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UNIVERSAL AF-ALGEBRAS

SAEED GHASEMI AND WIES LAW KUBIŚ

Abstract. We study the approximately finite-dimensional (AF) C∗-algebras

that appear as inductive limits of sequences of finite-dimensional C∗-algebras
and left-invertible embeddings. We show that there is such a separable AF-

algebra AF with the property that any separable AF-algebra is isomorphic

to a quotient of AF. Equivalently, by Elliott’s classification of separable AF-
algebras, there are surjectively universal countable scaled (or with order-unit)

dimension groups. This universality is a consequence of our result stating that

AF is the Fräıssé limit of the category of all finite-dimensional C∗-algebras
and left-invertible embeddings.

With the help of Fräıssé theory we describe the Bratteli diagram of AF and

provide conditions characterizing it up to isomorphisms. AF belongs to a class
of separable AF-algebras which are all Fräıssé limits of suitable categories

of finite-dimensional C∗-algebras, and resemble C(2N) in many senses. For

instance, they have no minimal projections, tensorially absorb C(2N) (i.e. they
are C(2N)-stable) and satisfy similar homogeneity and universality properties

as the Cantor set.

MSC (2010): 46L05, 46L85, 46M15.

Keywords: AF-algebra, Cantor property, left-invertible embedding, Fräıssé
limit, universality.

1. Introduction

Operator algebraists often refer to (for good reasons, of course) the UHF-algebras
such as CAR-algebra as the noncommutative analogues of the Cantor set 2N, or
more precisely the commutative C∗-algebra C(2N). We will introduce a different
class of separable AF-algebras, we call them “AF-algebras with Cantor property”
(Definition 4.1), which in some contexts are more suitable noncommutative ana-
logues of C(2N). One of the main features of AF-algebras with Cantor property is
that they are direct limits of sequences of finite-dimensional C∗-algebras where the
connecting maps are left-invertible homomorphisms. This property, for example,
guarantees that if the algebra is infinite-dimensional, it has plenty of nontrivial
ideals and quotients, while UHF-algebras are simple. The Cantor set is a “special
and unique” space in the category of all compact (zero-dimensional) metrizable
spaces in the sense that it bears some universality and homogeneity properties; it
maps onto any compact (zero-dimensional) metrizable space and it has the homo-
geneity property that any homeomorphism between finite quotients lifts to a home-
omorphism of the Cantor set (see [7]). Moreover, Cantor set is the unique compact
zero-dimensional metrizable space with the property that (stated algebraically): for

Research of the first author was supported by the GAČR project 19-05271Y and RVO:
67985840. Research of the second author was supported by the GAČR project 17-27844S and
RVO: 67985840.
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2 SAEED GHASEMI AND WIES LAW KUBIŚ

every m,n ∈ N and unital embeddings φ : Cn → Cm and α : Cn → C(2N) there is
an embedding β : Cm → C(2N) such that the diagram

C(2N)

Cn Cm

α

φ

β

commutes. The AF-algebras with Cantor property satisfy similar universality and
homogeneity properties in their corresponding categories of finite-dimensional C∗-
algebras and left-invertible homomorphisms. Recall that a homomorphism φ : B →
A is left-invertible if there is a homomorphism π : A → B such that π ◦ φ =
idB. To further justify the resemblance between the Cantor set and these algebras,
note that the map φ in the above must be left-invertible and if α is left-invertible
then β can be chosen to be left-invertible. In general, AF-algebras with Cantor
property and the maps in the corresponding categories are not assumed to be unital.
Although, when restricted to the categories with unital maps, one can obtain the
unital AF-algebras with same properties subject to the condition that maps are
unital. For instance, the “truly” noncommutative AF-algebra with Cantor property
AF, that was mentioned in the abstract, is the unique (nonunital) AF-algebra
which is the limit of a sequence of finite-dimensional C∗-algebras and left-invertible
homomorphisms (necessarily embeddings), with the property that for every finite-
dimensional C∗-algebrasD, E and (not necessarily unital) left-invertible embeddings
φ : D → E and α : D → AF there is a left-invertible embedding β : E → AF such
that the diagram

AF

D E

α

φ

β

commutes (Theorem 8.5). One of our main results (Theorem 8.1) states that AF

maps surjectively onto any separable AF-algebra. However, this universality prop-
erty is not unique to AF (Remark 8.2).

These properties of the Cantor set can be viewed as consequences of the fact
that it is the Fräıssé limit of the category of all nonempty finite spaces and sur-
jective maps (as well as the category of all nonempty compact metric spaces and
non-expansive quotient maps); see [8]. The theory of Fräıssé limits was introduced
by R. Fräıssé [6] in 1954 as a model-theoretic approach to the back-and-forth ar-
gument. Roughly speaking, Fräıssé theory establishes a correspondence between
classes of finite (or finitely generated) models of a first order language with certain
properties (the joint-embedding property, the amalgamation property and having
countably many isomorphism types), known as Fräıssé classes, and the unique
(ultra-)homogeneous and universal countable structure, known as the Fräıssé limit,
which can be represented as the union of a chain of models from the class. Fräıssé
theory has been recently extended way beyond the countable first-order structures,
in particular, covering some topological spaces, Banach spaces and, even more re-
cently, some C∗-algebras. Usually in these extensions the classical Fräıssé theory is
replaced by its “approximate” version. Approximate Fräıssé theory was developed
by Ben Yaacov [1] in continuous model theory (an earlier approach was developed
in [13]) and independently, in the framework of metric-enriched categories, by the
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second author [8]. The Urysohn metric space, the separable infinite-dimensional
Hilbert space [1], and the Gurarĭı space [9] are some of the other well known ex-
amples of Fräıssé limits of metric spaces (see also [10] for more on Fräıssé limits in
functional analysis).

The Fräıssé limits of C∗-algebras are studied in [4] and [11], where it has been
shown that the Jiang-Su algebra, all UHF algebras, and the hyperfinite II1-factor
are Fräıssé limits of suitable classes of finitely generated C∗-algebras with distin-
guished traces. Here we investigate the separable AF-algebras that arise as limits
of Fräıssé classes of finite-dimensional C∗-algebras. Apart from C(2N), which is
the Fräıssé limit of the class of all commutative finite-dimensional C∗-algebras and
unital (automatically left-invertible) embeddings, the UHF-algebras are also Fräıssé
limits of such classes ([4]). In [4, Theorem 3.9] the authors describe another class of
AF-algebras whose members are Fräıssé limits of classes of finite-dimensional C∗-
algebras (again with distinguished traces). These AF-algebras are, in particular,
simple and have unique traces. In general, however, obstacles arising from exis-
tence of (non-unique) traces prevent many classes of finite-dimensional C∗-algebras
from having the amalgamation property ([4, Proposition 3.3]), therefore making it
difficult to realize AF-algebras as Fräıssé limits. The AF-algebra C(2N) is neither
a UHF-algebra nor it is among AF-algebras considered in [4, Theorem 3.9]. There-
fore, it is natural to ask whether C(2N) belongs to any larger (non-trivial) class of
AF-algebras whose elements are Fräıssé limits of some class of finite-dimensional
C∗-algebras. This was our initial motivation behind introducing the class of sep-
arable AF-algebras with Cantor property (Definition 4.1). This class (properly)
contains the AF-algebras of the form D ⊗ C(2N), for any finite-dimensional C∗-
algebra D.

If A and B are C∗-algebras, we say B is a retract of A if there is a left-invertible
embedding from B into A. In Section 3 we consider the (direct) sequences of finite-
dimensional C∗-algebras

A1
φ2
1−→ A2

φ3
2−→ A3

φ4
3−→ . . .

where each φn+1
n is a left-invertible embedding. The AF-algebra A that arises as

the (direct) limit of this sequence has the property that every matrix algebra Mn

appearing as a direct-sum component (an ideal) of some An is a retract of A (in
particular A maps onto this matrix algebra). Moreover, every retract of A which
is a matrix algebra, appears as a direct-sum component of some An (Lemma 3.5).
The AF-algebras with Cantor property are defined and studied in Section 4. They
have the property that they are characterized by the set of their matrix algebra
retracts. That is, two AF-algebras with Cantor property are isomorphic if and only
if they have exactly the same matrix algebras as their retracts (Corollary 7.9).

We will use the Fräıssé-theoretic framework of (metric-enriched) categories de-
scribed in [8], rather than the (metric) model-theoretic approach to the Fräıssé
theory. A brief introduction to Fräıssé categories is provided in Section 5. We
show that (Theorem 7.2) any category of finite-dimensional C∗-algebras and (not
necessarily unital) left-invertible embeddings, which is closed under taking direct
sums and ideals of its objects (we call these categories ⊕-stable) is a Fräıssé cat-
egory. Moreover, the Fräıssé limits of these categories have the Cantor property
(Lemma 7.4) and in fact any AF-algebra A with Cantor property can be realized
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as the Fräıssé limit of such a category, where the objects of the category are the
finite-dimensional retracts of A (Definition 3.1 and Theorem 7.7).

