 95.2k/2921/23 9532 2362k 160.2 5096.6 5256.8

Table 3: Weak scaling for the cube problem with jump in coefficients E2/E1 =
106, non-adaptive multilevel BDDC.

N
n nΓ

nf its. cond.
time (sec)

` = 1(/2/3) ` = 1(/2/3) set-up PCG solve

2 levels
8 0.1M 9.5k 12 119 1951 34.1 12.3 46.5
64 0.8M 0.1M 0.1k 76 102 96.0 8.1 104.1
512 6.4M 1.0M 1.3k 58 55 164.2 8.9 173.2
4096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels
64/8 0.8M 0.1M 0.1k/18 457 48k 96.7 48.0 144.7

512/64 6.4M 1.0M 1.3k/295 82 0.1k 165.7 10.2 175.9
4096/512 50.9M 8.4M 11.5k/2930 282 165k 238.7 74.1 312.9
32768/128 405.0M 69.1M 95.2k/664 270 24k 909.4 297.6 1207.0

4 levels
512/64/8 6.4M 1.0M 1.3k/295/23 554 63k 169.5 68.3 273.7

4096/512/64 50.9M 8.4M 11.5k/2930/380 3392 671k 299.3 800.1 1099.4
32768/512/8 405.0M 69.1M 95.2k/2921/23 3762 10495k 697.6 4925.1 5622.7

Table 4: Weak scaling for the cube problem with jump in coefficients E2/E1 =
106, adaptive multilevel BDDC.
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τ2 1st level (11 520 pairs) 2nd level (144 pairs)
ω̃ its. cond.

ad. cstrs. cstrs./pair ω̃1 ad. cstrs. cstrs./pair ω̃2

25.0 120 0.01 4.45 84 0.58 4.37 19.53 21 7.18
16.0 2220 0.19 2.70 132 0.92 3.33 8.99 18 4.77
9.0 2220 0.19 2.70 228 1.58 2.92 7.89 18 4.72
4.0 15 660 1.36 1.99 1116 7.75 1.98 3.93 13 2.77
2.25 69 960 6.07 1.42 1440 10.00 2.49 3.55 14 3.25

Table 5: Comparison of adaptively selected constraints for different target
condition number τ2; ‘ad. cstrs.’ – number of added adaptive constraints,
‘cstrs./pair’ – average number of constraints added for one pair, ω̃ = ω̃1ω̃2 – the
condition number indicator from (49); adaptive 3-level BDDC.

8.2 Elasticity in a cube with variable size of regions of
jumps in coefficients

The performance of the Adaptive-Multilevel BDDC method in the presence of
jumps in material coefficients has been tested on a cube designed similarly as
the problem above, with material properties E1 = 106, ν1 = 0.45, and E2 =
2.1 · 1011, ν2 = 0.3. However, the stiff bars now vary in size, and while the thin
bars create numerical difficulties on the first level, the large bar creates a jump
in the decomposition on the second level, see Fig. 2. The computational mesh
consists of 823k degrees of freedom and it is distributed into 512 substructures
with 1344 faces on the first decomposition level, and into 4 substructures with
4 faces on the second decomposition level (see Fig. 2).

First, we present results by our serial implementation in Matlab, published
initially in the thesis [36]. We include them here along the parallel results to
make this study of Adaptive-Multilevel BDDC more self-contained. Comparing
the results in Tabs. 6 and 7 we see that a relatively small number of (additional)
constraints leads to a considerable decrease in number of iterations of the 2-
level method. In these tables, Nc denotes number of constraints, ‘c’,‘c+e’,
‘c+e+f’ denote combinations of constraints at corners, and arithmetic averages
at edges and faces, ‘3eigv’ corresponds to using three adaptive constraints on
faces instead of the three arithmetic averages, τ denotes the target condition
number from Algorithm 3, ω̃ is the indicator of the condition number from (49),
‘cond.’ denotes estimated condition number, and ‘its.’ the number of PCG
iterations.

When the non-adaptive 2-level is replaced by the 3-level method (Tabs. 6 and
8), the condition number estimate as well as the number of iterations grow, in
agreement with the estimate (25). However, with the adaptive 3-level approach
(Tab. 9) we were able to achieve nearly the same convergence properties for
small τ as in the adaptive 2-level method (Tab. 7).

