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Bernard D. Coleman was an extraordinary figure of the 20th century continuum me-

chanics and thermodynamics. He made a number of deep and permanent contribu-

tions that changed the way these sciences are now understood, presented, and applied.

Many of his results are now standard parts of textbooks, monographs and research pa-

pers.

His initial inspiration came mainly fromClifford Truesdell, and many of his most

influential papers from the “golden era” of his career were written in collaboration

with Walter Noll. Work in continuum mechanics and thermodynamics before their

time was typically characterized by the absence of precisely formulated general prin-

ciples and a lack mathematical rigor. The present-day clarity and efficiency of these

sciences owes much to the efforts of Truesdell, Coleman, Noll and others. In 1963

Coleman was one of the founding members of the Society for Natural Philosophy,

which fosters high quality in scientific research in continuummechanics and thermo-

dynamics, and he was a long-standing member of the editorial board of the Archive

for Rational Mechanics and Analysis.

His research interests were wide. Apart from general questions of continuum

mechanics and thermodynamics (especially thermodynamics of materials with fad-

ing memory), they included elasticity, wave propagation, stability, viscoelasticity,
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nonlocal materials, birefringence, electromagnetism, population dynamics, polymer

physics, theory of second sound, physical chemistry, neural networks, and biophysics

related to the properties of DNA. His research was supported by powerful mathemat-

ical skills that included functional analysis and partial differential equations.

His written work was generally superior to his public lectures. The former are

well organized and presented with striking clarity. In contrast, he would often fall

into too much detail in his lectures at the expense of the substance of the matter. He

was notorious for exceeding his allotted time in talks and lectures, and he was well

known at conferences for turninghis question for the speaker into a “mini-talk”. These

qualities caught many a session chairperson off guard.

B. D. Coleman

In 1954 Coleman received his doctorate in chemistry at Yale with two theses - one

under the guidence of Kirkwood, the other, of Fuoss. The former concerned theory

and experiment on dilute polymer solutions. In 1954–1957 Coleman was a research

chemist at the du Pont Company. He came to be regarded an expert on the strength

of artificial fibres. He developed a theory of the dependence of lifetimes of bundles

on the strength of the individual fibres. Although ignored at the time, the model was

taken up in industry many years later. In 1957 he was appointed as a senior research

fellow at the Mellon Institute. At Carnegie Mellon University he became Professor

of Mathematics in 1967, Professor of Biology in 1974, and Professor of Chemistry

in 1974. In 1988 he moved to Rutgers with the splendid and long-deserved title of J.

Willard Gibbs Professor of Thermomechanics as well as Professor of Mathematics.

In 1991 he was nominated a Graduate Director, Program in Mechanics, Rutgers Uni-
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versity, and in 1997Member of the Center forMolecular Biophysics and Biophysical

Chemistry.

B. D. Coleman received many awards. We mention: BinghamMedal of the Soci-

ety of Rheology (1984), Fourth Annual Aris Phillips Memorial Lecture, Yale Univer-

sity (1991), Honorary Doctorate (Laurea Honoris Causa in Mechanica Arte), Univer-

sity of Rome Tor Vergata (1993), Elected to the College of Fellows of the American

Institute for Medical and Biological Engineering (AIBME) (2002), Honorary Mem-

ber of the International Society for the Interaction of Mathematics with Mechanics

(ISIMM) “in recognition of outstanding achievements in the field of Applied Mathe-

matics and Thermodynamics” (2002), and Fellow of the Society of Rheology (2016).

We now present a selection of some of his results in their simplified form.

Mechanical breakdown phenomena At the beginning of his career, he worked in

the area of stochastic-processmodels formechanical breakdown phenomena. Perhaps

the culmination of that work is his 1963 paper with T. Fox, General theory of station-

ary random sequences with applications to the tacticity of polymers. This paper was

selected in 1996 for reprinting in the J. Polymer Science with commentaries as one

of the “most important and influential” articles to appear in the Journal during its first

50 years.

Nonlinear viscoelastic fluids In a series of papers–in part with Noll but also single-

authored – Coleman deals with the important topic of the analytic determination of the

velocity field and stress tensor in steady laminar shear flows of incompressible simple

fluids (Newtonian, non-Newtonian, or viscoelastic), without neglect of inertia. In the

paper written withW. Noll,On Certain Steady Flows of General Fluids, they showed

by simplemethods that the exact analytical solutions available for the Rivlin-Ericksen

fluids can be extended to all incompressible simple fluids. This class is characterized

by the equation for the Cauchy stress T�t� of the form

T�t� ¨ −p�t�I + T��t�
where p�t� the undeterminate pressure and T��t� the constitutive part of stress, de-

termined by the constitutive equation

T��t� ¨ T��Ft�Ø (1)

HereFt is the history of the deformation gradientF up to time t, which is the function

of the elapsed time s ³ 0Ù given by
F t�s� ¨ F�t − s�Ù (2)

andT� is a functional characterizing the fluid. By the incompressibility we have the

constraint that F�t� be unimodular (i.e., detF�t� ¨ 1) for all tÛ we impose the nor-

malization condition trT��t� ¨ 0Ø Equation (1) states that the present value of T� is

determined by the values of the deformation gradient at all times t−s in the past; thus

the class of fluids may account for hereditary effects including stress relaxation. The

functional T� is defined on a specified set K of unimodular histories H, i.e., func-

tions defined on �0Ùð� with values in the set of all unimodular second-order tensors.