In particular, the category F of all finite-dimensional C∗-algebras and left-
invertible embeddings is a Fräıssé category (Section 8). A priori, the Fräıssé limit of
this category AF is a separable AF-algebra with has the universality property that
any separable AF-algebra A which is the limit of a sequence of finite-dimensional
C∗-algebras with left-invertible embeddings as connecting maps, can be embed-
ded into AF via a left-invertible embedding. In particular, there is a surjective
homomorphism θ : AF � A. Also any separable AF-algebra is isomorphic to a
quotient (by an essential ideal) of an AF-algebra which is the limit of a sequence
of finite-dimensional C∗-algebras with left-invertible embeddings (Proposition 3.7).
Combining the two quotient maps, we have the following result, which is later
restated as Theorem 8.1.

Theorem 1.1. The category of all finite-dimensional C∗-algebras and left-invertible
embeddings is a Fräıssé category. Its Fräıssé limit AF is a separable AF-algebra such
that there is a surjective homomorphism from AF onto any separable AF-algebra.

The Bratteli diagram of AF is described in Proposition 8.4, using the fact that
it has the Cantor property. It is the unique AF-algebra with the Cantor property
such that every finite-dimensional C∗-algebra is its retract. The unital versions of
these results are given in Section 9 (with a bit of extra work, since unlike F, the
category of all finite-dimensional C∗-algebras and unital left invertible maps is not
a Fräıssé class).

Separable AF-algebras are famously characterized [5] by their K0-invariants
which are scaled countable dimension groups (with order-unit, in the unital case).
By applying the K0-functor to Theorem 1.1 we have the following result.

Corollary 1.2. There is a scaled countable dimension group (with order-unit)
which maps onto any scaled countable dimension group (with order-unit).

The corresponding characterizations of these dimension groups are mentioned in
Section 10.

Finally, this paper could have been written entirely in the language of par-
tially ordered abelian groups, where the categories of “simplicial groups” and left-
invertible positive embeddings replace our categories. However, we do not see any
clear advantage in doing so.
Acknowledgement. We would like to thank Ilijas Farah and Eva Pernecká for
useful conversations and comments.

2. Preliminaries

Recall that an approximately finite-dimensional (AF) algebra is a C∗-algebra
which is an inductive limit of a sequence of finite-dimensional C∗-algebras. We
review a few basic facts about separable AF-algebras. The background needed
regarding AF-algebras is quite elementary and [3] is more than sufficient. The
AF-algebras that are considered here are always separable and therefore by “AF-
algebra” we always mean “separable AF-algebra”. AF-algebras can be character-
ized up to isomorphisms by their Bratteli diagrams [2]. However, there is no efficient
way (at least visually) to decide whether two Bratteli diagrams are isomorphic, i.e.,
they correspond to isomorphic AF-algebras. A much better characterization of AF-
algebras uses K-theory. To each C∗-algebra K0-functor assigns a partially ordered
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abelian group (its K0-group) which turns out to be a complete invariant for AF-
algebras [5]. Moreover, there is a complete description of all possible K0-groups
of AF-algebras. Namely, a partially ordered abelian group is isomorphic to the
K0-group of an AF-algebra if and only if it is a countable dimension group.

We mostly use the notation from [3] with some minor adjustments. Let Mk

denote the C∗-algebra of all k × k matrices over C. Suppose A = lim−→(An, φmn ) is
an AF-algebra with Bratteli diagram D such that each An ∼= An,1⊕· · ·⊕An,`, is a
finite-dimensional C∗-algebra and each An,s is a full matrix algebra. The node of
D corresponding to An,s is “officially” denoted by the expression dim(n, s) = (n, s),
where dim(n, s) is the dimension of the matrix algebraAn,s, for 1 ≤ s ≤ `. However,
we only write (n, s) to represent the node corresponding to An,s, knowing that (n, s)
intrinsically carries over the natural number dim(n, s). For (n, s), (m, t) ∈ D we
write (n, s) → (m, t) if (n, t) is connected (m, t) by at least one path in D, i.e. if
φmn sends An,s faithfully into Am,t.

The ideals of AF-algebras are also AF-algebras and they can be recognized from
the Bratteli diagram of the algebra. Namely, the Bratteli diagrams of ideals cor-
respond to directed and hereditary subsets of the Bratteli diagram of the algebra
(see [3, Theorem III.4.2]). Recall that an essential ideal J of A has nonzero inter-
sections with every nonzero ideal of A. Suppose D is the Bratteli diagram for an
AF-algebra A and J is an ideal of A whose Bratteli diagram corresponds to J ⊆ D.
Then J is essential if and only if for every (n, s) ∈ D there is (m, t) ∈ J such that
(n, s)→ (m, t).

If D = D1 ⊕ · · · ⊕ Dl and E = E1 ⊕ · · · ⊕ Ek are finite-dimensional C∗-algebras
where Di and Ej are matrix algebras and φ : D → E is a homomorphism, we denote
the “multiplicity of Di in Ej along φ” by Multφ(Di, Ej). Also let Multφ(D, Ej)
denote the tuple

(Multφ(D1, Ej), . . . ,Multφ(Dl, Ej)) ∈ Nl.

Suppose πj : E → Ej is the canonical projection. If Multφ(D, Ej) = (x1, . . . , xl)
then the group homomorphism K0(πj ◦φ) : Zl → Z sends (y1, . . . , yl) to

∑
i≤l xiyi.

Therefore if φ, ψ : D → E are homomorphisms, we have K0(φ) = K0(ψ) if and only
if Multφ(D, Ej) = Multψ(D, Ej) for every j ≤ k.

The following well known facts about AF-algebras will be used several times

throughout the article. We denote the unitization of A by Ã and if u is a unitary

in Ã, then Adu denotes the automorphisms of A given by a→ u∗au.

Lemma 2.1. [3, Lemma III.3.2] Suppose ε > 0 and {An} is an increasing sequence

of finite-dimensional C∗-algebras such that A =
⋃
An. If F is a finite-dimensional

subalgebra of A, then there are m ∈ N and a unitary u in Ã such that u∗Fu ⊆ Am
and ‖1− u‖ < ε.

Lemma 2.2. Suppose D is a finite-dimensional C∗-algebra, A is a separable AF-
algebra and φ, ψ : D → A are homomorphisms such that ‖φ− ψ‖ < 1. Then there

is a unitary u ∈ Ã such that Adu ◦ψ = ψ.

Proof. We have K0(φ) = K0(ψ), since otherwise for some nonzero projection p in
D the dimensions of the projections φ(p) and ψ(p) differ and hence ‖ψ − φ‖ ≥ 1.

Therefore there is a unitary u in Ã such that Adu ◦ψ = φ, by [12, Lemma 7.3.2]. �
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Lemma 2.3. Suppose D = D1⊕ · · ·⊕Dl is a finite-dimensional C∗-algebra, where
each Di is a matrix algebra. Assume γ : D ↪→Mk and φ : D ↪→M` are embeddings.
The following are equivalent.

(1) There is an embedding δ : Mk ↪→M` such that δ ◦ γ = φ.
(2) There is an embedding δ : Mk ↪→M` such that ‖δ ◦ γ − φ‖ < 1.
(3) There is a natural number c ≥ 1 such that ` ≥ ck and Multφ(D,M`) =

cMultγ(D,Mk).

Proof. (1) trivially implies (2). To see (2)⇒(3), note that we have

Multφ(Di,M`) = Multδ(Mk,M`) Multγ(Di,Mk),

for every i ≤ l, since otherwise ‖δ ◦ γ − φ‖ ≥ 1. Let c = Multδ(Mk,M`). To
see (3)⇒(1), let δ′ : Mk → Ml be the embedding which sends an element of
Mk to c many identical copies of it along the diagonal of M`. Then we have
K0(φ) = K0(δ′ ◦ γ), by the assumption of (3). Therefore there is a unitary u in M`

such that Adu ◦δ′ ◦ γ = φ. Let δ = Adu ◦δ′. �

3. AF-algebras with left-invertible connecting maps

Suppose A,B are C∗-algebras. A homomorphism φ : B → A is left-invertible if
there is a (surjective) homomorphism π : A � B such that π ◦ φ = idB. Clearly a
left-invertible homomorphism is necessarily an embedding.

Definition 3.1. We say B is a retract of A if there is a left-invertible embedding
from B into A. We say a subalgebra B of A is an inner retract if and only if there
is a homomorphism θ : A� B such that θ|B = idB.

The image of a left-invertible embedding φ : B ↪→ A is an inner retract ofA. Next
proposition contains some elementary facts about retracts of finite-dimensional C∗-
algebras and left-invertible maps between them. They follow from elementary facts
about finite-dimensional C∗-algebras, e.g., matrix algebras are simple.

Proposition 3.2. A C∗-algebra D is a retract of a finite-dimensional C∗-algebra
E, if and only if E ∼= D ⊕ F , for some finite-dimensional C∗-algebra F . In other
words, D is a retract of E, if and only if D is isomorphic to an ideal of E.

