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Abstract

The theory of graphons comes with a natural sampling procedure, which results in an inho-
mogeneous variant of the Erdős–Rényi random graph, called W -random graphs. We obtain a
limit theorem for the number of r-cliques in such random graphs. We show that, whereas in the
case of dense Erdős–Rényi random graphs the fluctuations are normal of order nr−1, the fluctu-
ations in the setting of W -random graphs may be of order 0, nr−1, or nr−0.5. Furthermore, when
the fluctuations are of order nr−0.5 they are normal, while when the fluctuations are of order
nr−1 they exhibit either normal or a particular type of chi-square behavior whose parameters
relate to spectral properties of W .

Keywords: graphons; inhomogeneous random graphs; limit theorems; subgraph counts; quasiran-
domness

1 Introduction

The purpose of this work is to investigate the distribution of the number of fixed-size cliques
in an inhomogeneous variant of the Erdős–Rényi random graph G(n, p). The study of Erdős–
Rényi random graph (see [9]) is over a half-century old and a central part in the development
of the theory concerns methods for understanding the distribution of subgraph counts. These
“subgraphs” may be large-scale structures, like Hamilton cycles. However, here we are concerned
with counting fixed-sized subgraphs. That is, we want to describe the (bulk of the) distribution of
the random variable that counts the number of copies of a fixed subgraph H as n tends to infinity
or, in probabilistic language, to obtain a limit theorem for the distribution of subgraph counts
of H . This problem has many variants (all copies of H , induced copies of H , joint distribution
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Research partially supported by the Czech Science Foundation, grants GJ16-07822Y and GA19-08740S. With institutional
support RVO:67985807.

1



for several subgraph counts, . . . ), and a variety of tools have been applied to obtain these results:
among others, in [1] using Stein’s method, in [11] using ideas from U-statistics, in [14] using the
method of moments. We refer the reader to [9] for an entire chapter devoted to the topic and for
further references.

1.1 Inhomogeneous random graphs and the statement of our results

At the end of this section, in Theorem 1.1, we state our main result which is a limit theorem for
clique counts in the so-called W -random graphs. Before doing so, let us introduce the background
necessary to this end.

A graphon is a symmetric Lebesgue measurable function W : [0, 1]2 → [0, 1]. Graphons arise as
limits of sequences of large finite undirected graphs with respect to the so-called cut metric (see
[10, Part 3]) and, intuitively, may be thought of as graphs on the vertex set [0, 1] with infinitesi-
mally small vertices and with a W (x, y)-proportion of all possible edges being present in the bi-
partite graph whose color classes are formed by a small neighbourhood of x and of y, respectively.
Graphons come with a natural sampling procedure, which results in an inhomogeneous variant of
the Erdős–Rényi random graph. More precisely, given a graphon W , a random graph G(n,W ) is
a finite simple graph on n vertices, labelled by the set [n] := {1, . . . , n}, which is generated in two
steps: in the first step we draw n numbers U1, . . . , Un independently from the interval [0, 1] ac-
cording to the uniform distribution and we identify their index set with the labels of the vertex set
of G(n,W ); in the second step, each pair of vertices i and j in G(n,W ) is connected independently
with probability W (Ui,Uj). Notice that if W (x, y) is constant, say, p ∈ [0, 1], then G(n,W ) is the
same as the Erdős–Rényi random graph G(n, p). Inhomogeneous random graphs G(n,W ) provide
substantial additional challenges compared to G(n, p). For example, while a standard second mo-
ment argument shows that the clique number of G(n, p) satisfies ω(G(n, p)) ∼ 2 logn

log(1/p) , extending
this formula to G(n,W ) required new techniques, [6]. Further work on inhomogeneous random
graphs so far ([5, 8]) was done in a more general, possibly sparse, model which we mention in
Section 5.

Given graphs H and F , let N(H,F ) denote the number of copies of H in F , i.e., the number of
subgraphs of F that are isomorphic to H , and consider a random variable

Xn(H,W ) := N(H,G(n,W )) .

If H is a fixed multigraph and W is a graphon, the density of H in W is defined as

t(H,W ) := E

 ∏
{i,j}∈E(H)

W (Ui, Uj)

 . (1)

(Notice that if the edge {i, j} has multiplicity m in H , then the corresponding contribution to the
density equals W (Ui, Uj)

m.) When H is a simple graph on k vertices, then the constant t(H,W ) ∈
[0, 1] is the probability that a particular copy of H is present in G(n,W ), which implies

EXn(H,W ) =
(n)k

aut(H)
t(H,W ),
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where aut(H) is the number of automorphisms of H , and (n)k = n · (n − 1) · . . . · (n − k + 1).
Corollary 10.4 in [10] implies that Xn(H,W ) obeys the law of large numbers, that is, for every
ε > 0,

lim
n→∞

P
{
Xn(H,W ) = (1± ε) (n)k

aut(H)
· t(H,W )

}
= 1. (2)

This is one of the key results in the theory of limits of dense graph sequences because it shows that
each graphon can be approximated by finite graphs with similar subgraph densities. In this article
we aim to understand the nature of fluctuations of Xn(H,W ) around its expectation.

