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BACKWARD ORBITS OF OPERATORS

VLADIMIR MULLER

ABSTRACT. Let T be a Banach space operator with dense non-closed
range. Then T has backward orbits which grow arbitrarily fast.

1. INTRODUCTION

Let X be a Banach space. As usual, we denote by B(X) the set of all
bounded linear operators acting on X. For T' € B(X) let R(T') denote the
range, R(T) = TX, and N(T) the kernel, N(T') = {x € X : Tz = 0}.
Denote by R*(T') the infinite range of 7', R*(T) = (o R(TT).

Let T € B(X) and xg € X. A backward orbit of zy is any sequence
(Zn)nen of vectors in X satisfying Tx, = z,-1 (n € N). The set of all
vectors xg having a backward orbit is called the algebraic core of T" and
denoted by co (T"). The notion was introduced in [11] and has applications
in the local spectral theory, see e.g. [3], [4], [5], [7], [10].

Equivalently, co (T) is the largest linear manifold L C X such that T'L =
L.

It is easy to see that co(7) C R*>(T) but the equality is not true in
general.

It is well known that if 7" € B(X) has dense range then R*(T) is also
dense, see [2], p. 45. In fact, in this case co (T') is also dense.

Proposition 1.1. Let T € B(X) be an operator with dense range. Then
co(T)=X.

Proof. Since co (tT') = co (T") for all t # 0, without loss of generality we may
assume that ||| = 1.
Let Vo C X be a non-empty open subset. We show that Vy Nco (T') # 0.
Since R(T) = X, there exists u; € X with Tu; € Vp. There exists an
open neighbourhood V; of u; such that diamV; < 1/2 and TV, C Vj.
Similarly, there exists us € X with Tus € V1, and an open neighbourhood
V5 of ug such that diam V5 < % and TV, C V).
By induction, we construct non-empty open subsets Vi, C X (k € N)

such that diam Vj, < 27% and TV, c V4,_; (k € N).
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For each k € N we have TFV, ¢ TFV,_; ¢ --- ¢ TV, C V, and
diam T*V}, < 27%. Hence MNien T*V}, is non-empty and contains a single
point xg.

Similarly, for j = 1,2,... and k > j we have TF9V, ¢ TF7-1V,,_, C
-++ CTVjy1 C Vj and diam T*9V}, < 27k, Let Mk, T*=3V,, = {x;}. Then
Tzj € Npen T¥T77Vi = {z;j_1} for all j € N. Hence 29 € VoNco(T). O

Remark 1.2. Tt is worth noting that a similarly defined analytic core (the
set of all vectors zp € X such that there exists a sequence (x;);jeny C X with
Tzj = xj-1 (j € N) and sup; |2;]|*/7 < o0) is not necessarily dense if T
has dense range. Example: let H be the Hilbert space with an orthonormal
basis e, (n € Z) and let T € B(H) be the weighted bilateral shift defined
by Te_p, = nte i1 (n € N) and Te, = epr1 (n > 0). Then T has
dense range but the analytic core of T' contains only the zero vector.

In general, a backward orbit of a vector x( is not unique. It is easy to
see that backward orbits are unique if T is injective. Moreover, for injective
operators there is a simple description of the algebraic core co (T).

Proposition 1.3. Let T' € B(X) be an injective operator. Then co(T') =
R>(T).
Proof. The inclusion co (T') C R*>(T) is true in general.

Let o € R®(T) = 2, R(T7). For each j > 0 let z; € X satisfy
Tjacj = x9. Then Tj(Ta:j+1 —xj) = 9 —xo = 0. Since T is injective,
Txji1 = xj for all j >0 and z¢ € co (T). O

2. LARGE BACKWARD ORBITS

If T € B(X) and g € X then its (forward) orbit (T™zy) may grow
only exponentially, ||[T"zo|| < ||T||" - ||zo|| (n € N). The same is true for
backward orbits if T'is invertible: then || T x| < [T Y™ |lzo|| (n € N).

However, if T' is not invertible, then backward orbits may grow arbitrarily
fast. The following theorem is the main result of this paper.

Theorem 2.1. Let T € B(X) satisfy R(T) = X # R(T). Let (bj)52, be
a sequence of positive numbers, y € X and € > 0. Then there exist vectors
zj€X (j>0) such that ||zg —y|| <e, Txj11 = z; and

2]l = byl
for all 7 > 0.

Before proving Theorem 2.1 we need two simple lemmas.

Lemma 2.2. (see [8], Lemma 1) Let X be an infinite-dimensional Banach
space, let F' C X be a finite-dimensional subspace and € > 0. Then there
exists a subspace M C X with codim M < oo such that

[f+m| >(1-¢) max{yw,”’g”}
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forall f € F andm e M.

If X is a Hilbert space then one can take M = F+. So M in Lemma 2.2
may be viewed as a Banach space version of the orthogonal complement.

Lemma 2.3. Let T € B(X) be an operator with dense range and M C X
a subspace of finite codimension. Then co (T) N M is dense in M.