Suppose φ : D ↪→ E is a (unital) left-invertible embedding and π : E � D is a
left inverse of φ. Then E can be written as E0 ⊕ E1 and there are φ0, φ1 such that
φ0 : D → E0 is an isomorphism, φ1 : D → E1 is a (unital) homomorphism and

• φ(d) = (φ0(d), φ1(d)), for every d ∈ D,
• π(e0, e1) = φ−1

0 (e0) for every (e0, e1) ∈ E0 ⊕ E1.

Suppose (An, φmn ) is a sequence where each connecting map φmn : An ↪→ Am is
left-invertible. Let πn+1

n : An+1 � An be a left inverse of φn+1
n , for each n. For

m > n define πmn : Am � An by πmn = πn+1
n ◦ · · · ◦ πmm−1. Then πmn is a left inverse

of φmn which satisfies πmn ◦ πkm = πkn, for every n ≤ m ≤ k.

Definition 3.3. We say (An, φmn ) is a left-invertible sequence if each φmn is left-
invertible and φnn = idAn . We call (πmn ) a compatible left inverse of the left-invertible
sequence (An, φmn ) if πmn : Am � An are surjective homomorphisms such that
πmn ◦ πkm = πkn and πmn ◦ φmn = idAn

, for every n ≤ m ≤ k.

The following simple lemma is true for arbitrary categories, see [7, Lemma 6.2].
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Lemma 3.4. Suppose (An, φmn ) is a left-invertible sequence of C∗-algebras with
a compatible left inverse (πmn ) and A = lim−→(An, φmn ). Then for every n there
are surjective homomorphisms π∞n : A � An such that π∞n ◦ φ∞n = idAn and
πmn ◦ π∞m = π∞n for each n ≤ m.

Proof. First define π∞n on
⋃
i φ
∞
i [Ai], which is dense in A. If a = φ∞m (am) for some

m and am ∈ Am then let

π∞n (a) = πmn (am) if n ≤ m,
π∞n (a) = φnm(am) if n > m.

These maps are well-defined (norm-decreasing) homomorphism, so they extend to
A and satisfy the requirements of the lemma. �

In particular, each An or any retract of it, is a retract of A. The converse of this
is also true.

Lemma 3.5. Suppose (An, φmn ) is a left-invertible sequence of finite-dimensional
C∗-algebras with A = lim−→(An, φmn ).

(1) If D is a finite-dimensional subalgebra of A, then D is contained in an inner
retract of A.

(2) If D is a finite-dimensional retract of A, then there is m ∈ N such that D
is a retract of Am′ for every m′ ≥ m.

Proof. Let (πmn ) be a compatible left inverse of (An, φmn ).
(1) If D is a finite-dimensional subalgebra of A, then for some m ∈ N and a

unitary u ∈ Ã, it is contained in uφ∞m [Am]u∗ (Lemma 2.1). The latter is an inner
retract of A.

(2) If D is a retract of A, there is an embedding φ : D ↪→ A with a left inverse

π : A � D. Find m and a unitary u in Ã such that u∗φ[D]u ⊆ φ∞m [Am]. This
implies that

π∞n ◦ π∞n (u∗φ(d)u) = u∗φ(d)u

for every d ∈ D. Define ψ : D ↪→ Am by ψ(d) = π∞m (u∗φ(d)u). Then ψ has a left
inverse θ : Am � D defined by θ(x) = π(uφ∞m (x)u∗), since for every d ∈ D we have

θ(ψ(d)) = θ(π∞n (u∗φ(d)u)) = π(uφ∞n ◦ π∞n (u∗φ(d)u)u∗) = π(φ(d)) = d.

Because Am is a retract of Am′ , for every m′ ≥ m, we conclude that D is also a
retract of Am′ . �

It is not a surprise that many AF-algebras are not limits of left-invertible se-
quences of finite-dimensional C∗-algebras. Because, for instance, such AF-algebra
has infinitely many ideals (unless it is finite-dimensional), and admits finite traces,
as it maps onto finite-dimensional C∗-algebras. Therefore, for example, the C∗

algebra of all compact operators on `2 or infinite-dimensional (infinite-type) UHF-
algebras are not limits of left-invertible sequences of finite-dimensional C∗-algebras.
The following proposition gives another criteria to distinguish these AF-algebras.
For example, it can be directly used to show that infinite-dimensional UHF-algebras
are not limits of such sequences.

Proposition 3.6. Suppose A is an AF-algebra isomorphic to the limit of a left-
invertible sequence of finite-dimensional C∗-algebras and A =

⋃
n Bn for an increas-

ing sequence of finite-dimensional subalgebras (Bn). Then there is an increasing se-
quence (ni) of natural numbers and an increasing sequence (Ci) of finite-dimensional
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subalgebras of A such that Bni
⊆ Ci ⊆ Bni+1

and Ci is an inner retract of Ci+1 for
every i ∈ N.

Proof. Suppose A is the limit of a left-invertible direct sequence (An, φmn ) of finite-
dimensional C∗-algebras. Theorem III.3.5 of [3], applied to sequences (Bn) and
(φ∞n [An]), shows that there are sequences (ni), (mi) of natural numbers and a

unitary u ∈ Ã such that

Bni
⊆ u∗φ∞mi

[Ami
]u ⊆ Bni+1

for every i ∈ N. Finally, let Ci = u∗φ∞mi
[Ami

]u. �

However, next proposition shows that any AF-algebra is a quotient of an AF-
algebra which is the limit of a left-invertible sequence of finite-dimensional C∗-
algebras.

Proposition 3.7. For every (unital) AF-algebra B there is a (unital) AF-algebra
A ⊇ B which is the limit of a (unital) left-invertible sequence of finite-dimensional
C∗-algebras and A/J ∼= B for an essential ideal J of A.

Proof. Suppose B is the limit of the sequence (Bn, ψmn ) of finite-dimensional C∗-
algebras and homomorphisms. Let A denote the limit of the following diagram:

B1 B2 B3 B4
...
. . .

B1 B2 B3 . . .

B1 B2 . . .

B1 . . .

ψ2
1

id id

ψ3
2

id

ψ4
3

id id

id

Then A is an AF-algebra which contains B and the connecting maps are left-
invertible embeddings. The ideal J corresponding to the (directed and hereditary)
subdiagram of the above diagram which contains all the nodes except the ones on
the top line is essential and clearly A/J ∼= B. �

4. AF-algebras with Cantor property

We define the notion of the “Cantor property” for an AF-algebra. These algebras
have properties which are, in a sense, generalizations of the ones satisfied (sometimes
trivially) by C(2N). It is easier to state these properties using the notation for
Bratteli diagrams that we fixed in Section 2. For example, every node of the Bratteli
diagram of C(2N) splits in two, which here is generalized to each node splits into (at
least two) nodes with the same dimension at some further stage, which of course
guarantees that there are no minimal projections in the limit algebra.

Definition 4.1. We say an AF-algebra A has the Cantor property if there is a
sequence (An, φmn ) of finite-dimensional C∗-algebras and embeddings such that A =
lim−→(An, φmn ) and the Bratteli diagram D of (An, φmn ) has the following properties:
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(D0) For every (n, s) ∈ D there is (n+1, t) ∈ D such that dim(n, s) = dim(n+1, t)
and (n, s)→ (n+ 1, t).

(D1) For every (n, s) ∈ D there are distinct nodes (m, t), (m, t′) ∈ D, for some
m > n, such that dim(n, s) = dim(m, t) = dim(m, t′) and (n, s) → (m, t)
and (n, s)→ (m, t′).

(D2) For every (n, s1), . . . , (n, sk), (n′, s′) ∈ D and {x1, . . . , xk} ⊆ N such that∑k
i=1 xi dim(n, si) ≤ dim(n′, s′), there is m ≥ n such that for some (m, t) ∈

D we have dim(m, t) = dim(n′, s′) and there are exactly xi distinct paths
from (n, si) to (m, t) in D.

The Bratteli diagram of C(2N) trivially satisfies these conditions and therefore
C(2N) has the Cantor property.

Remark 4.2. Condition (D0) states exactly that (An, φmn ) is a left-invertible se-
quence. Dropping (D0) from Definition 4.1 does not change the definition (i.e.,
A has the Cantor property if and only if it has a representing sequence satisfying
(D1) and D(2)). This is because (D1) alone implies the existence of a left-invertible
sequence with limit A that still satisfies (D1). However, we add (D0) for simplicity
to make sure that (An, φmn ) is already a left-invertible sequence, since, as we shall
see later, being the limit of a left-invertible direct sequence of finite-dimensional
C∗-algebras is a crucial property of AF-algebras with Cantor property. Condition
(D2) can be rewritten as

(D2′) For every ideal D of An, if M` is a retract of A and γ : D ↪→ M` is an
embedding, then there is m ≥ n and Am,t ⊆ Am such that Am,t ∼= M` and
Multφm

n
(D,Am,t) = Multγ(D,M`).

Definition 4.1 may be adjusted for unital AF-algebras where all the maps are
considered to be unital.

Definition 4.3. A unital AF-algebra A has the Cantor property if and only if it
satisfies the conditions of Definition 4.1, where φmn are unital and in condition (D2)

the inequality
∑k
i=1 xi dim(n, si) ≤ dim(n′, s′) is replaced with equality.