Before stating our main result (Theorem 1.1) we need to introduce some definitions about spectra
of graphons and more advanced concepts related to subgraph densities.

1.1.1 Spectrum of a graphon

In this section, we follow [10, Section 7.5], where details and proofs can be found. We work with
the real Hilbert space L2[0, 1]. Suppose thatW : [0, 1]2 → [0, 1] is a graphon. Then we can associate
with W its kernel operator TW : L2[0, 1]→ L2[0, 1] by setting

(TW f)(x) =

∫ 1

0

W (x, y)f(y) dy

for each f ∈ L2[0, 1]. TW is a Hilbert-Schmidt operator that has a discrete spectrum. That is,
there exists a countable multiset, denoted Spec(W ), of non-zero real eigenvalues associated with W .
Moreover, we have that ∑

λ∈Spec(W )

λ2 =

∫
[0,1]2

W (x, y)2 dx dy ≤ 1. (3)

The degree function of a graphon W is the function degW : [0, 1] → [0, 1] defined as degW (x) =∫
y
W (x, y)dy. Observe that if W is regular (that is, degW (x) = d for almost every x ∈ [0, 1]), then

f ≡ 1 is an eigenfunction of TW with eigenvalue d. In this case, let Spec−(W ) be Spec(W ) with the
multiplicity of d decreased by 1. (It can also be shown that all eigenvalues are at most d in absolute
value, but this is not necessary for our proof.)

1.1.2 Conditional densities, Kr-regular graphons and V (r)
W

For a natural number k, we write [k] := {1, 2, . . . , k}. Given an integer ` ≤ k, let
(
[k]
`

)
denote all

`-element subsets of [k]. Let J ∈
(
[k]
`

)
and suppose that H is a graph on the vertex set [k] for which

the vertices from the set J are considered as marked. Given a vector x = (xj)j∈J ∈ [0, 1]J , we
define

tx(H,W ) = E

 ∏
{i,j}∈E(H)

W (Ui, Uj)

∣∣∣∣ Uj = xj : j ∈ J

 . (4)

That is, tx(H,W ) is the “conditional density” of H in W , given that Uj = xj , for j ∈ J . Note that,
when H = Kr is the r-clique, the function x 7→ tx(Kr,W ) depends only on the cardinality of J
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(and not on J itself). In this case, we write K•r and K••r for Kr with one, respectively two, marked
vertices and denote the corresponding conditional densities by tx(K•r ,W ) and tx,y(K••r ,W ).

A graphon W is called Kr-free if t(Kr,W ) = 0 and called complete if W equals 1 almost every-
where.

We say that W is Kr-regular if for almost every x ∈ [0, 1] we have

tx (K•r ,W ) = t(Kr,W ) .

In the case r = 2, we have tx (K•r ,W ) = degW (x), hence K2-regularity coincides with the usual
concept of regularity.

Suppose that W is a graphon and r ≥ 2. Then we define a graphon V
(r)
W : [0, 1]2 → [0, 1] by

setting
V

(r)
W (x, y) := tx,y(K••r ,W ). (5)

So, V (r)
W (x, y) is intuitively the density of Kr’s containing x and y.

Suppose that we have two numbers r ∈ N and j ∈ {0, . . . , r}. We write Kr ⊕j Kr for the (simple)
graph on 2r− j vertices consisting of two copies of Kr sharing j vertices. In particular K2⊕2K2 =
K2.

Let

σ2
r,W :=

1

2((r − 2)!)2

(
t(Kr ⊕2 Kr,W )−

∫
[0,1]2

W (x, y) · tx,y(Kr ⊕2 Kr,W ) dx dy

)
, (6)

where the two marked vertices in Kr ⊕2 Kr are the vertices shared by the r-cliques. We have
σ2
r,W ≥ 0, since

t(Kr ⊕2 Kr,W ) =

∫
[0,1]2

tx,y(Kr ⊕2 Kr,W ) dx dy. (7)

IfW isKr-regular, then V (r)
W is regular, with deg

V
(r)
W

(x) = tr := t(Kr,W ) for almost every x ∈ [0, 1].

Hence, by the remark we made in Section 1.1.1, one of the eigenvalues associated with V (r)
W is tr.

In this case, Spec−(V
(r)
W ) is Spec(V

(r)
W ) with the multiplicity of tr decreased by 1.

1.1.3 Statement of the main result

We are now ready to state our main result. Here and later, Zn
d−→Z denotes the fact that the se-

quence of random variables {Zn}n converges in distribution to the random variable Z.