Proof. Let n = codim M. If x1,...,2p41 € co(T), then there exists a non-
trivial linear combination z := " 'z, € M. So x € co(T) N M and
dimco (T)/(co(T)NM) < n. Let F' C co(T) be a subspace with dim F' < n
such that co (T') = (co (T) N M) + F. Then

X=co(T)=co(T)NM+F

and codimco (T') N M < dim F < n. Since co(T) N M C M and codim M =
n, we have co (T)N M = M. O

Proof of Theorem 2.1.

Without loss of generality we may assume that 0 < e < 1.

Find zg € co (T) with [|zo,0 —y|| < /2. Find vectors xp ; € X such that
Txo; =x05-1 (j €N).

We construct inductively vectors zy, ; € co(T), k,j > 0 such that

(2.1) Tz =zr;  (kj=>0),
€ .
(2.2) lzrsry —2ngll < g (05 <K)
and
(2.3) Jorgall = b1+ 2P| (0= <k 1),
Let k£ > 0 and suppose that the vectors xg;, 21 j,...,2k; (J > 0) satis-

fying (2.1), (2.2) and (2.3) have already been constructed.
Choose ¢’ > 0 such that

, emin{L,[Jegy] 0 < j < k}
265 - max{L, [ T[|*} - [lzxkll
Let F = \/fié zk j. Then dim F' < co. Let M’ C X be a subspace of finite
codimension satisfying
If +mll > (1= 27" max{|[ /] [Imll/2} ~ (f € F,meM'), (1)
which exists by Lemma 2.2. Then codimT /M’ < oo for all j. Let M =
N T~ M’. Then codim M < oo.
Since T'M is not closed, the restriction T'|M is not bounded below. More-

over, co(T) N M is dense in M by Lemma 2.3. So there exists ug11 €
co (T) N M such that ||ugy1|| =1 and

| Tugy1]] < €.

For j=0,...,k+1 set

Thi1y = Ty + g2k | T g (2)
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Clearly zp415€co(T) (j=0,...,k+1).

For j > k41 choose vectors 41 ; € co (T) satisfying T@p11; = Tht1,j-1-
Clearly vectors 41 ; satisfy (2.1).

For j =0,1,...,k we have by (2),

@rr1,j — 2| = dbrllrell - (1757 g |

<dbpllzpgll - NTE N - (1T gl < 4bgllzpell - 1T - < Sk+3

Hence the vectors xj41,; satisfy (2.2).
For j =0,...,k—1 we have

9

w1411l = ||zigen + Bplnell - T g
where xj j1+1 € F and T+ Iy € M'. So

k1 gl = (1= 275 lag gl > (1= 2757 (1 +27%) byl
by (1) and the induction assumption. On the other hand,
k1,50 < Nl + bxllznell - 1T upa|
<lrg |l + Abgllzr il - 1Tl < Jlarg 1L +27572).
So
bj(1 = 27* (1 + 27)||wp1,4]
1+427k3

since (1 — 2% (14+27%) > (1+2759) (1 + 27471
For j = k we have by (1),

> bi(1 4275 |z 4]

Zkt1j41l >

Tkt 1 h41]] = Ha:k,kH + 4bg ||z k. k|| ‘Uk+1H
Lot —k—4
2# by ||zl =2(1 -2 Vorllzk k|
and
|1l < llzeell + 40kl 2kl - | T
Ska,kH(l + 4bk5’) < Hwk,k\l(l + 2—1@73).
Thus

26 (1 — 275 7)1 1|
1+27k=3

|2kt 1 hr1ll > > bp(1+ 275 Y |lzpg .-

Hence x4 ; satisfy (2.3).

Suppose that the vectors zy; € co(T),k,j = 0,1,... satisfying (2.1),
(2.2) and (2.3) have been constructed. Clearly (xy ;)i is a Cauchy sequence
for each j. Let z; = limy_ 71 ;. We have

o0
g g
ly = zoll < lly =200l + llzo0 —zr0ll + 220 —10] 4+ < §+ZW =e.
=0
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Moreover, for each j > 1 we have
Tl‘j = lim T:L‘]CJ‘ = lim Lkj—1 = Tj—1-
k—oo k—oo
Finally, for each 5 > 0 we have
lzjall = Hm gl = lim b;(1+ 27 ) |zx 51l = bjlla;]l-
—00 k—o0
So [laj1| > byl | for all j > 0. 0

Corollary 2.4. (c¢f. [9], Theorem 3) Let T € B(X) be an operator with
R(T) =X # R(T). Lete >0 and n € N. Then there exists a unit vector
u € X such that

[T || <e||T7ul|  (j=0,1,...,n).

Corollary 2.5. Let T € B(X) be an operator such that R(T) = X # R(T).
Let (a;j)32, be a sequence of positive numbers, y € X, |ly|| > ag and ¢ > 0.
Then there exist vectors xj € co(T) (j > 0) such that ||zg — y|| < e,
Twji =z and

5] = a;
for all 3 > 0.

