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1 Introduction

The fluid-structure interaction (FSI) systems are multi-physics systems that include a fluid and solid
component. They are everyday phenomena with a wide range of applications (see e.g. [2, 3, 25]
and references within). Equations that arise from modeling such phenomena are typically nonlinear
systems of partial differential equations with a moving boundary. The simplest model for the
structure is a rigid body. The position of the rigid body at any given time moment is determined
by two vectors describing the translation of the center of the mass and the rotation around the
center of the mass. Therefore the dynamics of the rigid body is described by a system of six
ordinary differential equations (Euler equations) describing the conservation of linear and angular
momentum. In this paper we consider the system where the rigid body moves in 3D container
filled with an incompressible Newtonian fluid. The fluid flow is governed by 3D incompressible
Navier-Stokes equations. The fluid domain is determined by the position of the rigid body, and the
Navier-Stokes equations are coupled with a system of Euler ODE’s via a dynamic and a kinematic
coupling condition. The dynamic coupling condition is just the balance of forces acting on the rigid
body. On the other hand, there are several possibilities for the kinematic coupling condition. The
no-slip condition, which postulates equality of the fluid and structure on the rigid body boundary,
is the most commonly used in the literature since it is the simplest to analyze and it is a physically
reasonable condition in most situations. However, in some situations, e.g. in close to contact
dynamics (see e.g. [17, 18]) or in the case of rough surfaces (see e.g. [5, 19, 23, 26]), the Navier’s
slip coupling condition may be more appropriate since it allows for the discontinuity of the velocity
in the tangential component on the rigid body boundary. In this paper we treat both cases.

The fluid-rigid body system has been extensively studied in the last twenty years and some
aspects of the well-posedness theory are now well established. The existence of the unique local-
in-time (or small data) solution is known in both two and three dimensions, and for both the slip
([1, 36]) and the no-slip ([9, 16, 24, 34]) coupling. On the other hand, it is known that a weak
solution of Leray-Hopf type exists and is global in time or exists until the moment of contact
between the boundary of the container and the rigid body for the slip ([6, 17]) and the no-slip case
([8, 10, 11, 21, 29]). The question of the uniqueness of weak solution is still largely open. Even
for the classical case of the 3D Navier-Stokes equations, the uniqueness of the Leray-Hopf weak
solution is an outstanding open problem (see e.g. [14]). However, there are classical results of
weak-strong uniqueness type (see e.g. [14, 30, 35]) which state that the strong solution (defined in
an appropriate way) is unique in the larger class of weak solutions. For the Navier-Stokes equations
the weak solutions that satisfy Serrin’s conditions are regular ([31]). In this paper our goal is to
extend these classical weak-strong uniqueness type results to the case of a fluid-rigid body system
under the condition that the rigid body does not touch the boundary of the container. Namely, in
the case of contact it has been shown that weak solutions are not unique ([13, 33]) because there
are multiple ways of extending the solution after the contact.

There are not many uniqueness results in the context of weak solutions to FSI problems. The
principal difficulty is that different solutions are defined on different domains so classical techniques
do not apply. The uniqueness of weak solution for a fluid-rigid body system in the 2D case was
proven in [20] for the no-slip case and in [4] for the slip case. To the best of our knowledge,



the only results of weak-strong uniqueness type in the context of FSI are [7, 12, 15]. In [12] the
authors studied a rigid body with a cavity filled with a fluid, while in [7] the requirement for strong
solution is higher, namely the time derivative and the second space derivatives of the fluid velocity
are in L?. In [15] the authors studied a rigid body with a cavity filled with a compressible fluid.
Based on relative entropy inequality the weak-strong uniqueness property is shown. Our result is a
generalization of these results, and also of the 2D uniqueness result.

The paper consists of three sections and an appendix. The first section is the Introduction, in
which we formulate the problem, give the literature review and state the main results. In the second
section we give the proof of the main result, while the technical results are stated and proved in the
Appendix. In the third section we extend the result to the case where the rigid body and the fluid
are coupled via the Navier’s slip condition.

1.1 Formulation of the problem

Let Q C R? be a bounded domain which represents a container containing a fluid and a rigid body,
and let Sy C () be a connected open set representing the rigid body at the initial time ¢ = 0 with the
center of mass denoted by qg € 2. The motion of the rigid body is fully described by two functions
q:[0,7] = R®and Q: [0,7] — SO(3), where SO(3) is the 3D rotation group, representing the
position of the center of mass and the rotation around the center of mass at the time moment t,
respectively. More precisely, the trajectories of all points of the body are described by an orientation
preserving isometry

and at time ¢ the body occupies the set
St)={xecR®: x=B(t,y), yecS=DB(.5), t€0,7]. (1.2)

The fluid domain at time ¢ is defined by Qg(t) = 2\ S(¢). Since the domain changes in time, we
introduce the following notation:

(0,7) x Qp(t) = |J {t} x Qw(1). (1.3)
te(0,T)
The fluid flow is described by the incompressible Naiver-Stokes equations:

GO e V) = 2D L 0.1) x 2000, (1.4

where u is the fluid velocity, op is the fluid density, T = —pl + 2uDu is the fluid Cauchy stress
tensor, Du = % (Vu + (Vu)T) is the deformation-rate tensor, p is the fluid pressure and p > 0 is
the fluid velocity.

The Eulerian velocity of the rigid body is given by:

ug(t,x) := 0,B(t,B7'(t,x)) = a(t) + P(t)(x — q(t)) for all x € S(t), (1.5)
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where a(t) = d(t) is the translation velocity and P(t) = Q'(¢)Q” is the angular velocity. The
angular velocity P is a skew—symmetric matrix and therefore there exists a vector w = w(t) € R?
such that

P(t)x = w(t) x x, Vx € R®. (1.6)

The equations of motion for the rigid body follow from the Newton’s second law and are given
by

d2
maed =, L o7 1.7
%(JQJ):fT } Hl( ) )7 ( . )

where m is the mass of the rigid body, f;, and fr are the total force and torque acting on the rigid
body, respectively, and J is the inertial tensor defined as follows:

T= [ osllx = a@)PL - (x— at) ® (x - q(t) dx.
S(t)

1.1.1 The coupling conditions

The fluid and the rigid body are coupled via dynamic and kinematic coupling condition. The
dynamic boundary condition is just the balance of forces and torques:

f, = — /aS(t) T(u,p)ndy(x), fr=-— /as(t)(x —q(t)) x T(u, p)ndy(x), (1.8)

where n = n(¢,x) is the unit interior normal on 0S(t) at point x € 0S(t). For the kinematic
condition we will consider two different possibilities. The first one is the no-slip condition which
says that the fluid and the rigid body velocities are equal at the rigid body boundary:

u(t,x) =ug(t,x), xe€aS(t), te(0,7). (1.9)

The other possibility is the Navier’s slip boundary condition which allows for the discontinuity of
the tangential component of the velocity along the interface:

(u(t,x) — us(t,x)) -n(t,x) =0

Bus(t,x) —u(t,x)) - 7(t, x) = T(u(t, x))n(t, x) - 7(t,x) } x €05(t), t€ (0,T),  (1.10)

where § > 0 is the friction coefficient at 0S(t), and 7 is a unit tangent on 0S(t). The system is
complemented with the no-slip boundary condition u = 0 on 02 and the initial conditions. For
simplicity of notation, we assume or = 4t = m = 1 and pg is constant.

To summarize, we consider the following fluid-rigid body interaction problem:



find (u,p,q,w) such that

du+ (u-Viu=div(T(u,p)), | .

divu £ 0 ) (T, 2) } n UtG(O,T){t} x Qp(t),

d2

dth_ fas u,p nd’y( ), i (0.T

i (Jw) fas(t (t)) x T(u,p)ndy(x) 0.7), (1.11)
u=q +wx(x— Q)a on Ueom{t} x 95(),
u=0 onof,

U(O, ) = Uy n Qu q(O) = o, q/(O) = Qy, (.LJ(O) = Wo.

The version of problem (1.11) where the no-slip condition (1.9) is replaced by the slip condition
(1.10) we will call problem (1.11)gp.

In order to state the main result of this paper, we need to define the notion of weak solutions
to the system (1.11). First we define a function space:

V(t)={ve H} Q) :divv =0, Dv =0in S(t)}. (1.12)

Remark 1.1 The condition Dv = 0 in S(t) is equivalent to the condition that v(t) is rigid on S(t),
i.e. there exist a(t),w(t) € R3 such that v(t,x) = a(t) + w(t) x (x —q(t)), x € S(t).

Definition 1.1 The couple (u, B) is a weak solution to the system (1.11) if the following conditions
are satisfied: 1) The function B(t,-) : R> — R® s an orientation preserving isometry given by the
formula (1.1), which defines a time-dependent set S(t) = B(t,S), and the corresponding Eulerian
velocity ug is given by (1.5).

2) The function u € L*(0,T;V (t)) N L>(0,T; L*(Q)) satisfies the integral equality

/ / (-9 + (u®u) :]DM/J—Q]D)u:D¢}dxdt—/u(T)¢(T)dx:—/uoz,b(())dx
o Jowsw Q Q
(1.13)

which holds for any test function ¥ € H*(0,T;V (t)).