It has to satisfy two basic requirements: the principle of material frame indifference

T��QH� ¨ Q�0�T��H�QT�0� (3)
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for every history H X K and every history Q of proper orthogonal tensors, and the

relation thatT� describes a simple fluid in the sense of W. Noll, i.e.,

T��HU� ¨ T��H� (4)

for every history H X K and every constant unimodular tensor UØ
The paper deals with flows for which the velocity field has the form

�v1Ùv2Ùv3� ¨ �0Ùv�x
1
�Ù0� (5)

in some appropriate curvilinear orthogonal coordinate system x1Ùx2Ùx3 in which the

metric tensor g is diagonal and independent of x2Ø Calculating the deformation gra-

dient F corresponding to the flow (5), inserting the result into (1), and using the prop-

erties (3) and (4) of T�, one finds that T� has the form

T��t� ¨





t
11

t
12

0

t21 t22 0

0 0 t
33



 (6)

where tij are some functions of the shear rate   ¨ v′�x
1
�Ø By the normalization

trT� ¨ 0 and the symmetry of stress only three of the five elements of the above

matrix are independent, and thus the behavior of the fluid in this class of flows is

determined by only three material functions, called viscometric functions, viz.,

τ� � ¨ t
12
Ù σ

1
� � ¨ t

11
− t

33
Ù σ

1
� � ¨ t

22
− t

33
Ø (7)

The class (5) covers: flow through a channel; helical flow between concentric cylin-

ders in relative rotation and relative axial motion; flow through a tube of circular

cross-section; flows between cone (or plate) and plate in relative rotation. In each

case, Equation (6) and the viscometric functions (7) enable to determine the measur-

able torques, forces, or pressure distributions.

This research is concisely and lucidly summarized in the monograph Viscomet-

ric Flows of Non-Newtonian Fluids; Theory and Experiment, by B. D. Coleman,

Markovitz & W. Noll, Springer 1966. The book is accessible to a wide audience.

Viscoelasticity, fading memory One of the motivations for Colemans works comes

fromhis research on the properties of polymers, especially their viscoelastic and rheo-

logical properties. The paper, co-authoredbyWalter Noll,An Approximation Theorem

for Functionals, with Applications in ContinuumMechanics, is the first systematic ap-

proach tomaterials with fadingmemory. It starts the ground-breaking series of papers,

some written with Noll, on materials with fading memory. This paper was featured in

a 1986 issue of Current Contents by the Institute for Scientific Information as “cita-

tion classic”. Another article with Noll, Foundations of linear viscoelasticity, (1961)

was listed as among the 100 most cited papers in the Review of Modern Physics for

the period 1955–1986.

The paper An Approximation Theorem for Functionals, with Applications in Con-

tinuum Mechanics analyzes the relationship

S�t� ¨ S�F t� (8)

expressing the present value of the stress (or any other physical quantity) as a func-

tional of the history Ft of the deformation gradient up to some tÙ see (2). In many
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physical situations, the value S in (8) will be more sensitive to the values of F for

small s than for large sØ Intuitively speaking, the “memory” of the system will “fade

away” in time. An example is a functional given by

S�t� ¨
ð

�
0

k�s�F t�s� d sÙ

where k is some kernel function which approaches 0 rapidly as s r ðØ In contrast

to the previous work, Coleman & Noll do not postulate any concrete form of the

functionalSØ Rather, they introduce a norm B ċB in the spaceK of historiesH given

by

BHB ¨ �
ð

�
0

�@H�s�@h�s�	p d s�
1¤p

(9)

where p is a fixed number 1 ² p ° ð and h�s�, called an influence function, is

a nonnegative-valued function which approaches zero rapidly as s r ð. Thus the

norm BHB we assigns a greater influence to the values ofH for small s (recent past)

than for very large s (distant past). Both p and h are parts of the specification of the

constitutive structure. That the stress response fades away is expressed by requirement

of continuity of the functionalSon the Banach space of historiesH with finite norm

B ċ BØ
It is well-known that for slow processes in viscoelastic materials the relationship

between stress and strain simplifies: the present value of stress S�t� is determined

approximately by the present values of the deformation gradient and its time deriva-

tives. The main result of the paper An Approximation Theorem for Functionals, with

Applications in Continuum Mechanics is the proof that for processes that are slow in

a precisely defined sense and for sufficiently Fréchet differentiable functionalsS, the

constitutive equation (8) can be replaced, with explicitly determined accuracy, by an

approximate relation

S�t� ® s�F�0��t�ÙÜ ÙF�k��t�	Ù (10)

where

F�m��t� ¨ dmF�t�
dtm

Ù m ¨ 0ÙÜ ÙkÙ

and s is a function completely determined bySand its derivatives.

