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PARAMETRIZING TORSION PAIRS IN DERIVED CATEGORIES

LIDIA ANGELERI HÜGEL AND MICHAL HRBEK

Abstract. We investigate parametrizations of compactly generated t-structures, or more generally,
t-structures with a definable coaisle, in the unbounded derived category D(Mod-A) of a ring A. To

this end, we provide a construction of t-structures from chains in the lattice of ring epimorphisms

starting in A, which is a natural extension of the construction of compactly generated t-structures from
chains of subsets of the Zariski spectrum known for the commutative noetherian case. We also provide

constructions of silting and cosilting objects in D(Mod-A). This leads us to classification results over

some classes of commutative rings and over finite dimensional hereditary algebras.

1. Introduction

Since the seminal work of Gabriel, Hopkins, and Neeman, it is well known that over a commutative
noetherian ring A many important structures in the category of modules Mod-A and its derived cate-
gory D(Mod-A) are controlled by subsets of the Zariski spectrum. For example, the hereditary torsion
pairs in Mod-A are parametrized by the specialization-closed subsets of Spec (A), that is, by unions of
Zariski-closed subsets. Similarly, it was shown by Alonso, Jeremı́as and Saoŕın in [3] that the compactly
generated t-structures in D(Mod-A) are parametrized by descending chains of specialization-closed sub-
sets of Spec (A).

The aim of this paper is to interpret these results from the viewpoint of silting theory and to establish
similar results over further classes of rings, notably rings of weak global dimension at most one.

Silting theory is a useful tool to study decompositions and localizations of categories both at abelian
and triangulated level. Indeed, the silting objects in the derived category D(Mod-A) of a ring A cor-
respond bijectively to certain TTF triples (U ,V,W) consisting of a t-structure with an adjacent co-t-
structure. Dual results hold for cosilting objects, implying for example that every compactly generated
TTF triple which is non-degenerate corresponds to a pure-injective cosilting object. There are also
abelian versions of these results. Indeed, (co)silting modules, which are by definition the zero cohomolo-
gies of (co)silting complexes of length two, correspond bijectively to certain torsion pairs in the module
category Mod-A.

In previous work [11], we have already seen that, over a commutative noetherian ring A, (co)silting
modules are in bijection with hereditary torsion pairs. The classification result from [3] mentioned
above then shows that every compactly generated t-structure in D(Mod-A) encodes a sequence of nested
cosilting torsion pairs in Mod-A. In Theorem 3.8, we determine the conditions ensuring that this sequence
gives rise to a cosilting complex in D(Mod-A), obtaining a complete classification of the pure-injective
cosilting objects over A in terms of chains of subsets of Spec (A).

An essential ingredient for this classification is a result from [34] stating that all pure-injective cosilt-
ing objects over commutative noetherian rings are of cofinite type, i.e. they correspond to compactly
generated TTF triples. In Theorem 3.11 it turns out that the same holds true over hereditary rings.

Inspired by these findings, we proceed to investigate possible parametrizations of cosilting objects over
further classes of rings. The idea is to replace chains of subsets of the prime spectrum of A by chains of
ring epimorphisms starting in A.

Ring epimorphisms with nice homological properties starting in a given ring A form a complete
lattice which is known to be related with silting modules. In [14] it is shown that the homological ring
epimorphisms starting in a hereditary ring A are in bijection with minimal silting modules, that is,
silting modules satisfying a certain minimality condition. Here we discuss the connection with cosilting
modules. Given an arbitrary ring A, we provide a general construction of a cosilting A-module from
a ring epimorphism λ : A → B which satisfies a certain homological condition (Theorem 4.17). As a
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consequence, we prove that the homological ring epimorphisms starting in a ring of weak global dimension
at most one, or in a commutative noetherian ring, are in bijection with a class of cosilting modules which
we call minimal (Corollaries 4.19, and 4.20). If the ring A is hereditary, then minimal silting and cosilting
modules correspond to each other under a silting-cosilting duality (Corollary 4.22).

We then turn to a chain · · ·λn ≤ λn+1 · · · inside the lattice of ring epimorphisms starting in a given
ring A. If all λn satisfy our homological condition, we obtain a chain of cosilting classes which gives rise
to a t-structure (U ,V) and a TTF triple (U ,V,W) in the derived category of A (Proposition 5.4). We
show that this construction is a natural extension of the construction of compactly generated t-structures
from chains of subsets of the Zariski spectrum for the commutative noetherian case.