Next, we use this test problem to perform a strong scaling test of our par-
allel implementation of adaptive multilevel BDDC method. Since BDDCML
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Figure 2: Cube with variable size of regions of jumps in coefficients: distribu-
tion of material with stiff bars (E2 = 2.1·1011, ν2 = 0.3), and soft outer material
(E1 = 106, ν1 = 0.45) (left), mesh consisting of 823k degrees of freedom dis-
tributed into 512 substructures with 1344 faces on the first decomposition level
(centre), and 4 substructures with 4 faces on the second decomposition level
(right). Reproduced from [36].

constraint Nc cond. its.
c 2 163 312 371 > 3 000

c+e 5 691 45 849 1 521
e+e+f 9 723 16 384 916

c+e+f (3eigv) 9 723 3 848 367

Table 6: Results for the cube with variable size of regions of jumps in coefficients
(Fig. 2) obtained using the non-adaptive 2-level BDDC method. Reproduced
from [36].

τ Nc ω̃ cond. its.
∞(=c+e) 5 691 O(104) 45 848.60 1 521

10 000 5 883 8 776.50 5 098.60 441
1 000 6 027 5.33 9.92 32

10 6 149 6.25 6.66 28
5 9 119 < 5 4.79 24
2 25 009 < 2 2.92 18

Table 7: Results for the cube with variable size of regions of jumps in coefficients
(Fig. 2) obtained using the adaptive 2-level BDDC method. Reproduced from
[36].
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constraint Nc cond. its.
c 2163/18 O(107) > 3 000

c+e 5691/21 O(106) > 3 000
c+e+f 9723/33 461 750 1 573

c+e+f (3eigv) 9723/33 125 305 981

Table 8: Results for the cube with variable size of regions of jumps in coefficients
(Fig. 2) obtained using the non-adaptive 3-level BDDC method. Reproduced
from [36].

τ2 Nc ω̃ cond. its.
∞(=c+e) 5691 + 21 - O(106) > 3000

10 000 5883/28 8776.50 26 874.40 812
1000 6027/34 766.82 1449.50 145
100 6027/53 99.05 100.89 59
10 6149/65 7.93 7.91 30
5 9119/67 < 5 6.18 25
2 25 009/122 < 2 3.08 18

Table 9: Results for the cube with variable size of regions of jumps in coefficients
(Fig. 2) obtained using the adaptive 3-level BDDC method. Reproduced from
[36].
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supports assigning several subdomains to each processor, the division is kept
constant with 512 subdomains on the basic level, and 4 subdomains on the
second level (as in Fig. 2), and number of cores is varied.

Figure 3 presents parallel computational time and speed-up when this prob-
lem is solved by the parallel 2-level BDDC method, comparing efficiency of
the non-adaptive and adaptive solver. We report times and speed-ups indepen-
dently for the set-up phase (including solution of eigenproblems for adaptive
method), the phase of PCG iterations, and their sum (‘solve’). Figure 4 then
presents parallel computational time and speed-up for 3-level BDDC method.

We can see, that both phases of the solution are reasonably scalable. For
large core counts, scalability worsens, as each core has only little work with
subdomain problems and (the less scalable) solution of the coarse problem dom-
inates the computation. It is worth noting, that the overall fastest solution was
delivered by the adaptive 2-level BDDC method on 512 cores, while both other
extensions of BDDC – non-adaptive 3-level BDDC and adaptive 3-level BDDC
– were also considerably faster than the standard (non-adaptive 2-level) BDDC
method on large number of cores.
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Figure 3: Strong scaling test for the cube with variable size of regions of
jumps in coefficients (Fig. 2) containing 823k degrees of freedom, on the first
level divided into 512 subdomains with 1344 faces with arithmetic/adaptive
constraints. Computational time (left) and speed-up (right) separately for set-
up and PCG phases, and their sum (‘solve’), comparison of non-adaptive (680
its.) and adaptive (85 its.) parallel 2-level BDDC.

8.3 Linear elasticity analysis of a mining reel

The performance of the Adaptive-Multilevel BDDC has been tested on an engi-
neering problem of linear elasticity analysis of a mining reel. The problem was
provided for testing by Jan Leština and Jaroslav Novotný. The computational
mesh consists of 141k quadratic finite elements, 579k nodes, and approximately
1.7M degrees of freedom. It was divided into 1024 subdomains with 3893 faces
(see Fig. 5).