For viscoelastic fluids, when (8) is the stress-strain relation, the first approxima-

tion (10) (i.e., k ¨ 1) provides the constitutive equation of compressible Newtonian

fluid for the stress tensor S:

S ¨ −p�ρ�1+ λ�trD�1 + 2µD

here the rate of deformation tensor D is the symmetric part of the velocity gradient

tensor; p ¨ p�ρ� is the hydrostatic pressure the fluid expressed as a function of the

density ρ and λÙ µ are ρ-dependent viscosity coefficients. Higher-order approxima-

tions lead to nonlinear (polynomial) dependency of S on the Rivlin-Ericksen tensors

A
1
ÙÜ ÙAkØ
Related to the theory of fading memory is Coleman’s paper On Retardation The-

orems (1971) which deals with spatially nonlocal functionals, where the stress at the

given point of the body, say at x ¨ 0Ù depends on the landscape of the deformation φ
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at all points of the body, which is assumed to extend over the entire three-dimensional

space. The paper analyses the analog of (8), viz.,

S ¨ F�φ�Ù (11)

where F is a functional defined on a certain class L of maps φ from R
3 into R

3Ø
The functional is assumed to have the property that the point close to x ¨ 0 influence

the response at x ¨ 0 more than the distant ones. Again, this is expressed by the

continuity or Fréchet differentiability of the functionalFwith respect to the norm

BφB ¨ � �
R3

�@φ�x�@h�x�	p dx�1¤p

where p is a fixed number 1 ² p ° ð and the nonnegative influence function h�x�
approaches zero rapidly as @x@ r ð. The spatial version of the retardation theo-

rem deals with “tame” deformations φ which vary in space lightly. Under sufficient

Fréchet differentiability of the functionalF, for tame deformations the response (11)

can be approximated by

S�x� ® f�φ�0��x�ÙÜ Ùφ�k��x�	
where

φ�m��x� ¨ ∇mφ�x�Ù m ¨ 0ÙÜ Ùk
and f is a function completely determined by the functionalFand its Fréchet deriva-

tives. The author of this review believes that this less known paper by B. D. Coleman

of 1971 has new relevancy in view of the current discussion of nonlocal models con-

structed within the framework of the peridynamic theory.

Thermodynamics His research on viscoelasticity and fading memory naturally

brought Coleman to thermodynamics. The paperOn the Thermostatics of Continuous

Media, (1959), written with W. Noll, is a response to Truesdell’s Hauptproblem of fi-

nite elasticity, as formulated in 1954 and published in 1956. In the Hauptproblem,

Truesdell pronounces the requirement that it is necessary to determine restrictions

on the strain-energy function of nonlinear materials that guarantee reasonable (exis-

tence of solutions, stability, reality of wave speeds, uniqueness etc.). These restric-

tions should be nonlinear counterparts of the well-known inequalities on the Lamé

constants λ and µ of linear elasticity. In the late fifties, prior to the publications of

Coleman and Noll, the situation was not at all clear. Even the position of these (as yet

unknown) restrictions was not clear: are they consequences of the (as yet unknown

form of) the second law of thermodynamics, or just mathematical conditions? The

analyses gradually separated the issues of dissipation from those of stability and re-

strictions on the stored energy function. The entropy principle alone did not restrict

the form of the strain-energy function; the inequalities on the energy functions are

related to stability and to other finer properties.

The paper On the Thermostatics of Continuous Media regards thermostatics as

that branch of thermodynamicswhich deals with bodies which are at rest at the present

time and which may be regarded as having been at rest at all times in the past. One is

thus led to the thermoelastic response, governed by the constitutive equations for the

specific internal energy, Piola-Kirchhoff stress, and temperature of the form
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ε ¨ b�FÙη�Ù S ¨ v�FÙη�Ù θ ¨ e�FÙη�Ù
where F is the deformation gradient and η specific entropy. The paper makes a dis-

tinction between local states, referring to a material point in a body, and global states,

referring to the body as a whole.

For the local states the authors propose the constitutive inequality

b�F Ùη � ± b�FÙη� + v�FÙη� ċ �F  − F� + e�FÙη��η  − η� (12)

for all pairs �F Ùη � © �FÙη� such that

F  ¨ GF

where G is a symmetric positive definite tensor. They show that this implies the ther-

mostatic relations

S ¨ ãFbÙ e ¨ ãηb (13)

plus some additional restrictions on b. For isotropic elastic materials Postulate (12)

implies that the internal energy is a (jointly) convex function of the principal stretches

v
1
Ù v

2
Ù v

3
and ηÙ i.e., if we write

b�FÙη� ¨ Φ�v1Ùv2Ùv3Ùη�
thenΦ is convex. For elastic fluids the internal energy can be expressed as a function

of the specific volume v¨ detF and ηÙ
b�FÙη� ¨ Φ�vÙη�Ø

It turn out that Postulate (12) is equivalent to the joint convexity of Φ in 3
√

v (!) and

η.

A subsequent discussion showed that these two consequences of (12) are too re-

strictive. A number of objections have been given, of which perhaps the most impor-

tant is the one (apparently due toR. S. Rivlin)which points out that the convexity inv1Ù
v
2
Ù v

3
cannot hold for an almost incompressible material, due to the non-convexity

of the surface v
1
v
2
v
3
¨ 1Ø This finally showed the untenability of Inequality (12).

