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BACKWARD ORBITS OF OPERATORS

VLADIMIR MÜLLER

Abstract. Let T be a Banach space operator with dense non-closed
range. Then T has backward orbits which grow arbitrarily fast.

1. Introduction

Let X be a Banach space. As usual, we denote by B(X) the set of all
bounded linear operators acting on X. For T ∈ B(X) let R(T ) denote the
range, R(T ) = TX, and N(T ) the kernel, N(T ) = {x ∈ X : Tx = 0}.
Denote by R∞(T ) the infinite range of T , R∞(T ) =

⋂
n∈N R(Tn).

Let T ∈ B(X) and x0 ∈ X. A backward orbit of x0 is any sequence
(xn)n∈N of vectors in X satisfying Txn = xn−1 (n ∈ N). The set of all
vectors x0 having a backward orbit is called the algebraic core of T and
denoted by co (T ). The notion was introduced in [11] and has applications
in the local spectral theory, see e.g. [3], [4], [5], [7], [10].

Equivalently, co (T ) is the largest linear manifold L ⊂ X such that TL =
L.

It is easy to see that co (T ) ⊂ R∞(T ) but the equality is not true in
general.

It is well known that if T ∈ B(X) has dense range then R∞(T ) is also
dense, see [2], p. 45. In fact, in this case co (T ) is also dense.

Proposition 1.1. Let T ∈ B(X) be an operator with dense range. Then
co (T ) = X.

Proof. Since co (tT ) = co (T ) for all t 6= 0, without loss of generality we may
assume that ‖T‖ = 1.

Let V0 ⊂ X be a non-empty open subset. We show that V0 ∩ co (T ) 6= ∅.
Since R(T ) = X, there exists u1 ∈ X with Tu1 ∈ V0. There exists an

open neighbourhood V1 of u1 such that diam V1 ≤ 1/2 and TV1 ⊂ V0.
Similarly, there exists u2 ∈ X with Tu2 ∈ V1, and an open neighbourhood

V2 of u2 such that diam V2 ≤ 1
4 and TV2 ⊂ V1.

By induction, we construct non-empty open subsets Vk ⊂ X (k ∈ N)
such that diam Vk ≤ 2−k and TVk ⊂ Vk−1 (k ∈ N).
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For each k ∈ N we have T kVk ⊂ T k−1Vk−1 ⊂ · · · ⊂ TV1 ⊂ V0 and
diam T kVk ≤ 2−k. Hence

⋂
k∈N T kVk is non-empty and contains a single

point x0.
Similarly, for j = 1, 2, . . . and k ≥ j we have T k−jVk ⊂ T k−j−1Vk−1 ⊂

· · · ⊂ TVj+1 ⊂ Vj and diam T k−jVk ≤ 2−k. Let
⋂

k≥j T k−jVk = {xj}. Then
Txj ∈

⋂
k∈N T k+1−jVk = {xj−1} for all j ∈ N. Hence x0 ∈ V0 ∩ co (T ). �

Remark 1.2. It is worth noting that a similarly defined analytic core (the
set of all vectors x0 ∈ X such that there exists a sequence (xj)j∈N ⊂ X with
Txj = xj−1 (j ∈ N) and supj ‖xj‖1/j < ∞) is not necessarily dense if T
has dense range. Example: let H be the Hilbert space with an orthonormal
basis en (n ∈ Z) and let T ∈ B(H) be the weighted bilateral shift defined
by Te−n = n−1e−n+1 (n ∈ N) and Ten = en+1 (n ≥ 0). Then T has
dense range but the analytic core of T contains only the zero vector.

In general, a backward orbit of a vector x0 is not unique. It is easy to
see that backward orbits are unique if T is injective. Moreover, for injective
operators there is a simple description of the algebraic core co (T ).

Proposition 1.3. Let T ∈ B(X) be an injective operator. Then co (T ) =
R∞(T ).