25



100

101

102

103

104

100 101 102 103

ti
m

e 
[s

]

number of processors

set-up (non-adaptive)
PCG its. (non-adaptive)

solve (non-adaptive)
set-up (adaptive)

PCG its. (adaptive)
solve(adaptive)

optimal

100

101

102

103

104

100 101 102 103

sp
ee

d-
up

number of processors

set-up (non-adaptive)
PCG its. (non-adaptive)
solve (non-adaptive)
set-up (adaptive)
PCG its. (adaptive)
solve  (adaptive)
optimal

Figure 4: Strong scaling test for the cube with variable size of regions of jumps in
coefficients (Fig. 2) containing 823k degrees of freedom, on the first level divided
into 512 subdomains with 1344 faces with arithmetic/adaptive constraints, and
on the second level into 4 subdomains with 4 faces. Computational time (left)
and speed-up (right) separately for set-up and PCG phases, and their sum
(‘solve’), comparison of non-adaptive (894 its.) and adaptive (150 its.) parallel
3-level BDDC.

The problem presents a very challenging application for iterative solvers due
to its very complicated geometry. It contains a steel rope, which is not modelled
as a contact problem but just by a complicated mesh with elements connected
through edges of three-dimensional elements (Fig. 6). Its automatic partitioning
by METIS creates further problems such as thin elongated subdomains, discon-
nected subdomains, or subdomains with insufficiently coupled elements leading
to ‘spurious mechanisms’ inside subdomains. See Fig. 6 for examples.

We first perform a series of computations by our serial implementation in
Matlab to study the effect of prescribed target condition number τ on con-
vergence. Comparing results by non-adaptive 2-level BDDC (Tab. 10) with
adaptive 2-level BDDC (Tab. 11), we see that the adaptive approach allows for
a significant improvement in the number of iterations.

We can also see, that convergence of the adaptive two- and three-level
method (Tables 11 and 12) is nearly identical. For the three-level method,
automatic division into 32 subdomains was used on the second level.

We note that the observed approximate condition number computed from
the Lanczos sequence in PCG (‘cond.’) is larger than the target condition
number τ for this problem. In [23, 36], it was shown that these two numbers
match remarkably well for simpler problems, especially in 2D. Despite of this
difference, the algorithm still performs very well.

Next, we solved this problem with the parallel implementation of the algo-
rithm. In Fig. 7, we present results of a strong scaling test.

The non-adaptive 2-level BDDC method requires 610 PCG iterations, while
the adaptive 2-level BDDC needs only 200 PCG iterations. Nevertheless, this
difference is only able to compensate the cost of solving the eigenproblems, and
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Figure 5: Finite element discretization and substructuring of the mining reel
problem, consisting of 1.7M degrees of freedom, divided into 1024 subdomains
with 3893 faces. Data by courtesy of Jan Leština and Jaroslav Novotný. Re-
produced from [36].

constraint Nc cond. its.
c+e 27 183 - > 2 000

c+e+f 38 868 1.18 · 106 1 303
c+e+f (3eigv) 38 868 72 704.80 674

Table 10: Convergence of the non-adaptive 2-level BDDC method with different
constraints, mining reel problem. Reproduced from [36].

τ Nc ω̃ cond. its.
∞(=c+e) 27 183 1.76 · 106 - > 2 000

10000 28 023 9 992.61 9 538.18 910
5000 28 727 4 934.62 4 849.75 673
1000 32 460 999.90 2 179.79 391
500 35 017 499.64 1 277.59 318
100 42 849 99.89 840.74 213
50 46 093 49.98 784.49 194
10 59 496 < 10 321.20 129
5 69 249 < 5 198.68 91
2 92 467 < 2 91.24 72

Table 11: Convergence of the adaptive 2-level BDDC method with variable
target condition number parameter τ , mining reel problem. Lower τ corresponds
to more constraints and better convergence. Reproduced from [36].
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Figure 6: Examples of difficulties with computational mesh and its partitioning
for the mining reel problem: (i) rope modelled as axisymmetric rings connected
at edges of three-dimensional elements (top left), (ii) disconnected subdomains
(top right), (iii) elongated substructures (bottom left), (iv) spurious mechanisms
within subdomains, such as elements connected to rest of the subdomain only
at single node (bottom right). Reproduced from [36].