After a debate that lasted more than two decades, the final solution of the Haupt-

problem came in 1977 with the work J. M. Ball. He showed that the triplet of weak-

ened convexity conditions, viz., polyconvexity, Morrey’s quasiconvexity, and the rank

1 convexity (essentially the nonstrict version of the strong ellipticity) is exactly what

is missing. The quasiconvexity and its consequence consequence rank 1 convexity

are necessary conditions for the existence of a minimizer of the potential energy and

for the lower semicontinuity of the total energy. Furthermore, for isotropic solids the

quasiconvexity implies the Baker-Ericksen inequalities expressing the condition that

principal stresses are always ordered in the same way as principal stretches. For fluids

the quasiconvexity reduces to the convexity of internal energy on the specific volume

and entropy, which is well founded. On the other hand, the sufficient condition for the

existence of minima under under the condition on the density of the stored energy

t�F� r ð as detF r 0

require the polyconvexity, a condition stronger than quasiconvexity.

Of course, further investigations of J. M. Ball and R. James showed that even

the weakened convexity conditions are not satisfied always, which leads to formation
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of microstructureÜ Nevertheless, the weakened convexity conditions form definite

reference points: their satisfaction as well as their violation provide important basic

information about the body.

The second part of the paper On the Thermostatics of Continuous Media deals

with the stability of global states. In global states the local quantities such as the

deformation gradient, specific volume, temperature, etc., vary from point to point. If

B is the reference configuration of the body, a global state is a pair �φÙη� consisting

of the deformation φ Ú B r R
3 and of the field η Ú B r R of specific entropy.

Associated with �φÙη� are the total energy, entropy, and volume, given by

E�φÙη� ¨ �
B

b�FÙη� dmÙ H�φÙη� ¨ �
B

η dmÙ V�φÙη� ¨ �
B

detF dmÙ

where F ¨ ∇φ is the deformation gradient and dm the element of mass, i.e., the

multiple of the element of volume dv by the density ρ
R
of the body in the reference

configuration. In the treatment below we put, as we may, ρ
R

¨ 1 to simplify the

formulas. Furthermore, one defines the potential energy of the body in the given loads.

In the case of dead loadings we assume that the body is subjected to a the prescribed

body force b, prescribed surface traction s on the free partS ⊂ ãB of the boundary,

while its complement D is held fixed. Then

W�φ� ¨ − �
B

b ċ φ dm − �
S

s ċ φ d s (14)

for each deformation φ satisfying

φ ¨ φ
0

on DÙ
whereφ

0
is a prescribed function, and where in (14) ds is the element of area of ãBØ

The total energy of the global state �φÙη� is

U�φÙη� ¨ E�φÙη� +W�φ�Ø
This framework allows an unambiguous formulation of the extremum principles of

thermodynamics, formulated by the authors as definitions of stability. Thus, for ex-

ample, a global state �φÙη� is said to be adiabatically stable if

U�φ Ùη � ± U�φÙη�
for all states �φ Ùη � © �φÙη�, perhaps from some neighborhood of �φÙη�, that
satisfy the constraints

H�φ Ùη � ¨ H�φÙη� and φ  ¨ φ
0

on DØ
One can formulate a similar notion of isothermal stability using the minimum of the

(canonical) free energy F�φÙη� ¨ U�φÙη� − θ�H�φÙη� where θ� is a number rep-

resenting the ambient temperature of the body. For fluids one can consider a gibbsian

style thermostatics with several seemingly different minima and maxima principles,

such as minimum energy under fixed entropy, maximum entropy under fixed energy,

etc. This part of On the Thermostatics of Continuous Media returns to the stability

definitions considered by Gibbs and J. Hadamard. In summary, the paperOn the Ther-

mostatics of Continuous Media showed that for varying fields of local quantities the

inequalities of thermostatics get concrete meaning, in contrast to the case of homo-

geneous states, where they reduce to equalities. The subsequent paper by Coleman
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Mechanical and Thermodynamical Admissibility of Stress-Strain Functions gives a

reformulation of the inequality (12) in which the energy does not enter, but rather

arises as a consequence.

Coleman-Noll procedure The paper by Coleman & Noll of 1963, The thermody-

namics of elastic materials with heat conduction and viscosity, provides the basis for

the well-known “Coleman-Noll procedure.” It was featured as a “citation classic” in a

1990 issue of Current Contents; it is certainly one of the most popular ones from the

workshopof Coleman’s&Noll. The “procedure” is mathematical and systematic, and

has widespread ramifications in the constitutivemodeling of solids, fluids and “every-

thing else in-between.” Every serious book on nonlinear continuum written since the

late 1960’s–including modern texts on plasticity, viscoelasticity and non-Newtonian

fluids–covers this topic.

The paper showed how to use the entropy inequality as a means of deriving con-

stitutive restrictions on the response functions of general materials. The appropri-

ate continuum version of the second law of thermodynamics is the Clausius-Duhem

inequality formulated by C. Truesdell & R. A. Toupin in the article Classical field

theories of mechanics in Flügges’ Encyclopedia of Physics. Its form combines the

Clausius inequality for the rate of change of entropy Ḣ�PÙ t� of the part P of the

body B

Ḣ�PÙ t� ³ �
P

r

θ
dm (15)

with the surface term appropriate to continuous bodies which was introduced by P.