Proposition 4.4. Suppose A is an AF-algebra with Cantor property. If D, E are
finite-dimensional retracts of A, then so is D ⊕ E.

Proof. Suppose D = D1⊕D2⊕· · ·⊕Dl and E = E1⊕E2⊕· · ·⊕Ek, where Di, Ei are
isomorphic to matrix algebras. By Lemma 3.5 both D and E are retracts of some
Am, which means all Di and Ei appear in Am as retracts (or ideals). By (D1) and
enlarging m if necessary, we can make sure these retracts in Am are orthogonal,
meaning that Am ∼= D⊕E⊕F , for some finite-dimensional C∗-algebra F . Therefore
D ⊕ E is a retract of Am and as a result, it is a retract of A. �

Lemma 4.5. Suppose A is an AF-algebra with Cantor property, witnessed by
(An, φmn ) satisfying Definition 4.1 and E is a finite-dimensional retract of A. If
γ : An ↪→ E is a left-invertible embedding then there are m ≥ n and a left-invertible
embedding δ : E ↪→ Am such that δ ◦ γ = φmn .

Proof. Suppose An = An,1 ⊕ · · · ⊕ An,l and E = E1 ⊕ E2 ⊕ · · · ⊕ Ek where Ei and
An,j are matrix algebras. Let πi denote the canonical projection from E onto Ei.
For every i ≤ k put

Yi = {j ≤ l : γ[An,j ] ∩ Ei 6= 0},
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and let An,Yi
=

⊕
j∈Yi
An,j . Then An,Yi

is an ideal (a retract) of An and the
map γi : An,Yi

↪→ Ei, the restriction of γ to An,Yi
composed with πi, is an

embedding. Since E is a finite-dimensional retract of A, it is a retract of some
An′ (Lemma 3.5). So each Ei is a retract of An′ . By applying (D2) for each
i ≤ k there are mi ≥ n and (mi, ti) ∈ D such that dim(mi, ti) = dim(Ei) and
Multφmi

n
(An,Yi ,Ami,ti) = Multγi(An,Yi , Ei). Let m = max{mi : i ≤ k} and by

(D0) find (m, si) such that dim(mi, ti) = dim(m, si) and (mi, ti)→ (m, si). Apply-
ing (D1) and possibly increasing m allows us to make sure that (m, si) 6= (m, sj) for
distinct i, j and therefore Am,si are pairwise orthogonal. Then {Am,si : i ≤ k} is a
sequence of pairwise orthogonal subalgebras (retracts) of Am such that Am,si ∼= Ei
and

Multφm
n

(An,Yi ,Am,si) = Multγi(An,Yi , Ei).
By Lemma 2.3 there are isomorphisms δi : Ei ↪→ Am,si such that γi ◦ δi is equal to
the restriction of φmn to An,Yi projected onto Am,si .

Suppose 1m is the unit of Am and qi is the unit of Am,si . Each qi is a central
projection of Am, because Am,si are ideals of Am. Since γ is left-invertible, for
each j ≤ l there is k(j) ≤ k such that An,j ∼= Ek(j) and γ̂j = πk(j) ◦ γ|An,j

is an
isomorphism. Also for j ≤ l let

Xj = {i ≤ k : γ[An,j ] ∩ Ei 6= 0}.

Note that

(1) k(j) ∈ Xj ,
(2) k(j′) /∈ Xj if j 6= j′,
(3) i ∈ Xj ⇔ j ∈ Yi.

Let δ̂j : Ek(j) → (1m−
∑
i∈Xj

qi)Am(1m−
∑
i∈Xj

qi) be the homomorphism defined

by

δ̂j(e) = (1m −
∑
i∈Xj

qi)φ
m
n (γ̂−1

j (e))(1m −
∑
i∈Xj

qi).

Define δ : E ↪→ Am by

δ(e1, . . . , ek) = δ̂1(ek(1)) + · · ·+ δ̂l(ek(l)) + δ1(e1) + · · ·+ δk(ek).

Since each δi is an isomorphism, it is clear that δ is left-invertible. To check
that δ ◦ γ = φmn , by linearity of the maps it is enough to check it only for
ā = (0, . . . , 0, aj , 0, . . . , 0) ∈ An. If γ(ā) = (e1, . . . , ek) then

ei =

{
0 i /∈ Xj

γi(ā) i ∈ Xj

for i ≤ k. Also note that ek(j) = γ̂j(aj). Assume Xj = {r1, . . . , r`}. Then by
(1)-(3) we have

δ ◦ γ(ā) = δ̂j(γ̂j(aj)) + δr1(γr1(ā)) + · · ·+ δr`(γr`(ā))

= (1m −
∑
i∈Xj

qi)φ
m
n (ā)(1m −

∑
i∈Xj

qi) + qr1φ
m
n (ā)qr1 + · · ·+ qr`φ

m
n (ā)qr`

= φmn (ā).

This completes the proof. �
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4.1. AF-algebras with Cantor property are C(2N)-absorbing. Suppose A is
an AF-algebra with Cantor property. Define AC to be the limit of the sequence

(Bn, ψmn ) such that Bn =
⊕

i≤2n−1 An ∼= C2n−1 ⊗ An and ψn+1
n =

⊕
i≤2n φn+1

n , as
shown in the following diagram

(4.1)

...

A3
...

A2
...

A3
...

A1
...

A3
...

A2
...

A3
...

φ3
2

φ3
2

φ2
1

φ2
1

φ3
2

φ3
2

It is straightforward to check that AC ∼= A⊗ C(2N) ∼= C(2N,A).

Lemma 4.6. AC has the Cantor property.

Proof. We check that (Bn, ψmn ) satisfies (D0)–(D2). Each ψn+1
n is left-invertible, by

Proposition 3.2 and since φn+1
n is left-invertible, therefore (D0) holds. Conditions

(D1) and (D2) are trivially satisfied by analyzing the Bratteli diagram (4.1), since
A satisfies them. �

Lemma 4.7. Suppose A is an AF-algebra with Cantor property. Then A⊗C(2N)
is isomorphic to A.

Proof. Identify A⊗C(2N) with AC . Find sequences (mi) and (ni) of natural num-
bers and left-invertible embeddings γi : Ani

↪→ Bmi+1
and δi : Bni

↪→ Ami
such

that n1 = m1 = 1, m2 = 2 and γ1 = ψ2
1 and the diagram below is commutative.

(4.2)

B1 Bm2 Bm3 . . . AC

A1 An2
An3

. . . A

ψ2
1

δ2

ψm3
m2

δ2

ψm4
m3

φ

φ
n2
1

γ1

φn3
n2

γ2

φn4
n3

γ3

The existence of such γi and δi is guaranteed by Lemma 4.5, since each Bi is a retract
of A, by Proposition 4.4 and Lemma 3.5, and of course each Ai is a retract of Bi.
The universal property of inductive limits implies the existence of an isomorphism
between A and AC . �

4.2. Ideals. Let A = lim−→n
(An, φmn ) be an AF-algebra with Cantor property, such

that the Bratteli diagram D of (An, φmn ) satisfies (D0)–(D2) of Definition 4.1. Let
J ⊆ D denote the Bratteli diagram of an ideal J ⊆ A. Put Jn =

⊕
(n,s)∈JAn,s,

which is an ideal (a retract) of An. Then J = lim−→n
(Jn, φmn |Jn

). It is automatic

from the fact that J is a directed subdiagram of D that each φmn |Jn
: Jn ↪→ Jm is

left-invertible and that (Jn, φmn |Jn
) satisfies (D0)–(D2). In particular:
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Proposition 4.8. Any ideal of an AF-algebra with Cantor property also has the
Cantor property.

Here is another elementary fact about C(2N) that is (essentially by Lemma 4.7)
passed on to AF-algebras with Cantor property.

Proposition 4.9. Suppose A is an AF-algebra with Cantor property and Q is a
quotient of A. Then there is a surjection η : A� Q such that ker(η) is an essential
ideal of A.

Proof. It is enough to show that there is an essential ideal J of A such that A/J
is isomorphic to A. In fact, we will show that there is an essential ideal J of AC
such that AC/J is isomorphic to A. This is enough since AC is isomorphic to A
(Lemma 4.7). Let D be the Bratteli diagram ofAC as in Diagram (4.1). Let J be the
directed and hereditary subdiagram of D containing all the nodes in Diagram (4.1)
except the lowest line. Being directed and hereditary, J corresponds to an ideal
J , which intersects any other directed and hereditary subdiagram of D. Therefore
J is an essential ideal of AC and AC/J is isomorphic to the limit of the sequence

A1
φ2
1−→ A2

φ3
2−→ A3

φ4
3−→ . . . in the lowest line of Diagram (4.1), which is A. �

5. Fräıssé categories

Suppose L is a category of metric structures with non-expansive (1-Lipschitz)
morphisms. We refer to objects and morphisms (arrows) of L by L-objects and
L-arrows, respectively. We write A ∈ L if A is an L-object and L(A,B) to denote
the set of all L-arrows from A to B ∈ L. The category L is metric-enriched if for
every L-objects A and B there is a metric d on L(A,B) satisfying

d(ψ0 ◦ φ, ψ1 ◦ φ) ≤ d(ψ0, ψ1) and d(ψ ◦ φ0, ψ ◦ φ0) ≤ d(φ0, φ1)

whenever the compositions make sense. An L-sequence is a direct sequence in K.
A category K is a full subcategory of L if K ⊆ L and L(A,B) = K(A,B) for every

A,B ∈ K. Equipped with the same metrics, K is also a metric-enriched category.
Assume that K is a full subcategory of a metric-enriched category L. Consider the
following conditions.