Theorem 1.1. Let W be a graphon. Fix r ≥ 2 and set tr = t(Kr,W ). Let Xn,r = Xn(Kr,W ) be the
random variable counting r-cliques in G(n,W ). Then we have the following.

(a) If W is Kr-free or complete then almost surely Xn,r = 0 or Xn,r =
(
n
r

)
, respectively.
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(b) If W is not Kr-regular, then
Xn,r −

(
n
r

)
tr

nr−
1
2

d−→ σ̂r,W · Z , (8)

where Z is a standard normal random variable and σ̂r,W = 1
(r−1)!

(
t(Kr ⊕1 Kr,W )− t2r

)1/2
> 0.

(c) If W is a Kr-regular graphon which is neither Kr-free nor complete, then

Xn,r −
(
n
r

)
tr

nr−1
d−→ σr,W · Z +

1

2(r − 2)!

∑
λ∈Spec−(V (r)

W )

λ · (Z2
λ − 1) , (9)

where Z and (Zλ)
λ∈Spec−(V (r)

W )
are independent standard normal and σr,W is defined in (6). (The

series on the right-hand side of (9) converges a.s. and in L1 by Lemma 2.1.)

Part (a) is immediate. Part (b) is obtained by Stein’s method. Let us mention that Part (b) has been
recently reported in [7], using a framework of the so-called mod-Gaussian convergence, devel-
oped in that paper. This concept actually gives much more: firstly, the authors establish normal
behaviour under conditions analogous to those in Part (b) also for other graphs than Kr. Sec-
ondly, they also prove a moderate deviation principle and a local limit theorem in this setting. So
the reason we provide a proof of Part (b) is that ours is much simpler (because we are proving a
weaker statement). But the main emphasis of the paper is on Part (c), which is new and deals with
a regime exhibiting a more exotic behaviour.

1.1.4 When the distribution in Theorem 1.1(c) is normal or normal-free

Recall that a chi-square distribution with k degrees of freedom is the distribution of a sum of
the squares of k independent standard normal random variables. Therefore the series in (9) is
a weighted infinite-dimensional variant of a chi-square distribution. Note that, by (3), this ran-
dom variable has finite variance. Interestingly, very similar distributions appear in [3] and [4],
also in connection with graph limits. That said, the particular setting of our paper seems to be
substantially different from [3, 4].

In view of (9), the only way when in the setting of Theorem 1.1(c) we get a purely normal distribu-
tion is when Spec−(V

(r)
W ) = ∅. Recall that in this case we assume that V (r)

W is regular with degrees
tr. We claim that then V (r)

W = tr almost everywhere. While this can be viewed as a graphon version
of the Chung–Graham–Wilson Theorem on quasirandom graph sequences, here we give a short
self-contained proof. Indeed, we have that

t2r =

(∫
[0,1]

deg
V

(r)
W

(y) dy

)2

=

(∫
[0,1]2

V
(r)
W (x, y) dx dy

)2

Jensen’s inequality ≤
∫
[0,1]2

V
(r)
W (x, y)2 dx dy

(3)
=

∑
λ∈Spec(V (r)

W )

λ2 = t2r .

In order to have an equality in Jensen’s inequality, we must have V (r)
W (·, ·) = tr almost everywhere.

So, the question now is which graphons W lead to a constant graphon V (r)
W . This is a triviality for
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r = 2. For r ≥ 3, we put forward the following conjecture, which was first hinted in concluding
remarks of [12].

Conjecture 1.2. Suppose that r ≥ 3 and V (r)
W is a constant-d graphon for some d ∈ [0, 1], that is, for

almost every (x, y) ∈ [0, 1]2 we have tx,y(K••r ,W ) = d. Then W is Kr-free (when d = 0), or W is the
constant-d1/(

r
2) graphon.

In [12], the case r = 3 of the aforementioned conjecture was shown to be true. Therefore, we know
that if W is a graphon which is K3-regular and not K3-free, then the only way we can get normal
limit distribution in Theorem 1.1(c) is when W is a constant graphon.

Let us now comment on a complementary question: when is the normal term absent in (9)? Look-
ing into (6) and using (7), we see that σr,W = 0 only if W (x, y) = 1 for almost every (x, y) ∈ [0, 1]2

for which tx,y(Kr ⊕2 Kr,W ) > 0. Now, observe that tx,y(Kr ⊕2 Kr,W ) > 0 if and only if
tx,y(K••r ,W ) > 0. That is, our condition says that if a pair (x, y) is “included in Kr’s”, then we
must have W (x, y) = 1. For r = 2 this is equivalent to a condition that the W ∈ {0, 1} almost
everywhere. For r ≥ 3 we have more freedom for constructions. For example, take r = 3, partition
[0, 1] into 6 sets of measure 1

6 each and put one copy of the complete 3-partite graphon on the first 3
sets and another copy on the last 3 sets. Make arbitrarily wild connections between the 1st and
the 4th set, and set the rest of the connections between the first 3 and the last 3 sets to 0. Such a
graphon W is K3-regular but we have σr,W = 0.

