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Abstract

We introduce the notion of monotone linear program (MLP) for computing (partial)
Boolean functions. We prove that any function which is computable by a circuit whose
gates are MLPs can also be computed by a single MLP whose size is linear in the size
of the circuit. We show the following results.

1. MLPs are superpolynomially more powerful than polynomial-size monotone Boolean
circuits.

2. MLPs are exponentially more powerful than monotone span programs.

3. We show that the Lovász-Schrijver proof system cannot be polynomially simu-
lated by the cutting planes proof system. This is the first results that shows some
separation of these two proof systems.

4. We introduce the notion of strong MLP gate and show that circuits constituted of
this type of gate can be used to prove a monotone feasible interpolation theorem
for Lovász-Schrijver proof systems. In some restricted cases it is also possible to
interpolate by an MLP.

Finally, we discuss connections between the problem of proving lower bounds on
the size of MLPs and the problem of proving lower bounds on extended formulations
of polytopes.

1 Introduction

Superpolynomial lower bounds on the size of Boolean circuits computing concrete Boolean
functions have only been proved for circuits from some specific families of circuits. A promi-
nent role among these families is played by monotone Boolean circuits. Exponential lower

∗Both authors were supported by the ERC Advanced Grant 339691 (FEALORA)
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bounds on monotone Boolean circuits were proved already in 1985 by Razborov [23]. In
1997 Kraj́ıček discovered that lower bounds on monotone complexity of particular partial
Boolean functions can be used to prove lower bounds on resolution proofs [15]. Incidentally,
the functions used in Razborov’s lower bound were just of the form needed for resolution
lower bounds. Exponential lower bounds on resolution proofs had been proved before (co-
incidentally about at the same time as Razborov’s lower bounds). However, Kraj́ıček came
up with a new general method, the so called feasible interpolation, that potentially could
be used for other proof systems. Indeed, soon after his result, this method was used to
prove exponential lower bounds on the cutting-plane proof system [19, 12]. That lower
bound is based on a generalization of Razborov’s lower bounds to a more general monotone
computational model, the monotone real circuits. Another monotone computational model
for which superpolynomial lower bounds have been obtained is the monotone span program
model [2, 9]. An exponential lower bound on the size of monotone span programs have
been recently obtained in [5]. For a long time the best known lower bound for this model
of computation was of the order of nΩ(logn) [2]. Again, superpolynomial lower bounds on
the size of monotone span programs can be used to derive lower bounds on the degree of
Nullstellensatz proofs, as shown in [21]1

The results listed above suggest that proving lower bounds on stronger and stronger mod-
els of monotone computation may be a promising approach towards proving lower bounds
on stronger proof systems. Motivated by this line of research we decided to study another
model for computing monotone Boolean functions. We call this model monotone linear pro-
grams, or briefly MLPs. Essentially, a monotone linear program for a monotone Boolean
function F is a linear program that has the input Boolean variables as parameters. There
are several equivalent ways how to introduce the parameters into the linear program. The
important thing is that they must appear positively, otherwise the program would be as
efficient as general Boolean circuits. There are also several ways how to define which inputs
are accepted and which are rejected. The two basic ways are: 1. we say that an input is
accepted iff the linear program has a solution, 2. we add a linear objective function and say
that an input is accepted iff the maximum is above a certain threshold. In the second case,
we assume that the program has a solution for all inputs. There is also an equivalent version
stated in terms of zero-sum games. An important property of monotone linear programs is
that circuits built from them can be simulated by a single monotone linear program.

We introduce the notion of monotone linear programming gates (MLP gates). These are
gates of the form g(y) = max{c · x | Ax ≤ y} where the input is a tuple y of real variables
and the output is the optimum value of a linear program parameterized by y. The only
constraint is that this linear program has a solution for every y. The complexity of such a
gate is measured as the number of rows in A. We say that a circuit made of MLP gates is a
monotone linear programming circuit. In Proposition 4.2 we show that each MLP circuit C
can be collapsed into a single MLP gate gC whose size is at most twice the sum of sizes of
gates occurring in C. It can be shown that the AND and the OR functions can be simulated

1We note however that strong degree lower bounds for Nullstellensatz proofs can be proved using more
direct methods [3, 4, 10, 1].
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by MLP gates, implying in this way that monotone Boolean circuits can be polynomially
simulated by MLP circuits (Theorem 5.1).

In fact, MLP circuits are super-polynomially stronger than monotone Boolean circuits.
On the one hand, Razborov has shown that that any MBC computing the bipartite perfect
matching function BPMm : {0, 1}m2 → {0, 1} must have size at least nΩ(logn). On the other
hand, a classical results in linear programming theory [25] implies that the same function
can be computed by MLP circuits of polynomial size.

In [2], Babai, Gál and Wigderson showed that there is a function that can be computed
by span programs of linear size but which require superpolynomial-size monotone Boolean
circuits. On the other hand, recently Cook et al. [5] proved that there is a function which can
be computed by polynomial-size monotone Boolean circuits, but which require exponential-
size monotone span programs. Therefore, monotone span programs (which we will abbreviate
by MSP) and monotone Boolean circuits are incomparable in the sense that none of these
models can polynomially simulate the other. Dual MLPs are very similar to monotone span
programs of over reals.2 In Theorem 5.5 we show that dual MLPs can polynomially simulate
monotone span programs over reals. On the other hand, by combining the results in [5]
with Theorem 5.5, we have that dual MLPs are exponentially stronger than monotone span
programs over reals. Therefore, while MBCs are incomparable with MSPs, dual MLPs are
strictly stronger than both models of computation.

Next we turn to the problem of providing a monotone interpolation theorem for Lovász-
Schrijver proof systems [17]. Currently, size lower bounds for these systems have been proved
only with respect to tree-like proofs [18], and therefore, it seems reasonable that a monotone
interpolation theorem for this system may be a first step towards proving size lower bounds
for general LS proof systems. Towards this goal, we introduce the notion of strong monotone
linear programming gate, and show that circuits constituted of this kind of gates can be
used to provide an interpolation theorem for LS-proof system. Unlike the case of MLP
circuits, we don’t know how to collapse a circuit with strong MLP gates into a single MLP
gate. However, in Theorem 6.2 we show that for some restricted type of LS proofs, we can
effectively interpolate by MLPs. This interpolation theorem implies two things. First, the
cutting-plane proof system cannot polynomially simulate the LS proof system. The mutual
relation of cutting-plane proof system and LS proof system is a longstanding open problem.
Our result is the first nontrivial piece of information concerning this problem. Second, using
this interpolation theorem and Fu’s lower bound [8], we can show that MLP-circuits cannot
be polynomially simulated by monotone real circuits. (This can also probably be derived
more directly by strengthening Fu’s lower bound on monotone real circuits from general
graphs to bipartite graphs.)

Monotone linear programs programs are, in a sense, generalizations of monotone Boolean
circuits and monotone span programs. The lower bounds for monotone Boolean circuits and
monotone span programs were proved by two different techniques. Therefore it will be
necessary to develop a new lower bound method for proving superpolynomial lower bounds
on monotone linear programs. A possible approach may be based on strengthening lower

2See subsection 3.4 for the definition of dual MLP.
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bounds on extended formulations, which is a related, but apparently easier problem. A lower
bound on extended formulation is a lower bound on the number of inequalities needed to
define an extension of a polytope to some higher dimension. Such lower bounds have been
proven, in particular, for polytopes spanned by the 0-1 vectors representing minterms of
monotone Boolean functions. To prove a lower bound on a monotone linear program, it will
be needed to prove lower bounds on extended formulations of all polytopes of a certain form
that separate the minterms from the maxterms. This is clearly a much harder problem,
but there are results on extended formulations that go in this direction. However, our
Corollary 6.5 suggests that this will surely not be easy. It gives an example of a monotone
function such that the set of ones has only exponentially large extended formulation, but
the minterms can be separated from a large subset of maxterms by a polynomial size dual
MLP.

Acknowledgment. We would like to thank Pavel Hrubeš and Massimo Lauria for
discussion and their valuable suggestions.

2 Preliminaries

Monotone Partial Functions: A partial Boolean function is mapping F : {0, 1}n →
{0, 1, ∗}. If p ∈ {0, 1}n is such that F (p) = ∗ then we regard F as being undefined on p.
Since all our definitions make sense for partial Boolean functions, we will often omit the word
“partial”. Let p and p′ be two Boolean strings in {0, 1}n. We say that a partial function
F : {0, 1}n → {0, 1, ∗} is monotone if F (p) = 1 whenever p ≥ p′ and F (p′) = 1.

Linear Programs: We use the following conventions. Variables x, y, z are used to denote
real vectors, while variables p, q, r are used to denote strings of Boolean variables. A ∈ Rm×k

means that A is a real matrix with m rows and n columns. For vectors x and y, x ≤ y
means xi ≤ yi for all coordinates i; the same for matrices and Boolean strings. As an abuse
of notation, we write 0 (1) to denote vectors in which all coordinates are equal to 0 (1). For
two vectors x and y, we will denote their scalar product by x · y.