(L0) L-arrows are monics.
(L1) Every K-sequence has its limit in L.
(L2) Every L-object is the limit of a K-sequence.
(L3) For every ε > 0, for every K-sequence (Bn, ψ

m
n ) with B = lim−→(Bn, ψ

m
n ) in

L, every K-object D and for every L-arrow φ : D → B, there is a natural
number n and a K-arrow ψ : D → Bn such that d(ψ∞n ◦ ψ, φ) < ε.

In the conditions above and later on, by a limit we mean inductive limit (called
also colimit). In the category of C*-algebras or, more generally, Banach spaces, the
limit of a sequence of isometric embeddings always exists and is isometric to the
completion of the union of the corresponding chain of spaces.

Definition 5.1. Suppose K is a metric-enriched category. We say K is a Fräıssé
category if

(JEP) K has the joint embedding property : for A,B ∈ K there is C ∈ K such that
K(A,C) and K(B,C) are nonempty.
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(NAP) K has the near amalgamation property : for every ε > 0, objects A,B,C ∈ K,
arrows φ ∈ K(A,B) and ψ ∈ K(A,C), there are D ∈ K and φ′ ∈ K(B,D)
and ψ′ ∈ K(C,D) such that d(φ′ ◦ φ, ψ′ ◦ ψ) < ε.

(SEP) K is separable: there is a countable dominating subcategory C, that is,
• for every A ∈ K there is C ∈ C and a K-arrow φ : A→ C,
• for every ε > 0 and a K-arrow φ : A → B with A ∈ C, there exist a
K-arrow ψ : B → C with C ∈ C and a C-arrow α : A → C such that
d(α,ψ ◦ φ) < ε.

Theorem 5.2. [8, Theorem 3.3] Suppose K is a Fräıssé category. Then there exists
a sequence (Un, φ

m
n ) in K satisfying

(F) for every n ∈ N, for every ε > 0 and for every K-arrow γ : Un → D, there
are m ≥ n and a K-arrow δ : D → Um such that d(φmn , δ ◦ γ) < ε.

If K is a Fräıssé category, the K-sequence (Un, φ
m
n ) from Theorem 5.2, is uniquely

determined by “Fräıssé condition” (F). That is, any two K-sequences satisfying (F)
can be approximately intertwined (there is an approximate back-and-forth between
them), and hence the limits of the sequences must be isomorphic (see [8, Theorem
3.5]). Therefore the K-sequence satisfying (F) is usually referred to as “the” Fräıssé
sequence. The limit of the Fräıssé sequence is called the Fräıssé limit of the category
K.

Theorem 5.3. [8] Assume K ⊆ L satisfy (L0)-(L3), K is a Fräıssé category and
U ∈ L is the Fräıssé limit of K. Then

• (uniqueness) U is unique, up to isomorphisms.
• (universality) For every L-object B there is an L-arrow φ : B → U .
• (almost K-homogeneity) For every ε > 0, K-object A and L-arrows φi : A → U

(i = 0, 1), there is an automorphism η : U → U such that d(η ◦ φ0, φ1) < ε.

In the following suppose K is a (naturally metric-enriched by the norm) category
of C∗-algebras such that every K-arrow is a left-invertible embedding.

Definition 5.4. Let ‡K denote the category with the same objects as K, but a ‡K-
arrow from D to E is a pair (φ, π) where φ : D → E is left-invertible and π : E → D
is a left inverse of φ. We will denote such ‡K-arrow by (φ, π) : D → E . The
composition is (φ, π) ◦ (φ′, π′) = (φ ◦ φ′, π′ ◦ π). The category ‡K is usually called
the category of embedding-projection pairs or briefly EP-pairs (see [7]) over K.

Definition 5.5. We say ‡K has the near proper amalgamation property if for every
ε > 0, objects A,B, C ∈ K, arrows (φ, π) ∈ ‡K(A,B) and (ψ, θ) ∈ ‡K(A, C), there
are D ∈ ‡K and (φ′, π′) ∈ ‡K(B,D) and (ψ′, θ′) ∈ ‡K(C,D) such that the diagram

B

A D

C

φ′

π

φ

ψ

π′

θ′

ψ′

θ

“fully commutes” up to ε, meaning that, ‖φ′◦φ−ψ′◦ψ‖, ‖π′◦π−θ′◦θ‖, ‖φ◦θ−π′◦ψ′‖
and ‖ψ ◦ π − θ′ ◦ φ′‖ are all less than or equal to ε. We say ‡K has the “proper
amalgamation property” if ε could be 0.
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6. Categories of finite-dimensional C∗-algebras and left-invertible
mappings

In this section K always denotes a (metric-enriched) category whose objects are
(not necessarily all) finite-dimensional C∗-algebras, closed under isomorphisms, and
K-arrows are left-invertible embeddings. For such K, let LK denote the “category
of limits” of K; a category whose objects are limits of K-sequences and if B and
C are LK-objects, then an LK-arrow from B into C is a left-invertible embedding
φ : B ↪→ C. Clearly LK contains K as a full subcategory. The metric defined
between LK-arrows φ and ψ with the same domain and codomain is ‖φ− ψ‖. The
corresponding category of EP-pairs ‡K is defined as in the previous section.

Remark 6.1. If K is a category of finite-dimensional C∗-algebras and embeddings,
then it has the near amalgamation property (NAP) if and only if it has the amalga-
mation property ([4, Lemma 3.2]), namely, with ε = 0. Similarly, the near proper
amalgamation property of ‡K is equivalent to the proper amalgamation property
of ‡K. Also in this case, the Fräıssé sequence (Un, φmn ), whenever it exists for K,
satisfies the Fräıssé condition (F) of Theorem 5.2 with ε = 0. Therefore in this
section (F) refers the following condition.

(F) for every n ∈ N and for every K-arrow γ : Un → D, there are m ≥ n and
K-arrow δ : D → Um such that φmn = δ ◦ γ.

Lemma 6.2. K ⊆ LK satisfy (L0)–(L3).

Proof. Conditions (L0)–(L2) are trivially satisfied. In order to show (L3), suppose
B ∈ LK is the limit of the K-sequence (Bn, ψn+1

n ) and (θmn ) is a compatible left
inverse of (ψn+1

n ). Assume D is a K-object and φ : D ↪→ B is an LK-arrow with
a left inverse π : B � D. For given ε > 0, find n and a unitary u in B such
that u∗φ[D]u ⊆ ψ∞n [Bn] and ‖u − 1‖ < ε/2 (Lemma 2.1). Define ψ : D ↪→ Bn
by ψ(d) = θ∞n (u∗φ(d)u). Then ψ has a left inverse θ : Bn � D defined by θ(x) =
π(uψ∞n (x)u∗) (see the proof of Lemma 3.5 (2)). The condition ‖u−1‖ < ε/2 implies
that ‖ψ∞n (ψ(d))− φ(d)‖ < ε, for every d in the unit ball of D. �

Lemma 6.3. K is separable.

Proof. There are, up to isomorphisms, countably many K-objects, namely finite
sums of matrix algebras. The set of all embeddings between fixed two finite-
dimensional C*-algebras is a separable metric space. Thus, K trivially has a count-
able dominating subcategory. �

Lemma 6.4. Suppose K is a Fräıssé category with Fräıssé limit U and ‡K has the
proper amalgamation property. Every AF-algebra B in LK, is a retract of U . In
particular, U maps onto any AF-algebra in L.

Proof. Suppose (Un, φmn ) is a Fräıssé sequence in K. That is, it satisfies condition
(F) of Remark 6.1 and its limit is automatically U .

Now suppose (Bn, ψmn ) is a K-sequence whose direct limit is B. Pick left inverses
θmn compatible with ψmn and form a ‡K-sequence (Bn, (ψmn , θmn )), whose limit is, of
course, again B. Using (JEP) of K and fixing arbitrary left inverses, find F1 ∈ K
and ‡K-arrows (γ1, η1) : U1 → F1 and (µ1, ν1) : B1 → F1. By (F) and again fixing
arbitrary left inverses, there are n1 ≥ 1 and a ‡K-arrow (δ1, λ1) : F1 → Un1

such
that φn1

1 = δ1 ◦ γ1 (see Diagram (6.3) below).
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Consider the composition map (δ1◦µ1, ν1◦λ1) : B1 → Un1
and (ψ2

1 , θ
2
1) : B1 → B2

and use the proper amalgamation property to find F2 ∈ K and ‡K-arrows (µ2, ν2) :
B2 → F2 and (γ2, η2) : Un1 → F2 such that

(6.1) γ2 ◦ δ1 ◦ µ1 = µ2 ◦ ψ2
1 and ν2 ◦ γ2 = ψ2

1 ◦ ν1 ◦ λ1.