τ2 Nc ω̃ cond. its.
100 42 849 + 2 378 99.89 3 567.02 382
10 59 496 + 6 419 < 10 320.82 139
5 69 249 + 8 681 < 5 198.55 98

Table 12: Convergence of the adaptive 3-level BDDC method with variable
target condition number parameter τ , mining reel problem. Reproduced from
[36].
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the adaptive method is advantageous with respect to computing time only for
1024 cores.

We can see, that the scaling is nearly optimal, with the deviation caused
probably again by the small size of the problem compared to the core counts
used in this experiment. In the parallel case, the 3-level approach did not work
well neither with nor without adaptive selection of constraints, requiring more
than 5000 PCG iterations in both cases. The slow convergence of the adaptive 3-
level method is probably caused by the limit of ten adaptive constraints per face,
which seems to be insufficient for this difficult problem – in Matlab experiments,
as many as 8681 adaptive constraints were generated among 32 subdomains on
the second level in order to satisfy ω̃ ≤ τ2 = 5 (Tab. 12).
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Figure 7: Strong scaling test for the mining reel problem containing 1.7M
degrees of freedom and on the first level divided into 1024 subdomains with
3893 faces with arithmetic/adaptive constraints, computational time (left) and
speed-up (right) separately for set-up and PCG phases, and their sum (‘solve’),
comparison of non-adaptive (610 its.) and adaptive (200 its.) parallel 2-level
BDDC.

8.4 Linear elasticity analysis of a geocomposite sample

Finally, the algorithm is applied to a problem of elasticity analysis of a cubic
geocomposite sample. The sample was analyzed in [2] and provided by the
authors for testing of our implementation. The length of the edge of the cube is
75 mm, and the cube is composed of five distinct materials identified by means
of computer tomography.

Different material properties cause anisotropic response of the cube even for
simple axial stretching in z direction (Fig. 8 right). The problem is discretized
using unstructured grid of about 12 million linear tetrahedral elements, resulting
in approximately 6 million degrees of freedom. The mesh was divided into 1024
subdomains on the first and into 32 subdomains on the second level, resulting
in 5635 and 100 faces, respectively.

Table 13 summarizes the number of iterations and estimated condition num-
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Figure 8: Elasticity in a geocomposite sample; Young’s modulus due to different
materials (left), magnitude of displacement on slices (right). Mesh contains 12
million linear tetrahedral elements and approx. 6 million degrees of freedom.
Data by courtesy of Radim Blaheta and Jǐŕı Starý.

ber of the preconditioned operator for the combinations of 2- and 3-level BDDC
with non-adaptive and adaptive selection of constraints. For this problem, num-
ber of iterations was reduced to approximately one half by using adaptivity. We
can also see, that number of iterations grows considerably when going from 2
to 3 levels for this problem.

levels
N

n nΓ
nf non-adaptive adaptive

` = 1(/2) ` = 1(/2) its. cond. its. cond.
2 1024 6.1M 1.3M 5635 65 94.8 36 37.7
3 1024/32 6.1M 1.3M 5635/100 214 2724.9 113 1792.2

Table 13: Number of iterations and condition number estimate for the geocom-
posite problem, 6 million degrees of freedom. Comparison for two and three
levels for non-adaptive and adaptive BDDC.

In Figs. 9 and 10, we report strong scaling of the parallel implementation on
this problem for 2-level and 3-level BDDC, respectively. The strong scaling is
again nearly optimal.

We can again see that while for the non-adaptive approach, most time is
spent in the PCG iterations, for the adaptive approach, the curve for the set-up
phase is almost indistinguishable from the one for total solution time, and the
set-up clearly dominates the solution. For the two-level method, MUMPS was
not able to solve the coarse problem on 1024 cores and so this value is omitted
in Fig. 9.
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Figure 9: Strong scaling test for the geocomposite problem (Fig. 8) contain-
ing approx. 6 million degrees of freedom, on the first level divided into 1024
subdomains with 5635 faces with arithmetic/adaptive constraints. Computa-
tional time (left) and speed-up (right) separately for set-up and PCG phases,
and their sum (‘solve’), comparison of non-adaptive (65 its.) and adaptive (36
its.) parallel 2-level BDDC.
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Figure 10: Strong scaling test for the geocomposite problem (Fig. 8) contain-
ing approx. 6 million degrees of freedom, on the first level divided into 1024
subdomains with 5635 faces with arithmetic/adaptive constraints, and on the
second level into 32 subdomains with 100 faces. Computational time (left) and
speed-up (right) separately for set-up and PCG phases, and their sum (‘solve’),
comparison of non-adaptive (214 its.) and adaptive (113 its.) parallel 3-level
BDDC.
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9 Conclusion