A polytope is the convex hull of a nonempty finite set of vectors in Rn; in particular, a
polytope is nonempty and bounded. A linear program is an optimization problem of the form

max{cT · x | Ax ≤ b, x ≥ 0}. (1)

Where A ∈ Rm×k, b ∈ Rm and c ∈ Rk. The dual of the linear program of Equation 1 is
defined as follows.

min{yT · b | ATy ≥ c, y ≥ 0}. (2)

According to the Linear Programming Duality,

max cT · x = min yT · b, (3)
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provided that the maximum and minimum exist.

Lemma 2.1 If Ax ≤ b defines a polytope, then for every b′ ≥ 0, Ax ≤ b + b′ defines a
polytope. In particular, Ax ≤ b+Bp defines a polytope for every p ∈ {0, 1}n.

3 Representations of monotone Boolean functions

In this section we will define several ways of representing monotone Boolean functions using
certain types of linear programs. In what follows, A is a matrix in Rm×k, B is a matrix in
Rm×n with B ≥ 0, and b is a vector in Rm and c is a vector in Rk. We note that by removing
the condition that B is non-negative, the models introduced below would be able to define
arbitrary Boolean functions on n variables. Thus the condition B ≥ 0 is added to enforce
monotonicity.

Definition 1 (MLP-Representations) Let F : {0, 1}n → {0, 1} be a Boolean function.

(MLP-1) We say that a triple (A,B, b) is an MLP-1 representation of F if for each
p ∈ {0, 1}n,

F (p) =

{
1 ⇒ ∃x ≥ 0, Ax ≤ b+Bp,
0 ⇒ ¬∃x ≥ 0, Ax ≤ b+Bp.

(4)

(MLP-2) We say that a 4-tuple (A,B, b, c) is an MLP-2 representation of F if Ax ≤ b
defines a polytope, and for each p ∈ {0, 1}n,

F (p) =

{
1 ⇒ max{c · x | Ax ≤ b+Bp, x ≥ 0} ≥ 0,
0 ⇒ max{c · x | Ax ≤ b+Bp, x ≥ 0} < 0.

(5)

(MLP-3) We say that a 4-tuple (A,B, b, c) is an MLP-3 representation of F if Ax ≤ b
defines a polytope, and for each p ∈ {0, 1}n,

F (p) =

{
1 ⇒ max{c · x | Ax ≤ b+Bp, x ≥ 0} = 0,
0 ⇒ max{c · x | Ax ≤ b+Bp, x ≥ 0} < 0.

(6)

(MLP-4) We say that a 4-tuple (A,B, b, c) is an MLP-4 representation of F if Ax ≤ b
defines a polytope, and for each p ∈ {0, 1}n,

F (p) =

{
1 ⇒ min{(b+Bp) · y | − ATy ≤ −c, y ≥ 0} ≥ 0,
0 ⇒ min{(b+Bp) · y | − ATy ≤ −c, y ≥ 0} < 0.

(7)

In each version, we define the complexity of the representation to be m · k, the number
of rows of A times the number of columns. When the matrices A,B and the vector b are
rational, the sizes of the rational numbers in them are, in general, important parameters,
but for the sake of simplicity, we focus only on the number of inequalities. The following
lemma, which is proved in Appendix A, states that the four versions of MLPs defined above
are equivalent, in the sense that one can be converted into the other with a small increase
in size.
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Lemma 3.1 Let F : {0, 1}n → {0, 1}. Then for each i, j ∈ {1, 2, 3, 4}, F has an MLP-i
representation of size S if and only if F has an MLP-j representation of size O(S). Addi-
tionally, one may assume without loss of generality that the matrix B is a 0/1 matrix with
at most one 1 in each row.

3.1 Representation by Labeled Matrices

In the MLP representations defined in the beginning of this section, the polytope Ax ≤ b+Bp
is parameterized by the input variables p via the matrix B. Here we define another way of
parameterizing the polytopes with respect to the input variables. In this version, some rows
of the matrix A are labeled by the Boolean variables pj and rows may have no label. Formally
a labeling for a matrix A with m rows is a function ρ : {1, ...,m} → {p1, ..., pn, ∗}. For each
i ∈ {1, ...,m}, ρ(i) = pj indicates that the i-th row is labeled with pi, while ρ(i) = ∗ indicates
that the i-th row has no label. A labeled matrix is a pair Aρ = (A, ρ) consisting of a matrix
A and a labeling ρ of its rows. For each assignment w ∈ {0, 1}n of the variables in p, we let
Aρ[w] be the sub-matrix obtained from A by deleting all rows labeled by some variable whose

value was set to 1. We note that the unlabeled rows remain in Aρ[w] for each w ∈ {0, 1}n. This
notation can be straightforwardly applied to vectors by considering them as m× 1 matrices.
That is a labeled vector is a pair bρ = (b, ρ) and we write bρ[w] to denote the vector obtained

from b by deleting coordinate i if and only if ρ(i) is a variable that receives the value 1.

Definition 2 (MLP-5 Representation) Let F : {0, 1}n → {0, 1} be a Boolean function.
We say that a pair (Aρ, bρ) is an MLP-5 representation of F if for each assignment w ∈
{0, 1}n of variables p = (p1, ..., pn),

F (w) =


1 → ∃x ≥ 0, Aρ[w]x ≤ bρ[w]

0 → ¬∃x ≥ 0, Aρ[w]x ≤ bρ[w]

(8)

The following proposition states that MLP-5 representations are equivalent to MLP-i
representations for i ∈ {1, ..., 4}.

Proposition 3.2 Let F : {0, 1}n → {0, 1}. Then F has an MLP-5 representation of size S
if and only if for each i ∈ {1, ..., 4}, F has an MLP-i representation of size O(S).

Proof. By Lemma 3.1 it is enough to show prove the Lemma only for MLP-1 representations.
Assume that the triple (A,B, b) is an MLP-1 representation of F and let p = (p1, ..., pn) be
the input variables of F . By Lemma 3.1 we may assume that B is a 0/1 matrix with at most
one 1 in each row. We replace every inequality of the form

ai · x ≤ bi + pj,

with two inequalities
ai · x ≤ bi with label pj
ai · x ≤ bi + 1 without a label.
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It is straightforward to check that the system of labeled inequalities obtained in this way
corresponds to an MLP-5 representation of F .

For the converse, let (Aρ, bρ) be an MLP-5 representation of F . Then just replace each
inequality ai · x ≤ bi labeled with pj, by an inequality ai · x ≤ bi + αpj where α ∈ R is a
number which is large enough to make the inequality irrelevant when pj = 1. The system of
inequalities obtained in this way corresponds to an MLP-1 representation of F .

3.2 Representation by Zero-Sum Games

A zero-sum game is defined by a matrix A ∈ Rm×k. This game has two players: a Row
Player and a Column Player. A strategy for the Row Player is a vector u ∈ Rm, with u ≥ 0
and |u|1 = 1 (that is, a probability distribution on {1, . . . ,m}). Similarly, a strategy for the
Column Player is a vector v ∈ Rk with v ≥ 0 and |v|1 = 1 (that is, a probability distribution
on {1, . . . , k}). Such a strategy is pure if all weight is placed in a unique coordinate. Given
strategies u, v for the two players, the payoff of the game defined by A when Row Player
plays strategy u and Column Player plays strategy v is defined as uTAv. The payoff of a
strategy u for the Row Player is defined as minv u

TAv, while the payoff of a strategy v for
Column Player is defined as maxu u

TAv. We say that a strategy u is a winning strategy for
Row Player, if for every strategy v of Column Player we have uTAv < 0. On the other hand,
a strategy v is a winning strategy for Column Player, if for every strategy u of Row Player
we have uTAv > 0.

Let p = (p1, ..., pn) be Boolean variables. A double-labeled matrix is a triple Aρ,γ =
(A, ρ, γ) where A is a m × k real matrix, ρ : {1, ...,m} → {p1, ..., pn, ∗} is a labeling of the
rows of A and γ : {1, ..., k} → {p1, ..., pn, ∗} is a labeling of the columns of A. We say that
a row i (column j) is unlabeled if ρ(i) = ∗ (γ(j) = ∗). For each assignment w ∈ {0, 1}n of
the variables in p, we denote by Aρ,γ[w] the sub-matrix of A which is obtained by deleting rows
labeled with variables that are set to 1, and by deleting columns labeled with variables that
are set to 0 at the assignment w.

Definition 3 (Zero-Sum Representation) Let F : {0, 1}n → {0, 1} be a Boolean func-
tion on variables p = (p1, ..., pn). We say that that a double-labeled matrix Aρ,γ is a zero-sum
game representation of F if for every assignment w ∈ {0, 1}n,

F (w) =

{
1 → Column Player has a winning strategy for the game Aρ,γ[w] .