Proof. The inclusion co (T ) ⊂ R∞(T ) is true in general.
Let x0 ∈ R∞(T ) =

⋂∞
j=0 R(T j). For each j ≥ 0 let xj ∈ X satisfy

T jxj = x0. Then T j(Txj+1 − xj) = x0 − x0 = 0. Since T is injective,
Txj+1 = xj for all j ≥ 0 and x0 ∈ co (T ). �

2. Large backward orbits

If T ∈ B(X) and x0 ∈ X then its (forward) orbit (Tnx0) may grow
only exponentially, ‖Tnx0‖ ≤ ‖T‖n · ‖x0‖ (n ∈ N). The same is true for
backward orbits if T is invertible: then ‖T−nx0‖ ≤ ‖T−1‖n · ‖x0‖ (n ∈ N).

However, if T is not invertible, then backward orbits may grow arbitrarily
fast. The following theorem is the main result of this paper.

Theorem 2.1. Let T ∈ B(X) satisfy R(T ) = X 6= R(T ). Let (bj)∞j=0 be
a sequence of positive numbers, y ∈ X and ε > 0. Then there exist vectors
xj ∈ X (j ≥ 0) such that ‖x0 − y‖ < ε, Txj+1 = xj and

‖xj+1‖ ≥ bj‖xj‖
for all j ≥ 0.

Before proving Theorem 2.1 we need two simple lemmas.

Lemma 2.2. (see [8], Lemma 1) Let X be an infinite-dimensional Banach
space, let F ⊂ X be a finite-dimensional subspace and ε > 0. Then there
exists a subspace M ⊂ X with codim M < ∞ such that

‖f + m‖ ≥ (1− ε) max
{
‖f‖, ‖m‖

2
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for all f ∈ F and m ∈ M .

If X is a Hilbert space then one can take M = F⊥. So M in Lemma 2.2
may be viewed as a Banach space version of the orthogonal complement.

Lemma 2.3. Let T ∈ B(X) be an operator with dense range and M ⊂ X
a subspace of finite codimension. Then co (T ) ∩M is dense in M .

Proof. Let n = codim M . If x1, . . . , xn+1 ∈ co (T ), then there exists a non-
trivial linear combination x :=

∑n+1
i=1 αixi ∈ M . So x ∈ co (T ) ∩ M and

dim co (T )/(co (T )∩M) ≤ n. Let F ⊂ co (T ) be a subspace with dim F ≤ n
such that co (T ) = (co (T ) ∩M) + F . Then

X = co (T ) = co (T ) ∩M + F

and codim co (T ) ∩M ≤ dim F ≤ n. Since co (T ) ∩M ⊂ M and codim M =
n, we have co (T ) ∩M = M . �

Proof of Theorem 2.1.
Without loss of generality we may assume that 0 < ε < 1.
Find x0,0 ∈ co (T ) with ‖x0,0−y‖ < ε/2. Find vectors x0,j ∈ X such that

Tx0,j = x0,j−1 (j ∈ N).
We construct inductively vectors xk,j ∈ co (T ), k, j ≥ 0 such that

(2.1) Txk,j+1 = xk,j (k, j ≥ 0),

(2.2) ‖xk+1,j − xk,j‖ <
ε

2k+2
(0 ≤ j ≤ k)

and

(2.3) ‖xk,j+1‖ ≥ bj(1 + 2−k)‖xk,j‖ (0 ≤ j ≤ k − 1).

Let k ≥ 0 and suppose that the vectors x0,j , x1,j , . . . , xk,j (j ≥ 0) satis-
fying (2.1), (2.2) and (2.3) have already been constructed.

Choose ε′ > 0 such that

ε′ <
ε min{1, ‖xk,j‖ : 0 ≤ j ≤ k}

2k+5bk ·max{1, ‖T‖k} · ‖xk,k‖
.