The weak formulation of (1.11)g, is defined in Section 3. Now we can state the main result of this
paper.

Theorem 1.1 Let (uy,B1) and (uy,Bs) be two weak solutions corresponding to the same data.
Assume that d(S;(t),0Q) > &;, i = 1,2, for some constants 6; > 0. If uy satisfies the following
condition:

3 2
u, € L'(0,75L°(Y))  for some s,r such that —+—-=1,s € (3,4o9] (1.14)
s T

then
(ubBl) = (112732)-

ot



Remark 1.2 The condition (1.14) is called a Prodi-Serrin condition.

An analogous Theorem is also proven for (1.11)g;, in Section 3. These results are generalizations
of the uniqueness results from [4, 7, 20]. Namely, in [7] an analogous result is proven, but with
a higher regularity assumption on uy (uy € H*(0,7; L*(Q2) N L*(0,T; H*(Q2))). In [20] and [4] the
2D problem was studied for the no-slip and slip case, respectively. The uniqueness result for the
2D case follows from Theorem 1.1 by interpolation in the same way as in the classical case of the
Navier-Stokes equations.

The basic strategy of the proof of Theorem 1.1 is analogous to the Navier-Stokes (see e.g.
[14, 30]). However, there are considerable technical difficulties connected to the fact that the domain
of the fluid is not known apriori and therefore we have to compare solutions which are apriori given
on different domains. Another difficulty connected to the moving domain is the construction of an
appropriate regularization operator (in the time variable). Namely, since the domain is changing,
we cannot use the standard convolution operator. Finally, due to the change of variables we have
to work with the weak formulation that includes the pressure variable. It seems that the existence
of pressure connected to a weak solution of a fluid-rigid body system is missing from the literature.
Even though for the proof of the weak-strong uniqueness result it is enough to prove the local-in-
time existence of regular pressure (Proposition 2.2), we included the existence result for the pressure
associated to the weak formulation, Theorem 2.1, because we believe it might be of the independent
interest. The main technical tool is a non-local change of variable (see e.g. [16, 34]) based on the idea
from [22] which can be used to map the problem to a fixed domain and to construct an appropriate
regularization operator.

2 Proof of the main theorem

In this section we give the main steps of the proof of Theorem 1.1, while proofs of some technical
results are relegated to the Appendix. Let (u;,B;), i = 1,2, be weak solutions satisfying the
assumptions of Theorem 1.1, and let p;, a;, w; be the pressure, the rigid body translation velocity
and the rigid body angular velocity connected to the solutions (u;, B;). Then, by (1.5) the isometry
B;, which defines the domain of the rigid body S;(t) = B;(t, Sy), is given by

Bi(t,y) = ai(t) + Qi()(y — o),

where q;(t) = a;(t) and Q}(t)QF (t) = P;(¢) for the skew-symmetric P;(¢) associated with w;(t) (see

(1.6)):
Pi(t)x = w;(t) x x, VxR

We denote the fluid domain by Q% (t) = Q \ S;(t).

In order to compare two solutions, we need to transfer them to the same domain (see Figure 1).
We follow the strategy from [7, 20] and use a local version of vector change of variable introduced
for the study of the Navier-Stokes equations in a non-cylindrical domain by Innoue and Wakimoto
[22]. The construction of the local change of variable is now standard in the study of fluid-rigid
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Figure 1: Change of coordinates

body problems (see e.g. [16, 34]) so we omit it here and recall the basic facts in the Appendix,
Section A.1.

Let X;, ¢ = 1,2 be the change of coordinates associated to the solution (u;, p;, a;, w;) in the way
described in the Appendix A.1, and let us denote the corresponding inverse transformation by

Yi(t, ) = Xi(t, )7 i=1,2.
In the neighborhood of S;(t), i = 1,2, the transformations are rigid:
Xi(t,y) = q(t) + Q;i(t)(y — qo), i=1,2

Y (t,x;) = qo + Q] (¢)(xi — aqi(t)), 1=1,2

We define transformations X; and X in the following way:
5&.1 (t, Xg) = Xl(t, Y2 (t, Xg)),
X2(t7 ) - il(t ')_1

In the neighborhood of S;(¢) the transformations )N(, are also rigid and are therefore given by
the following expressions:

X1 (t, %) = qi(t) + QT(t)(x2 — q2(t))  in the neighborhood of Ss(t),
Xs(t,x1) = qo(t) + Q(t)(x1 — qu(t)) in the neighborhood of Sy(t),

where Q = Q,Q7.



Finally, we define the transformed solution of the second solution (us, ps, as, ws):

U2 (t, X1) = VXlit, Xg(t, X1>>UQ (t, Xg(t, X1>>,
Pg(t, Xl) = pg(t, X2<t, X1)),
Ay(t) = QT (t)ay(t), (2.1)
Qu(t) = Q" (Hwo (1),
T(UQ(tv Y)v PQ(ta Y)) = QT(t)T(Q(t)UQ(tv Y)a PQ(tv Y))Q(t)
It is easy to see that this change of variable is a volume preserving diffeomorphism, hence the

transformed velocity satisfies the divergence-free condition (details can be found in Appendix A.1
or [22], Proposition 2.4.).

2.1 Weak formulation of the transformed solution

The first step in the proof is to derive the weak formulation satisfied by the solution (Usg, P5, As, £25).

Since the transformed solution will depend on P, because of (A.3), first we prove the existence
of the pressure attached to a weak solution defined in Definition 1.1. Such result is standard in the
theory of incompressible Navier-Stokes equations but is, to the best of our knowledge, missing from
the literature on fluid-rigid body systems.

Theorem 2.1 Let (uy, By) be a weak solution to the system (1.11). Then, there exist functions p?
and p? such that for all ¢ € H}((0,T) x Q) satisfying De = 0 in Sy(t), the following equality holds:

/ /u2 atgadxd7+/ / {(ue ®uy) : Ve — Vuy : Ve }dxdr
O (2.2)

= / / (p5 div dyp — pi div ) dx dr.
0o Ja2

Remark 2.1 Below we will write py = 0;p2 + p?, where Oyp? is the distributional derivative (with
respect to t) of p3. As in the Navier-Stokes case (see [32]), since Q3(t) is a Lipschitz domain we
have that p, € W=12°(0,T; L*(Q%(t))).

We postpone the proof of Theorem 2.1 till Section 2.2 because in the proof we will use a similar
construction as the one used in the next proposition where we transform the weak formulation (2.2)
to the domain Q%(t) via the transformation X,. We emphasize that the proof of Theorem 2.1 does
not use Proposition 2.1 and the proof is postponed just for the presentational purposes. By (2.1)
we have:

U,(t,x1) = VX, (, Xo(t, x1)) ua(t, Xo(t,x1)), e us(t,xo) = VXo(t, X4 (t,%2)) Us(t, X1 (¢, %2)).
Proposition 2.1 Let

(F(), ) = (L= AU, + MU, + NUp, ), ¥ip € H(24(1)),
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and

@ xx =0QTQx,
where £, M, N are linear operators corresponding to the terms defined by (A.7), (A.9) and (A.8),
respectively. Then, the transformed solution (Usy, Ps, Ao, €ds) satisfies the equality

T T
/ /U2-6t¢dx1dt+/ / ((u1®U2):v¢T— VUZ:V¢>dx1dt
0 Q 0 QL@
T
_/ / (Uy—w) - VU, -4 dx, df (23)
0 JaL(t)
T

=/(ﬂﬂ#ﬁ»&+<@%¢>+éaém&xew—und%~%ﬂm&

0
for any test function 1p € H}(0,T;Vi(t)), i.e. v is rigid on Si(t):

’(/J(t,X1> = ’(/)h(t) + ¢w X (Xl — Q1(t)) fOT’ X1 € Sl(t)
Here G is a bounded linear functional on HE(0,T; Vi (t)) corresponding to the term defined by (A.10).

Proof. Let 1 be a test function defined on the domain (0,7) x QL(t), i.e. ¥ € H(0,T;Vi(t)).
Then, we can take the test function ¢ in (2.2) to be defined in the following way:

o(t,x2) = VX4 (t, %) 9 (t, X1 (t,%2)).

We now compute the transformation of all terms in the weak formulation by using properties of
the local change of variables. Here we present the main steps, while details are given in Appendix,
Section A.3.

The fluid time-derivative term.
/ IM@WZ/‘ (Uy - 04 — MUy - 4p + V(Us - 1) - 6X,)
Q%(1) Qp(1)

:/Ql()(Ug-at’l/)—./\/lUQ-qp—i—(ul—UQ).VU2.¢+(u1_U2)®U2:VQ/JT)7 (2.4)

where M is the operator defined in (A.9). In the last equality we used 9,X; = u; — U, on 954 (t)
and div(0;X;) = 0 (by construction of the transformation X, see [16]).

Convective term.