0 → Row Player has a winning strategy for the game Aρ,γ[w] .
(9)

We note that the asymmetry in the way in which rows and columns are deleted guarantees
that the function F is monotone. Intuitively, by setting a variable pi to 1, Row Player is not
anymore allowed to use the rows labeled with pi and Column Player is now allowed to use
the columns labeled with pi. Therefore the space of strategies of Row Player shrinks, while
the space of strategies of Column Player gets expanded. In this way, the payoff for Column
player is at least as large as if the variable pi were set to 0.
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The next proposition states that zero-sum game representations are equivalent to MLP
representations. However, we believe that it is worth to consider zero-sum game represen-
tations as a separate concept because they seem to be more amenable for the application
of lower-bound techniques based on communication complexity theory. The idea is that the
variables p may be split into two disjoint groups p′ and p′′ in such a way that rows are only
labeled with variables from p′, and columns are only labeled with variables from p′′. This
corresponds to the setting in which we want to compute a function F (p) where the variables
in p′ are in possession of Row player while variables in p′′ are in possession of Column Player.

We note that from the point of view of expressiveness, the way in which variables are
distributed among Row Player and Column Player is irrelevant. More precisely, by making
appropriate modifications to a double-labeled matrix Aρ,γ, one can always transform a row
label into a column label, and vice versa, in such a way the resulting double-labeled matrix
Aρ
′,γ′ represents the same function. Additionally, one can always consider that each variable

labels at most one row and at most one column.

Proposition 3.3 A function F : {0, 1}n → {0, 1} has a zero-sum game representation Aρ,γ

of size S if and only if it has an MLP-1 representation of size O(S). Additionally, the
same statement holds if we assume that all rows (all columns) are unlabeled, as well as if we
assume that each variable labels at most one row and at most one column.

Proof. Let Aρ,γ be a zero-sum game representation of a function F in which no column is
labeled. In other words, γ(j) = ∗ for each column of A. Then this matrix can be viewed as
a single-labeled matrix Aρ. It should be clear that the system of inequalities

Aρx ≤ 0,∑k
j=1 xj = 1

(10)

is an MLP-5 representation of F .
For the converse, let (Aρ, b) be an MLP-5 representation of F , and assume that the

corresponding system of inequalities
Aρ ≤ bρ (11)

contains the unlabeled equality
∑

j xj = 1 ( which is represented by two unlabeled inequal-
ities

∑
j xj ≤ 1 and

∑
j xj ≥ 1). This assumption will be removed later. Then by adding

appropriate multiples of the inequality
∑

j xj = 1 to each row, System 11 can be transformed
into a system of the form

(A′)ρx ≤ 0ρ∑k
j=1 xj = 1

(12)

Such that for each w ∈ {0, 1}n, the system Aρ[w] ≤ bρ[w] has a solution if and only if the system

(A′)ρ[w]x ≤ 0ρ[w],∑k
j=1 xj = 1

(13)

has a solution. Additionally, we have the following immediate claim.
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Claim 1 For each w ∈ {0, 1}n, System 13 has a solution if and only if Column Player has
a strategy to get payoff ≥ 0 in the zero-sum game defined by (−A′)ρ[w].

Now let ε be a small enough positive number, and let A′′ be the matrix obtained from
by adding ε to each entry of −A′. Then we have that for each w ∈ {0, 1}n, Column Player
gets a payoff ≥ 0 in the game (−A)ρ[w] if and only if Column player gets a payoff > 0 in the

game (A′′)ρ[w]. Therefore, if we let γ be a labeling of the columns of A′′ such that γ(j) = ∗ for

every j ∈ {1, ..., k}. The double-labeled matrix (−A′)ρ,γ is a zero-sum game representation
of F .

Now assume that the equality
∑

j xj = 1 does not belong to the system of inequalities
Aρx ≤ bρ defined by the MLP-5 representation (Aρ, bρ). First we select a large enough
positive real number α such that for every p for which there exists a solution x, we have∑

j xj ≤ α. Then if we take a (dummy) variable xk+1 and add the equality
∑k+1

j=1 xj/α = 1,
the new system has a solution if and only if the old one has. Finally, we make a change of
variables by setting yj := xj/α for each j ∈ {1, ..., k} and by setting yj+1 := xj+1. Clearly,
the new system of inequalities on variables yj has a solution if and only if the old one has,

and now the equation
∑k+1

j=1 yj = 1 belongs to the system.

Now we show that the way in which variables are distributed among Row Player and
Column Player is immaterial. Assume that pj labels some columns of Aρ,γ. Add a new row
to A which has −1 on the columns labeled with pj and 0 elsewhere. Label this new row with
pj, and remove the labels pj from the columns. Let (A′)ρ

′,γ′ be the matrix obtained by this
process. Let w be an assignment of the variables in p. If pj is set to 1, then the new added

row is not present in the matrix (A′)ρ
′,γ′

[w] , and therefore the column player is free to chose
the columns that were labeled by pj in the original matrix A. On the other hand, if pj is
set to zero, then the row player has a strategy with payoff < 0 for any strategy of Column
Player that sets non-zero weight in some column that was previously labeled by pj. Hence,
in such case, any winning strategy for Column player must put weight 0 in these columns.
A symmetric argument shows that row labels can be transformed into column labels. In this
case, the difference is that in this case we create a new column which has 1 in every row
labeled by pj. Subsequently we label this new column with pj, and remove the label pj from
the rows. Then, if pj = 1, any winning strategy for Row Player must set weight 0 on all
rows that were previously labeled by pj. Note that in either case, a unique row or column
labeled by pj is created. �

3.3 Sharp representation

Definition 4 (Sharp MLP representation) Suppose Ax ≤ b defines a polytope. Then
(A,B, b, c) is a sharp representation of a Boolean function F : {0, 1}n → {0, 1} if for each
p ∈ {0, 1}n,

F (p) =

{
1 ⇒ max{c · x | Ax ≤ b+Bp} = 1,
0 ⇒ max{c · x | Ax ≤ b+Bp} = 0.

(14)
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This computational model seems to be weaker—we do not know how to efficiently trans-
form a general MLP representation into a sharp one. In the definition of MLP-3 representa-
tion we have the value of the maximum when F (p) = 1. Nevertheless we do not know how
to fix both values without increasing exponentially the size of the representation.

3.4 Dual monotone functions and dual representations

Let F be a partial monotone function. The dual monotone function F d is the function
defined by F d(p1, . . . , pn) := ¬F (¬p1, . . . ,¬pn). We do not know how to get an efficient MLP
representation of F d from a representation of F . We note that if (A,B, b, c) is an MLP-2
representation of F then the MLP-4 representation of F obtained by linear programming
duality computes the same function F , and not the function F d. However, it is possible to
define a notion of dual MLP representation that indeed computes the dual function. This is
possible for all versions and modifications of MLPs. Here we give only one.

Definition 5 (Dual MLP Representation) Suppose Ax ≥ b defines a polytope. Then
a tuple (A,B, b, c) is a dual MLP representation of a Boolean function F if for every p ∈
{0, 1}n,

F (p) =

{
1 ⇒ min{c · x | Ax ≥ b+Bp} > 0
0 ⇒ min{c · x | Ax ≥ b+Bp} < 0

(15)

Proposition 3.4 If a monotone Boolean function F has a representation by an MLP of size
S, then F d has a dual representation by an MLP of the same size.

Proof. Let (A,B, b, c) be an MLP-2 representation of F . Then we have

F (¬p1, . . . ,¬pn) = 1
2
sgn{max c · x | Ax ≤ b+B(1̄− p)}+ 1

2
.

Hence

F d(p1, . . . , pn) =
1

2
sgn{min−c · x | − Ax ≥ −b−B1̄ +Bp}+

1

2
.

4 Circuits with Monotone Linear Programming Gates

Monotone linear programs can be used to represent a wider class of functions, not just
monotone Boolean functions. Furthermore, they can be combined into circuits. Our aim is
to show that such circuits can be transformed into a single monotone linear program.
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4.1 Maximization and Minimization Gates

We will extend our definition of functions computed by monotone linear program so that
it can be applied to arbitrary real numbers. Since we want combine these functions into
circuits, we will call the more general representation a monotone linear programming gate.

There are two kinds of such gates, maximization and minimization gates. If a monotone
linear program consist solely of maximization gates, it is easy to combine the gates into
a single one. If the circuit has some minimization gates we must first replace them by
maximization gates.

An m× n maximization MLP gate is a function ` : Rm → R of the form

`(y) = max
Ax≤y

c · x (16)

where A is an m × n real matrix, y = (y1, ..., ym) is a tuple with m input variables, x =
(x1, ..., xn) is a tuple with n internal variables, and c = (c1, ..., cn) is a tuple with n real
constants.