Let F =
∨k+1

j=0 xk,j . Then dim F < ∞. Let M ′ ⊂ X be a subspace of finite
codimension satisfying

‖f + m‖ ≥ (1− 2−k−4) max{‖f‖, ‖m‖/2} (f ∈ F,m ∈ M ′), (1)

which exists by Lemma 2.2. Then codim T−jM ′ < ∞ for all j. Let M =⋂k
j=0 T−jM ′. Then codim M < ∞.
Since TM is not closed, the restriction T |M is not bounded below. More-

over, co (T ) ∩ M is dense in M by Lemma 2.3. So there exists uk+1 ∈
co (T ) ∩M such that ‖uk+1‖ = 1 and

‖Tuk+1‖ < ε′.

For j = 0, . . . , k + 1 set

xk+1,j = xk,j + 4bk‖xk,k‖T k+1−juk+1. (2)
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Clearly xk+1,j ∈ co (T ) (j = 0, . . . , k + 1).
For j > k+1 choose vectors xk+1,j ∈ co (T ) satisfying Txk+1,j = xk+1,j−1.

Clearly vectors xk+1,j satisfy (2.1).
For j = 0, 1, . . . , k we have by (2),∥∥xk+1,j − xk,j

∥∥ = 4bk‖xk,k‖ · ‖T k−j+1uk+1‖

≤4bk‖xk,k‖ · ‖T k−j‖ · ‖Tuk+1‖ ≤ 4bk‖xk,k‖ · ‖T k−j‖ · ε′ < ε

2k+2
.

Hence the vectors xk+1,j satisfy (2.2).
For j = 0, . . . , k − 1 we have

‖xk+1,j+1‖ =
∥∥∥xk,j+1 + 4bk‖xk,k‖ · T k−juk+1

∥∥∥,

where xk,j+1 ∈ F and T k−juk+1 ∈ M ′. So

‖xk+1,j+1‖ ≥ (1− 2−k−4)‖xk,j+1‖ ≥ (1− 2−k−4)(1 + 2−k)bj‖xk,j‖

by (1) and the induction assumption. On the other hand,

‖xk+1,j‖ ≤ ‖xk,j‖+ 4bk‖xk,k‖ · ‖T k−j+1uk+1‖

≤‖xk,j‖+ 4bk‖xk,k‖ · ‖T k−j‖ε′ ≤ ‖xk,j‖(1 + 2−k−3).

So

‖xk+1,j+1‖ ≥
bj(1− 2−k−4)(1 + 2−k)‖xk+1,j‖

1 + 2−k−3
≥ bj(1 + 2−k−1)‖xk+1,j‖

since (1− 2−k−4)(1 + 2−k) ≥ (1 + 2−k−3)(1 + 2−k−1).
For j = k we have by (1),

‖xk+1,k+1‖ =
∥∥∥xk,k+1 + 4bk‖xk,k‖ · uk+1

∥∥∥
≥1− 2−k−4

2
· 4bk‖xk,k‖ = 2(1− 2−k−4)bk‖xk,k‖

and

‖xk+1,k‖ ≤ ‖xk,k‖+ 4bk‖xk,k‖ · ‖Tuk+1‖

≤‖xk,k‖(1 + 4bkε
′) ≤ ‖xk,k‖(1 + 2−k−3).

Thus

‖xk+1,k+1‖ ≥
2bk(1− 2−k−4)‖xk+1,k‖

1 + 2−k−3
≥ bk(1 + 2−k−1)‖xk+1,k‖.

Hence xk+1,j satisfy (2.3).
Suppose that the vectors xk,j ∈ co (T ), k, j = 0, 1, . . . satisfying (2.1),

(2.2) and (2.3) have been constructed. Clearly (xk,j)k is a Cauchy sequence
for each j. Let xj = limk→∞ xk,j . We have

‖y−x0‖ ≤ ‖y−x0,0‖+‖x0,0−x1,0‖+‖x2,0−x1,0‖+ · · · < ε

2
+

∞∑
j=0

ε

2j+2
= ε.
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Moreover, for each j ≥ 1 we have

Txj = lim
k→∞

Txk,j = lim
k→∞

xk,j−1 = xj−1.