WU : Vo =U,®U,: Vil — NU, - 9, (2.5)



where N is the operator defined in (A.8). Combining (2.4) and (2.5) we get the following expression
for the acceleration term:

/ Uy - Op + up @ Uy - Vipdxy
2
Q% (7)

= U2'8t¢—MU2'¢+(U1—U2)'VU2'¢+(111—U2)®U21V’¢T
Qp(7)

+U,®@U,: VT — NU, - ¢ dxg

= Us- 0+ (g — Uy) - VU - + 1y @ Uy : VapT — (MU, + NU,) - pdxy. (2.6)
Qp(7)

Pressure term. For the pressure term we define

<§P2,¢> ::-/OT/QQ (T)p2~div<p. (2.7)

Since Xy, Xy € W(0,T; C*(12)), and

T
<p'—>// p2-dive
0 Q%(T)

is a bounded linear functional on HJ(0,T; V5(t)), it is easy to see that GP, is a bounded linear
functional on H} (0, T; Vi (t)).

Diffusive term.

/ ( )Vu2 : Ve = (LU, ), (2.8)

where

(LU, 4 / (3 70,00~ Y " Th0 U, + S g T U0, — 3 gHToTY, Usap,).
ijk ijkl igkl ijklm
(2.9)
By subtracting the Laplace operator from (2.9) we get

(L= A)Us, o /
Qp(7) z]k

+ / DI VA SR RIS / > MR, Uy,
Qp(r)

ijkl z]klm

— 01)0; U3 Oti — / ng’F{;@kU?%
QF(T

ijkl

Rigid body terms: At the solid domain Sy(t) we have
uz(t,x2) = Q1) Us(t, X (1, x2)),
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p(t,x2) = Q(t)¥(t, il(t7x2))7

which implies

d ~
up - 9p = QU2 - —(Qy) = QU - (U + QA% + Q43 X,)
= U, Q"Q% + U, - dyp + Uy - Vpi, Xy
=Us-@ x v+ Uy 9 + Uy - Vpd, X,

Since 8&21 =u; — U, and ¥ (¢, x) is rigid, i.e.

PY(t,x1) = Pp(t) + Yo () x (x1 —aqu(t)) = Vex; =1, X xq,

it follows

UQ'atQOZUQ'(:}X¢+U2'8t’l,b+U2'(’(pr(ul—U2>)

:_&/)XUQ‘T,[)+U2‘8t¢+u1XU2'¢W_U2XU2‘¢QJ. (210)
—_——
=0
|

As in [7], the following two lemmas give us estimates for the additional terms in (2.3).
Lemma 2.1 For the vector w the following equality holds:
w(t) = Qa(t) — wi(t), vt € [0, Tp).
Lemma 2.2 The following estimate holds:
1F )| 20, by < C (lar — Asflr2ry + [lwi — Dol lr20m)) »

where C depends only on |[Us|| 20,111 1)) @nd [[Uzl| (o020 (1)) -

Proof.
As in [7], we get that

HX2N(75, D = 1dllyss oy < Clllar — azl[r2(0,m) + lw1 — wallr2001)), tel0,Ty). (2.11)
10X (t, )llwr@pe) < Cllan(t) —ag(t)] 4 [wr(t) = wa(?)]),

and

195(t) = disllwrc ey +  197(8) = Gijllwrecipay) + IT5 ) |2 @r @)
< C(Hal - A2||L2(0,T) + ||w1 - Q2HL2(O,T))7 te [07T}'
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Now, for ¥ € H'(Qr(7)) we obtain the following estimates:

| (£ — A)Us, 1 |_‘/Q Z — 8;1)0; U 0pp; — /Q > g0, U

z]kl

/ nglrglUQa 1/"3 / lemF] Uz’l/)]
Qp(T

zgkl zjklm

(197 () = Sisll Lo (@n(ry + 75 O] oo @) 02l 1 0 (r )||%b||H1 (Qr (7))
C(llar — Azl 220,y + ||<-°’1 Qo[ 20,01 Uzl 51 @) 1% 51 (0 (-

<C
<

which are different from results in [7]. The other terms are the same as in [7].

2.2 Existence of an associated pressure - proof of Theorem 2.1

Since the pressure is defined only on the fluid domain, we decompose the test space in two parts
which correspond to the fluid part and the rigid body part. More precisely, we introduce the
following decomposition of the space V (t):

Lemma 2.3 Let V(t) be the function space defined by (1.12). Then
V(1) = H,(S() + W(S(t),

where

H ,(S)={po€ HIQ) : divpy=01in Q, pg=0inS},
W(S) ={paw € H () : divpaw =01inQ, paw=a+wx(x—q) in S}

Proof. Let ¢ € V(t). There exist a,w € R? such that ¢ = a +w x (x — q(t)) in S(t). Let
Paw € Hi(Q) be an extension of ¢ such that div Paw = 0. The construction of such a function can

be found in [16], Section 3. It follows that .. € W(S(t)) and @y := ¢ — Paw € ﬁéU(S(t)) . i

Now we see that the equation (1.13) for us is equivalent to the following couple of equations:

/ / Uy - 0y(Pa o dxdt —|—/ /2 (uy ®u2) : Vipaw — Vuy : Vgoa,w) dxdt =0 (2.12)
Q

for any test function a ., € Hy(0,T; W (S(t))), and

T T
/ / u, - Oppg dxdt +/ / ((u2 ®up) : Vg — Vuy : Vgoo) dxdt = 0, (2.13)
Q4(t) 0 Ja2

for any test function ¢, € Hg(0,T; Hy ,(S(t))).
We derive the pressure equation from (2.13). The construction of pressure will be divided into
the following steps:

12



1. Transform the equation to the fixed domain Qp = Q%(0).
2. Construct the pressure on the fixed domain.

3. Transform the equation back to the domain Q%(t).
Step 1. Let ¥ € H'(0,T;V (t)). We define U and ¢ such that
Uy (1, %) = VY2 (£, %) U(t, Ya(t,x3)),

p(t,x9) = VXo(t, Yo(t, x2)) ¥(t, Yo(t, x2)),

where X5, Y5 are coordinate transformations defined in Section 2.1. Note that the transformation
of the velocity does not preserve divergence, but the transformation of the test function does.

By similar calculation as in Section 2.1, we get

| weapdn= [ (U-aw+V(U-9)-0Y5) dy - (MU.).
Q%(t) Qp

/ U, ® Uy : Vi dx, = VY, VY (U U): vy! dy + <J\7U,1p> ,
Q%(t)

Qp

Vi : Ve dx, = (£U, ),
0% (1)
where M ,./\A/' and L are functionals defined by

<A7U,¢> - /Q (VUO,Y, + VXL, VYIU) - 4 dy,

(Fuw)i= [ (L rieuuw) dy,
F o ikl

(LUw)i= [ (30" 0Uabt 3 U0y~ 3" g U0~ 3 T, Uses) dy.
QF 4k ijkl ijkl ijklm
Since 0, Y, = —U in 95y, it follows
/ U - Oip+us®@uy : Ve — Vu, : Vipdxs
%(7)
- / (U-04p +V(U-9) - 9,Y, + VY, VYL (U U) : VopT) dy — <EU + MU - NTU, ¢>
Qp

:/ (U-at¢—U-VU-¢—(JI—VYQVY:,T)U@U:V¢T)dy—<EU+M\U—A7U,¢>.
Qp

13



Now we define
(F).w) = (E- MU+ MU-NU9), o e H)(Q).
where

AU = [ VUve = [ 350000

QF ik

Finally, we get the equation

T T
/ U-@tzpdydt—/ / (U.VU~¢+(H—VY2VY§)U®U:V¢T+ VU:Vzp)dydt
0 QF 0 QF

- / (F(t), (1)) dt,
(2.14)

for all ¢ € HJ(0,T;V (t)).
Step 2. On a fixed domain we can use the existing results on the existence of pressure. We use the
construction from ([27] Section 7.3.2.C or more generally Theorem 3 in Section 7.3.4).

By putting the test function ¥(t)1(x) in the equation (2.14) we get

T
| (00, 0+ (P, 0) dt =0 Vo € ()90 € CROLT)
0
where

(F.d)a, = |

QF

(U-VU~¢+(H—VY2VY2T)U®U:V¢T+ VU:V¢)dy+<ﬁ(t),¢>.

It is easy to show that F' € L'(0,T; W, "*(Qr)). Therefore, Theorem 3 from [27] implies that there
exist functions py and p; such that

T T
0 0 Qp
for all ¢ € C§°((0,T) x Qp), ie.

T T
/ U-@ﬂ,bdydt—/ / (U-VU-¢+(H—VYQVY2T)U®U:V¢T+ VU:v«p)dydt
0 QF 0 QF

T T
~ [ [ [ (podivom - pidive) ax
0 0 JQp
for all ¢p € C§°((0,T) xQr). More precisely, if Q is a Lipschitz domain, then py € L>(0, T; L*(Qr))
and p; € L3(0,T; L2(p)) (see [27] Section 7.3.2.C and 7.3.2.E). Therefore, by density, the equation
above is true for all ¥ € Hj((0,T) x QF).
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Step 3: Finally, we transform the equation back to the domain Q%(¢) by using the same transfor-

mations as in Step 1:
U(t7 Y) = VXQ(t7 Y)T Us (tu X2<t) Y))7

P(t,y) = VYo (t, Xo(t,y)) p(t, Xo(t,y)),
P2(t,x2) = pi(t, Ya(t,x5)), i=0,1.