An n×m minimization gate is a function f : Rm → R of the form.

`(y) = min
Bx≥c

y · x (17)

where B is an n×m matrix, y = (y1, ..., ym) is a tuple with m input variables, x = (x1, ..., xm)
is a tuple with m internal variables, and c = (c1, ..., cn) is a tuple with n real constants. Note
that there is an asymmetry between maximization and minimization gates, in the sense
that in a maximization gate `, the input variables y are part of the constraints of the linear
program, while in a minimization gate `, the input variables y belong to the objective function
of the linear program.

By the linear programming duality, a maximization gate given by (A, c) computes the
same partial function as the minimization gate given by (AT , c).

Proposition 4.1 An MLP gate defines a partial function defined on a polyhedron (if it is
nonempty). It is piecewise linear and concave.

Proof. The first fact is obvious. To prove that `, given by (A, c), is piecewise linear and
concave, let us represent it by

`(y) = max{x0 | ∃x, Ax ≤ y, x0 ≤ c · x},

where x0 is a new variable. Let P be the projection of the polyhedron defined by the
inequalities on the space of the coordinates x and x0. Then the graph of the function ` (i.e.,
the set of pairs (x, `(x)) for which `(x) is defined) is formed by the upper facets of P , where
upper means in the direction x0 → ∞. Since P is a polyhedron, ` is piecewise linear and
concave.
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4.2 Monotone Linear Programming Circuits

The definition of linear-programming circuits is fairly standard. Nevertheless, we will define
it in detail, in order to introduce a suitable notation that we will need later.

A linear-programming circuit is a labeled directed acyclic graph C = (V,E, ˆ̀, ξ) where V
is a set of vertices, E ⊆ V × V is a set of edges, ˆ̀ is a function that labels each vertex v in
V with a linear programming gate ˆ̀(v), and ξ is a function that labels each edge (v, v′) ∈ E
with a positive integer in such a way that the following conditions are satisfied.

1. If v is a source (a vertex without input edges), then ˆ̀(v) is either a real number, or a
variable.

2. For each v ∈ V , if v has k input edges, then these edges are injectively labeled by ξ
with numbers from 1, ..., k. Additionally, ˆ̀(v) is either an m× k minimization gate for
some m ∈ N, or a k × n maximization gate for some n ∈ N.

3. C has a unique sink (a vertex with no outgoing edges). This vertex, denoted by Out(C),
is called the output of C.

The numbering of the edges of the circuit is used to determine which input edge of a
vertex v corresponds to which input variable of the gate ˆ̀(v). The variables labeling minimal
vertices of C are called the input variables of C. Let C be a circuit with input variables
u = (u1, ..., ur). We denote by C(a1, ..., ar) the circuit which is obtained from C by initializing
each input variable ui with the value ai ∈ R. The value val(v) of a vertex v in C(a1, ..., ar) is
inductively defined as follows: If v is an input vertex, then the value of v is the real number
ˆ̀(v) associated with v. Now assume that the value of each vertex of C(a1, ..., ar) at depth at
most d has been determined, and let v be a vertex at depth d + 1. Let (v1, v), ..., (vk, v) be
the input edges of v, where for each i ∈ {1, ..., k}, ξ(vi, v) = i. Then the value of v is defined
as

val(v) = ˆ̀(v)(val(v1), ..., val(vk)).

Note that in general the values of some gates may be undefined, since the gates only compute
partial functions. In such a case the computation is undefined.

Let Out(C) be the output vertex of C. The value val(C(a1, ..., ar)) of the initialized circuit
C(a1, ..., ar) is defined as the value of its output vertex: val(C(a1, ..., ar)) = val(Out(C)).

A linear programming circuit with r input variables u = (u1, ..., ur) defines a partial
function fC : Rr → R as follows.

fC(u1, ..., ur) = val(C(u1, ..., ur)). (18)

4.3 Reducing an MLP circuit to a single MLP gate

Proposition 4.2 Let C = (V,E, ˆ̀, ξ) be a linear-programming circuit with input variables y.
Then one can construct a maximization gate ` defined by a linear program L of size O(|C|2)
such that `(y) = fC(y).
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Proof. Let C = (V,E, ˆ̀, ξ) be a linear programming circuit, and let v be a vertex of C.
W.l.o.g. we may assume that all gates are maximization MLP gates. We denote by `v(yv) =
max{cv · xv | Av · xv ≤ yv} the mv × nv maximization gate which labels v. We denote by
pre(v) the set of all vertices of C which reach the vertex v. Let vj1 , ..., vjr be the input
vertices in pre(v). Define the following linear program.

LvC(y
vj1
1 , ..., y

vjr
1 ) := max cv · xv subject to∑nu

j=1A
u
ijx

u
i ≤ yui , for u ∈ pre(v), 1 ≤ i ≤ mu

yui ≤ cw · xw, for (w, u) ∈ E ∩ pre(v)× pre(v), ξ(w, u) = i

(19)
In words, the objective function of LvC is the same objective function of the linear pro-

gramming gate labeling v, and the constraints of LvC are formed by the sets of all inequalities
associated with vertices in pre(v), together with a new constraint xui = cw · xw for each edge
(w, u) ∈ E ∩pre(v)×pre(v) labeled with i. Intuitively, if w is the i-th in-neighbor of u, then
the i-th input variable yui of the gate `u is identified with the objective function cw · xw of
the gate `w.

Claim 2 Let LvC(yvj1 , ..., yvjr ) be the linear program associated with v. Let a ∈ {0, 1}n be an
assignment of the input variables of C. Let aj1, ..., ajr be the values assigned to the variables
yvj1 , ..., yvjr . Then VAL(LvC(a1, ..., ar)) = val(v).

In particular, this claim implies that for each input a ∈ {0, 1}n the value of the circuit
C(a) at its output vertex v∗, i.e. val(v∗), is equal to the value of the linear program Lv

∗
C (a).

The proof of this claim proceeds by induction on the depth of v. In the base case, v is
an input vertex. In this case the claim is trivial. Now assume that the claim is valid for
every vertex of depth at most d, and let v be a vertex of depth d + 1. Let w1, ..., wr be the
input vertices of v, where for each i ∈ {1, ..., r}, the edge (wi, v) is labeled with i. Then the
constraints of of LvC consist of the union of all constraints in Lw1

C , ..., L
wr
C together with the

following constraints. ∑nv

j=1 A
v
ijx

v
i ≤ yvi 1 ≤ i ≤ mv

yvi ≤ cwi · xwi
(20)

Additionally, val(LvC) = max cv · xv. Since val(LvC) is monotone on on all variables yvi ,
and since yvi is by the induction hypothesis the maximum value that cwi · xwi can attain, we
have that L(vC) is maximized when yvi = val(wi). Therefore, by the definition of evaluation
for a circuit with linear programming gates, we have that val(LvC) = val(v). �
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5 Monotone Linear Programs vs Monotone Boolean

Circuits

In this section we show that monotone linear programs simulate monotone Boolean circuits,
but not vice versa.

Theorem 5.1 Given a monotone Boolean circuit of size S, one can construct a monotone
linear program of size at most O(S) that sharply represents the same monotone Boolean
function.

Proof. The gates ∧,∨ can be represented by

p1 ∧ p2 = max{x | x ≤ p1, x ≤ p2},

p1 ∨ p2 = max{x1 + x2 | x1 ≤ p1, x2 ≤ p2, x1 + x2 ≤ 1}.

Since these two programs are sharp representations (the gates output 0s and 1s), we can com-
bine them into an MLP circuit that simulates the given Boolean circuit. By Proposition 4.2,
we can transform the circuit into a single monotone linear program.

Let BPMn be the Boolean function defined on {0, 1}n2
that takes on value 1 iff the vector

p ∈ {0, 1}n2
represents a bipartite graph with a perfect matching. Using a well-known result,

we will show that BPMn has a small representation by an MLP.

Theorem 5.2 (Schrijver [25], Corollary 8.6a) The perfect matching polytope of a bipar-
tite graph E ⊆ I × J is determined by the following inequalities

1. x ≥ 0,

2.
∑

j;(i,j)∈E xij = 1, i ∈ I,

3.
∑

i;(i,j)∈E xij = 1, j ∈ J .

Corollary 5.3 BPMn has a representation by a monotone linear program of polynomial size.

Proof. Consider the following set of inequalities.

1. x ≥ 0,

2.
∑

j xij = 1, i ∈ I,

3.
∑

i xij = 1, j ∈ J ,

4. x ≤ p.
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Clearly, every assignment to p that represents a graph with a perfect matching satisfies the
inequalities. By Theorem 5.2, every solution x of 1.-3. is a convex combination of matchings.
Thus if x, p is a solution of 1.-4. then εx′ ≤ p for some matching x′ and ε > 0. So 1.-4. is a
1-MLP for BPMn.