Again using (F) we can find n2 ≥ n1 and (δ2, λ2) : F2 → Un2
such that

(6.2) φn2
n1

= δ2 ◦ γ2.

Combining the equations in (6.1) and (6.2) we have (also can be easily checked in
Diagram (6.3))

φn2
n1
◦ δ1 ◦ µ1 = δ2 ◦ µ2 ◦ ψ2

1 and ψ2
1 ◦ ν1 ◦ λ1 = ν2 ◦ λ2 ◦ φn2

n1

Again use the proper amalgamation property to find F3 ∈ K and (µ3, ν3) : B3 → F3

and (γ3, η3) : Un2
→ F3. Follow the procedure, by finding ‡K-arrow (δ3, λ3) : F3 →

Un3
, for some n3 ≥ n2 such that

φn3
n2
◦ δ2 ◦ µ2 = δ3 ◦ µ3 ◦ ψ3

2 and ψ3
2 ◦ ν2 ◦ λ2 = ν3 ◦ λ3 ◦ φn3

n2

(6.3)

U1 Un1
Un2

Un3
. . . U

F1 F2 F3

B1 B2 B3 . . . B

φ
n1
1

γ1

φn2
n1

γ2

λ1

φn3
n2

γ3

λ2

φn4
n3

λ3

β

ν1

η1

δ1

ν2

η2

δ2

ν3

η3

δ3

ψ2
1

µ1

ψ3
2

µ2

θ21

ψ4
3

µ3

θ32 θ43

α

Let αi = δi ◦ µi and βi : νi ◦ λi. By the construction, for every i ∈ N we have

φni+1
ni
◦ αi = αi+1 ◦ ψi+1

i and ψ2
1 ◦ βi = βi+1 ◦ φni+1

ni

and βi is a left inverse of αi. Then α = limi αi is a well-defined embedding from B
to U and β = limi βi is a well-defined surjection from U onto B such that β ◦ α =
idB. �

7. AF-algebras with Cantor property as Fräıssé limits

Suppose K is a category of (not necessarily all) finite-dimensional C∗-algebras,
closed under isomorphisms, and K-arrows are left-invertible embeddings.

Definition 7.1. We say K is ⊕-stable if it satisfies the following conditions.

(1) If D is a K-object, then so is any retract (ideal) of D,
(2) D ⊕ E ∈ K whenever D, E ∈ K.

In general 0 is a retract of any C∗-algebra and therefore it is the initial object
of any ⊕-stable category, unless, when working with the unital categories (when all
the K-arrows are unital), which in that case 0 is not a K-object anymore. Unital
categories are briefly discussed in Section 9.

Theorem 7.2. Suppose K is a ⊕-stable category. Then ‡K has proper amalgama-
tion property. In particular, K is a Fräıssé category.
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Proof. Suppose D, E and F are K-objects and ‡K-arrows (φ, π) : D → E and (ψ, θ) :
D → F are given. Since φ and ψ are left-invertible, by Proposition 3.2 we can
identify E and F with E0⊕E1 and F0⊕F1, respectively, and find φ0, φ1, ψ0, ψ1 such
that

• φ0 : D → E0 and ψ0 : D → F0 are isomorphisms,
• φ1 : D → E1 and ψ1 : D → F1 are homomorphisms,
• φ(d) = (φ0(d), φ1(d)) and ψ(d) = (ψ0(d), ψ1(d)) for every d ∈ D,
• π(e0, e1) = φ−1

0 (e0) and θ(f0, f1) = ψ−1
0 (f0).

Define homomorphisms µ : E → F1 and ν : F → E1 by µ = ψ1 ◦π and ν = φ1 ◦ θ
(see Diagram (7.1)). Since K is ⊕-stable D⊕E1⊕F1 is a K-object. Define K-arrows
φ′ : E ↪→ D ⊕ E1 ⊕F1 and ψ′ : F ↪→ D ⊕ E1 ⊕F1 by

φ′(e0, e1) = (φ−1
0 (e0), e1, µ(e0, e1))

and

ψ′(f0, f1) = (ψ−1
0 (f0), ν(f0, f1), f1).

For every d ∈ D we have

φ′(φ(d)) = φ′(φ0(d), φ1(d)) = (d, φ1(d), µ(φ(d))) = (d, φ1(d), ψ1(d))

and

ψ′(ψ(d)) = ψ′(ψ0(d), ψ1(d)) = (d, ν(φ(d)), ψ1(d)) = (d, φ1(d), ψ1(d)).

(7.1)

E

D D ⊕ E1 ⊕F1

F

φ′

µ
π

φ

ψ

π′

θ′

ψ′

ν

θ

Therefore φ′ ◦ φ = ψ′ ◦ψ. The map π′ : D⊕E1 ⊕F1 → E defined by π′(d, e1, f1) =
(φ0(d), e1) is a left inverse of φ′. Similarly the map θ′ : D⊕E1⊕F1 → F defined by
θ′(d, e1, f1) = (ψ0(d), f1) is a left inverse of ψ′. Therefore (φ′, π′) : E → D⊕E1⊕F1

and (ψ′, θ′) : E → D ⊕ E1 ⊕F1 are K-arrows. We have

π ◦ π′(d, e1, f1) = π(φ0(d), e1) = d,

θ ◦ θ′(d, e1, f1) = θ(ψ0(d), e1) = d.

Hence π ◦ π′ = θ ◦ θ′. Also

θ′ ◦ φ′(e0, e1) = θ′(φ−1
0 (e0), e1, µ(e0, e1)) = (ψ0(φ−1

0 (e0)), µ(e0, e1))

= (ψ0(π(e0, e1)), ψ1(π(e0, e1))) = ψ(π(e0, e1)).

So θ′ ◦ φ′ = ψ ◦ π and similarly we have φ ◦ θ = π′ ◦ ψ′. This shows that ‡K has
proper amalgamation property. Since K is separable and has an initial object, in
particular, it is a Fräıssé category. �

Therefore any ⊕-stable category K has a unique Fräıssé sequence; a K-sequence
which satisfies (F).

Notation. Let AK denote the Fräıssé limit of the ⊕-stable category K.
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The AF-algebra AK is K-universal and almost K-homogeneous (Theorem 5.3).
In fact, AK is K-homogeneous (where ε is zero). To see this, suppose F is a finite-
dimensional C∗-algebra in K and φi : F ↪→ AK (i = 0, 1) are left-invertible em-
beddings. By almost K-homogeneity, there is an automorphism η : AK → AK such

that ‖η ◦ φ0 − φ1‖ < 1. There exists (Lemma 2.2) a unitary u ∈ Ã such that
Adu ◦η ◦ φ0 = φ1. The automorphism Adu ◦η witnesses the K-homogeneity.

Moreover, since ‡K has the proper amalgamation property, every AF-algebra in
LK, is a retract of AK (Lemma 6.4).

Corollary 7.3. Suppose K is a ⊕-stable category, then

• (universality) Every AF-algebra which is the limit of a K-sequence, is a
retract of AK.
• (K-homogeneity) For every finite-dimensional C∗-algebra F ∈ K and left-

invertible embeddings φi : F ↪→ AK (i = 0, 1), there is an automorphism
η : AK → AK such that η ◦ φ0 = φ1.

We will describe the structure of AK by showing that it has the Cantor property.

Lemma 7.4. Suppose K is a ⊕-stable category, then AK has the Cantor property.

Proof. Suppose AK = lim−→n
(An, φmn ), where (An, φmn ) is a K-sequence, i.e., (An, φmn )

is a left-invertible sequence of finite-dimensional C∗-algebras in K. Since AK is
the Fräıssé limit of K, (An, φmn ) satisfies (F). We claim that (An, φmn ) satisfies
(D0)–(D2) of Definition 4.1. Suppose D is the Bratteli diagram of (An, φmn ) and
An = An,1 ⊕ · · · ⊕ An,kn for every n, such that each An,s is a matrix algebra.

The condition (D0) is trivial since φmn are left-invertible. To see (D1), fix An,s.
Note that since An is a K-object and K is ⊕-stable, we have An ⊕ An ∈ K. Let
γ : An ↪→ An ⊕An be the left-invertible embedding defined by γ(a) = (a, a). Use
the Fräıssé condition (F) to find δ : An ⊕ An ↪→ Am, for some m ≥ n, such that
δ ◦ γ = φmn . Since δ is left-invertible, there are distinct (m, t) and (m, t′) in D
such that Am,t ∼= Am,t′ ∼= An,s. Then δ ◦ γ = φmn implies that (n, s)→ (m, t) and
(n, s)→ (m, t′) in D.