Since our transformation preserves the divergence (see [22]), i.e.
divy ¢ = divy, @,
it follows

T T
/ / (po div oy — py divep) dy dt = / / (pg div 0y — pidiv ) dx, dt.
0 Qp 0 Q%(t)

For the remaining terms, all calculations from the first step are the same, so we get

T T
/ / Us - Oyp dxdt + / / ((u2 ®up) : Ve — Vuy : Vgo) dxdt
0 Jax@®) 0 JOL(t)

. (2.16)
= / / (p div Oy — pi div ),
0 JOL(t)

for all p € HL((0,T) x Q4L(t)).
By summing (2.12) and (2.16) we get it

T T
/ / U, - Oy dxdt +/ / ((112 ®ug) : Ve — Vuy : Vgo) dxdt
o Ja 0 JOL()

T
= / / (p div Opp — pi div ),
0 JOL(t)

for all o € HY((0,T) x Q) such that D¢e = 0 na Sy(t).

2.3 Regularization procedure

Since weak solutions are not regular enough to be used as a test functions, first we need to construct a
regularization in the time variable. The usual convolution is not applicable because the solutions are
defined on a moving domain. Therefore we again use the change of variable. A similar construction
can be found in [4]. Let X and Y be transformations described in Section A.1. First we define the
Lagrangian velocity:

u(t,y) = VY(t, X(t,y)) u(t, X(t,y)).

15



Then we extend the function u to the time interval (—oo, +00):

§(t)u(0,-), t<0,
u(t,-) — < ult,-), 0<t<T, (2.17)
§)a(T,:), t=T,

where £ € C3°(R) is such that 0 < ¢ < T and £ = 1 in an open neighbourhood of [0, T7.

Now, we define a regularization of u (convolution in time) by

+oo
w(t,y) = / Jult — 5) (s, y) ds, (2.18)

e}

where j, € C5°(R) is an even, positive function with support in (—h, k), and fj;o Jn(s)ds = 1.
This is a divergence-free function defined on the Lagrangian domain. At the end, we transform
it back to the Eulerian domain:

u(t,x) = VX(t,Y(t,x))u"(t, Y(t,x)). (2.19)

This is again a divergence-free function and we will use it as a test function. Moreover, since

" — uin L*(H"Y)
(see Galdi[14], Lemma 2.5), it is easy to see that

u" — uin L*(HY).
Moreover, we will need the following version of the Reynolds transport theorem:
Lemma 2.4 Let u,v € L*(0,T; H'(Q(t))) such that u(t),v(t) € L*(Q(t)) for all t € [0,T], and
let X be the coordinate transformation from the fized domain € to the time-dependent domain )(t)

described in Section A.1. Let u" denote the reqularization defined by (2.17)-(2.19). Then, for all
t€ 10,17,

t
/ / (u OVt v 8tuh) dxdr
0 JQ(r)
t
— —/ / V(v-u)- -0 Xdxdr —i—/ v(t) -u(t)dx — / v(0) - u(0) dx,
0 JO(r) Qp(t)

when h — 0.

The proof is technical and we postpone it till Appendix A.2.
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2.4 Regularity of pressure

For the proof of Theorem 1.1 we need to prove more regularity on pressure py in order to define
and estimate <QP2,u1>. Because of the structure of the operator G it will be suffice prove the
local-in-time regularity of po, i.e. the regularity of tp,.

First we present two auxiliary lemmas:

Lemma 2.5 Let uy be a weak solution to the problem (1.11) satisfying Prodi-Serrin condition
(1.14). Then,

1
(uy - V)ug € LP(0,T5 LI(52)), :5—{—57 =4,

=
N =
[}
=

Proof. Since uy € L"(0,T; L*(2)), Vuy € L*(0,T; L*(2)), 2 + 2 =1 and s € (3, 0], it follows from
Holder’s inequality that

T z T
e oclrnn = ([ e o) < [
0 Q 0

T
< /0 Hu2Hps(Q)HV‘12HJZz(Q) dt < Hu2Hpr(o,T;Ls(Q))HVU2HZ£2(Q,T;L2(Q))>

P
q

IV ) dt

for

111
ro 2 p

1 1 1 1
ue LP(0,7; LY () —+-=1 S+-=1
p p q q
with the estimate
o 3 2
Hu”Lp’(o,T;Lq’(Q)) < C”uHL"O(O,T;LQ HuHL2 (0,T;H(Q)) a=1- s

Proof. We have u € L*(0,T; L°(Q)) N L>(0,T; L*(2)) by the Sobolev inequality. Now, by the
interpolation inequality, we conclude

T T
190y = [ et < [ (e i)t = 1l s Pl R

forozzl—%:%and
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Proposition 2.2 Let (uy, p2) be a weak solution given by Theorem 2.1, and let uy satisfy the Prodi-
Serrin condition. Then the following reqularity result holds:

1 1
tuy € LP(0, T; W31(QL(1))), touy, tVpy € LP(0,T; LY(Q1(1))), =3 + -,

Proof.

The proof of Proposition 2.2 is analogous to the proof of [20, Proposition 3] and [4, Lemma 3.
The only difference is that we consider the 3D problem and therefore use the integrability of the
convective term given by Lemma 2.5. Therefore we will give a sketch of the proof without going
into details. The idea is to consider the following auxiliary system:

dévv =0 ree } in Uyeo,n {t} x Qr(t),
d2
dt2q_ Jos T(V,p nd’)’( ) LT
Y ) 2.21
dt (Jw) = fas (t)) x T(v,p)ndvy(x) ( ) ( )
v=q twx (x— q), on Uen {t} x 9S(1),
v=0 ono,

and get the corresponding regularity result which is given by the following lemma:

Lemma 2.7 There exists a unique solution to the system (2.21) on [0,T] with vanishing initial
data which satisfies

v € LP(0, T, W>1(Q3(t))), 0yv,Vqe LP(0,T; LY(Q%(1))).

The proof of Lemma 2.7 is analogous to the proof of [20, Lemma 4]. Now, Proposition 2.2 is a
consequence of Lemma 2.7 and the following:

1. Every strong solution of (2.21) is a weak solution of (2.21) (see [20, Lemma 5)).
2. The pair (tug, tpe) is a weak solution of (2.21) with g = uy — t(uz - V)uy (see [20, Lemma 6]).
3. A weak solution of (2.21) is unique (see [20, Lemma 8]).

The next step is to use the regularity result from Proposition 2.2 to estimate the difference
between the pressure terms.

Lemma 2.8 Let P, be the transformed pressure defined by (2.1)s and G the operator defined by
(2.7). Then,

(@-V)Pp //Q (G — V)P, - 4 dx dt (2.22)
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for all xp € LP(0,T; LY (Q4(t))), where G is an operator defined by (A.10). In addition, we have
estimate

H(Q - V)P2HLP(0,T;L<1(Q}(7§))) <C (||a1 - AZHLW(O,T) + ||‘-"1 - Q2HL°°(0,T)) HtVPQHL@(O,T;LQ(Q;@)))-
(2.23)

Proof. By Proposition 2.2, tVpy € LP(0,T; LY(Q%(t))), which implies that tV P, € LP(0, T; L1(Q%L(t))),
so we can write

<(g V PQ, / / P2 - div 72} dX2 dt = / / Vpg 72} dX2 dt
92 QQ
= / / VX, VXIVP, ¢ dx; dt = / / (G — V)P -1 dx, dt
0 JoL) 0 JOL(@®)

for all p € C2((0,T) x Q2(t)) and for ¢ = VXL

By the construction of 5(1, it can be shown that

(see [20, 7] and Appendix A.1) and then we get the following estimates:

9, X (¢

N ey = ClE — A+ () = 0)), Ve € 0.7)

HVX1

H%(vi&lvi{ —1)

’ (VXT —1)

1~
+ H;(VXI—]I)

Loo(QL.(¢) L ((0.T)xQ (1)) Loo(QL.(t)

< C(lay(t) — Ag(t)] + |wi(t) — Qa(t)))

Lo (Qp(1)

<C ] a,vX,

Lo (Qp(1))

Now, we have

T
It

X, VX! —]I)VPQ-z,b‘ dx, dt

<[ L

< C/ (lax(t) = A (@)] + [wi(t) = Qo)) [V Pl pagay o) 1l Lo 1,y A (2.24)
< C(l|lar = Asgl|p~o,r) + lwr — Qallzeo.1) 1TV Pall oo 191 1 1o

(VX vXT - ‘ |tV Py 4| dx; dt

for all p € C§°((0,T) x QL(t)). By a standard argument, we conclude that
T ~ ~
/ / (X, VXT — ) VP, -1 dx, dt
0 JakL(t)

is well defined for all ¢ € L¥'(0,T; LY (QL(t))) and the estimate (2.23) holds. u
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Remark 2.2 Following from Lemma 2.6 and the embedding H*((0,T) x QL(t)) — L>(0,T; L*(Q)),
identity (2.22) is true for all ¥ € H'(0,T;Vi(t)).