Duhem

Ḣ�PÙ t� ³ − �
ãP

q ċ n
θ

d sÙ (16)

to obtain the general form

Ḣ�PÙ t� ³ − �
ãP

q ċ n
θ

d s + �
P

r

θ
dmØ (17)

Here r is the supply of energy (e.g., due to radiation), θ the absolute temperature,

ãP the boundary of P and n the unit outer normal to it, and q the heat flux vector.

Coleman and Noll postulate that (17) must be satisfied by every part, at any time, and

in any process compatible with the constitutive equations and balance equations. The

balance equations consist of the balance equations of linear momentum and energy.

The essential feature of the postulate is that the body force b and the supply of energy

r occurring in these balances may be varied arbitrarily. Interpreted in this way, for

materials with heat conduction and viscosity the Clausius-Duhem inequality leads to

the thermostatic relations (13) and the residual dissipation inequality

T
v
ċ 7 − q ċ ∇θ

θ
³ 0

in which T
v
is the viscous part of the Piola-Kirchhoff stress, 7 the material time

derivative of deformation gradient and ∇θ the referential gradient of temperature.

The subsequent paper by Coleman & Mizel, Thermodynamics and departures from

Fourier’s law of heat conduction presents the matter more systematically and for the
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first time the rule of equipresence was applied effectively to eliminate superfluous

variables. The works of Coleman & Noll from the period 1959–1963 substantially

contributed to a clear separation of the issues of dissipation from those of stability.

In 1964 Coleman published twomajor studies Thermodynamics of Materials with

Memory and On Thermodynamics, Strain Impulses, and Viscoelasticity. These show

him as the principal architect of rational thermodynamics. They treat materials gov-

erned by the constitutive equations

η�t� ¨ h�F�t�Ùθ�t�ÙF t
r ÙθtrÙg�t�	Ù

ψ�t� ¨ p�F�t�Ùθ�t�ÙF t
r ÙθtrÙg�t�	Ù

S�t� ¨ S�F�t�Ùθ�t�ÙF t
r ÙθtrÙg�t�	Ù

q�t� ¨ q�F�t�Ùθ�t�ÙF t
r ÙθtrÙg�t�	Ø



















































(18)

Here η�t� is the specific entropy, ψ�t� the specific free energy, S�t� the Piola-

Kirchhoff stress and q�t� the heat flux vector at time t and at the given point of the

body (not indicated explicitly), and F�t�Ù θ�t� and g�t� are the present values of the

deformation gradient, temperature and the referential gradient of temperature and Ft
r

and θtr are the past histories of the deformation gradient and temperature prior to time

tÙ given by
Ft
r �s� ¨ F�t − s�Ù θtr�s� ¨ θ�t − s�Ù s ± 0Ø

The constitutive functionalshÙp,Sandqare assumed to obey the principle of fading

memory. In the present case this means the continuity of h, Sand qand continuous

Fréchet differentiabilityofp in the space of the quintuples �F�t�Ùθ�t�ÙF t
r ÙθtrÙg�t�	

with finite norm analogous to that in (9). Thus each of the arguments FÙθÙgÙFrÙθr
can be varied independently of the others and the functional p has well defined par-

tial Fréchet derivatives with respect to each of the variables FÙθÙgÙF
r
Ùθ

r
, which

we denote by ÿFpÙ ÿθpÙ ÿgpÙ δFpÙ and δθpÙ respectively. The application of

the Coleman-Noll procedure results in the following restrictions on the constitutive

functionals, the main result of the Thermodynamics of Materials with Memory:

(i) the functionals pÙ hÙ and S are independent of gÙ i.e., they depend only on

�FÙθÙF
r
Ùθ

r
�Û

(ii) the thermodynamic relations

S¨ ÿFpÙ h ¨ −ÿθp

hold for all collections �FÙθÙF
r
Ùθ

r
�;

(iii) the residual dissipation inequality

δFp�Λ@7
r
� + δθp�Λ@;

r
� − q�ΛÙg� ċ g

θ
³ 0

holds for all vectors g and all Λ ¨ �FÙθÙgÙF
r
Ùθ

r
�.

In (iii), 7r and ;r are the derivatives of the past histories with respect to the elapsed

times s ± 0Ø Furthermore, the partial derivatives δFp�Λ@ċ� and δθp�Λ@ċ� with re-

spect to past histories are, by definition, linear functionals on the spaces of all tensor-

valued functions G ¨ G�s� and scalar-valued functions φ ¨ φ�s�Ù s ± 0, re-

spectively, of finite norms analogous to that in (9). The symbols δFp�Λ@7
r
� and
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δθp�Λ@;r� denote the values of these functionals at the arguments G ¨ 7r and

φ ¨ ;
r
Ù respectively.

Coleman then goes on to discuss a number of additional important topics like

the behavior of the material in slow processes, relaxation, equilibrium thermostatic

relations, integrated dissipation inequalities, decrease of the free energy during the

approach to equilibrium etc.