Finally, we remark that the limit in (9) is never degenerate. Indeed, suppose the contrary. The
absence of the non-normal term implies V (r)

W ≡ tr ∈ (0, 1]. Note that W (x, y)tx,y(Kr ⊕2 Kr,W ) =

V
(r)
W (x, y)2. We plug the other assumption σ2

r,W = 0 into (6),

0 = t(Kr ⊕2 Kr,W )−
∫
[0,1]2

W (x, y) · tx,y(Kr ⊕2 Kr,W ) dx dy

with convention∞ · 0 = 0 =

∫
[0,1]2

(
1

W (x, y)
− 1

)
· V (r)

W (x, y)2 dx dy = t2r ·
∫
[0,1]2

(
1

W (x, y)
− 1

)
dx dy ,

from which we immediately see that tr = 0 or W ≡ 1, that is, we are actually in the setting of
Theorem 1.1(a).

2 Preliminaries

Asymptotic notation like an = O(bn) and an ∼ bn (equivalently, an = (1 + o(1))bn) is stated with
respect to n→∞.

2.1 Hypergraphs, associated graphs, and further spectral properties

Given r ≥ 2, an r-uniform hypergraph H on vertex set V is a family of r-element subsets (called
hyperedges) of V . In this paper we assume thatH is a multiset (even though a term multihypergraph
would be a more standard term). We omit the words “r-uniform”, when this is clear from the
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Figure 1: Examples of hypergraphs C(r)
� and their associated graphs G�,r.

context. By |H| we denote the number of hyperedges, counting multiplicities. The degree of a
vertex v ∈ V , denoted by degH(v), is the number of hyperedges (counting multiplicities) of H
containing v. We say that H is spanning if V = ∪e∈He. Given a hypergraph H, the graph associated
with H, sometimes also called the clique graph of H, is a graph on the same vertex set, where
each hyperedge S of H is replaced by a clique on S, with multiple edges being replaced by single
ones.

Recall that graph C� is a cycle on � vertices (with C2 being the multigraph consisting of a double
edge). We use a particular hypergraph version of cycles, known as loose cycles. For � ≥ 2, let C(r)

�

be a hypergraph with � edges, each of size r, created from a graph C� by inserting into each edge
additional r−2 vertices, all �(r−2) new vertices being distinct (hence C(r)

2 is a pair of r-sets sharing
exactly 2 vertices). Finally, let G�,r be the graph associated with C(r)

� . Note that G2,r = Kr ⊕2 Kr.
See Figure 1 for examples.

We can express the densities of cycles in the graphon V
(r)
W , defined in (5), in terms of the graphon W

as follows.

t
(
C2, V

(r)
W

)
=

∫

[0,1]2
W (x, y) · tx,y (Kr ⊕2 Kr,W ) dx dy for r ≥ 2 , (10)

and
t
(
C�, V

(r)
W

)
= t (G�,r,W ) , for � ≥ 3 and r ≥ 2 . (11)

Finally, we use the following relationship between the cycle densities and eigenvalues which holds
for any graphon U (see [10, (7.22), (7.23)]).

t(C�, U) =
∑

λ∈Spec(U)

λ� . (12)

2.2 Moment generating functions

As we noted above, the main result of [3] entails a sum of squares of normal random variables,
which is very similar to the one appearing in our Theorem 1.1(c). The following lemma asserts
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that such distributions are well-defined and characterizes their moment generating functions.

Lemma 2.1 (see [3], Proposition 7.11). Let {λj}j be a finite or countable sequence of real numbers such
that

∑
j λ

2
j < +∞ and let {Zj}j be independent standard normal random variables. Define a (possibly

infinite) sum S =
∑
j λj(Z

2
j − 1). Then S converges almost surely and in L1. Furthermore, the moment

generating function MS(t) := E [exp(tS)] is finite for |t| < 1
8

(∑
j λ

2
j

)−1/2
and equals

MS(t) =
∏
j

exp(−λjt)√
1− 2λjt

.

2.3 Stein’s method and the Wasserstein distance

Stein’s method is one of the most powerful tools for obtaining limit theorems. Here, we follow a
survey article by Ross [13]. Recall that a collection of random variables {Zi}ni=1 is said to have a
dependency graph G (on a vertex set [n]) if, for all i ∈ [m], Zi is independent of the random variables
{Zj}j /∈Ni

, whereNi is the neighborhood of i in G (including i itself). So, a dependency graph is not
uniquely determined. But in many scenarios, there exists the dependency graph, which naturally
arises by capturing the obvious dependencies, and which is also minimal among all dependency
graphs.