Remark 2.3 By taking the test function (1 — sgni.(- —t))yp for any fized t € (0,T) and letting
e — 0, it can be shown that the transformed solution (U, Py, As, o) satisfies the following equality:

/O/§2U2.at¢dX1dT+A[21 T)((U1®U2)3V¢T_VUQIV'lp)XmdT
- / / <U2 - ul) : VUQ : ’lp dX1 dr — Ug(t) . ’(b(t) dX1 (225)
0 JOL(r QL)
= /0 <F(T),’¢(T>>d7’-\/g;pll0’QZ)(O)Xm—F/O /SI(T)(:’ X Ug-'gb—ul X Ug-'gbwdxldT,

for any test function 1p € H'(0,T;Vi(t)), where

(F(t),9) = (£ = A)Up + MU, + NU; + (G = V)Po, ), Vop € H(Q(1)).

Lemma 2.9 Let (u,a,w) = (u; — Uy, a; — Ay, wy — Qo) be the difference of two weak solutions.
Then the following estimate holds:

t

Qp ()

t
+2 [ VAR ayr dr
0

for all e > 0.
Proof. Lemma 2.6 and (2.24) imply the following estimates:

t
(G — V)P udx dr| < C/O (lax (1) = Ax(7)| + w1 (7) = Qa(7) ) [TV P2l Loy, () 10l Lo 1, 7y A

Qp(7)
<C/ 17V PellFatoy oy 190203 gy + 1TV PellFaag ¢y I1l1 7201y A7

The second equality follows from identity 2bur < b**p? + b*(1=*)p2. To estimate the first term we
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use the interpolation (with a = ]% = %) and the Young’s inequality

l @
/ ||TVP2||Lq (QL(1) ”uHLq QL(r dT<C/ ”TVP?HLQ QL(r “ ”L2 QI)T) H HHI(QI
Ta 2 2
< C [ 1PV Py oy o o+ / Il oy 47
0

t
2 2
- C/ HTVP2HLq Ql )) ”u”L2(Q}T(7)) dT+€/O HuHHl(Q}w(T)) dr

t
2
<C [ (1Pl iy + 1) Il ) 07

0
2
+5/0 Va2 1 () d7-

2.5 Transformed Energy Type Equality

In this sub-section we prove an energy-type equality which is satisfied by the transformed solution:

Proposition 2.3 The transformed solution (Usy, Py) satisfies the energy equality

1 t t
§||U2(t)||%2(9) + / / (UQ — ul) : VUQ : U2 XmdT + / VUQ . VUQ XmdT
0 Q}?(T) 0 JQp(r) (226)

t
1
—— [Py ar + 3l

Before proving Proposition 2.3 we need the following lemma.

Lemma 2.10 Letu € L"(0,T; L*(Q(t))) and v,w € L*(0,T; H (2(t))) such thatv € L>(0,T; L*(2(t))).
Then

n

1 T n T 1
2 2s r (s
s [ vowen = [ 19wl ) ([ e ) ([ M Il )

where C' depends only on n, r and s.

Proof. The proof of this lemma is standard and analogous to the proof for the cylindrical domain
(see e.g. [14], Lemma 4.1). Since we are working in a moving domain, we reproduce the argument
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here for the convenience of the reader. By Holder’s inequality we get

T T
[ vevwe] <0 [ 19wl Ve
0 Jow 0

Ls(0(1))

T 1 T .
2 2
= C(/O HVW”%?(Q('*))) (/0 IVl 2oyl %s(g(t))> : (2.27)
where o 1 . .
2 " p i § s p 2 sT 92 n v ( ( )) ( )

The interpolation inequality gives

IVl < ClIVIE @IVl 200

where

and (2.28) implies that

Now we estimate

T
2 2
(] Wil

Ls(ﬂ(t»)

N

IN

T 1
a 2
O [ v v Il

[e3

T s/, (7 2 =
2 2 —a
ol A M O A T Ay

n

T 23 T 2s 82;
([ W)™ (| Waen i)~ 229
0 0

IN

IN

Now (2.27) and (2.29) with

give

1 T n T 1
2 2s r T
s [ vevwen | <o L 19w ) ([ men ) ([ Mmoo )

Proof of Proposition 2.3.
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Applying the test function ¥ = U in (2.25), we get

¢ ¢
/ / U, - 9,Uldxdr +/ / (w ® Uy : V(U)T — VU, : VUL ) dxdr
0 QL(r

// U, —uw) VU, - dedT—/U2 ) - Uk(t) dx
Ql

:_/O(F()Uh( ))dT—/QuO U0, dx+/ /S @ x Uy - Uy —uy x Uy - Q2 dx, dt,
(2.30)

where

o = [ gt = @ (0T ()2 ds.

Then Lemma 2.4, with u = v = U,, implies
1

t I 1
/ U2-8tU’2‘—>——/ / V(UQ-U2)~u1+—/ v(t) - u(t) —-/ v(0) - u(0)
0 Jal(n QL (r 2 Javw 2 Ja

F

1 1
// weU;: (Ug)T+§/ Us(t) - Un(t) —5/ S
QL (r QL) Qp
(2.31)

when h — 0. On the solid domain S;(7) we have
! 1/ 1 1
/ Ug'atUgH——/ V(UQ'UQ)'U1+—/ U2(t>U2(t> ——/ Up - Up
0 Jsi(r) 2 )0 Jsin 2 Jsi) 2 /s
! 1 1
= —/ / (VUgUg) -up + 5/ Ug(t) : U2<t> — 5/ Up - Up
0 SI(T) S1(t) So

! 1 1
:/ / (QQ XUQ)'H1+§ U2(t)U2<t> —5/ Up - Up
0 Sl(T) S1(t) So
! 1 1
= —/ / (u1 X UQ) . QQ —+ 5/ Ug(t) . U2<t> — 5/ Up * Ug (232)
0 51(7’) Sl(t) So
when h — 0, since

Ug(t,Xl) = Ag(t) + Qg(t) X (X1 — ql(t)) = VUgX = —y X X.
From above ((2.31),(2.32)) and using Lemmas 2.1, 2.2, 2.8 and 2.10 we can pass to the limit in all
terms in (2.30). We obtain

t
/ / U1XU2 QQ——/UQ U2 // VUQ—/ / (Ug—u1)~VU2-U2
S1(r) QL(r) 0 JOL(r)

t 1 ~
:/<F(T>,U2(7')>d7'——/UO'UQ(O,')dX+/ / U.JXUQ'UQ—H1><U2'QQ.
0 2 Jo 0 Jsin T "
(2.33)

(=}
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2.6 Closing the estimates

Now we have all ingredients to finish the proof by following the steps from the analogous proof in
the Navier-Stokes case, see e.g. [14]. Let us denote

(w,p,a,w) = (ug — Uy, p; — Pp,a; — Ag,wq — Qo).

Since u; is a weak solution, it satisfies the energy inequality

1
O+ [ [, [P axar < Sl (2.34)

From Proposition 2.3 it follows that the solution U, satisfies the following energy-type equality:

—HUg HL2 Q) +/ / U2 — 111 VUQ U2 dXdT+/ / |V111|2dXd7'
QL(r QL(r

(2.35)
= - [F@. ) dr + ol
We take the test function U} in the weak formulation for u;:
t t
_/ / u, - 0,U" dxd7+/ / (ul ®u, : V(UHT — Vu, VUQ) dxdr
0o Ja 0 Jal(r) (2.36)

+/Qu1(t)-Ug(t)dXZLUO‘Ug(Oa‘)dX-

Then we take the test function u? in the weak formulation for Uy (2.25):

//UQ 8tu1d:xd7'—// (Wi ®Uy: V(u})" — VU, : Vu} ) dxdr
Ql

/ / U2 — Ll1 VUQ }11 dxdr + / Ug(t) : u}f(t) dx
Ql

:_/<F<T>, (7 )>d7+/ (0, dx—/ / & x Uy — uy x Uy -l dy dt.
0 0 s1( o3)
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Now (2.36) + (2.37) gives

t t
- / / (Uy - 0pul + 1y - 9,UL) dx dr — / / (w®@Uy: Vu})" +u ®@u : V(UL dxdr
0 JQ QL

t t
+// (VUzzvu’;+vu1;VUg)dxdr+// (Uy — uy) - VU, - uf dx dr
Q}r 0 Q};.(T)

+ [ (U)o + o) Ub0) ax

t T
:—/(F(T),u}f(r)>d7'+/u0-( "(0,-) + U0, ))dx—/ / @ x Uy-ul —uy x Uy - whdx, dt.
0 Q 0 JSi()

Let h — 0. Lemma 2.4 implies

t
/ / (UQ . atulf + u - (9tUg) — —
0 JQp(7)

on the fluid domain, and

// U2 8tu1 +u - 8tU
S1(7)

(2.38)

t
/ V(UQ . 111) - Up —f—/ Ug(t) . ul(t) — / Up - Uo
Qp(t) Qp

Ql
/ / ul ® U, : V(ul)T +uQu V(UQ)T>
Q5(1)

