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UNIVERSAL N-TUPLES OF OPERATORS

VLADIMIR MULLER

ABSTRACT. We generalize the classical result of Caradus concerning universal operators to the
multioperator setting.

1. INTRODUCTION

An operator T acting on a Hilbert space K is called universal if it has the following property:
for each operator A on a separable Hilbert space H there exist a constant ¢ # 0 and a subspace
M C K invariant for T" such that the restriction 7'|M is similar to cA.

In other words, T ”contains” all operators on separable Hilbert spaces.

The first example of a universal operator was given by G.-C. Rotta [R]. The notion of universal
operators was introduced by Caradus [C], who gave also the following elegant sufficient condition
for an operator to be universal.

Theorem 1. Every surjective operator with infinite-dimensional kernel is universal.

Clearly the condition that the kernel is infinite-dimensional is necessary since the operator
must contain also the zero operator. The surjectivity is not necessary, but it is a natural condition
which is easy to verify. The simplest example of a universal operator is the backward shift of
infinite multiplicity (this was the operator considered by G.-C. Rota). For further examples of
universal operators see [ChP].

The aim of this note is to generalize the result of Caradus for n-tuples of operators. We study
both the commuting and non-commuting setting.

2. COMMUTING n-TUPLES

Denote by B(H) the set of all bounded linear operators acting on a Hilbert space H. For
T € B(H) denote by N(T) and R(T) its kernel, N(T) = {z € H : Tx = 0} and range
R(T) =TX, respectively.

We say that two n-tuples (T1,...,7T,) € B(H)" and (Si,...,S,) € B(K)" are similar if there
exists an invertible operator V' : H — K such that VT; = S;V for all j =1,...,n.

Definition 2. Let 7" = (11,...,T,) be a commuting n-tuple of operators on a Hilbert space
K. We say that T is universal for all commuting tuples if it has the following property: for
each commuting n-tuple A = (A, ..., A,) of operators on a separable Hilbert space there exist
a constant ¢ # 0 and a subspace M C K invariant for all T1,...,T, such that the n-tuples
T\M = (Th|M,...,T,|M) and cA = (cAi,...,cA,) are similar.
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2 VLADIMIR MULLER

Clearly any n-tuple T' = (T1,...,T,) universal for all commuting tuples must satisfy the
condition dim(;_; N(T}) = oo. Furthermore, T" should "contain” all n-tuples of the form
(A1,0,...,0), so the restriction T1|(;_, N(T;) must be a universal operator. Thus it is natural

to assume that this restriction is surjective. Similar condition can be formulated for each Tj
and its restrictions to the spaces (,cp N(7;), where F' C {1,...,n},j ¢ F. Thus it is natural
to consider the commuting n-tuples T = (T1,...,T;,) € B(K)" satisfying the condition that the
restrictions T} (,cp N(T;) are surjective for all F C {1,...,n}\ {j}.

Note that for F' = () this means that the operators Tj are surjective for all j.

The main result of this section is that all n-tuples of operators satisfying these natural con-
ditions are universal for commuting tuples.

Theorem 3. Let n > 1 and let T3,...,7T, € B(K) be a commuting n-tuple of operators
satisfying
(i) dim(;_y N(T}) = o0;
(ii) for all FF C {1,...,n} and j € {1,...,n} \ F the restriction T}| ;o N(T}) is surjective
(i.e., T; (ﬂzeF N(TZ)) = Nier N(T3) ).
Then T7,...,T, is universal for all commuting tuples.

Proof. We fix an n-tuple T1,...,T,, € B(K) of mutually commuting operators satisfying (i)
and (ii).

For each j = 1,...,n the operator T} is surjective. Fix a right inverse Tj € B(K), i.e.,
Ty =1.

We need several lemmas:

Lemma 4. Let F C {1,...,n} and j € {1,...,n} \ F. Then

N N(TTy) = N(T) + () N(T).
ier ieF
Moreover, there exists a projection Pjr : (V;cp N(TiT;) — (e N(T3T};) such that R(Pjr) =
Nier N(T;) and N(P) C N(T}).

Proof. The inclusion D is clear.