Subsequent papers of 1966–1968 by B. D. Coleman &V. J. Mizel, much appreci-

ated by connoisseurs, are devoted to fine mathematical tuning of the theory of fading

memory. Thus Norms and Semi-Groups in the Theory of Fading Memory is based on

an observation that not every function h in the expression for the norm of the type

(9) can qualify as a reasonable influence function. Any reasonable influence function

has to guarantee three natural postulates, viz., that any constant history belongs to the

class of historiesK defined by (9), and that with any H X K all time shifts of H by

amount σ ± 0 to the future belong to K and all time shifts of H by amount σ ± 0

to the past belong to K also. The paper derives explicit restrictions on h placed by

these requirements. The papers A General Theory of Dissipation in Materials with

Memory and On the General Theory of Fading Memory go even farther and deal with

spaces of histories equipped with an abstract norm ν ª B ċBwhich need not have the

integral representations like that in (9), and formulates elementary requirements on

B ċB instead, like the compatibility with the ordering of histories by pointwise norms

of H�s�Ù sequential Fatou property, etc., studied in the theories of abstract Banach

function spaces. The theory of fading memory and the thermodynamic restrictions

within this general framework is developed in A General Theory of Dissipation in

Materials with Memory and On the General Theory of Fading Memory.

Stability Another part of Coleman’s work are his researches on the thermodynamic

basis for the dynamical stability of homogeneous equilibrium states of fluids. Maybe

they are not so well-knownas the other parts of Coleman’swork, but equally important

and, in addition, of great aesthetic appeal. Theywere conducted partly in collaboration

with J. M. Greenberg, E. H. Dill, and V. J. Mizel.

The approach in the paperOn the Stability of Equilibrium States of General Fluids

is based on a rigorous development of the classical Gibbsian thermostatics of fluids.

It extends a deepens the corresponding treatment in the essay with W. Noll On the

Thermostatics of Continuous Media discussed above. Consider a fluid with the refer-

ence configurationB and the equilibrium response functions for the internal energy,

temperature and pressure bÙ eÙ and �Ù expressed as functions of the specific volume

v and the specific entropy ηØ If we identify nonhomogeneous equilibrium states with

pairs �vÙη� of real-valued functions onB giving the fields of the specific volume and

the specific entropy, we can define the total energy, entropy, and volume of �vÙη� by

E�vÙη� ¨ �
B

b�vÙη� dmÙ V�vÙη� ¨ �
B

vdmÙ H�vÙη� ¨ �
B

η dmØ

Suppose that a given homogeneous equilibrium state of uniform specific volume v�

and uniform specific entropy η� satisfies the principle of minimum energy at constant

volume and entropy, i.e., that

E�vÙη� ± E�v�Ùη��
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whenever the state �vÙη� satisfies

V�vÙη� ¨ V�v�Ùη��Ù H�vÙη� ¨ H�v�Ùη��Ø
This turns out to hold if and only if �v�Ùη�� is a point of strict convexity of the

function bÙ i.e.,
b�vÙη� ± b�v�Ùη�� − p��v− v�� + θ��η − η� (19)

for all pairs �vÙη� © �v�Ùη��Ù where p� ¨ ��v�Ùη��Ù θ� ¨ e�v�Ùη��Ø Suppose
that b is strictly convex at some point �v�Ùη�� in the domain D of b in the sense

of (19) and that all pairs �vÙη� from D are points of (possibly) nonstrict convexity

except for pairs from some compact subset ofDØColeman proves that then any global

state �vÙη� whose total energy is sufficiently close to the total energy of �v�Ùη�� is

itself close to �v�Ùη�� in the sense that the integrals

Bv− v�B Ú¨ �
B

@v− v�@ dm and Bη − η�B Ú¨ �
B

@η − η�@ dm

are small. Formally, for each e ± 0 there exists a d ± 0 such that any global state

�vÙη� such that

E�vÙη� − E�v�Ùη�� ° d

satisfies

Bv− v�B ° e and Bη − η�B ° eØ
(The converse, of course, is trivial.) Coleman then defines thermodynamic processes

of “regular fluids,” a class of fluids which includes fluids that exhibit linear and non-

linear viscosity, heat conduction, and stress relaxation in a long-range memory as

well as the perfect fluids of classical hydrodynamics. He also gives a precise mean-

ing to the physical concept of a body immersed in an environment at fixed pressure

p� and temperature θ� and introduces the canonical free energy of the body in the

environment p�, θ� by

P�t� ¨ E�t� + K�t� + p�V�t� − θ�H�t�
where V�t� is the total volume of the fluid, K�t� the kinetic energy, H�t� the total

non-equilibrium entropy and E�t� the total internal energy. Extending an earlier ar-

gument of P. Duhem, he proves that P is monotone decreasing with time in every

process compatible with the environment. The main result of the paper On the Sta-

bility of Equilibrium States of General Fluids gives a dynamical significance to the

stability criterion (19) in terms of Liapunov stability: Under the above assumptions

on the convexity of bÙ for each e ± 0 there exists a d ± 0 such that for any process

compatible with the environment that saytisfies

P�t� − P�v�Ùη�� ° d

at some time tÙ satisfies
K�t ′� ° eÙ Bv�ċÙ t ′� − v�B ° e and Bη�ċÙ t ′� − η�B ° e

for all times t ′ ³ tØ Here v�ċÙ t ′� and η�ċÙ t ′� denote the fields of the specific volume