We shall work with the Wasserstein distance between two random variables, say X and Y , which
we denote dWass(X,Y ). We do not need an exact definition — which the reader can find on
page 214 of [13] — since the only time we shall employ it, we simply use an upper bound on
dWass(X,Y ) in terms of other parameters in order to prove that dWass(Xn, Z) → 0. The important
property of the Wasserstein distance, however, is that for Z ∼ N (0, 1) and a sequence Xn of ran-
dom variables dWass(Xn, Z) → 0 implies that Xn converges to Z in distribution (see Section 3 of
[13]).

3 Proof of Theorem 1.1(b)

We establish asymptotic normality in the setting of Theorem 1.1(b) by using a Stein-method-based
off-the-shelf bound for the Wasserstein distance.

To simplify notation, set dj = t(Kr⊕jKr,W ), for j ∈ [r]. By Jensen’s inequality we have that

t2r =

(∫ 1

0

tx(K•r ,W ) dx

)2

<

∫ 1

0

tx(K•r ,W )2 dx = d1, (13)

where the strict inequality follows from the fact that W is not Kr-regular.

Given a setR ∈
(
[n]
r

)
, let IR be the indicator of the event thatR induces a clique in G(n,W ) and note

that E IR = tr. Let G be the natural dependency graph of the random variables IR, R ∈
(
[n]
r

)
(with

1Note that there is an error in the arXiv version of Proposition 7.1 in [3].
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edges corresponding to pairs R1R2 such that R1 ∩R2 6= ∅). Notice that in G every neighbourhood
NR has the same size D, defined as

D =
r∑
`=1

(
r

`

)(
n− r
r − `

)
= O(nr−1). (14)

Writing YR := IR − tr, we haveXn,r −
(
n
r

)
tr =

∑
R∈([n]

r ) Yi. For disjoint R1, R2, variables YR1
, YR2

are independent, while |R1 ∩ R2| = ` ≥ 1 implies E(YR1YR2) = d` − t2r , and (13) implies σ̂2
r,W =

(d1 − t2r)/((r − 1)!)2 > 0. Hence

σ2
n := Var

(∑
R

YR

)
=

r∑
`=1

(
n

`

)(
n− `
r − `

)(
n− r
r − `

)(
d` − t2r

)
=

(
n

1

)(
n− 1

r − 1

)(
n− r
r − 1

)(
d1 − t2r

)
+

r∑
`=2

O(n2r−`)

∼ σ̂2
r,Wn

2r−1 . (15)

Theorem 3.6 in [13] tells us that for Q := 1
σn

∑
R YR and Z ∼ N (0, 1) we have

dWass(Q,Z) ≤ D2

σ3
n

·
∑
R

E
[
|YR|3

]
+

√
28D3/2

√
π · σ2

n

·
√∑

R

E [Y 4
R].

Crudely bounding each of the sums on the right-hand side by
(
n
r

)
≤ nr, and using (14) and (15),

we obtain that dWass(Q,Z) = O(n−1/2). By the remark we made in Section 2.3, we conclude that

Q
d−→Z. In view of (15) and Slutsky’s theorem,

Xn,r −
(
n
r

)
tr

nr−1/2
=

σn
nr−1/2

·Q d−→ σ̂r,WZ,

which completes the proof.

4 Proof of Theorem 1.1(c)

We employ the method of moments, in the way it is described in Section 6.1 of [9]. For this it is
enough to show that the central moments of Xn,r/n

r converge to the corresponding moments of
the random variable

Y = σr,W · Z +
1

2(r − 2)!

∑
λ∈Spec−(V (r)

W )

λ · (Z2
λ − 1) (16)

from (9), and to verify that the moment generating function MY (t) = E etY is finite in some neigh-
bourhood of zero (so that the distribution of Y is determined by its moments).
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Recall that for a standard normal random variable Z we have MZ(x) = exp
(
x2/2

)
and hence

Mσr,W ·Z(x) = exp
(
σ2
r,W x2

2

)
. On the other hand, Lemma 2.1 tells us that the moment generating

function of the second summand in (16) is
∏
λ∈Spec−(V (r)

W )
exp

(
− λx

2(r−2)!

)
/
√

1− λx
(r−2)! . Since the

moment generating function of a sum of independent random variables equals the product of the
moment generating functions of individual generating functions, it follows that

MY (x) = exp

(
σ2
r,Wx

2

2

) ∏
λ∈Spec−(V (r)

W )

exp
(
− λx

2(r−2)!

)
√

1− λx
(r−2)!