To see (D2) assume D ⊆ An is an ideal of An and M` is a retract of AK and
there is an embedding γ : D ↪→ M`. Suppose An = D ⊕ E for some E . Since K is
⊕-stable, D⊕E ⊕M` is a K-object. Therefore γ′ : D⊕E ↪→ D⊕E ⊕M` defined by
γ′(d, e) = (d, e, γ(d)) is a K-arrow. Then by (F ) there is a left-invertible embedding
δ′ : D ⊕ E ⊕M` ↪→ Am for some m ≥ n, such that

(7.2) δ′ ◦ γ′ = φmn .

Since δ′ is left-invertible, there is (m, t) such that dim(Am,t) = ` and

δm,t = πAm,t
◦ δ|M`

: M` ↪→ Am,t

is an isomorphism, where πAm,t
: Am � Am,t is the canonical projection. Let

φm,t = πAm,t
◦ φmn |D : D → Am,t.

By definition of γ′ and (7.2) it is clear that φm,t = δm,t ◦ γ and that φm,t is also an
embedding. By Lemma 2.3 we have Multφm,t

(D,Am,t) = cMultγ(D,M`) for some
natural number c ≥ 1. Since δm,t is an isomorphism, we have c = 1. This proves
(D2). �
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Next we show that every AF-algebra with Cantor property can be realized as
the Fräıssé limit of a suitable ⊕-stable category of finite-dimensional C∗-algebras
and left-invertible embeddings.

7.1. The category KA. Suppose A is an AF-algebra with Cantor property. Let
KA denote the category whose objects are finite-dimensional retracts of A and KA-
arrows are left-invertible embeddings. Let LA be the category whose objects are
limits of KA-sequences. If B and C are LA-objects, an LA-arrow from B into C is a
left-invertible embedding φ : B ↪→ C.

Lemma 7.5. KA is a Fräıssé category and ‡KA has the proper amalgamation prop-
erty.

Proof. By Theorem 7.2, it is enough to show that KA is a ⊕-stable category. Condi-
tion (1) of Definition 7.1 is trivial. Condition (2) follows from Proposition 4.4. �

Lemma 7.6. KA ⊆ LA satisfy (L0)–(L3).

Proof. Similar to Lemma 6.2. �

Again, Theorem 5.3 guarantees the existence of a unique KA-universal and KA-
homogeneous AF-algebra in LA, namely the Fräıssé limit of KA.

Theorem 7.7. The Fräıssé limit of KA is A.

Proof. There is a sequence (An, φmn ) of finite-dimensional C∗-algebras and embed-
dings such that A = lim−→(An, φmn ) satisfies (D0)–(D2) of Definition 4.1. First note

that by (D0), (An, φmn ) is a KA-sequence and therefore A is an LA-object. In order
to show that A is the Fräıssé limit of KA, we need to show that (An, φmn ) satisfies
condition (F). This is Lemma 4.5. �

Theorem 7.8. Suppose K is a ⊕-stable category. AK is the unique AF-algebra
such that

(1) it has the Cantor property,
(2) a finite-dimensional C∗-algebra is a retract of AK if and only if it is a

K-object.

Proof. We have already shown that AK has the Cantor property (Lemma 7.4). By
Lemma 3.5(2), every finite-dimensional retract of AK is a K-object and every finite-
dimensional C∗-algebra in K is a retract of AK, by the K-universality of AK. If A is
an AF-algebra satisfying (1) and (2), then by definition KA = K. The uniqueness
of the Fräıssé limit and Theorem 7.7 imply that A ∼= AK. �

Corollary 7.9. Two AF-algebras with Cantor property are isomorphic if and only
if they have the same set of matrix algebras as retracts.

8. Surjectively universal AF-algebras

Let F denote the category of all finite-dimensional C∗-algebras and left-invertible
embeddings. The category F is ⊕-stable and therefore it is Fräıssé by Theorem
7.2. The Fräıssé limit AF of this category has the universality property (Corollary
7.3) that any AF-algebra which is the limit of a left-invertible sequence of finite-
dimensional C∗-algebras can be embedded via a left-invertible embedding into AF.
In fact, AF is surjectively universal in the category of all (separable) AF-algebras.
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Theorem 8.1. There is a surjective homomorphism from AF onto any separable
AF-algebra.

Proof. Suppose B is a separable AF-algebra. Proposition 3.7 states that there is an
AF-algebra A, which is the limit of a left-invertible sequence of finite-dimensional
C∗-algebras and A/J ∼= B, for some ideal J . By the universality of AF (Corollary
7.3) there is a left-invertible embedding φ : A ↪→ AF. If θ : AF � A is a left inverse
of φ then its composition with the quotient map π : A � A/J gives a surjective
homomorphism from AF onto B. �

Remark 8.2. Since AF has the Cantor property (Lemma 7.4), it does not have any
minimal projections. Therefore, for example, it cannot be isomorphic to AF ⊕ C.
Hence the property of being surjectively universal AF-algebra is not unique to AF.

Corollary 8.3. An AF-algebra A is surjectively universal if and only if AF is a
quotient of A.

Theorem 7.8 provides a characterization of AF, up to isomorphism, in terms of
its structure.

Corollary 8.4. AF is the unique separable AF-algebra with Cantor property such
that every matrix algebra Mk is a retract of A.

Equivalently, an AF-algebra A is isomorphic to AF if and only if there is a
sequence (An, φmn ) of finite-dimensional C∗-algebras and embeddings such that A =
lim−→(An, φmn ) and the Bratteli diagram D of (An, φmn ) satisfies (D0)-(D2) and

(D3) for every k there is (n, s) ∈ D such that dim(n, s) = k.

Theorem 8.5. AF is the unique AF-algebra that is the limit of a left-invertible se-
quence of finite-dimensional C∗-algebras and for any finite-dimensional C∗-algebras
D, E and left-invertible embeddings φ : D → E and α : D → AF there is a left-
invertible embedding β : E → AF such that β ◦ φ = α.

Proof. Suppose AF is the limit of the Fräıssé F-sequence (An, φmn ). By definition,
α and φ are F-arrows. There is (by (L3)) a natural number n and an LF-arrow
(a left-invertible embedding) ψ : D ↪→ An such that ‖φ∞n ◦ ψ − α‖ < 1. Use the
amalgamation property to find a finite-dimensional C∗-algebra G and left-invertible
embeddings φ′ : E ↪→ G and ψ′ : An ↪→ G such that φ′ ◦ φ = ψ′ ◦ ψ (see Diagram
(8.1)). The Fräıssé condition (F) implies the existence of m ≥ n and a left-invertible
embedding δ : G ↪→ Am such that δ ◦ ψ′ = φmn . Let β′ = φ∞m ◦ δ ◦ φ′. It is clearly
left-invertible.

(8.1)

A1 A2 . . . An Am AF

G

D E

φ2
1 φ3

2

ψ′

φm
n φ∞m

δ

ψ

φ

α

φ′

β

For every d in D we have

β′ ◦ φ(d) = φ∞m ◦ δ ◦ φ′ ◦ φ(d) = φ∞m ◦ δ ◦ ψ′ ◦ ψ(d) = φ∞m ◦ φmn ◦ ψ(d) = φ∞n ◦ ψ(d).



20 SAEED GHASEMI AND WIES LAW KUBIŚ

Therefore ‖β′ ◦φ−α‖ < 1. Conjugating β′ with a unitary in ÃF gives the required
left-invertible embedding β (Lemma 2.2).

For the uniqueness, suppose B is the limit of a left-invertible sequence (Bn, ψmn )
of finite-dimensional C∗-algebras, satisfying the assumption of the theorem. Using
this assumption and then (L3) we can show that (Bn, ψmn ) satisfies the Fräıssé
condition (F) and therefore B is the Fräıssé limit of F. Uniqueness of the Fräıssé
limit implies that B is isomorphic to AF. �

9. Unital categories

The proof of Theorem 7.2 also shows that the category of all finite-dimensional
C∗-algebras (or any ⊕-stable category) and unital left-invertible embeddings has
the (proper) amalgamation property. However, this category fails to have the joint
embedding property (note that 0 is no longer an object of the category), since for
example one cannot jointly embed M2 and M3 into a finite-dimensional C∗-algebra
with unital left-invertible maps.

9.1. The category F̃. Let F̃ denote the category of all finite-dimensional C∗-
algebras isomorphic to C ⊕ D, for a finite-dimensional C∗-algebra D, and unital
left-invertible embeddings. This category is no longer ⊕-stable, however, the same

proof as the one of Theorem 7.2 when the maps are unital, shows that ‡F̃ has

the proper amalgamation property. Therefore F̃ is a Fräıssé category, since C is
the initial object of this category and therefore the joint embedding property is a
consequence of the amalgamation property. The Fräıssé limit AF̃ of this category is
a separable AF-algebra with the universality property that any unital AF-algebra
which can be obtained as the limit of a left-invertible unital sequence of finite-
dimensional C∗-algebras isomorphic to C⊕D, can be embedded via a left-invertible
unital embedding into AF̃. The unital analogue of Theorem 8.1 states the following.

Corollary 9.1. For every unital separable AF-algebra B there is a surjective ho-
momorphism from AF̃ onto B.