Us(t) - wi(t) —/Q up - ug (2.39)

Qp ()

/ - V(Ug uy)-u; + Us(t) - wi(t) _/Souo'uO

Sh(t)

= —/ /S ( )(VU2Tu1 + VU{UQ) - Uq
0 1(T

o RCRNO —/uo u

// QQXU1+W1XU2)
Si(r

Ug() 1(2) —/ o - Ug

+ Us(t) -uy(t) — /s up - Ug (2.40)

S1 (t)
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on the solid domain. From above, by using Lemmas 2.1, 2.2, 2.8 and 2.10, we get

// 2Vu, : VUngdT+// (Ug —uy) - VU, - uldXdT+/u1() Us(t)dr
Ql Ql

(2.41)
/(F( (T dT+/ |u0|2dx—/ / w x Uy - uy dx; dt.
0 Si(r
Now we take (2.34) + (2.35) — (2.41):
la(t) 220y + / / |Vu|2dxd7+/ / 0 VU, - udxdr
U (2.42)

g/(F( )) dr —|—/ / w x Uy -udx; dt.
Si(r

By integration by parts the last term on the left side of this identity is written as

t t
// u-VUg-u:—// u-Vu- U, (2.43)
0 JQp(r) 0 JQp(t)

and it can be estimated by using Lemma 2.10 (for v =w = u; — Uy and u = Uy):

T
‘ / / u-Vu- U,
0 JOaL(t)

1

T -1, T 1
<c( [ ) ([ Tl )
0 0
T T
< [l € [ vl
0 0

Ls
T T
<e / IVl + C / lulZ(1+ [0
0 0

Le)-

The right-hand side of (2.42) can be estimated by using Lemmas 2.1, 2.2 and 2.9.
By putting all estimates together we conclude:
t
Ts 1r ) + 9 / / |V‘l.l|2
L3 (Q (7)) o Jarm

la(t) 220y + / / wP<C / () 20y (1 + [Ua(7)]
Qp (1)

Taking ¢ = 1 we get

Lo(@b(ry) A7

t
la(®)Zz ) < C/O (T[22 0y (1 + 02(r)]17

Now by the integral Gronwall’s inequality we conclude that u = 0.
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3 Slip boundary condition

Since the theory for weak and strong solutions for the fluid-rigid body problem with slip coupling
condition is already developed, the weak-strong uniqueness can be proved along the same line as
in the no-slip case. Therefore, here we just formulate the result and outline the differences. First,
recall the definition of the problem (1.11)g;p:

Find (u,p,q,Q) such that

gi:,l I (_uo V)u = div (T(u,p)), } i Qp(t) x (0.7),
dd:gq = fas(t) ,p)nd’y(x), i
dt (Jw) fas (t)) x T(u, p)ndy(x) 0.7)

(u—u,) -n=0, ﬁ(us—u)~7':']1"(u,p)n~7' on 05(t),
u(0,.)=u inQ  q0)=qy d0)=a, w(0)=uw

The existence of a weak solution to system (1.9)g;, was proven in [6]. Here we just briefly recall the
definition of a weak solution. We define function spaces for the weak formulation:

VOAQ)={ve L*(Q): divv=0 inD(Q), v-n=0 in H20Q)},
BDo(Q) ={v e L'(Q): DveM(Q), v=0 on 00},
where M () is the space of bounded Radon measures,
KB(S)={v e BDy(Q): DveL*NNS5), Dv=0 ae. on S, divv=0inD'(Q)},

where S C  is open connected with the boundary 95 € C?.

Definition 3.1 The pair (B, u) is a weak solution to the system (1.11)g, if the following conditions
are satisfied:

1) The function B(t,-) : RY — RY s a orientation preserving isometry (1.1), which defines a
time-dependent set S(t) by (1.2). The isometry B is compatible with u = ug on S(t): the functions
q, Q are absolutely continuous on [0, T and satisfy the equalities (1.5) and (1.6).

2) The function u € L*(0,T; KB(S(t))) N L>(0,T;V%*(Q)) satisfies the integral equality
T
/ dt/ {uyp; + (u®u) : DY — 2Du : DY }dx
0 OIS (1)

T
—/ up(0, ) dx + / dt Blus —ug)(ps —pr)dy, (3.1)
Q 0 aS(t)

which holds for any test function v such that

¥ e LNV(0,T; KB(S(t))),
W, € L*0,T; L*(Q\0S(t))), P(T,-) = 0. (3.2)
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By uy(t,-), ¥s(t,-) and us(t,-), Ps(t,-) we denote the trace values of u, ¢ on 9S(t) from the
"rigid” side S(t) and the “fluid” side F(t), respectively.

Theorem 3.1 Let (uy,By) and (ug, Bs) be two weak solutions corresponding to the Definition 3.1
with the same data. Assume that d(S;(t),02) > &;, i = 1,2, for some constants 6; > 0. If uy
satisfies the following condition:

3 2
u, € L7(0,7;L°()  for some s,r such that —+ —=1,s € (3,40 (3.3)
s T

then
(uhBl) = (1127]32)-

As in the no-slip case, the first step is to show that the transformed solution (Us, P, Ag, £29) satisfies
the following equality:

/OT/SQUQ‘at¢dX1dt+/0T/§2}F(t) <(u1®U2) -Vl — (U2—u1)-VU2'¢)dX1dt (3.4)

—2/0Tdt/9\851(t)DU2:Dz/)dx1 :/OT(F(t),z,b(T))dt—/Quoz,b(o,-)dxl (3.5)
+/0T dt {/é)gl(t) B(UZ = Uy) - (¢ — 2hy) dV(Xl)}
+/0T(a (1), + @ x Ay - y) dt, (3.6)

which holds for any test function @ satisfying (3.2). Let us note that this function %) is rigid on
S1(t), that is,
P(t,x) = Pn(t) + Yo X (x —qu(t))  for x € Si(1).

Proof. Proof is analogous to the proof in the no-slip case. We just have to see how the term
corresponding to the slip condition transforms. We have

U(t,x1) = VX4 (t, Xo(t,x1)) u(t, Xo(t,x1)), ie. u(t,xy) = VXy(t, Xy(t,%2)) U(t, X4 (t, %)),

(P(t, X2) = VXl (t, XQ)T'lb(t, Xl (t, X2>),

and
VX1 (t, Xg(t, Xl)) = QT<t), VXQ(t, Xl) = Q(t) on (951 (t)
implies
u? —u, = Q(U2 - Uy) on 054(t),
hence

(U2 —uy) - (ps — p5) = Q(UI = Uy) - Qaps — tpy) = (U7 = Uy) - (¢, —tpy)  on 0Si(t).
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All the estimates for the additional term

/OT dt {/&951(t) B(UZ = Uy) - (b — 1by) dV(Xl)}

are the same as in [7]. The local-in-time regularity of the pressure is proved in exactly the same
way as in Section 2.4 by using the results from [4] instead of [20].

A Appendix

A.1 Local transformation

In the proof of Theorem 1.1, since fluid domains of the strong and the weak solution are a priori
different, we transform the problem into a common domain. We use the transformation presented
in [7] to transform a strong solution to the domain of a weak solution, which is a moving domain,
in a way that preserves the divergence-free condition. It is defined by a transformation to a fixed
domain as in [34] or [16], which we also need for the construction of regularization. Even though
this transformation is by now standard in the literature, here we briefly describe this transformation
and recall its main properties for the convenience of the reader and to establish the notation that
is used throughout the paper.

According to [16, 34] we can define a transformation X(¢) : 2 — Q as the unique solution of the
system

d
EX(t, y) = A(t, X(t,y)), X0,y)=y, VyeQ

where the velocity of change of coordinates A(t,x) is a vector field that is smooth in the space
variables and divergence-free, and satisfies A = a(t) + w(t) x (x — q(t)) in the neighborhood of S(t)
and A = 0 in the neighborhood of 0f2.

Here, we assume that a,w € L*(0,7"), which is slightly different from assumptions in [16, 34].
Therefore, for existence and uniqueness of solution X we need Carathéodory’s theorem (see e.g.
28], Theorem 1.45) instead of the Picard-Lindel6f theorem.

For all t € [0, 77, the defined transformation X(¢) is a C*° diffeomorphism and the derivatives

Plal+ix

——— =0,1 3 Al
gy i=0,1, aeNg, (A.1)

exist and are bounded.
We denote by Y the inverse of X, i.e.
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It satisfies the system od differential equations

d
%YQ?X) = AY(t, Y (t,%)), Y (0,x) = x, VxeQ,

where
ANt y) = —VX(t,y) At X(Ly))

Note that Y possesses the same space and time regularity as X. Furthermore, X and Y satisfy

VX(t,y)VY(t,X(t,y)) = id
and are volume-preserving, i.e.
det VX(t,y) =det VY (¢,x) = 1,

since divA = 0.
Then, by Proposition 2.4. in [22], the transformation of the velocity

U(t,y) = VY (t, X(t,y))u(t, X(t,y))
preserves the divergence, i.e.
divy U(t, y) = divxu(t, X(t,y)),  V(ty) € Qp.