. (17)

As in Section 3, let IR be the indicator of the event that the set of vertices R induces a clique in
G(n,W ). Given an m-tuple (R1, . . . , Rm) of (not necessary distinct) elements of

(
[n]
r

)
, let

∆(R1, . . . , Rm) := E

[
m∏
i=1

(IRi
− tr)

]
. (18)

Then

E
[(
Xn,r −

(
n

r

)
tr

)m]
=

∑
(R1,...,Rm)∈([n]

r )
m

∆(R1, . . . , Rm) . (19)

Let X(n, r,m) ⊂
(
[n]
r

)m
be those m-tuples (R1, . . . , Rm) for which we have |Ri ∩ ∪j 6=iRj | ≤ 1 for

some i ∈ [m]. Suppose now that (R1, . . . , Rm) ∈ X(n, r,m). Without loss of generality, suppose
that |Rm∩∪m−1j=1 Rj | ≤ 1. Assume first that |Rm∩∪m−1j=1 Rj | = 1, say {v} = Rm∩∪m−1j=1 Rj . If we con-
dition on Uv = x, the indicator IRm becomes independent of {IRi : i ∈ [m− 1]}, and hence

∆(R1, . . . , Rm) =

∫ 1

0

E
[
IRm
− tr

∣∣ Uv = x
]
· E

[
m−1∏
i=1

(IRi
− tr)

∣∣ Uv = x

]
dx. (20)

Since W is Kr-regular, we have E
[
IRm
− tr

∣∣ Uv = x
]

= tx(K•r ,W ) = tr for almost every x.
Therefore ∆(R1, . . . , Rm) = 0. An even simpler calculation yields the same conclusion when
|Rm ∩ ∪m−1j=1 Rj | = 0. Hence, we can rewrite (19) as

E
[(
Xn,r − tr

(
n

r

))m]
=

∑
(R1,...,Rm)∈([n]

r )
m\X(n,r,m)

∆(R1, . . . , Rm) . (21)

Every m-tuple (R1, . . . , Rm) can be identified with a spanning hypergraph henceforth denoted
H(R1, . . . , Rm), with vertex set ∪iRi and hyperedge multiset {R1, . . . , Rm}.

Claim 4.1. Suppose that (R1, . . . , Rm) ∈
(
[n]
r

)m
\X(n, r,m). The number v of vertices in the hypergraph

H = H(R1, . . . , Rm) satisfies v ≤ (r − 1)m. The equality is attained if and only if each hyperedge in H
contains exactly 2 vertices of degree 2 and all other vertices have degree 1.

10



Proof of Claim 4.1. Let k be the number of vertices inH of degree 1. Since (R1, . . . , Rm) 6∈ X(n, r,m)
we have that

k ≤ (r − 2)m . (22)

SinceH is spanning, v − k vertices have degree at least 2, and it follows

k + 2(v − k) ≤
∑

v∈V (H)

deg(v) = rm . (23)

Therefore

v
(23)

≤ rm− k
2

+ k =
rm+ k

2

(22)

≤ rm+ (r − 2)m

2
= (r − 1)m,

as required. The second statement of the claim is immediate.

Let F(n, r,m) be those (R1, . . . , Rm) ∈
(
[n]
r

)m
\X(n, r,m) for which the corresponding hypergraph

H(R1, . . . , Rm) has (r−1)m vertices. Since for each (R1, . . . , Rm) ∈
(
[n]
r

)m
\(X(n, r,m)∪F(n, r,m))

we have | ∪i Ri| ≤ (r− 1)m− 1, we can record each element of
(
[n]
r

)m
\ (X(n, r,m)∪ F(n, r,m)) by

an ((r− 1)m− 1)-tuple of [n], and then by specifying to which of the sets R1, . . . , Rm each element
of that ((r − 1)m− 1)-tuple is an element of. Thus,∣∣∣∣([n]

r

)m
\ (X(n, r,m) ∪ F(n, r,m))

∣∣∣∣ ≤ ( n

(r − 1)m− 1

)
· (2m)

(r−1)m−1
= O(n(r−1)m−1) . (24)

Since |∆(R1, . . . , Rm)| ≤ 1, from (21) and (24) we infer

E
[(
Xn,r − tr

(
n

r

))m]
=

∑
(R1,...,Rm)∈F(n,r,m)

∆(R1, . . . , Rm) +O(n(r−1)m−1) . (25)

Now, fix (R1, . . . , Rm) ∈ F(n, r,m) and consider the hypergraph H = H(R1, . . . , Rm). Notice that
when r = 2 then some edges in H may have multiplicities, but this is not the case when r ≥ 3.
Now, replace every r-edge, say R, ofH by 2-edge that consists of the vertices of R having degree 2
and notice that this results in a 2-regular multigraph, that is, a union of vertex-disjoint cycles and
double edges. In particular, this implies that the hypergraph H is a union of vertex-disjoint loose
cycles.

The next claim deals with proper subhypergraphs of a loose cycle C(r)i .
Claim 4.2. For each i, r ≥ 2, for any proper subhypergraph C ⊂ C(r)i , we have E

[∏
Q∈C IQ

]
= t
|C|
r .

Proof of Claim 4.2. We proceed by induction on the number of hyperedges of C. The case when
C = ∅ is trivial. So suppose that C 6= ∅.