and specific nonequilirium entropy at time t ′ in the process.
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Foundations of thermodynamics A substantial part of Coleman’s efforts in the sev-

enties and early eighties was devoted to the foundations of thermodynamics.His work

here goes against the arrow of time: his 1963 paper on thermodynamics with W. Noll

starts from the postulation of temperature and entropy satisfying the Clausius-Duhem

inequality. His 1974 paper with D. Owen A mathematical foundation for thermody-

namics, to be discussed below, constructs the nonequilibrium entropy provided the

absolute temperature is available that satisfies the Clausius inequality for cyclic pro-

cesses
− �

ãP

q ċ n
θ

d s + �
P

r

θ
dm ² 0Ù

often written in an abbreviated form

�
dQ

θ
² 0Ø

Finally, the paper by B. D. Coleman, D. R. Owen, and J. Serrin, The second law of

Thermodynamics for Systems with Approximate Cycles derives the absolute tempera-

ture satisfying the Clausius inequality from the existence of the empirical temperature

(J. Serrin’s hotness) which enters into a precise “primitive” statement of the second

law that formalizes the verbal maxims of S. Carnot, Lord Kelvin, and R. J. E. Clau-

sius. The actual course of history was opposite to the sequence of Coleman’s works.

The analysis of the efficiency of heat engines resulted first in the notion of absolute

temperature, then in the Clausius inequality for cyclic processes, and finally in the

notion of entropy satisfying the entropy inequality in one form or another.

With the paper by B. D. Coleman & D. Owen, A mathematical foundation for

thermodynamics, the notion of state has returned to rational thermodynamics. The

abstract approach of Coleman & Owen introduces the collection Σ of states σ and

the collection Π of processes P of a thermodynamical system. Both Σ and Π are

treated as primitive concepts. A system is the pair �ΣÙΠ� such that Σ is a Hausdorff

space and each element P of Π determines a continuous mapping σ w Pσ of an

open subset D�P� of Σ into ΣÙ the “transformation induced by P .” The pair �ΣÙΠ�
obeys two fundamental axioms: (I) for each σ in Σ , the set of states of the form Pσ

with P X Π in (i.e., the set of states “accessible from σ”) is dense in Σ; (II) if P ′ and

P ′ ′ are processes such that the rangeR�P ′� of the transformationσ w P ′σ induced

by P ′ intersects the domainD�P ′ ′� of the transformation σ w P ′ ′σ induced by P ′ ′

thenΠ contains a process, P ′ ′P ′Ù whose induced transformation is the composition

of σ w P ′ ′σ and σ w P ′σ.

An actiona for a system assigns to a pair �P Ùσ� a numbera�P Ùσ�Ù referred to
as the supply ofa on going from σ to Pσ via the process P Ø The function �P Ùσ� w
a�P Ùσ� must be continuous in σ and additive on processes in the sense that

a�P Ùσ� ¨ a�P ′ ′ÙP ′σ� +a�P ′Ùσ�
for each P ′Ù P ′ ′ and σØ An actiona is said to have the Clausius property at a state σ

if a�P Ùσ� is approximately negative for every process P that is nearly cyclic at σÙ
i.e., if for each ε ± 0 there is a neighborhood O of σ such that

a�P Ùσ� ° ε (20)

whenever P is a process with Pσ X OØ In particular, if the process happens to be

cyclic in the exact sense, i.e., if Pσ ¨ σÙ then (20) implies
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a�P Ùσ� ² 0Ø (21)

Inequalities (20) and (21) are abstract counterparts of theClausius inequality for cyclic

processes. The need of the ε-version (20) arises because materials with fading mem-

ory have only few exact cycles while the supply of approximate cycles is large. A

real-valued function A on a dense subset of Σ is called an upper potential for an ac-

tiona if for each pair �σ
1
Ùσ

2
� of states in the domain of A and for each ε ± 0Ù there

is a neighborhood O of σ
2
such that

A�σ
2
� − A�σ

1
� ± a�P Ùσ

1
� − εÙ

for every process P with Pσ
1
in OØ The main result of the paper A mathematical

foundation for thermodynamics asserts that if there is a state σ X Σ at which an action

a has the Clausius property, then a has an upper semicontinuous upper potential,

and conversely. The paper by Coleman & Owen deals with a number of topics such

as the non-uniqueness of upper potentials, their extensions to larger domains, with

stagnating families of processes, and relaxed states.

The paper then proceeds to apply the theory of actions on systems to concrete

materials of continuum thermodynamics. The actiona is identified with the Clausius

integral

− �
ãP

q ċ n
θ

da + �
P

r

θ
dmØ

The postulation of the Clausius property for a then amounts to the postulation of

the Clausius inequality for cyclic process, and the resulting upper potential is the

entropy. The paper then treats thermoelastic materials, materials with internal vari-

ables, materials with fading memory and viscous materials from the point of view

of systems �ΣÙΠ� and shows that many results which have been obtained from the

Clausius-Duhem inequality are consequences of a weaker form of the second law of

thermodynamics.