Proof. Suppose B is an arbitrary unital AF-algebra. Using Proposition 3.7 we can
find a unital AF-algebra A ⊇ B which is the limit of a left-invertible unital sequence
of finite-dimensional C∗-algebras, such that B is a quotient of A. Thus C ⊕ A is
the limit of a unital left-invertible sequence of finite-dimensional C∗-algebras of the
form C ⊕ D, for finite-dimensional D. By the universality of AF̃, there is a left-
invertible unital embedding from C⊕A into AF̃. Since B is a quotient of A, there
is a surjective homomorphism from C⊕A onto B. Combining the two surjections
gives us a surjective homomorphism from AF̃ onto B. �

Remark 9.2. Small adjustments in the proof of Lemma 7.4 show that AF̃ has the

Cantor property (in the sense of Definition 4.3). In fact, it is easy to check that

AF̃ is isomorphic to ÃF, the unitization of AF. This, in particular, implies that AF

is not unital. Since if it was unital, then ÃF (and hence AF̃) would be isomorphic
to AF⊕C, but this is not possible since AF̃ has the Cantor property and therefore
has no minimal projections.

Definition 9.3. We say D is a unital-retract of the C∗-algebra A if there is a
left-invertible unital embedding from D into A.
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9.2. The category K̃A. If A is a unital AF-algebra with Cantor property (Defi-

nition 4.3), then let K̃A denote the category whose objects are finite-dimensional
unital-retracts of A and morphisms are unital left-invertible embeddings. This
category is not ⊕-stable, since it does not satisfy condition (1) of Definition 7.1.

However, ‡K̃A still has proper amalgamations.

Proposition 9.4. ‡K̃A has the proper amalgamation property.

Proof. The proof is exactly the same as the proof of Lemma 7.2 where the maps are
assumed to be unital. We only need to check that D⊕E1⊕F1 is a unital-retract of
A. By Lemma 3.5, for some m both E ∼= D⊕E1 and F ∼= D⊕F1 are unital-retracts
of Am. An easy argument using Proposition 3.2 shows that D ⊕ E1 ⊕ F1 is also a
unital-retract of Am and therefore a unital retract of A. �

Also K̃A has a weakly initial object (by the next lemma). Therefore it is a Fräıssé
category. Recall that an object is weakly initial in K if it has at least one K-arrow
to any other object of K.

Lemma 9.5. Suppose A is a unital AF-algebra with Cantor property . The category

K̃A has a weakly initial object, i.e., there is a finite-dimensional unital-retract of
A which can be mapped into any other finite-dimensional unital-retract of A via a
left-invertible unital embedding.

Proof. Let Mk1 ⊕· · ·⊕Mkl be an arbitrary K̃A-object. Suppose that {k′1, . . . , k′t} is
the largest subset of {k1, . . . , kl} such that k′i cannot be written as

∑
j≤n
j 6=i

xjk
′
j for

any natural set numbers {xj : j ≤ n and j 6= i}, for any i ≤ t. Since {k′1, . . . , k′t} is
the largest such subset, D = Mk′1

⊕· · ·⊕Mk′t
is a unital-retract of Mk1⊕· · ·⊕Mkl an

therefore a unital-retract of A. Suppose F is an arbitrary K̃A-object. Let (An, φmn )

be a K̃A-sequence with limit A such that A1
∼= F . Then D is a unital-retract of

some Am, so Am = Ḋ ⊕ E , for some E and Ḋ ∼= D.
Fix i ≤ t. Since φm1 is a unital embedding, there is a subalgebra of F isomorphic

to Mn1
⊕· · ·⊕Mns

such that
∑s
j=1 yjnj = k′i, for some {y1, . . . , ys} ⊆ N. We claim

that exactly one nj is equal to k′i and the rest are zero. If not, then for every j ≤ s
we have 0 < nj < k′i. Since φm1 is left-invertible, for every j ≤ s a copy of Mnj

appears as a summand of Am. Also because there is a unital embedding from D
into Am, for some {x1, . . . , xr} ⊆ N we have nj =

∑
j′≤r
j′ 6=i

xj′k
′
j′ for every j ≤ s.

But then

k′i =
s∑
j=1

∑
j′≤n
j′ 6=i

xj′yjk
′
j′ ,

which is a contradiction with the choice of k′i. This means that F = F0 ⊕F1 such

that F0
∼= D and there is a unital homomorphism from D onto Ḟ1. Therefore D is

a unital retract of F . �

Corollary 9.6. The category K̃A is a Fräıssé category and ‡K̃A has the proper

amalgamation property. The Fräıssé limit of K̃A is A.

Proof. The proof of the fact that A is the Fräıssé limit of K̃A is same as Theorem
7.7, where all the maps are unital. �
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10. Surjectively universal countable dimension groups

A countable partially ordered abelian group 〈G,G+〉 is a dimension group if it
is isomorphic to the inductive limit of a sequence

Zr1
α2

1−→ Zr2
α3

2−→ Zr3
α4

3−→ . . .

for some natural numbers rn, where αji are positive group homomorphisms and Zr
is equipped with the ordering given by

(Zr)+ = {(x1, x2, . . . , xr) ∈ Zr : xi ≥ 0 for i = 1, . . . , r}.
A partially ordered abelian group that is isomorphic to 〈Zr, (Zr)+〉, for a non-
negative integer r, is usually called a simplicial group. A scale S on the dimension
group 〈G,G+〉 is a generating, upward directed and hereditary subset of G+ (see
[3, IV.3]).

Notation. If 〈G,S〉 is a scaled dimension group as above, we can recursively pick
order-units

ūn = (un,1, un,2, . . . , un,rn) ∈ (Zrn)+

of Zrn such that αn+1
n (ūn) ≤ ūn+1 and S =

⋃
n α
∞
n [[0̄, ūn]]. Then we say the scaled

dimension group 〈G,S〉 is the limit of the sequence (Zrn , ūn, αmn ). If (ūn) can be
chosen such that αn+1

n (ūn) = ūn+1 for every n ∈ N, then G has an order-unit
u = limn α

∞
n (ūn). In this case we denote this dimension group with order-unit by

〈G, u〉.
An isomorphism between scaled dimension groups is a positive group isomor-

phism which sends the scale of the domain to the scale of the codomain. Given a
separable AF-algebra A, its K0-group 〈K0(A),K0(A)+〉 is a (countable) dimension
group and conversely any dimension group is isomorphic to K0-group of a separable
AF-algebra. The dimension range of A,

D(A) = {[p] : p is a projection of A} ⊆ K0(A)+

is a scale for 〈K0(A),K0(A)+〉, and therefore 〈K0(A),D(A)〉 is a scaled dimension
group. Conversely, every scaled dimension group is isomorphic to 〈K0(A),D(A)〉
for a separable AF-algebra A. Elliott’s classification of separable AF-algebras ([5])
states that 〈K0(A),D(A)〉 is a complete isomorphism invariant for the separable
AF-algebra A.

Theorem 10.1 (Elliott [5]). Two separable AF-algebras A and B are isomorphic
if and only if their scaled dimension groups are isomorphic. If A and B are unital,
then they are isomorphic if and only if 〈K0(A), [1A]〉 ∼= 〈K0(B), [1B]〉, as partially
ordered abelian groups with order-units.

10.1. Surjectively universal dimension groups. The universality property of
〈K0(AF),D(AF)〉 can be obtained by applying K0-functor to Theorem 8.1.

Corollary 10.2. The scaled (countable) dimension group 〈K0(AF),D(AF)〉 maps
onto any countable scaled dimension group.

By applying K0-functor to Corollary 8.4, we immediately obtain the following
result.

Corollary 10.3. 〈K0(AF),D(AF)〉 is the unique scaled dimension group which is
the limit of a sequence (Zrn , ūn, αmn ) (as in Notation above) satisfying the following
conditions:



UNIVERSAL AF-ALGEBRAS 23

(1) for every n ∈ N and 1 ≤ i ≤ rn there are m ≥ n and 1 ≤ j, j′ ≤ rm
such that j 6= j′, un,i = um,j = um,j′ and πj ◦ αmn (un,i) = um,j and
πj′ ◦ αmn (un,i) = um,j′ , where πj is the canonical projection from Zrm onto
its j-th coordinate.

(2) for every n, n′ ∈ N, 1 ≤ i′ ≤ rn′ and {x1, . . . , xrn} ⊆ N ∪ {0} such that∑rn
i=1 xiun,i ≤ un′,i′ there are m ≥ n and 1 ≤ j ≤ rm such that un′,i′ ≤ um,j

and πj ◦ αmn (un,i) = xi.un,i for every i ∈ {1, . . . , rn}.
(3) For every k ∈ N there are natural numbers n and 1 ≤ i ≤ rn such that

un,i = k.

Corollary 10.4. The (countable) dimension group with order-unit 〈K0(AF̃), [1A
F̃

]〉
maps onto (there is a surjective normalized positive group homomorphism) any
countable dimension group with order-unit.

A similar characterization of the dimension group with order-unit 〈K0(AF̃), [1A
F̃

]〉
holds where αmn are order-unit preserving and in condition (2) of Corollary 10.3 the
inequality

∑rn
i=1 xiun,i ≤ un′,i′ is replaced with equality.
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