Since C is a proper subhypergraph of C(r)i , it contains a hyperedge S ∈ C such that for C− := C\{S}
we have |S ∩

⋃
C−| ≤ 1 (here and below

⋃
H stands for the union of hyperedges of H). Let us

11



deal first with the case |S ∩
⋃
C−| = 1, and let v be the vertex shared by S and

⋃
C−. By the same

argument as in (20), we have

E
[∏

Q∈C IQ

]
=

∫ 1

0

E [IS | Uv = x] · E
[∏

Q∈C− IQ | Uv = x
]
dx,

By the Kr-regularity, we have E[IS | Uv = ·] = tr almost everywhere. Thus, using the induction
hypothesis on C−, we conclude that

E
[∏

Q∈C IQ

]
=

∫ 1

0

tr E
[∏

Q∈C− IQ | Uv = x
]
dx = tr E

[∏
Q∈C− IQ

]
= tr · t|C

−|
r ,

as was needed. The case |S ∩
⋃
C−| = 0 is even simpler:

E
[∏

Q∈C IQ

]
= E [IS ] · E

[∏
Q∈C− IQ

]
= tr · t|C

−|
r .

Let us consider the following set of (m− 1)-dimensional vectors,

Vm :=

{
k = (k2, . . . , km) ∈ Nm−10 :

m∑
i=2

iki = m

}
.

Suppose that k ∈ Vm. Let H(r)
k denote the hypergraph formed by ki copies of C(r)i for each i =

2, . . . ,m. These are precisely the hypergraphs which can be obtained fromm-tuples (R1, . . . , Rm) ∈
F(n, r,m).
Claim 4.3. Suppose that (R1, . . . , Rm) ∈ F(n, r,m) is anm-tuple for whichH(R1, . . . , Rm) is isomorphic
toH(r)

k , for some k ∈ Vm. Then

∆(R1, . . . , Rm) =
m∏
`=2

(
t (G`,r,W )− t`r

)k`
, (26)

where G`,r is the multigraph associated to C(r)` , as defined in Section 2.1.

Proof of Claim 4.3. Suppose first that we are given an `-tuple (Q1, . . . , Q`) ∈ F(n, r, `) for which
H(Q1, . . . , Q`) is isomorphic to C(r)` . We have

∆(Q1, . . . , Q`) =
∑
A⊆[`]

(−tr)`−|A| · E

∏
j∈A

IQj


Claim 4.2 = E

∏
j∈[`]

IQj

+
∑
A([`]

(−tr)`−|A| t|A|r

= E

∏
j∈[`]

IQj

+ (tr − tr)` − t`r

= t (G`,r,W )− t`r .

12



To conclude the proof, observe that ∆(R1, . . . , Rm) can be written as a product of ∆(Rs1 , . . . , Rs`)

over tuples (Rs1 , . . . , Rs`) that form copies of some C(r)` .

Claim 4.4. Fix k ∈ Vm. Then the number of m-tuples (R1, . . . , Rm) ∈
(
[n]
r

)m
for which H(R1, . . . , Rm)

is isomorphic toH(r)
k is equal to

A(n, r,k) :=
m! · (n)(r−1)m∏m

i=2(2i((r − 2)!)i)ki · ki!
. (27)

Proof of Claim 4.4. Suppose first that r ≥ 3. Notice that the number of automorphisms of C(r)i

equals 2i · ((r − 2)!)i, and therefore the number of automorphisms ofH(r)
k satisfies

aut(H(r)
k ) =

m∏
i=2

(2i((r − 2)!)i)ki · ki! .

As there are (n)(r−1)m

aut(H(r)
k )

copies ofH(r)
k on n vertices and each copy corresponds to m! many m-tuples

(R1, . . . , Rm), the proof of the case r ≥ 3 is complete.

The case r = 2 is similar; the only difference being that the number of automorphisms of C(2)2

equals 2 and that each copy of H(2)
k corresponds to m!

2k2
many m-tuples. The details are left to the

reader.

We now resume to expressing E
[(
Xn,r − tr

(
n
r

))m], which we abandoned at (25). Recall that Gi,r
is the graph associated with C(r)i . Adding (26) and (27), we get

E
[(
Xn,r − tr

(
n

r

))m]
=

∑
k∈Vm

A(n, r,k)
m∏
`=2

(t(G`,r,W )− t`r)k` +O(n(r−1)m−1)

= n(r−1)mm!
∑

k∈Vm

m∏
`=2

(
t(G`,r,W )− t`r

2`((r − 2)!)`

)k` 1

k`!
+O(n(r−1)m−1) .(28)

For ` = 2, 3, . . ., let us write

d` :=
t(G`,r,W )− t`r

2`((r − 2)!)`
. (29)

Let us consider a formal power series

f(x) :=
∞∏
`=2

exp(d`x
`) = exp

( ∞∑
`=2

d`x
`

)
. (30)

Claim 4.5. For each m ∈ N, as n → ∞, the quantity 1
m! · E[

(
Xn,r − tr

(
n
r

))m
/(n(r−1)m)] converges to

the coefficient of xm of f(x).
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Proof. We have

JxmKf(x) = JxmK

(
exp

( ∞∑
`=2

d`x
`

))
= JxmK

 ∞∑
j=1

1

j!
·

( ∞∑
`=2

d`x
`

)j
multinomial theorem =

m∑
j=1

1

j!