Let € (;cp N(T3Tj). Then Tjx € (;cp N(Ti). So there exists y € [, N(T;) such that
Tjy =Tjx. Thus  —y € N(Tj) and x = (v — y) + y € N(T}) + iep N(T3).

Write for short M = (\,cp N(1;) and L = N(Tj). Then M + L is a closed subspace. Let
X=(M+L)o(MnNL). We show that M + L =M & (LN X).

IfreMn(LNX)thenze MNLandx L MNL,soxz=0. Hence M N (LN X) = {0}.

Clearly M € M + (LN X). Let x € L. Then x can be written (uniquely) as z = y + z,
where y € MNLand 2z L (MNL). Soze€ LNX andax =y+2 € M+ (LNX). Hence
M+ L =M@ (LN X) and there exists a projection Pjp : M + L — M + L such that
R(Pjp) =M = ;ep N(T3) and N(P) = LN X C L = N(T}). O

Let k = max{Q,maX{HPj’FH Fc{l,...,n},j € {1,...,1)}\F},max{||TjH 1j= 1,...,n}}.
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Lemma 5. Let H be a separable Hilbert space. Let G C {1,...,n}, G # (). Suppose that there
exist linear operators Vg : H — K (F C G, F # Q) satisfying
EVFIVF\{J-} (FCG,F#G,jEF).
Then there exists an operator Vi : H — K satisfying
TiVa=Vajy  (1€G)

and [[Ve || < (2k%) 9 max{||[ Vel : 7 € G}
Proof. We prove the statement by induction on card G.

If cardG = 1, G = {m} then the statement is clear: set Vi, = T;,,Vp. Then T,,Vi,) =
T TV = Vo and ||V || < 1 Ton| - [Vl < E[[Vpll- i

Let G C {1,...,n}, card G > 2 and suppose that the statement is true for each G C {1,...,n},
1 < cardG < cardG. Fix an m € G and let G’ = G\ {m}. Consider the operators Wr =
Viugmy (F'C G’ F # G'). By the induction assumption there exists an operator V': H — K
satisfying T;V' = Wan ;3 = Ve for all j € G'. Moreover, [[V']| < (2k2)@d G max{||Vp||
card F' = card G — 1}.

Furthermore, let V" = T,,V. For all j € G’ we have

TiTn(V" = V') = TjVer = TnVor3 = Vargimy = Vorgim} = 0.
So
R(V"=V'yc (| N(TjTn) = N(Tw) + (| N(T)).
jeqG’ jeG’
Let Py, ¢ : ﬂjGG, N(T;T,,) — ﬂjec, N(T}T,) be the projection considered above, i.e., R(P,, ¢v) =
anG’ N(]}) and N(Pm7G/) C N(Tm)
Set
Vo = V" + (I — Pm,G/)(V/ — V”) =V + PmyG/(V” — V’),
Since R([ — Pm@v) = N(Pm@v) C N(Tm>, we have T,, Vg = TmV” =Vo = Vg\{m} For jE G’
we have T; Ve = T;V' = Vi ;3. Moreover,
Vel < IVI -+ 1Bl (V71 + V1)
< ((2k2)cardG_1 +k(k+ (2k2)carda_1)> max{||Vr| : F C G,card F' = card G — 1}

< (2% 4C max{||Vp|| : F € G : card F = card G — 1}.

O
In the following we use the standard multiindex notation. Denote by Z. the set of all non-
negative integers. For a = (ou,...,0p) € Z7 write |a| = > ja;. For j = 1,...,n let
ej =(0,...,0,1,0,...,0).
j—1
P

Lemma 6. Let T1,...,T, € B(K) be a commuting n-tuple satisfying the conditions of The-
orem 3. Let H be a separable infinite-dimensional Hilbert space. Then there exist operators
Vo:H— K (a€Z) satisfying

(i) Vb,..0 is an isometry;

(i) T}Va=0 (a€Z},a; =0);
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(iif) TjVa = Vare, (@ €Z%,05 >1);
(iv) [[Vall < (2K2)"el.

Proof. Choose an isometry Vo o: H — (i N(T;).