Proof. Set b; = (1%1 (j > 0). By Theorem 2.1, there exist vectors z; €
co(T) (j=0,1,...) such that ||zg — y|| < min{e, |ly|| — a0}, Txj41 = z;

and ||z > bjljz;| for all j > 0. We have [[zol > |lyll — ([l — ao) = a0
and, by induction,

5]l = bj-1llzj-all = bj-ra;-1 = a;
for all j > 0. U

If T is injective then the backward orbit is unique and exists for each
vector g € R>®(T) = co(T'). So Theorem 2.1 and Corollary 2.5 become
simpler.

Theorem 2.6. Let T € B(X) be an injective operator such that R(T) =
X # R(T). Let (bj)j>0 be a sequence of positive numbers, y € X and e > 0.
Then there exists x € R®(T) such that ||z — y|| < € and

1T~ ]| > 0| T
for all 7 > 0.

Corollary 2.7. Let T € B(X) be an injective operator such that R(T) =
X # R(T). Let (aj);?‘;o be a sequence of positive numbers. Let y € X satisfy
llyl| > ap and let € > 0. Then there exists x € R*(T) such that ||x —y|| < e
and

1T ]| > a

for all 7 > 0.

An analogous result can be formulated also for strongly continuous semi-
groups of operators.
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Corollary 2.8. Let T'(t);>0 be a strongly continuous semigroup of operators
acting on X. Suppose that T'(1) is injective and R(T'(1)) = X # R(T(1))
(and hence T(t) is injective, non-surjective with dense range for each t >
0). Let f :[0,00) — [0,00) be a continuous function. Then there exists

z € (N> R(T'(t)) such that |T(t)"tz|| > f(t) for allt > 0.

Proof. Let K = max{|T(t)|] : 0 <t < 1}. By Corollary 2.5, there exists
z € >0 R(T(t)) = Npen R(T(n)) such that

|T(n) x| > Kmax{f(t):n <t<n-+1}

for all integers n > 0.
Forn <t <mn+1wehave T(t —n)T(t) 'z = T(n) 'z. So

1T el = KT ()" el > max{f(t) :n <t <n+1} > f(t).

3. BACKWARD ORBITS AND HYPERCYCLICITY

Let T € B(X). A vector x € X is called hypercyclic for T if its (forward)
orbit {T"x : n € N} is dense in X. An operator T € B(X) is called
hypercyclic if there exists a vector that is hypercyclic for T. It is well
known that any hypercyclic operator has a dense residual set of hypercyclic
vectors.

The following classical result gives a characterization of hypercyclic oper-
ators, see e.g. [1], p. 2.

Theorem 3.1. (Birkhoff) Let X be a separable Banach space and T €
B(X). The following statements are equivalent:
(i) T is hypercyclic;
(ii) for each pair of non-empty open subsets U,V C X there exists n € N
such that T"U NV # (.

An easy consequence of the Birkhoff theorem is that an invertible operator
T € B(X) is hypercyclic if and only if its inverse T~ € B(X) is hypercyclic,
see [1], p. 3.

It is interesting to note that this equivalence remains true even if T is
only injective (not necessarily invertible). As the Birkhoff theorem, the
next result is true in a more general setting, see [6]. We include the proof
for the sake of convenience.

Theorem 3.2. Let T € B(X) be an injective operator. The following con-
ditions are equivalent:
(i) T is hypercyclic;
(ii) the set of all vectors x € R (T) with the property that {T 7z : j =
0,1,...}7 = X is dense in X.

Proof. Note that each of the conditions implies that X is separable and T'
has dense range. So R*°(T') is dense.
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(il)=(i):

Let U,V C X be non-empty open subsets. By (ii), there exists x €
U N R®(T) such that {TJz : j = 0,1,...}~ = X. In particular, there
exists k > 0 such that 7%z € V. So z € T*V and T*V N U # (). By the
Birkhoff theorem, T is hypercyclic.

(i)=(ii):

Let V C X be a nonempty open subset. We show that there exists a
vector © € V whose backward orbit {T~"x : n € N} is dense in X.

Let (Uyn)nen be a countable base of open sets in X.

By the Birkhoff theorem, there exist v € U; and n; € N such that
T™u € V. There exists an open neighbourhood V; of u such that diam V; <
sy Vi C U and TV C V.

Similarly, there exists an non-empty open set V5 and no € N such that

Vo C Us, diam Vs < 4max{1,||1T||"2+”1} and T2V, C Vj. Inductively, there
exist non-empty open sets V3, Vy,... and positive integers ns,ng,... such
i _ 1 il
that Vi C U, diamVy < F max (L[ T[T 1] and T"V, C Vi1 (k =
2,3,...).
Then

Tn1+n2+"'+nk7k C T”1+”2+"'+nk—1m c---C Tnlvl cV.

Moreover, diam 7™V, < 27% Hence (o T™ 2T TV, # 0. Let
x € ey T2t TV, Clearly « € R*(T). We have 2 € V and

Ty € Uy € Uy

for all k£ € N. Hence the backward orbit {T'""x : n € N} is dense in X.
O
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