∑
k∈Vm:k2+...+km=j

(
j

k2, · · · , km

)
·
m∏
`=1

dk``

definition of the multinomial coefficient =
m∑
j=1

∑
k∈Vm:k2+...+km=j

m∏
`=1

dk``
k`!

=
∑

k∈Vm

m∏
`=2

dk``
1

k`!

by (28) = lim
n→∞

1

m!
·
E
[(
Xn,r − tr

(
n
r

))m]
n(r−1)m

.

Since |di| ≤ ((r − 2)!)−i, the series
∑
i dix

i has positive radius of convergence and f(x) can be
expanded as power series around zero. In the next claim, we show that the function f equals the
moment-generating function MY defined in (17).
Claim 4.6. In some neighbourhood of zero we have MY (x) = f(x).

Proof of Claim 4.6. Using (12) and (10) we infer that

d2 =
t(Kr ⊕2 Kr,W )− t2r

4((r − 2)!)2

=
t(Kr ⊕2 Kr,W )− t(C2, V

(r)
W ) + t(C2, V

(r)
W )− t2r

4((r − 2)!)2

=
t(Kr ⊕2 Kr,W )− t(C2, V

(r)
W )

4((r − 2)!)2
+

1

4((r − 2)!)2

∑
λ∈Spec−(V (r)

W )

λ2

=
σ2
r,W

2
+

1

4

∑
λ∈Spec−(V (r)

W )

(
λ

(r − 2)!

)2

and for ` ≥ 3, using (12) and (11) that

d` =
t(G`,r,W )− t`r

2`((r − 2)!)`
=

=
t(C`, V

(r)
W )− t`r

2`((r − 2)!)`
=

1

2`

∑
λ∈Spec−(V (r)

W )

(
λ

(r − 2)!

)`
.
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Plugging this into
∑∞
`=2 d`x

` and interchanging the order of summation (using Fubini’s theorem
and assuming |x| is small enough), we obtain

log f(x) =
∞∑
`=2

d`x
` =

σ2
r,Wx

2

2
+

∑
λ∈Spec−(V (r)

W )

∞∑
`=2

1

2`

(
λx

(r − 2)!

)`

=
σ2
r,Wx

2

2
− 1

2

∑
λ∈Spec−(V (r)

W )

(
ln

(
1− λx

(r − 2)!

)
+

λx

(r − 2)!

)
.

By exponentiating the above expression we easily obtain (17), thus completing the proof.

We are now finished with the proof of Theorem 1.1(c). Indeed, Claims 4.5 and 4.6 imply that the
mth moment of (Xn,r −

(
n
r

)
tr)/n

r−1 converges to m!JxmKf(x) = m!JxmKMY (x) = EY m for every
m. Hence the method of moments (see Theorem 6.1 and the preceding comments in [9]) implies

that
Xn,r−(n

r)tr
nr−1

d−→ Y .

5 Concluding remarks

In this paper, we initiated the study of limit theorems for subgraph counts in G(n,W ). However,
the results in this paper should be considered just first steps, and the area offers several obvious
open problems.

- Extend Theorem 1.1 to other graphs than Kr. Recall the counterpart to Part (b) was worked
out in [7], so the only challenge left is Part (c). The calculations seem to be substantially more
involved in this case.

- Extend Theorem 1.1 to sparser regimes. Recall that the Central limit theorem for the count of
Kr in G(n, p) holds for p = p(n) as small as p(n) � n−2/r−1, that is, as long as the expected
number of Kr’s tends to infinity.

- To model a sparse inhomogeneous random graph, fix a scaling factor p = p(n) → 0. Then
G(n, p ·W ) is a sparse inhomogeneous random graph model. Note that then the assumption
that W is bounded from above by 1 can be relaxed somewhat. For example, the giant com-
ponent of G(n,W/n) is studied in [5]. So, we suggest to obtain limit theorems for the count
of Kr (or other graphs) in G(n, p ·W ).

- To strengthen the limit theorem obtained here to a local limit theorem. Even in the case of
G(n, p) this is a very difficult problem which was resolved only recently, [2]. Note that such
a local limit theorem would have additional restrictions. For example, if W is a graphon
consisting of two constant-1 components of measure 1

2 each, then Xn,2 is almost surely of
the form

(
k
2

)
+ n−

(
k
2

)
, k ∈ N, that is, not all integer values can be achieved.
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