We have presented the algorithm of Adaptive-Multilevel BDDC method for
three-dimensional problems, and its parallel implementation. The algorithm
represents the concluding step of combining ideas developed separately for adap-
tive selection of constraints in BDDC [23, 27, 31, 35], and for the multilevel
extension of the BDDC method [25, 26, 32]. The algorithm and its serial im-
plementation was studied in the thesis [36], and the serial algorithm for two
dimensional problems also in [39].

The Adaptive BDDC method aims at numerically difficult problems, like
those containing severe jumps in material coefficients within the computational
domain. It recognizes troublesome parts of the interface by solving a gener-
alized eigenvalue problem for each pair of adjacent subdomains which share a
face. By dominant eigenvalues the method detects where constraints need to
be concentrated in order to improve the coarse space, thus reducing number of
iterations. On the other hand, the Multilevel BDDC aims at improving scal-
ability of the BDDC method for very large numbers of subdomains, for which
the coarse problem gets too large and/or fragmented to be solved by a parallel
direct solver. However, as theory suggests and experiments confirm, Multilevel
BDDC leads to an exponential growth of the condition number and the number
of iterations.

The Adaptive-Multilevel BDDC method provides a kind of synergy of the
adaptive and the multilevel approaches. Our results confirm, that adaptively
generated constraints are capable of reducing the rate of growth of the condition
number with levels. At the same time, the extension to three levels improved
scalability of the adaptive 2-level approach, and for large problems and core
counts, we have been able to obtain results we could not get by the 2-level
method.

A convenient way of preconditioning the LOBPCG method based on compo-
nents of BDDC was presented, effectively converting the generalized eigenvalue
problems to ordinary eigenproblems. In our computations, this preconditioning
led to large savings of number of LOBPCG iterations and corresponding com-
puting time. However, to reduce the time necessary for solving the eigenprob-
lems further, we have restricted the maximal number of adaptively generated
constraints per face to ten in our parallel computations. For this reason, the
resulting performance of the adaptive method was not as optimal as the serial
tests (with arbitrary number of constraints per face) suggested.

We have described a parallel implementation of the algorithm available in
our open-source library BDDCML. The solver has been successfully applied to
systems of equations with over 400 million unknowns solved on 32 thousand
cores. Presented results confirm, that both adaptive and non-adaptive imple-
mentations are reasonably scalable. However, presented computations have also
revealed sub-optimal scaling especially on large numbers of cores, and these re-
sults will provide a basis for further optimization of the solver.

We have presented results of two benchmark and two engineering problems
of structural analysis. On all problems, the adaptive selection of constraints led
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to reduced number of PCG iterations. However, for most problems, this fact did
not lead to savings in computational time, and the cost of generating adaptive
constraints was not compensated by saved iterations.

It can be concluded that the adaptive method is not suitable for simple
problems, where also non-adaptive (even multilevel) method would converge
reasonably fast. For problems with difficulties, the non-adaptive BDDC method
leads to large cost of PCG iterations, especially for using several levels. On the
contrary, the set-up phase with solution of local eigenproblems mostly dominates
the overall solution time for the Adaptive-Multilevel BDDC method. Which
approach is finally advantageous depends on a particular problem. Apart of the
aspect of computational time, we have already encountered several problems for
which the non-adaptive BDDC method failed, and which have been successfully
solved by adaptive BDDC.
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Jǐŕı Starý for providing data of real engineering problems.

This work was supported in part by National Science Foundation under grant
DMS-1216481, by Czech Science Foundation under grant GA ČR 106/08/0403,
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award number 0904754. J. Š́ıstek acknowledges the computing time on Hector
supercomputer provided by the PRACE-DECI initiative. A part of the work
was done at the University of Colorado Denver when B. Soused́ık was a graduate
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