Now, by substituting the transformed solution

U(t,y) = VY (t, X(t,y))u(t, X(t,y)),
P(ty) = p(t, X(1,)),
A(t) = Q' (t)a(t),
Q(t) = QT (Hw(t),
T(U(t,y), P(t,y)) = Q"(O)T(Q®)U(ty), P(t,y))Q(t)

in the system of equations (1.11), we get (see [16] or [7])

U+ (U-V)U-AU+VP=F,

divU = 0 } in (0,7) x Qp,

A'=—-QxA— 7(U, P)Ndy(y) in (0,7,
50

(19) = Q x (19) - / _=alt) < T(U PN () in (0.7)

U=U, on(0,7) x 05, U=0 on(0,7) x0Q,
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where Uy = Q Xy + A is the transformed rigid velocity us, N = N(y) is the unit normal at y € Sy,
directed inside of Sy, I = QT JQ is the transformed inertia tensor which no longer depends on time,

and

F=(L—-AN)U-MU-NU-(G-V)P.

The operator L is the transformed Laplace operator and it is given by

(Lu); = Z 0;(¢"* Ohpw;) + 2 Z g"'T 0

jk=1 §.kl=1
+ 30 (O + Y M T s,
7,k 1=1 m=1

the convection term is transformed into

(Nu); = Z u;o0ju; + Z Iujuy, = (u- Vu), + (Nu);,
j=1 k=1
the transformation of time derivative and gradient is given by
j=1 jk=1

and the gradient of pressure is transformed as follows:
(Gp)i = Z 9" 0;p.
j=1

Here we have denoted the metric covariant tensor

00X,
9ij = Xk,iXkj Xpi = Dy’
the metric covariant tensor
g’ = szY}k Yi,k = 0%,
Xk

and the Christoffel symbol (of the second kind)

1 Jga
TF = —¢" (g + gii — gii1), g LY
ij 29 (girj + gji — Giji) Gil,j Dy,

It is easy to observe that, in particular, the following holds:

0X,

IF =YX Xiij = 7——F—-
! ! ! 3Yi3}’j
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A.2 Reynolds transport theorem - generalization

To prove the weak-strong uniqueness result and the energy equality, we want to cancel the derivation
terms from the weak formulations. In the case of smooth functions u and v, by Reynolds transport
theorem we have

/Ot/QF(T) (u-9v +v- ) :—/Ot/QF(T)V(v.u).atX+/QF(t)V(t).u<t) _/ngV(())'u(O)‘

However, u and v are not regular enough, and the expression on the left is not well defined. But we
can use Lemma 2.4, which states that for u,v € L?(0,7; H'(Q2(¢))) and a coordinate transformation
X :Q — Q(t), we have

t
/ / (w-0v" +v- ") dxdr
0 JQ(1)
t
— —/ / V(v-u)- 9, Xdxdr +/ v(t)-u(t)dx — / v(0) - u(0) dx,
0 Jar) Q(t) Q(0)

when h — 0. Here u" denotes the regularization of u described by (2.17)-(2.19).

(A.11)

Remark A.1 Ifthe domain is fized, the coordinate transformation X is not necessary (X = id) and
the regularization is standard (convolution in time). Then, by Fubini’s theorem and the properties
of the mollifier, we get

// O dxd7-///+oo in(r — $)v(s) dsdxdr
:/+°°// (= s)u(r) - v(s) dr dxds

_ ///+mijhs—7)u(7)-v(s) dr dx ds (A.12)

—/OO/O/Q—/fm/Ot/Q*/ot/l/gﬁ/ot/tm/n 19
(A.12) / dT/at ) dx

and it is easy to prove, by using the Lebesque differentiation theorem, that

(A.13) H/ dx—/u(O)-V(O) dx, h — 0,
Q

which ends the proof.

We see that

In the case of a moving domain the idea of the proof is the same, but the calculation is more
complicated because of the changes of variables in the definition of the reqularization and before
applying Fubini’s theorem.
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First we introduce one auxiliary result.

Lemma A.1 Letu,v and X be as in Lemma 2.4, and let Y be the inverse transformation Y (t,-) =

X(t,-)"t. Then,
t t
// V-atuhdxdr—// v-0,U,dxdr — 0, h—0,
0 Jr) 0 JQ(r)

where

+o0o
Un(t,x) = VY (£, %)" /_ inlt — PYVX(r, Y (1, %)) VX (7, Y (£, x))a(r, Y (£ %)) dr.

o0

Proof. Since

/Ot/gm"‘at“h—/ot /Q(T)V(T,X).%</_+Oojh(7-—s)VX(T,Y(T,X))u(s7Y(T’X)) ds) dx dr

_ /Ot /Q(T) ey %(vwﬂ x)T

o0
/_ (7 — VX, Y (7, x))TVX(r, Y (r, %)) (s, Y(7,)) ds) dxdr,

it follows
¢ ¢ ¢ d
/ / V'atllthdT—/ / V-@tUhdxdT:/ / v(7,X) - — fr(7,x) dx dT,
0 Jor) 0 Jor 0 Ja dr
where
+o0o
fn(m,x) =VY(, X)T Jn(T —38)

(VX(T, Y (7, x))'VX(7,Y(7,x)) — VX(5,Y(7,x))"VX(s, Y (T, X))) u(s, Y(7,x))ds.

Since f, — 0 strongly in L?L* and the derivatives - f), are bounded in L*L?, it follows that
%fh — 0 weakly in L2L2, so the above expression tends to 0 when h — 0. |

Now we are able to prove Lemma 2.4.
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Proof of Lemma 2.4. As in the fixed domain case, we start with the first term on the left-hand
side of (2.20):

/0 /Q(T) u- 0" dxdr :/0 /Q(T) u(r,x) - %(VX(T,Y(T, X)) v"(1, Y (T, x))) dxdr
:/O/Q () %VX(T Y (r, %)) ¥"(r, Y (r,x) dxdr (A.14)
+ /Ot/Q u(r,x) - VX(7,Y(r,x)) 0,v"(r, Y (7,x)) dxdr (A.15)
n /0 t /Q )u(T,X)-VX(T,Y(T,X))V\_/h(T,Y(T,X))atY(T,X) dxdr (A.16)

The integral (A.15) contains the time derivative of the function v", so we need to combine it with

the second term on the left-hand side of (2.20) before passing to the limit. First we change the
coordinates. Then we can apply Fubini’s theorem, as follows.

/ / ) - VX(7,Y(7,x)) 0v" (1, Y (7,x)) dx dr
_ / / a(r, X(1,y)) - VX(7.y) 99" (7, y) dy dr
[ [ ] - vty X (r vy dsdy dn
= [T [ [ il = VX C9)TIX G y)u(y) dr iy ds
[ v [T e - 09X ey Iyt drdyds (A1

—0o0

" /Q(t> Vi ult g b /QV(O’ x) - u(0,x) dx + o(h).
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The last two equalities are simple consequences of the properties of the mollifier and Lebesgue
differentiation theorem (as in the fixed domain case). Next, we calculate (A.17):

(A.17)

ted
/ / (s,Y(s,%x)) - / gjh(s —7)VX(7,Y(5,%))"VX(7, Y (5,%))a(r, Y(s,x)) d7 dx ds

o0

/ / (s,Y(s,x)) - %(/:O gn(s — T)VX(1,Y (5,x)) ' VX(7,Y(5,%x))u(7, Y (s,x)) d7'> dxds

(A.18)
/ / v(s,Y(s,x)) - /_ Oojh(s - T)(j (VX(7,Y(s,x))")VX(7,Y(s,x))a(r, Y(s,x)) dr dxds
(A.19)
+oo . T d _
// (s, Y (5,%)) - /_ s = TYVX (7, ¥ (5,))7 o (VX (r, Y (s, %))(r, Y (5,x))) dr dxds,
(A.20)
and for (A.18) we get
(A.18)
/ /Q( (5,%) - VY(s,x)"
+oo
—( / (s — T)VX(1, Y (5, %)) VX (7, Y (5,%))a(7, Y (s, %)) dT) dx ds
/ / VY(S X)
/ in(s — T)VX(7,Y (5,%))"VX(1,Y(s,%))0(r, Y(s,%)) dT) dx ds (A.21)
v(s,x)-0,VY(s,x)T
[ IRCE RS
/_ in(s — YVX(7, Y (5, %) VX (7, Y (s, %))a(r, Y (s, %)) dr dxds (A.22)

Now we can let h — 0. By Lemma A.1, we have

(A.21) +//v-8tuh — 0.