Recall that Razborov proved an nΩ(logn) on the size of monotone Boolean circuits com-
puting the BPMn function [23]. Thus we have:

Corollary 5.4 MLPs cannot be polynomially simulated by monotone Boolean circuits.

For monotone formulas the gap is even exponential, as Raz and Wigderson proved a
linear lower bound on the depth of monotone Boolean circuits for BPMn [22].

5.1 Monotone Span Programs

Monotone span programs (MSP) were introduced by Karchmer and Wigderson [14]. Mono-
tone span programs are defined over any field K. Such a program is given by a vector vector
c ∈ Kk and a labeled matrix Aρ = (A, ρ) where A ∈ Km×k, and ρ : {1, ...,m} → {p1, ..., pn, ∗}
labels rows in A with variables in pi or with the symbol ∗ (meaning that the row is unla-
beled). For an assignment p := w, let Aρ〈w〉 be the matrix obtained from A by deleting all

rows labeled with variables which are set to 0.3 A span program (Aρ, c) represents a Boolean
function F if

F (w) = 1 ⇔ ∃y, yTAρ〈w〉 = cT , (21)

that is, F (p) = 1 iff c is in the span of the rows of A〈w〉. In this section we show that dual
MLPs polynomially simulate MSPs over the reals and for some functions are exponentially
stronger. In fact, an equivalent definition of a dual MLP is very similar to the definition of
MSP:

F (w) = 1 ⇔ ∃y ≥ 0, yTAρ〈w〉 = cT .

The formal difference is only in the additional condition y ≥ 0, but it makes a huge difference
in the power of the computational model. The fact that this definition is equivalent to other
definitions of dual MLPs can be proved in the same manner as the equivalence of the MLP-5
representation to MLP-1 in Subsection 3.1.

Proposition 5.5 Let F : {0, 1}n → {0, 1} be a Boolean function. If F has a monotone span
program representation of size S, then F has a dual MLP representation of size O(S).

Proof. Given a monotone span program (A, ρ, c), take the matrix A′ that for each row ai of
A has both ai and −ai, assign the same labels to the negated rows, and let c be the same.
It is clear that such a dual MSP, as defined above, computes the same function.

3The difference between Aρ〈w〉 and Aρ[w] is that in the latter we delete rows labeled with variables that are
set to 1.
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Recently, it was shown in [5] that there is a family of functions GENn : {0, 1}n →
{0, 1} which can be computed by polynomial-size monotone Boolean circuits but which
require monotone span programs over the reals of size exp(nΩ(1)). Since, by Theorem 5.1,
MLPs, as well as dual MLPs, can polynomially simulate monotone Boolean circuits, we
have an exponential separation between MLP representations and monotone span program
representations.

Corollary 5.6 Monotone span programs over the reals cannot polynomially simulate mono-
tone linear programs or dual monotone linear programs.

6 Lovász-Schrijver and Cutting-Plane proof systems

6.1 The Lovász-Schrijver proof system

Lovász-Schrijver proof system is a refutation system based on the Lovász-Schrijver method
for solving integer linear programs [17]. During the past two decades several variants (prob-
ably nonequivalent) of this system have been introduced. In this work we will be only
concerned with the basic system LS. In Lovász-Schrijver systems the domain of variables is
restricted to {0, 1}, i.e., they are Boolean variables. Given a unfeasible set of inequalities Φ,
the goal is to use the axioms and rules of inference defined below to show that the inequality
0 ≥ 1 is implied by Φ.

• Axioms:

1. 0 ≤ pj ≤ 1

2. p2
i − pi = 0 (integrality).

• Rules:

1. positive linear combinations;

2. multiplication: from a linear inequalities∑
i

cipi − d ≥ 0,

derive
pi(
∑
i

cipi − d) ≥ 0 and (1− pi)(
∑
i

cipi − d) ≥ 0.

3. weakening rule:

From
∑

i cipi − d ≥ 0, derive
∑

i cipi − d′ ≥ 0 for any d′ < d.
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Note that we may produce positive linear combinations from quadratic inequalities, but
we can only apply the multiplication rule to linear inequalities. Axiom (2) correspond to two
inequalities, but it suffices to use p2

i − pi ≤ 0, since the other inequality p2
i − pi ≥ 0 follows

from Axiom (1) and Rule (2). We also observe that the weakening rule is derivable using
only 0 ≤ pi ≤ 1 and linear combinations.

The LS proof system is implicationally complete which means that if an inequality∑
i cipi−d ≥ 0 is semantically implied by an initial set of inequalities Φ, then

∑
i cipi−d ≥ 0

can be derived from Φ by a sequence of LS-rules [17].
Lower bounds on the size of LS proofs were only proved for the tree-like proofs [18]. For

dag-like proofs, it is still an open problem to prove superpolynomial lower bounds. LS proof
system is stronger than Resolution: it polynomially simulate Resolution and it proves the
Pigeon Hole Principle by polynomial size proofs, whereas Resolution requires exponential
size to prove the Pigeon Hole Principle [11]. The relation between LS and Cutting-Planes
with respect to strength is still not known.

In this paper we will consider general (i.e., DAG-like) proofs. Thus a proof Π of
∑

i cipi−
d ≥ 0 from Φ is a sequence of inequalities such that every inequality in the sequence is either
an element of Φ or is derived from previous ones using some LS rule. We say that Π is a
refutation of the set of inequalities Φ, if the last inequality is −d ≥ 0 for some d > 0.

6.2 Feasible interpolation

Feasible interpolation is a method that can sometimes be used to translate circuit lower
bounds into lower bounds for the size of refutations of Boolean formulas and linear inequal-
ities. Let Φ(p, q, r) be an unsatisfiable Boolean formula which is a conjunction of formulas
Φ1(p, q) and Φ2(p, r) where q and r are disjoint sets of variables. Since Φ(p, q, r) is unsat-
isfiable, it must be the case that for each assignment a of the variables p, either Φ1(a, q)
or Φ2(a, r) is unsatisfiable, or both. Given a proof Π of unsatisfiability for Φ(p, q, r), an
interpolant is a Boolean circuit C(p) such that for every assignment a to the variables p,

1. if C(a) = 0, then F1(x, a) is unsatisfiable, and

2. if C(a) = 1, then F2(y, a) is unsatisfiable.

If both formulas are unsatisfiable, then C(a) can be either of the two values. It was
shown in [15] that given a resolution refutation Π of a CNF formula, one can construct an
interpolant C(p) whose size is polynomial in the size of Π. Kraj́ıček’s interpolation theorem
has been generalized, by himself and some other authors, to other proof systems including
cutting-planes proof system and the Lovász-Schrijver proof system [6].

In principle such feasible interpolation theorems could be used to prove lower bounds
on the size of proofs if we could prove lower bounds on circuits computing some particular
functions. But since we are not able to prove essentially any lower bounds on general Boolean
circuits, feasible interpolation gives us only conditional lower bounds. For instance, the
assumption that P 6= NP ∩ coNP, an apparently weaker assumption than NP 6= coNP,
implies that proofs in a system with feasible interpolation cannot be polynomially bounded.
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However, in some cases one can show that there exist monotone interpolating circuits
of polynomial size provided that all variables p appear positively in Φ1(p, q), (or negatively
in Φ2(p, r)). In the case of resolution proofs such circuits are simply monotone Boolean
circuits [15, 16]. In the case of cutting planes one can interpolate using monotone real
circuits [19]. Monotone real circuits are circuits have Boolean inputs and outputs, but they
compute with real numbers. The gates are any monotone binary functions. Razborov’s
lower bound on the clique function has been generalized to monotone real circuits [19, 12].
Another proof system for which one can prove superpolynomial lower bounds using monotone
feasible interpolation is the Nullstellensatz Proof System [21]. In this calculus the monotone
interpolants are computed by monotone span programs4 [21].

The results mentioned above suggest that if a proof system has the feasible interpolation
property, then it may also have monotone feasible interpolation property for a suitable kind
of monotone computation. We will show that the Lovász-Schrijver proof system has the
monotone feasible interpolation property with the interpolants computed by circuits with
strong MLP gates.

Definition 6 (Strong MLP Representation) Suppose Ax ≤ b defines a polytope and let
B and C be nonnegative matrices. Then we define a Boolean function by

F (p) =

{
0 ⇒ max{(c+ Cp) · x | Ax ≤ b+Bp} < 0
1 ⇒ max{(c+ Cp) · x | Ax ≤ b+Bp} > 0

(22)

and say that this is a strong MLP representation.

In the same way we define a strong MLP gate. Namely, this is the real function

`(y, z) := max{y · x | Ax ≤ z}.

A strong MLP gate can compute a quadratic function, while the ordinary MLP gates only
compute piece-wise linear functions. Therefore, we believe that strong representations of
Boolean functions are more efficient than the basic ones. Furthermore, it seems unlikely that
circuits made of strong MLP gates can be easily reduced to a single strong MLP program.
Hence proving lower bounds for this model of computation seems much harder.