We construct the mappings V,, inductively by induction on |a|. Let o € Z}, |a| > 1 and
suppose that the mappings Vg : H — K satisfying (i) — (iv) have already been constructed for
all 8 € Z satisfying |3| < |a|. In particular, the mappings Vj are already constructed for all
B<a,B#a

Let G = {j : a; # 0} and let m = card G. Consider the m-tuple of operators Tj| ;¢ N(T3),
j € G (j € G). Note that these operators also satisfy the conditions of Theorem 3. For F' C
G, F#Glet Wg: H— ﬂi¢G N(T;) be defined by Wr = V(g, . 5,), where 3; = a; (j € F),
Bj=a;—1 (jeG\F)and ;=0 (j ¢ G). Clearly the operators W satisfy the conditions
of Lemma 5. So there exists an operator Vo : H — ;¢ N(T;) C K satisfying

TiWo = Wa\jy = Va—e; (1 €G),
ijoc =0 (J ¢ G)
and
Vol < (26%) @ max{||Wg| : F C G, card F = card G—1} < (2k*)"-max{||V3| : |B| = |a|—1}.

Continuing in this way we construct the operators V,, with the required properties. O

Proof of Theorem 3. Let T1,...,T, € B(K) be a commuting n-tuple satisfying the conditions
of Theorem 3.

Let H be a separable Hilbert space and Ay, ..., A, € B(H) a commuting n-tuple of operators.
Let ¢ = max{[|4;]| : 1 <j < n}. Without loss of generality we may assume that c is sufficiently
small (it will be clear from the proof the precise condition which ¢ should satisfy).

Let Vo : H - K (o € ZT) be the operators constructed in Lemma 6. Define V : H — K by

Vh= Y VoA°h  (heH).

aEZi
We have
H Z VaAaH < Z (2k2)n|a|c|a|
ani,a;é(O ..... 0) ani,a;é(O ..... 0)
00 00 +n—1
_ 2]{?2 nr.ro d Zn: _ _ 2k2 nrorT
Sk et e 2 fol =) = Skt (1)

o0
<2y T2k < 1
r=1
if ¢ is sufficiently small. Then ||V — Vj_ ol < 1, so V is a bounded operator. Since Vj ¢ is an
isometry, V' is bounded below and its range V H is closed.
Forall j=1,...,n and h € H we have

VAjh= > VaA*Ajh

n
aeZl



UNIVERSAL N-TUPLES OF OPERATORS 5

and
TiVh= Y TjVaA®h= Y TVa . A= > Vo A%
aelly el a;>1 a€Zl a;>1
SoVA; =T;V (j=1,...,n). Hence VH is a closed subspace of K invariant for all T} (j =
1,...,n) and V is the similarity between the restrictions (T1|V H,...,T,,|VH) and (A41,...,A4,).
O
For n = 2 we can formulate a simpler statement.

Lemma 7. Let 71,75 € B(K) be commuting surjective operators. The following statements
are equivalent:

(i) N(ThTz) = N(T1) + N(13);
(i) 1N (T3) = N(T3);
(111) TQN(Tl) = N(T1

Proof. (i)=(ii): Clearly T1N(T3) C N(T2). Let x € N(T3). Since T} is surjective, there exists
y € K such that Tyy = x. Thus T1T>y = 0 and by the assumption y = y; + yo for some
y1 € N(T1) and yo € N(Tz). Then Ti(y —y1) = Thy = = and Te(y — y1) = Toy2 = 0. So
x € TiN(Dy).

(ii)=(i): The inclusion N(T1) + N(T2) C N(T1T») is always true.

Let x € N(T1T3). Then Thz € N(T3), and so there exists y € N(T3) with Tyy = Tixz. Hence
x—yeN(Ty) and z = (x —y)+y € N(Th) + N(T3).

The equivalence (i)« (iii) follows from the symmetry. O

Corollary 8. Let T1,T> € B(K) be commuting surjective operators satisfying
(1) dim N<T1> N N(TQ) =0
(i) N(T1T3) = N(T1) + N(T2).

Then the pair (77,7%) is universal for all commuting pairs.