Finally, for each j ≥ 0 we have

‖xj+1‖ = lim
k→∞

‖xk,j+1‖ ≥ lim
k→∞

bj(1 + 2−k)‖xk,j‖ = bj‖xj‖.

So ‖xj+1‖ ≥ bj‖xj‖ for all j ≥ 0. �

Corollary 2.4. (cf. [9], Theorem 3) Let T ∈ B(X) be an operator with
R(T ) = X 6= R(T ). Let ε > 0 and n ∈ N. Then there exists a unit vector
u ∈ X such that

‖T j+1u‖ ≤ ε‖T ju‖ (j = 0, 1, . . . , n).

Corollary 2.5. Let T ∈ B(X) be an operator such that R(T ) = X 6= R(T ).
Let (aj)∞j=0 be a sequence of positive numbers, y ∈ X, ‖y‖ > a0 and ε > 0.
Then there exist vectors xj ∈ co (T ) (j ≥ 0) such that ‖x0 − y‖ < ε,
Txj+1 = xj and

‖xj‖ ≥ aj

for all j ≥ 0.

Proof. Set bj = aj+1

aj
(j ≥ 0). By Theorem 2.1, there exist vectors xj ∈

co (T ) (j = 0, 1, . . . ) such that ‖x0 − y‖ < min{ε, ‖y‖ − a0}, Txj+1 = xj

and ‖xj+1‖ ≥ bj‖xj‖ for all j ≥ 0. We have ‖x0‖ ≥ ‖y‖ − (‖y‖ − a0) = a0

and, by induction,

‖xj‖ ≥ bj−1‖xj−1‖ ≥ bj−1aj−1 = aj

for all j ≥ 0. �

If T is injective then the backward orbit is unique and exists for each
vector x0 ∈ R∞(T ) = co (T ). So Theorem 2.1 and Corollary 2.5 become
simpler.

Theorem 2.6. Let T ∈ B(X) be an injective operator such that R(T ) =
X 6= R(T ). Let (bj)j≥0 be a sequence of positive numbers, y ∈ X and ε > 0.
Then there exists x ∈ R∞(T ) such that ‖x− y‖ < ε and

‖T−j−1x‖ ≥ bj‖T−jx‖
for all j ≥ 0.

Corollary 2.7. Let T ∈ B(X) be an injective operator such that R(T ) =
X 6= R(T ). Let (aj)∞j=0 be a sequence of positive numbers. Let y ∈ X satisfy
‖y‖ > a0 and let ε > 0. Then there exists x ∈ R∞(T ) such that ‖x− y‖ < ε
and

‖T−jx‖ ≥ aj

for all j ≥ 0.

An analogous result can be formulated also for strongly continuous semi-
groups of operators.
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Corollary 2.8. Let T (t)t≥0 be a strongly continuous semigroup of operators
acting on X. Suppose that T (1) is injective and R(T (1)) = X 6= R(T (1))
(and hence T (t) is injective, non-surjective with dense range for each t >
0). Let f : [0,∞) → [0,∞) be a continuous function. Then there exists
x ∈

⋂
t≥0 R(T (t)) such that ‖T (t)−1x‖ > f(t) for all t ≥ 0.

Proof. Let K = max{‖T (t)‖ : 0 ≤ t ≤ 1}. By Corollary 2.5, there exists
x ∈

⋂
t≥0 R(T (t)) =

⋂
n∈N R(T (n)) such that

‖T (n)−1x‖ ≥ K max{f(t) : n ≤ t ≤ n + 1}
for all integers n ≥ 0.