6.3 Feasible interpolation for the Lovász-Schrijver system

A natural way to view a proof, or a refutation in LS as a sequence of linear inequalities
L1 ≥ 0, . . . , Lm ≥ 0 such that for every i = 1, . . . ,m, Li is a linear combination of initial
inequalities, previous inequalities Lj ≥ 0, j < i, products of pairs of previous inequalities
Lj ·Lk ≥ 0, j, k < i, and the axioms 0 ≤ pi ≤ 1, p2

i −pi = 0. In other words, in means to view
quadratic inequalities only as an auxiliary means to derive the next linear inequality. This
is sometimes referred to as lift and project, which means that we temporarily lift equations

4In the context of polynomial calculus, alternative methods (e.g. [1, 13]) yield stronger lower bounds
than the monotone interpolation technique.
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to higher dimension, where we consider xjxk, 1 ≤ j < k ≤ n, and then we project back to
xj, j = 1, . . . , n. We will also call these steps lift-and-project steps or simply lap-steps.

We will show that one lap-step can be simulated by a strong MLP in a particular way.
We will use this simulation in the proof of the theorem below.

Let Fj(q), j ∈ J and F (q) be linear forms in variables q, and let cj, j ∈ J and c be
constants. Suppose that the inequality F (q)− e ≥ 0 was derived from Fj(q)− cj ≥ 0, j ∈ J
in one lap-step. So we have

F (q)− c =∑
ij

αijqi(Fj(q)− cj) +
∑
ij

βij(1− qi)(Fj(q)− cj)+

∑
j

γj(Fj(q)− cj)+

∑
i

δi(qi − q2
i )+∑

j

ξj(Fj(q)− cj),

for some αij, βij, γj, δi, ξj ≥ 0. Suppose that the linear forms Fj(q) and the constants
αij, βij, γj, δi are fixed. Let us view cj, j ∈ J as input variables, c as the output and ξj,
j ∈ J as internal variables of a linear program that we describe below. Given the parame-
ters, we want to find a solution that gives the maximum c that satisfies the equality. More
precisely, for a given input assignment to cj, j ∈ J , we want to maximize∑

j

γjcj +
∑
ij

βijcj +
∑
j

ξjcj.

under the constraints that the homogeneous part of the expression gives the form F (q). Since
βij, γj and cj are given, this is the same task as to maximize

∑
j ξjcj.

This gives us a linear program P1 where input constants cj appear in the objective
function as well as in the constraints. Specifically, the constraints for ξij are

fi =
∑
j

αij(fij − cj) +
∑
i

βij(−fij + cj) +
∑
j

γjfij +
∑
j

ξjfij

for i = 1, . . . , n, where fi and fij are the coefficients of the forms F and Fj respectively.
Note that the coefficient at cj is

∑
i−αij + βij, which can have any sign. Thus these

constraints are not monotone in the input cj, j ∈ J . Therefore, we relax the problem and
allow to use weaker inequalities: instead of the constant cj in Fj(q) − cj ≥ 0, we will allow
any constant less than or equal to cj. This is allowed, because of the weakening rule. So the
first part of the expression will get the form∑

ij

αijqi(Fj(q)− ηij) +
∑
ij

βij(1− qi)(Fj(q)− ζij).
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Now the new constraints are

ηij ≤ cj, ζij ≤ cj, for i = 1, . . . , n, j ∈ J,

fi =
∑
j

αij(fij − ηij) +
∑
j

βij(−fij + ζij) +
∑
j

γjfij +
∑
j

ξjfij,

for i = 1, . . . , n, j ∈ J , and we want to maximize∑
ij

βijζij +
∑
j

ξjcj.

Thus we have obtained a linear program P2 such that in its constraints the input variables cj
occur only positively, i.e., P2 is a strong MLP. Clearly, the maximum of

∑
ij βijζij +

∑
j ξjcj

in P2 is at least as large as in P1, because we can substitute ηij := cj, ζij := cj in P2.

Theorem 6.1 Let Φ(p, q)∪Γ(p, r) be a set of unsatisfiable inequalities such that the variables
p occur in Φ only with negative coefficients. Let an LS refutation of Φ(p, q)∪Γ(p, r) with m
lap-steps be given. Then one can construct a circuit with m strong MLP gates that represents
a Boolean function f such that for every a ∈ {0, 1}n,

1. if f(a) = 0, then Φ(a, q) is unsatisfiable, and

2. if f(a) = 1, then Γ(a, r) is unsatisfiable.

The size of the strong gates is polynomially bounded by the size of the proof.

Proof. We start by recalling the idea of feasible interpolation for LS in the non-monotone
case as presented in [20].

Let
E1(p) + F1(q) +G1(r) ≥ e1, . . . , Em(p) + Fm(q) +Gm(r) ≥ em

be the linear inequalities of an LS refutation of Φ(p, q)∪ Γ(p, r). Since the last inequality is
a contradiction, the linear forms Em, Fm, Gm are zeros and em > 0. Let a ∈ {0, 1}n be an
assignment to variables p. Substituting a into the proof we get a refutation

F1(q) +G1(r) ≥ e1 − E1(a), . . . , Fm(q) +Gm(r) ≥ em − Em(a)

of Φ(a, q) ∪ Γ(a, r) (note that the last inequality is 0 ≥ em as in the proof above). Our aim
now is to split the restricted proof into two proofs

F1(q) ≥ c1, . . . , Fm(q) ≥ cm and G1(r) ≥ d1, . . . , Gm(r) ≥ dm

in such a way that the linear forms of the first sequence are the linear forms of a proof from
Φ(a, q), the linear forms of the second are the linear forms of a proof from Γ(a, r) and

cj + dj ≥ ej − Ej(a) for j = 1, . . . ,m.
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Since em > 0, we have that either cm > 0, or dm > 0 or both are true. Hence at least one of
the proofs is a refutation of its initial inequalities. We will show how em can be computed
and this will give us the circuit for interpolation.

We now describe how such a splitting can be constructed.
First, suppose Ej(p) + Fj(q) + Gj(r) ≥ ej is an element of Φ. Then Gj(r) ≡ 0. This

inequality will be split into

Fj(q) ≥ ej − Ej(a) and 0 ≥ 0.

Since all coefficients in Ej are negative, ej − Ej(a) can be computed from a using an MLP
gate. If Ej(p) + Fj(q) +Gj(r) ≥ ej is an element of Γ, we split the inequality into

0 ≥ 0 and Gj(r) ≥ ej − Ej(a).

Now suppose that Et(p) + Ft(q) + Gt(r) ≥ et follows from previous inequalities and
suppose we have already split the previous part of the proof. Substituting a into the jth
lap-step we obtain an equality of the following form.

Ft(q) +Gt(r) + Et(a)− et =∑
ij

αijai(Fj(q) +Gj(r) + Ej(a)− ej) +
∑
ij

βij(1− ai)(Fj(q) +Gj(r) + Ej(a)− ej)+

∑
ij

α′ijqi(Fj(q) +Gj(r) + Ej(a)− ej) +
∑
ij

β′ij(1− qi)(Fj(q) +Gj(r) + Ej(a)− ej)+

∑
ij

α′′ijri(Fj(q) +Gj(r) + Ej(a)− ej) +
∑
ij

β′′ij(1− ri)(Fj(q) +Gj(r) + Ej(a)− ej)+

∑
i

γ′i(qi − q2
i ) +

∑
i

γ′′i (ri − r2
i )+∑

j

δj(Fj(q) +Gj(r) + Ej(a)− ej). (23)

In the sums we have j < t and the indices range over the sets of indices of the corresponding
variables p, q, r. All these linear combinations are nonnegative, i.e., αij, α

′
ij, α

′′
ij, βij, β

′
ij, β

′′
ij,

γ′i, γ
′′
i , δj ≥ 0.

Now we substitute −cj − dj for Ej(a)− ej. Then everything splits naturally into an LS
proof in variables q and an LS proof in variables r, except for the terms of the following
form. ∑

ij

α′ijqi(Gj(r)− dj) +
∑
ij

β′ij(1− qi)(Gj(r)− dj)+

∑
ij

α′′ijri(Fj(q)− cj) +
∑
ij

β′′ij(1− ri)(Fj(q)− cj).