The coaisle V obtained from our construction is a definable subcategory of the derived category, that
is, it is determined by a set of morphisms between compact objects. Conversely, when the ring A has
weak global dimension at most one, every t-structure (U ,V) with definable coaisle V encodes a sequence
of nested cosilting classes, and we see that it arises from a chain of ring epimorphisms according to our
construction if and only if all cosilting classes involved are minimal (Theorem 5.12). We also provide a
dual construction and determine the conditions ensuring that the TTF triples we obtain are induced by
a cosilting or a silting object, respectively. Again, if A is hereditary, such silting and cosilting objects
will be related to each other by a silting-cosilting duality.

Finally, we apply our investigations to specific classes of rings. We provide classification results
over commutative rings of weak global dimension at most one and over semihereditary rings (Subsec-
tion 6.2). When A is a finite dimensional hereditary algebra over a field, we observe that the com-
pact silting complexes correspond to finite chains of finite dimensional homological ring epimorphisms
0A ≤ λn ≤ . . . ≤ λm ≤ idA (Theorem 6.7). Then we focus on the case when A is the path algebra
of the Kronecker quiver • //// • . In Theorem 6.9 we give a complete classification of all compactly
generated t-structures. We show that the chains of homological ring epimorphisms · · ·λn ≤ λn+1 · · ·
with meet 0A : A → 0 and join idA correspond to silting and cosilting objects, and we give a complete
classification of all pure-injective cosilting complexes and their dual silting complexes (Theorems 6.11
and 6.12). Similar results are obtained for the ring Z and, more generally, for commutative noetherian
rings of Krull dimension at most one (Theorem 6.1, and Examples 5.6 and 6.2).

The paper is organized as follows. Section 2 contains some preliminaries. In particular, we review
the notions of definability and purity in derived categories and investigate the role of duality in this
context. In Section 3 we discuss compactly generated TTF triples in derived categories. We establish
a duality between compactly generated TTF triples in D(Mod-A) and D(A-Mod) which restricts to
a silting-cosilting duality. Then we focus on the special cases when A is commutative noetherian or
hereditary. Section 4 is devoted to the connection between cosilting modules and ring epimorphisms. In
Section 5 we deal with chains of ring epimorphisms and develop our construction of TTF triples. The
classification results mentioned above are established in Section 6.

2. Preliminaries

2.1. Notation. Throughout this paper, let A be a (unital) ring, Mod-A the category of right A-modules,
and mod-A its subcategory of finitely presented modules. All subcategories are supposed to be full and
strict. We denote by Proj-A and proj-A the class of all projective and of all finitely generated projective
right A-modules, respectively. Furthermore, we write D(Mod-A) for the unbounded derived category of
Mod-A, and Dc(Mod-A) = Kb(proj-A) for the class of compact objects in D(Mod-A). Given a module
M ∈ Mod-A, we denote by AddM the class of all modules which are isomorphic to direct summands
of direct sums of copies of M , and by GenM the class of all M -generated modules, i. e. all epimorphic
images of modules in AddM . CogenM and ProdM are defined dually.

Given a subcategory C of Mod-A and a set of non-negative integers I (which is usually expressed by
symbols such as ≥ n, ≤ n, or just n, with the obvious associated meaning), we denote by

C⊥I = {X ∈ Mod-A | ExtiR(C, X) = 0 for all i ∈ I}
⊥IC = {X ∈ Mod-A | ExtiR(X, C) = 0 for all i ∈ I}.

If C consists of a single module M , we just write M⊥I , ⊥IM , etc.
We use a similar notation in the derived category D(Mod-A). Given a class of objects X in D(Mod-A)

and a set of integers I, we denote

⊥IX := {Y ∈ D(Mod-A) | HomD(Mod-A)(Y,X[i]) = 0 for all X ∈ X and i ∈ I}

X⊥I := {Y ∈ D(Mod-A) | HomD(Mod-A)(X,Y [i]) = 0 for all X ∈ X and i ∈ I}.
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2.2. Duality. We consider the two following dualities on D(Mod-A). The first is the functor

(−)∗ := RHomA(−, A) : D(Mod-A)→ D(A-Mod).

Recall that (−)∗ restricts to a contravariant equivalence between the categories of finitely generated
projective right and left A-modules, respectively. By dévissage, this further extends to an equivalence
(−)∗ : Dc(Mod-A)op ' Dc(A-Mod).

For the second duality we fix a commutative ring k such that A is a k-algebra, and an injective
cogenerator W in Mod-k. For example, one can choose k = Z and W = Q/Z. We denote by (−)+ =
Homk(−,W ) the duality functors between Mod-A and A-Mod and we use the same notation on derived
level:

(−)+ := RHomk(−,W ) : D(Mod-A)→ D(A-Mod).