For n ≤ t ≤ n + 1 we have T (t− n)T (t)−1x = T (n)−1x. So

‖T (t)−1x‖ ≥ K−1‖T (n)−1x‖ ≥ max{f(t) : n ≤ t ≤ n + 1} ≥ f(t).

�

3. Backward orbits and hypercyclicity

Let T ∈ B(X). A vector x ∈ X is called hypercyclic for T if its (forward)
orbit {Tnx : n ∈ N} is dense in X. An operator T ∈ B(X) is called
hypercyclic if there exists a vector that is hypercyclic for T . It is well
known that any hypercyclic operator has a dense residual set of hypercyclic
vectors.

The following classical result gives a characterization of hypercyclic oper-
ators, see e.g. [1], p. 2.

Theorem 3.1. (Birkhoff) Let X be a separable Banach space and T ∈
B(X). The following statements are equivalent:

(i) T is hypercyclic;
(ii) for each pair of non-empty open subsets U, V ⊂ X there exists n ∈ N

such that TnU ∩ V 6= ∅.

An easy consequence of the Birkhoff theorem is that an invertible operator
T ∈ B(X) is hypercyclic if and only if its inverse T−1 ∈ B(X) is hypercyclic,
see [1], p. 3.

It is interesting to note that this equivalence remains true even if T is
only injective (not necessarily invertible). As the Birkhoff theorem, the
next result is true in a more general setting, see [6]. We include the proof
for the sake of convenience.

Theorem 3.2. Let T ∈ B(X) be an injective operator. The following con-
ditions are equivalent:

(i) T is hypercyclic;
(ii) the set of all vectors x ∈ R∞(T ) with the property that {T−jx : j =

0, 1, . . . }− = X is dense in X.

Proof. Note that each of the conditions implies that X is separable and T
has dense range. So R∞(T ) is dense.
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(ii)⇒(i):
Let U, V ⊂ X be non-empty open subsets. By (ii), there exists x ∈

U ∩ R∞(T ) such that {T−jx : j = 0, 1, . . . }− = X. In particular, there
exists k ≥ 0 such that T−kx ∈ V . So x ∈ T kV and T kV ∩ U 6= ∅. By the
Birkhoff theorem, T is hypercyclic.
(i)⇒(ii):

Let V ⊂ X be a nonempty open subset. We show that there exists a
vector x ∈ V whose backward orbit {T−nx : n ∈ N} is dense in X.

Let (Un)n∈N be a countable base of open sets in X.
By the Birkhoff theorem, there exist u ∈ U1 and n1 ∈ N such that

Tn1u ∈ V . There exists an open neighbourhood V1 of u such that diam V1 ≤
1

2max{1,‖T‖n1} , V1 ⊂ U1 and Tn1V1 ⊂ V .
Similarly, there exists an non-empty open set V2 and n2 ∈ N such that

V2 ⊂ U2, diam V2 ≤ 1
4max{1,‖T‖n2+n1} and Tn2V2 ⊂ V1. Inductively, there

exist non-empty open sets V3, V4, . . . and positive integers n3, n4, . . . such
that Vk ⊂ Uk, diam Vk ≤ 1

2k max{1,‖T‖nk+···+n1} and TnkVk ⊂ Vk−1 (k =
2, 3, . . . ).

Then

Tn1+n2+···+nkVk ⊂ Tn1+n2+···+nk−1Vk−1 ⊂ · · · ⊂ Tn1V1 ⊂ V.

Moreover, diam Tn1+···+nkVk ≤ 2−k. Hence
⋂

k∈N Tn1+n2+···+nkVk 6= ∅. Let
x ∈

⋂
k∈N Tn1+n2+···+nkVk. Clearly x ∈ R∞(T ). We have x ∈ V and

T−n1−···−nkx ∈ Vk ⊂ Uk

for all k ∈ N. Hence the backward orbit {T−nx : n ∈ N} is dense in X.
�
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