Let P (q, r) denote the above polynomial. The key observation is that in this expression all
quadratic terms qiri′ must cancel, because they do not occur elsewhere. Furthermore, the
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inequality P (q, r) ≥ 0 is a consequence of the inequalities Fj(q)− cj ≥ 0 and Gj(r)− dj ≥ 0
in the domain of real numbers. Hence

P (q, r) =
∑
j<t

ξj(Fj(q)− cj) +
∑
j<t

ξ′j(Gj(r)− dj),

for some ξj, ξ
′
j ≥ 0. (For the sake of simplicity, we assume that the inequalities 0 ≤ qi ≤ 1

and 0 ≤ ri ≤ 1 are included in Φ and Γ.) Thus we can split also this part of the proof into
the q part and r part. In particular, the constant et − Et(a) splits into some constants c′t
and d′t:

et − Et(a) = c′t + d′t. (24)

The q part of the proof gives us

Ft(q)− c′t =
∑

ij αijai(Fj(q)− cj) +
∑

ij βij(1− ai)(Fj(q)− cj)+∑
ij α
′
ijqi(Fj(q)− cj) +

∑
ij β
′
ij(1− qi)(Fj(q)− cj)+∑

ij β
′′
ij(Fj(q)− cj)+∑

i γ
′(qi − q2

i )+∑
j δj(Fj(q)− cj)+∑
j ξj(Fj(q)− cj).

(25)

To construct this proof one needs to find values of c′t and ξj so that the equations (24) and
(25) are satisfied. Instead of computing c′t that satisfies (24), we will maximize the constant
term in (25), because it suffices to have ct and dt such that

et − Et(a) ≤ ct + dt.

This means that the constraints are given by the coefficients at variables qi (one equation
for very i) and we maximize

∑
j ξjcj.

However, we need a strong monotone linear program. We cannot use these constraints,
because ct need not be monotone in cj, j < t. So we relax the proof and use inequalities
possibly weaker than Fj(q) ≥ cj and we do get a strong MLP as described before the theorem.

6.4 Feasible interpolation for a restricted class of proofs

There are a lot of dependencies among the variables that appear in formula (25) that we
have not made use of, so it is not excluded that in fact the dual MLP gates suffice. This is
certainly true at least in some special cases. In this section we will show that a particular
type of restricted type of LS proofs can be interpolate by dual MLPs. We will consider the
following conditions.
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(a) The initial inequalities have the form Φ(p, q) ∪ Γ(p, r) the common variables p occur
in Φ only with negative coefficients;

(b) the multiplication rule and the integrality axiom is only used for variables r.

We will give an example of such a proof in the next subsection.

Theorem 6.2 Given an LS proof Π of Φ(p, q)∪Γ(p, r) satisfying the conditions (a) and (b),
one can construct a dual MLP that represents a Boolean function f such that for every
a ∈ {0, 1}n,

1. if f(a) = 0, then Φ(a, q) is unsatisfiable, and

2. if f(a) = 1, then Γ(a, r) is unsatisfiable.

The size of the MLP is polynomial in the size of the proof Π.

Proof. To prove this theorem we only need to change the last part of the proof of Theorem 6.1
that starts with formula (25). Due to the condition above, lines 1,2 and 4 will not be present
in the formula. Thus the formula simplifies to

Ft(q)− c′t =
∑
ij

β′′ij(Fj(q)− cj) +
∑
j

δj(Fj(q)− cj) +
∑
j

ξj(Fj(q)− cj).

Hence the constraints for ξ are given simply by

Ft(q) =
∑
ij

β′′ijFj(q) +
∑
j

δjFj(q) +
∑
j

ξjFj(q).

These constraints do not contain any input variables cj. Hence to split the lap-step we
only need to maximize

∑
j ξjcj under the constraints. This is neither a minimization, nor a

maximization, but it is a dual concept (dual in the sense of the duality of monotone Boolean
functions). Using linear programming duality, we can replace such gates by gates that have
inputs in the constraints and where one minimizes a fixed objective function. One can check
that it is possible to combine such gates into a single one, as we did it for the primal concept
in Proposition 4.2. Thus we get a dual MLP that interpolates Φ(p, q) ∪ Γ(p, r).

6.5 Cutting Planes vs. Lovász-Schrijver proofs

The cutting plane proof system is defined by:

• Axiom:

0 ≤ pj ≤ 1.

• Rules:
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1. positive linear combinations;

2. rounding rule: Suppose that all ci are integers. Then

from
∑

i cipi ≥ d, derive
∑

i cipi ≥ dde.

In [8] Fu defined a certain family of tautologies and showed that their negations, repre-
sented by linear inequalities, cannot be refuted by cutting plane proofs of polynomial size.
He used the cutting-plane interpolation theorem of [20] and an extension of Razborov’s lower
bound nΩ(logn) to monotone real circuits. Below we define a set of unsatisfiable (in N) in-
equalities Φn for every n that are weaker than Fu’s inequalities,5 hence they also require
nΩ(logn) cutting-plane refutations. (This can also be proved directly using the cutting-plane
interpolation theorem and Fu’s lower bound on monotone real circuits.) But we also show
that Φn have polynomial size LS proofs.

Definition 7 Φn is the set of inequalities defined as follows.
Variables: xij (matching X), wij (edges of a graph W ), vi, ui (subsets U, V ), i, j ∈ [n],

i 6= j. The pairs of indices ij are understood to be unordered pairs.

Inequalities:
1.
∑

i,i6=j xij = 1 (for every j two inequalities, meaning: X defines a perfect matching)

2. xij ≤ wij (matching X is a subgraph of W )

3. vj + wij ≤ ui + 1 (if j ∈ V and (i, j) ∈ W , then i ∈ U)

4. (
∑

i ui) + 1 ≤
∑

j vj (|U | < |V |)

The interpretation suggested in the parentheses says that ([n],W ) is a graph that has a
perfect matching and there are two subsets of vertices U and V such that all edges that have
one vertex in V have the other vertex in U , and |U | < |V |, which is, clearly, impossible.

Theorem 6.3 The tautology in Definition 7 has an LS proof of polynomial size. Further-
more, the proof satisfies conditions (a) and (b) above.

Proof. The following is a polynomial size LS refutation of 1.–4.

5. vj + xij ≤ ui + 1 from 2. and 3.

6. xijvj + x2
ij ≤ xijui + xij multiplying 5. by xij

7. xijvj ≤ xijui subtracting x2
ij = xij from 6.

8.
∑

ij xijvj ≤
∑

ij xijui sum of 7. over all i 6= j

9.
∑

j vj
∑

i;i6=j xij ≤
∑

i ui
∑

j;j 6=i xij rewriting 8.

10.
∑

j vj ≤
∑

i ui from 9. and 1.

5We will give a polynomial size derivation of Φn in the full version of this paper.
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11. 1 ≤ 0 from 4. and 10.

To satisfy conditions (a) and (b), let w be the common variables p, let u, v be variables
q and let x be variables r.

Corollary 6.4 The cutting-plane proof system does not polynomially simulate the Lovász-
Schrijver proof system.

This is the first nontrivial result concerning the longstanding open problem to determine
the mutual relation of the two proof systems.

Corollary 6.5 Let Fn be the partial Boolean function with
(
n
2

)
variables that is 1 on inputs

that encode graphs with perfect matchings and 0 on inputs that encode complete bipartite
graphs Ks,t, s 6= t, s + t = n. Then there exists a dual MLP of polynomial size that
represents F .

Proof. Note that graphs with matchings satisfy inequalities 1. and 2. of Φn, and bipartite
graphs Ks,t, s 6= t, s+ t = n satisfy 3. and 4. (There are surely more graphs that satisfy 3.
and 4., but for the sake of simplicity we only consider complete bipartite ones.) Hence, by
Theorems 6.2 and 6.3 there exists a dual MLP with the required properties.

7 Monotone linear programs and extended formula-

tions

If a polytope P ⊆ Rn is given by a polynomial number of inequalities with polynomial size
coefficients, we can easily decide whether a vector v ∈ Rn belongs to P . An important
observation is that even if P requires an exponential number of inequalities to be defined,
we may still be able to test whether v ∈ P efficiently if we can find a polytope R ⊆
Rn+m in a higher dimension such that P is a projection of R and R can be described by a
polynomial number of inequalities with polynomially small coefficients. This is because the
latter problem is, in fact, a linear programming problem. Formally stated, let A be a matrix
that defines R, i.e.,

(v, y) ∈ R ⇔ A(v, y) ≤ b.6

Then
v ∈ P ⇔ ∃y A(v, y) ≤ b.

We say that A(v, y) ≤ b is an extended formulation of P . Nevertheless, for many important
polytopes, e.g. the cut polytope, tsp polytope, etc. (add other polytopes) , it has been shown
that also every extended formulation requires an exponential number of inequalities [7, 24].

6(v, y) denotes the vector (v1, . . . , vn, y1 . . . , ym).
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Defining a partial Boolean function by a linear program is a closely related task, but
not an equivalent one. For a partial Boolean function F , let Ones(F ), and Zeros(F ) denote
the set of all inputs a ∈ {0, 1}n such that F (a) = 1, and F (a) = 0 respectively. Let PF
denote the convex hull of Ones(F ). Defining F by a linear program is the same as finding
an extended formulation of some polyhedron Q that contains Ones(F ) and is disjoint from
Zeros(F ). Note that Q ⊇ Ones(F ) is equivalent to Q ⊇ PF . Finding such a Q that is
defined by a small number of inequalities is, clearly, a simpler task than finding a small
extended formulation of PF . Eg. the (nonbipartite) matching function is computable by
a polynomial size Boolean circuit, and hence it can be defined by a small (not necessarily
monotone) linear program. Nevertheless, the corresponding polytope PF does not have a
sub-exponential extended formulation [24].