The remaining terms do not contain the time derivative of a" or v"
limits. Using the property of the transformation X

— %(VX(t,Y(t,x))VY(t, x)) = %(VX(t,Y(t,x)))VY(t,x) + VX(t,Y(t,x)0,VY(t,%),

, so we can directly pass to the
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we get
= t UTX-i T 7, %)) V(T 7,X))dxdT
(A‘M)_/ /Q(T (%) - - VX(7, Y(7,%)) V}(7, Y (7, x)) dxd
ﬁ// —VX(T Y (r.x)) (7, Y(7,x)) dx dr

—/ /Q( u(r,x) - VX(7,Y(7,x)) VY (7,x) v(7, Y (7, %)) dx dr,

(A.22) = /0 /Q( )v(s,x) -0, VY (s5,x)"
/ Oojh(s —71)VX(7,Y(5,x)) ' VX(7,Y(s,x))u(r, Y(s,x)) dr dx ds

—00
S

—>/ /Q( v(s,x) - 0, VY (5,x)"VX(s,Y(s5,%x)) ' VX(s,Y(s,x)) (s, Y(s,x)) dx ds

:/ /Q( VX(3,Y(5,%)0;VY(s,x) v(s,x) - u(s, Y(s,x)) dxds.

It follows that
(A.14) + (A.22) — 0, h — 0.

Again, using the properties of the transformation of coordinates we get

¢
(A.16) + (A.19) — —/ vvliu-9,X, (A.23)
0 JQ(1)

(A.20) / / vulv - 9,X (A.24)

Hence,

(A.14) 4+ (A.16) + (A.19) + (A.20) + (A.22)

t t
— —/ / (Vviu+vulv) 9,X = —/ V(u-v)-0,X
0 JQp(7) 0 JQp(r)

Finally, we conclude

t t
/ / u- o dXdT+/ / v - oul dx dr
0 Jar) 0 JO(r)

. —/Ot/Q(T)V(u-V)-athxdT—l—/Q(t)v(t)-u(t) dx—/v(O) u(0) dx.

(A.25)

Q
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Let us show (A.23) and (A.24):

Since

Vv" - Vv whenh —0 uL?L?

we have
(A.16) = / /Q u(7,x) - VX(7, Y(7,%x))VV"(7, Y (7,%))0,Y (7, x) dx dr

—>/ /Q u(r,x) - VX(7, Y(7,x))VV(1, Y (7,%))0, Y (7, x) dx dT

t
= / / > w0 Xiohvo Yy = / / Zuax VYV) 0. Y},
0 Jop Qr(r) Gk

(1) ijk
t
= / / Zuza X 8ZY Vl)atYk
Qr(7) ik
/ / ui(?in(amE)levl + 8le8mvl) 0 Xm0 Y1
Qr(7) zgklm
/ / > W0 Xi0nO Y ;0x Xm0 Y v — Y w0 X0 Y ;0K O i),
Qp(r 'ijlm ijlm
b b

= Z u; @Xi@le 8tXm8mvl = Z uﬁtXm(?mvi = VVTLI : @X
——

ijlm 5, im
d
I= Z W0, X; 0O Y ;01X Y vy = Zu 9;X;— I —(AY;) Y
ijklm 4 (9,Y,) ijkl ~ —~ v
dyi :L(a-x-al DECED A
= — Z uzakﬁ X, alY 8tYle Z llZ - 8t(VX)ij)8levl
ijkl il

= —%VXTu VYV +0,VXTu-VYyv,

¢
(A.16) — / / (—%VXTU VYV + 0, VXTu-VYv - Vviu- 9,X),
0 Jop
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+o00 d -
(A.19) / /QF(T 7,Y(7,%)) - / Jn(T — s)d (VX(s,Y(7,x))")VX(s,Y(r,x))u(s, Y(7,x)) dsdxdr

00 T
=VY(r,x)v(1,x)

:/ /Q . / oozvla Y (7 — S)dd 0, X (s, Y (7, %))0 X (5, Y (7, x))u(s, Y (7, %)) ds dx dr

ijkl

= /f/Q . /+°° Z vi0; Y jjn (T — 8)0,0; X (5, Y (7,%)) 0 Y 1, O X (5, Y (7, %))y (s, Y (7, %)) dsdxd

ijklm
t
—>// ZV@Y O0m0; X0, Y, 0 Xy dsdxdr = — //
0 Jr() i3 == W—’Uk

L (VX)ij—0u(VX) g

t

d

= / / (VYv- EVXTu —VYv-9,VXTu)dxdr.
Qp (T

It follows

(A.16) A19 / / vviu- 0, X
Qp(T

It remains to prove (A.20):

(A.20) / /Q . v(r,Y(7,%)) - / OO]h(T —5)VX(s,Y(T, X))TC%(VX(S,Y(T, x))u(s, Y(, x))) dsdx dr

L1
L%

— / / Z v;0; X (818kX u —|— 8kX 8luk) oY
Qp(r

zyk’l

d _
. /OO jh(T— s)@,X]E(&ﬂX]uk)

ij

/ Jh (7’ — S)ain (818kaﬁk + 8ka65ﬁk)6tYl

ijkl

(VXu)] dy u;=(VuVX);

/ / v - VXTVuVvXo,Y = / / VXV VuVX(‘)tY— / / v - Vuo, X
QF(T QF —v QF
—/ / VUTV'atX

0 Qp (1)

38



A.3 Weak formulation - details

In this subsection we give the remaining technical details of the proof of Proposition 2.1. For

simplicity of notation we denote:
X:)AiZ;X:XQ?Y:ilay:Xl

and
(U7P)A7Q) = (UQaPQaA27QQ)7 (u7p7 a,UJ) = <u27p27a27w2)-

The fluid time-derivative term.
u-0p=U-0p — MU -4p+V(U-9)-9,Y.
Proof. We have

d
u-op=VXU- E(VY%)

=VXU-(0,VY 9+ VYT 0p + VY'V0,Y)

=9, VYVXU -+ VYVXU: 99 + VYVXU - Vap9,Y.

The property of the transformation X
VX(t,Y(t,x))VY(t,x) =1

implies
u-0p=U-0h+ 9 VYVXU - p+Vyp'U- 9 Y
T

and by definition of M we have

MU -4 = yUatY . wj—i-\VY(?tVXU . I,b/—i— Z Fé'katYkiji .

=VUT -0, Y 11 gk

g

I
The identity (A.27) gives

d

0= —
dt

(VYVX);; = (B, VYVX);; + (VYO,VX);; + Y T},0, Y.
k

Multiplying this equality by U;1); and summing over ij, we get
I=—(II+1III)=-MU-+VU"p-0,Y.
Finally, we get
u-0p=U-0p — MU -9 +VU-0,Y +Vyp'U-0,Y
=U-0p — MU - +V(U-9)-0Y.
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Convective term. )
uu:Ve=UeU:Vy' —NU .-

Proof. We derive the convective term by using a known identity
u®u: Ve =div((u-p)u) — (u- Viu- ¢.

It is easy to prove (see [22]) that
VY(u-V)u=NU,

which implies
(u-Vu-p=(u-Vu-VY?p =VY(u-V)u-9 = NU - .
On the other side we conclude

div((u-@)u) =V(u-¢) - u=V, (VXU -VYT)). VXU =V, (U-4) - VXU
= (VY'VUTy + VY'Vy'U) - VXU = (VU "y + Vo'U) - U
=V(U.-¢)-U
=U-VU.-¥»+UU:Vy'.

Therefore,

u@u:Ve=U-VU - +UU:Vyp  —NU . =Ua U : Vol —NU .

Diffusive term.

| vuive—(cuw).
Qp(7)

where

(LU, ) = / OO F U0 — > g"TowUip; + > g U0 — > gMTiTY,, Uieh)).

Qr(m) ik ijkl ijkl ijklm

Proof. We have
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d

dx;

Vu: Ve =Y dudpp; = Z o, (VXU) o (VY T9)

ij

= Z ax; (O X Uk)dx-(aiYﬂ’bl)

ijkl

d

= ) (00X Uy + akx,.amUk>anmanp(W@Yﬂpl + 0, Y,0,4))
ijklmp p

= Z 9" 00k X;0y,0;Y Uppy + Z 9" 0m0p X0, Y U0ty

iklmp iklmp
N ~~ - N - 4

1 11

+ Y g X0y, 010 Uit + > "0k X0, Y10, Uy,

iklmp iklmp

J/ J/

-~ -~

117 v

IT=Y g™ 00X Y)Urdpth = Y g™, Urdpib,

klmp 7 klmp

IV =>"g"0_ X0 Y)0nUrdpthy = > _ 9" 0 Urdpihr

klmp i kmp

111 = Z gmp 8kX 8Yl) 0 8kX 8Yl 0 Uk¢l Z gmpFlkﬁ Uk’gbl,

iklmp kimp

=Y g™ (0p(0mO:Xi0,Y1) — 0,0mO: X0, Y1) Ugthy

iklmp
= g 0(Th ) Ukthr — Y g™ 0,00k Xi0i Y Uy,
klmp iklmp

g

~
\%4 VI

=Y g0, ZF 9,X:)0, Y, U
iklmp
= > gmpﬁngnk@quainUklbl—i— > g, 0,0,%:0 Y Usapy
iklmpq iklmpq

= D 9"l Ui+ ) g™ L, Usi.

klmp klmpq

-~

=V
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It follows

I==Y gmTi I U (A.31)

klmpq

Finally, we get

/ Vu: Ve = / (O F o Uiop; — > g"' o Usp; + > g Usop; — > gMTpT, Usepy)
Qp(r) Qr(1) ik ijkl ijkl ijklm
(A.32)
= (LU, v).
u
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