Examples 9. (1) Let H be a separable infinite-dimensional Hilbert space. Consider the space
K = H? (z7, H) consisting of all functions f : Z"} — H satisfying

£ == > lIF (@) <

aGZ”

The Operators Tla cee 7Tn S B(K) are defined by
(Tif)(@) = fla+e)  (a€Zl).

Clearly the operators 11, ...,7T;, may be interpreted as adjoints of the multiplication operators
M.,,,..., M, by the variables 21, ..., 2, in the vector-valued Hardy space H?(D", H), where D"
is the unit polydisc in C™.

Clearly the n-tuple Ti,...,T, satisfies the conditions of Theorem 3, so it is universal for
commuting tuples.

2. Instead of the Hardy space in the polydisc D™ it is possible to consider the Hardy space
H?(B,, H) where B, is the unit ball in C". Again, the adjoints of multiplication operators
M,,,..., M., in this space form an n-tuple universal for commuting tuples.
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Both of these examples play an important role in the multivariable dilation theory — the
first example in the theory of regular dilations, see e.g. [CV], and the second one in the dilation
theory of spherical contractions, see e.g. [MV]. In fact both n-tuples are universal in a stronger
sense; they contain a unitarily equivalent copy of any commuting n-tuple of operators on a
separable Hilbert space with sufficiently small norms.

3. NON-COMMUTING CASE

Definition 10. We say that an n-tuple 71,...,7, € B(K) of operators is universal for all n-
tuples if it has the following property: for each n-tuple Ay,..., A, € B(H) there exist a constant
¢ # 0 and a subspace M C K invariant for all 77, ..., T, such that the n-tuples (cA,...,cA,)
and (Th|M,...,T,|M) are similar.

Theorem 11. Let T1,...,T, € B(K) satisfy the following properties:
(i) dim ﬂ?:1 N(T}) = oo;
(ii) Tj(ni# N(ﬂ)) — K foreach j=1,...,n.

Then the n-tuple (T1,...,T,) is universal.

Proof. For j =1,...,n let Tj K — ﬂi’i# N(T;) be a right inverse of the restriction of 7} to
the subspace [, ;.; N(1;). Let k = max{||T;]|: 5 =1,...,n}.

For » > 0 let F, be the set of all finite sequences o, a,—_1,...,a1 of length r with «o; €
{1,...,n}. Clearly card F,, = n". Let F = J,2y F». For r = 0 the only element of Fy will be
denoted by 0.

Let H be a separable Hilbert space and let Ay, ..., A, € B(H). Write ¢ = max{||A41]| ..., |||}
Let Vy : H — (1;_; N(T}) be an isometry.

For (ay,...,01) € F define the operator Vi, . o, : H — K by

Var,...,a1 = Tar T Ta1 V@

Then T;Vy, 0 =0 if o # j. If ap = j then T;V4, oy = Var_1,...ar- Moreover, |V, o <
k",
Define V : H — K by

Vh= > VaaAa--Ag,h (b€ H).
(qtryeey1 ) EF
We have
s cenk
IV = Vpll < > Wiy aplld” < S ke = <1
(Ocr,...,Oq)E]‘—\FO r=1

if ¢ is small enough. So V is a bounded linear operator. Since Vj is an isometry, V' is bounded
below and its range M := V H is a closed subspace of K.
For all j and h € H we have VAjh =3 rVa, a1 Aa; - - Aa,Ajh and

Tth = Z TjVar,...,a1Aa1 T Aarh = Z Va7~_1,...,041A011 : Aa,«_lAjh-
(s, 01 )EF Qr—1,...001

So T;V = V Aj. Hence M is a subspace of K invariant for all 77,...,7T, and the n-tuples
(A1,...,Ay) and (T1|M, ..., T,|M) are similar. O
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Example 12. Let F = |J;2, Fi denote as above the set of all words a = (o,...,a1) with
a; € {1,...,n} for all j. Consider the space K of all functions f : F — H with

IF17:= D IF (@) < oe.

aceF
Define the operators Si,...,S, € B(K) by

(Siflap,...,o0) = f(4,ar,...,00) ((ap...,a1) € F).
Then the n-tuple (Si,...,S,) € B(K)" is universal.

Again, this example plays an important role in the dilation theory for non-commuting tuples
of operators, see [P].
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