Let us now turn to monotone linear programs. In this case we do not have an example
of a total function F that has polynomial size MLP, and Ones(F ) does not have polynomial
size extended formulation. But we do have an example in which a dual MLP of polynomial
size can separate Ones(F ) from a “natural” subset of maxterms. This is Corollary 6.5. This
suggests that it may be difficult to use the techniques of extended formulation lower bounds
to prove lower bounds on MLPs.

As we noted above, if we want to prove a lower bound MLPs, we have to use the fact
that they are monotone. What does monotonicity mean in geometric term? Let Rn

+ denote
the nonnegative cone {v ∈ Rn | v ≥ 0}. To represent a monotone Boolean function F by an
MLP means that we want to find a polyhedron Q such that

PF + Rn
+ ⊆ Q, and Q ∩ Zeros(F ) = ∅. (26)

Notice that if PF is nonempty, then Q = Q+Rn
+. Furthermore, we can replace PF in PF +Rn

+

by the convex hull of minterms of F and Zeros(F ) by maxterms of F .
Let P ∗F denote the convex hull of the minterms of a monotone Boolean function F . If P ∗F

lays on a hyperplane, we may reduce the task of separating PF + Rn from Zeros(F ) to the
task of separating P ∗F from some other polytopes. Let H be a hyperplane such that P ∗F ⊆ H.
We project the zeros of F to H by applying the following map for each v such that F (v) = 0:

v 7→ Sv := H ∩ {u | u ≤ v}. (27)

If the weights of maxterms are bigger than the weights of minterms, then each Sv is a simplex.
The task is now to separate P ∗F from

⋃
v Sv where the union is over the maxterms of F .

Proposition 7.1 The minimum size of an extended formulation of a polytope Q such that

P ∗F ⊆ Q, and Q ∩
⋃
v

Sv = ∅ (28)

is, up to a constant factor, equal to the minimum size MLP computing F .

Proof. It is clear from the discussion above that an MLP for F defines a polyhedron Q that
separates the sets PF +R+ and Zeros(F ) according to Equation (26). Then Q (or Q∩H, if
you prefer) separates the sets in Equation (28).
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To prove the other inequality, let us assume that we have an extended formulation
∃y A(x, y) ≤ b of some Q satisfying Equation (28). Clearly we can assume, moreover,
that Q ⊆ H. Then an MLP for F is given by

x ≤ p, A(x, y) ≤ b. (29)

All monotone Boolean functions for which lower bounds have been proved have the
property that maxterms have essentially bigger weight than minterms. Thus the simplices
Sv are relatively large.

Example. Let F be the partial monotone Boolean function where minterms are k-cliques
in a graph on n vertices and maxterms are complete (k− 1)-partite graphs. Suppose k = nα

for some 0 < α < 1. Then H is the hyperplane of all vectors of weight
(
k
2

)
. The weight of

maxterms is ≈ kn = n1+α while the weight of minterms is ≈ n2α.

A possible approach to lower bounds could be to show that any polytope Q that separates
PF from

⋃
v Sv must be close to PF and then use the techniques that show that an extended

formulation of polytopes close to PF is always exponential.

8 Conclusion

We have presented a computational model for computing monotone Boolean functions. We
believe that for this model, it is possible to prove explicit lower bounds, like it was done for
monotone Boolean circuits, although it may be not easy. Nevertheless, there is always the
danger that a proposed model for computing monotone functions is too strong, so strong
that it can simulate general Boolean circuits computing monotone Boolean functions. Then
such a model would be uninteresting, because it would not be be possible to prove lower
bounds for explicit functions without making a breakthrough in computational complexity.

Here is an example of a model that is too strong. A nondeterministic monotone circuit
for a Boolean function F (p) is a monotone circuit C(p, q, r), where q and r are strings of
variables of equal length such that

F (p) = 1 ⇔ ∃q C(p, q,¬q) = 1.

Note that this is a fully syntactic definition—the form of the circuit ensures that the function
it computes is monotone. Yet this kind of circuits are equivalent to general nondeterministic
circuits.

Proposition 8.1 If a monotone function F is computed by a nondeterministic circuit of
size S, then there exists a monotone nondeterministic circuits of size O(S) that computes F
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Proof. Suppose
F (p) = 1 ⇔ ∃q C(p,¬p, q,¬q) = 1,

where C is monotone. Then we can represent F as follows

F (p) = 1 ⇔ ∃q, r C(r,¬r, q,¬q) ∧
∧
i

(pi ∨ ¬ri) = 1.

If the computational model of monotone linear programs is not too strong, then the main
problem is to prove lower bounds for explicit partial Boolean functions.

Here are some more problems.

1. Given a representation of F by a monotone LP, can one construct a representation of
the dual function by a monotone LP of size at most polynomially larger? Apparently,
this is also an open problem for span programs.

2. Can one bound the coefficients in MLPs? Specifically, given an MLP of polynomial
size, can one modify it so that the coefficients in the matrix and the vectors are of
polynomial size? This is also open for monotone span programs over reals.

3. Can one prove an exponential lower bound in a nonconstructive way? If the answer to
the previous problem is positive, then this follows by simple counting.

4. Is there a total function F that has polynomial size MLP, or dual MLP, but Ones(F )
does not have polynomial size extended formulation?

References

[1] M. Alekhnovich and A. A. Razborov. Satisfiability, branch-width and tseitin tautologies.
In Proc. of the 43rd Symposium on Foundations of Computer Science, pages 593–603,
2002.

[2] L. Babai, A. Gál, and A. Wigderson. Superpolynomial lower bounds for monotone span
programs. Combinatorica, 19(3):301–319, 1999.
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A Proof of Lemma 3.1

MLP-1 → MLP-2. Assume that (A,B, b) is an MLP-1 representation of F . Let x′ be an
additional variable. We claim that F has the following MLP-2 representation.

F (p) =


1 ⇒ max{−x′ | Ax ≤ x′ + b+Bp, x ≥ 0, x′ ≥ 0} ≥ 0,

0 ⇒ max{−x′ | Ax ≤ x′ + b+Bp, x ≥ 0, x′ ≥ 0} < 0.

To see this, note that if F (p) = 1, then there exists x such that Ax ≤ b + Bp. Therefore,
the maximum is attained by setting x′ = 0. On the other hand, if F (p) = 0 then for every
x ≥ 0, we have that Ax > b+Bp. Hence x′ > 0. This implies that the maximum is negative.
According to the definition of MLP-2, Ax ≤ x′ + b should define a polytope. It is clear that
it defines a nonempty polyhedron, because we can take a sufficiently large x′ to satisfy all
inequalities. To make it bounded it suffices to bound the variables x, x′ by a sufficiently large
constant that will not change the definition of F .

MLP-2 → MLP-1. Assume that F is MLP-2 representable. Consider the system Ax ≤
b+Bp augmented by the equation c · x ≥ 0. If F (p) = 1, then the maximum of c · x among
all x satisfying Ax ≥ b+Bp is greater than 0. Therefore, there exists some x ≥ 0 for which
c · x ≥ 0. If F (p) = 0, then the maximum value of c · x is less than 0 and the new system
has no solution.

MLP-2 → MLP-3. Assume that (A,B, b, c) is an MLP-2 representation of F . Consider
an additional variable x′. Then we have that for each p,

F (p) =


1→ max{c · x− x′ | Ax ≤ b+Bp, x ≥ 0, 0 ≤ x′ ≤ K, c · x− x′ ≤ 0} = 0,

0→ max{c · x− x′ | Ax ≤ b+Bp, x ≥ 0, 0 ≤ x′ ≤ K, c · x− x′ ≤ 0} < 0,
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where K is a sufficiently large constant. The inequality x′ ≤ K is only added to formally
satisfy our definition that requires that the set of solutions is always bounded.

MLP-3 → MLP-2. Immediate.

MLP-4 ↔ MLP-2: Follows straightforwardly by linear programming duality (2).

Restricting B. Now we claim that B can be assumed to be a 0/1 matrix with at most one
1 in each row. Assume that (A,B, b) is an MLP-1 representation of F , for some i ∈ {1, 2, 3}.
Take n new variables y = (y1, ..., yn), and replace the system of inequalities Ax ≤ b+Bp by
the system

0 ≤ y ≤ 1, y ≤ p, Ax−By ≤ b.

The fact that the same claim holds for MLP-4 representations of F follows from the equiva-
lence between MLP-2 representations and MLP-4 representations. This concludes the proof
of Lemma 3.1.
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