The culmination of this line of thought is The second law of thermodynamics for

systems with approximate cycles, co-authors Owen & Serrin, 1982. The paper formu-

lates a precise statement of the second law which does not presuppose the existence of

entropy or absolute temperature and employs only approximate cycles. Basic to the

theory is the hotness manifold H. This is a continuous, oriented, one-dimensional

manifold whose points L are called levels of hotness. The orientation of H induces

a total strict order � on levels of hotness, with L1 � L2 meaning that L1 is a lower

level of hotness than L
2
. The second ingredient is the concept of a thermodynamical

system �ΣÙΠÙQ�. It consists of the state space ΣÙ class of processes ΠÙ and the ac-

cumulation function QØ The pair �ΣÙΠ� is the system in the sense discussed above.

The function Q which assigns to each triplet consisting of a process P X ΠÙ state
σ X ΣÙ and a hotness level L X H a number Q�P ÙσÙL�, the net heat transferred to
the system at levels of hotness at or below L in the process P starting from the state σØ
Is is assumed that (I) for each L X H the real-valued function �P Ùσ� w Q�P ÙσÙL�
is an action on �ΣÙΠ�Ù (II) for each pair �P Ùσ� the function L w Q�P ÙσÙ ċ� has at

most a countable number of discontinuities and (III) there are hotness levels Ll and

Lu such that Q�P ÙσÙ ċ� vanishes for all L� Ll and is constant for all L such that

L � LuØ In other words, the system exchanges heat with its environment at hotness

levels L satisfying Ll � L � Lu. The process is then said to operate at or below LuØ
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The value t�P Ùσ� Ú¨ Q�P ÙσÙLu� is the total net heat transferred to the system in

the process �P Ùσ�Ø
The main message of the second law is that a cycle that produces a positive work

not only has to absorb heat but also emit at least small amount of heat. Accordingly,

we say that a process �P Ùσ� is absorptive if for each level of hotness L there holds

Q�P ÙσÙL� ³ 0Ø

Noting that for cyclic processes the work done by a system is equal to the total net

heat transferred to the system, we see that the second law says that every absorptive

cyclic process satisfies

t�P Ùσ� ¨ 0Ø

The second law for approximate cycles then requires that for each state σ X ΣÙ for
each ε ± 0, and for each hotness level L X H, there is a neighborhood O of σ such

that

0 ² t�P Ùσ� ° ε

for every process P for which �P Ùσ� is absorptive, operates at or below LÙ and has

its final state Pσ in OØ Thus the overall net gain of heat cannot be significant in an

absorptive approximate cycle which operates at or below a fixed level of hotness. The

second law is assumed to hold for all members �ΣÙΠÙQ� of a thermodynamic uni-

verse UÙ a collection of thermodynamical systems that is closed under the operation

of union of thermodynamic systems and which contains at least one ideal system. We

omit the natural definitions of the last two notions. The main result then says that the

second law holds for all systems inU if, and only if, there exists a monotone increas-

ing function � Ú H r �0Ùð� such that for each of these systems is such that the

accumulation integral

c�P Ùσ� Ú¨
ð

�
0

Q�σÙP Ù�−1�θ��
θ2

dθ (22)

is “approximately negative” on “approximate cycles” operating at or below a fixed

level of hotness. Formally, for each system �ΣÙΠÙQ� in U, each state σ X ΣÙ each
level of hotness L X H, and each ε ± 0 there exists a neighborhood O of σ such that

ð

�
0

Q�σÙP Ù�−1�θ��
θ2

dθ ² ε (23)

for each P X Π satisfying Pσ X OØ If the accumulation function Q�P ÙσÙ ċ� is of

bounded variation then an integration by parts yields

ð

�
0

dQ�σÙP Ù�−1�θ��
θ

² εØ

The absolute temperature scale � is obtained from an analysis of an ideal system

postulated to be contained in UØ By (23), the action c from (22) has the Clausius

property. Consequently, it has an upper potential SÙ defined on a dense subset of ΣÙ
such that for every σ

1
in the domain of S every σ

2
X Σ and every ε ± 0 there exists

a neighborhood O of σ
2
such that
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S�σ
2
� − S�σ

1
� ±

ð

�
0

Q�σÙP Ù�−1�θ��
θ2

dθ − εÙ

for every process P with Pσ
1
in OØ This is the (abstract form) of the Clausius-Duhem

inequality, the starting point of the 1963 paper on the Coleman-Noll procedure.

DNA Colemans most recent work is on the mechanics of DNA strands. Like ev-

erything other subject he touched, each important scientific aspect of the problem is

considered – the chemistry, biology, mechanics and mathematical analysis. Perhaps

his most compelling work in this area is that carried out with his former Ph.D. stu-

dent David Swigon. Like many a biophysicist before them, they end up analyzing

an elastic thin-rod model for the mechanical response of DNA – in an effort to un-

derstand things like supercoiling. In the age we now live in, experimental results for

the twisting and bending of actual stands of DNA abound. In their paper “Theory of

supercoiled elastic rings with self-contact and its application to DNA plasmids”, they

were the first to account for and overcome the difficulty of global self-contact. That is,

as the strand supercoils (say under imposed twist), it almost immediately makes con-

tact with itself again and again, which Coleman and co-workers were able to capture

in their analysis. In addition to providing an important and realistic application to the

mechanical response of DNA–the first of its kind–their work provides the solution of

an unsolved problem in the mechanics of rods.
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