As W is an injective k-module, the functor (−)+ is represented by the ordinary Hom-functor
Homk(−,W ). By abusing the notation, we will use the same notation for the functors defined on
the left hand side:

(−)∗ := RHomAop(−, A) : D(A-Mod)→ D(Mod-A).

(−)+ := RHomk(−,W ) : D(A-Mod)→ D(Mod-A).

Let A and B be two k-algebras. The category of all A−B-bimodules is equivalent to the category of all
right modules over the ring B⊗kAop. In this way, we define the derived category of all A−B-bimodules
as D(A−B) = D(Mod-(B ⊗k Aop)). Let X ∈ D(Mod-A), Y ∈ D(A−B), and Z ∈ D(Mod-B). Then we
have the adjunction isomorphism in Mod-k:

HomD(Mod-B)(X ⊗L
A Y,Z) ' HomD(Mod-A)(X,RHomB(Y, Z)),

as well as its “enriched” version in D(Mod-k):

(2.0.1) RHomB(X ⊗L
A Y,Z) ' RHomA(X,RHomB(Y,Z)).

The following formulas will be useful in the sequel:

Lemma 2.1. (i) For any X ∈ D(Mod-k) and any n ∈ Z we have Hn(X+) ' H−n(X)+, and
Hn(X) = 0 if and only if H−n(X+) = 0.

(ii) For any X ∈ D(Mod-A) and Y ∈ D(A-Mod) we have natural isomorphisms (in D(Mod-k)):

RHomAop(Y,X+) ' (X ⊗L
A Y )+ ' RHomA(X,Y +).

(iii) For any compact object S ∈ Dc(Mod-A) and any complex X ∈ D(Mod-A) we have a natural
isomorphism

RHomA(S,X) ' X ⊗L
A S
∗.

(iv) For any compact object S ∈ Dc(Mod-A) and any X ∈ D(Mod-A) we have a natural isomorphism

RHomA(S,X)+ ' (S ⊗L
A X

+).

Proof. (i) The isomorphism of cohomology modules follows directly from (−)+ being an exact con-
travariant functor on Mod-k. The second claim follows from (−)+ being a faithful functor, ensured by
the assumption that W is a cogenerator.

(ii) This follows by applying the enriched derived Hom-⊗ adjunction from (2.0.1) twice - once directly
for Y ∈ D(A− k), yielding

(X ⊗L
A Y )+ ' RHomA(X,Y +),

and once using the left module version for X ∈ D(k −A):

RHomAop(Y,X+) ' (X ⊗L
A Y )+.

(iii) Follows from [5, Proposition 20.11] and dévissage.
(iv) Using (ii) and (iii) we have RHomA(S,X)+ ' (X⊗L

AS
∗)+ ' RHomAop(S∗, X+) ' (S⊗L

AX
+). �
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2.3. Definable subcategories. Next, we turn to a concept introduced in [37]. A subcategory V of
D(Mod-A) is said to be definable if there is a set Φ of maps between compact objects of D(Mod-A) such
that

V = {X ∈ D(Mod-A) | HomD(Mod-A)(f,X) is surjective for each f ∈ Φ}.
This notion is the derived analogue of the notion of a definable subcategory in Mod-A. Recall that any
definable subcategory D of Mod-A has a dual definable subcategory D∨ in A-Mod which is uniquely
determined by the property that a right A-module M lies in D if and only if M+ lies in D∨. We are now
going to prove an analogous result on derived level.

To this end, we need some alternative descriptions of definability.

Lemma 2.2. Let V be a subcategory of D(Mod-A). The following conditions are equivalent:

(i) V is definable;
(ii) there is a set Φ of morphisms between compact objects of D(Mod-A) such that

V = {X ∈ D(Mod-A) | HomD(Mod-A)(f,X) is injective for all f ∈ Φ};
(iii) there is a set Φ of morphisms between compact objects of D(Mod-A) such that

V = {X ∈ D(Mod-A) | HomD(Mod-A)(f,X) is zero for all f ∈ Φ}.

Proof. The statement follows by a simple argument using the long exact sequence obtained by applying
HomD(Mod-A)(−, X) onto a triangle in Dc(Mod-A), see also [19, Lemma 3.1]. �

Some comments on condition (iii) are in order. First of all, recall that a map f : X → Y in an additive
category is zero if it is zero in the abelian group Hom(X,Y ), or equivalently, if it is the unique map
between X and Y which factors through the zero object. The advantage of the description in (iii) is that
the condition on a map being zero is preserved and reflected by the duality functor (−)+, unlike the two
other conditions which are dual to each other.

Lemma 2.3. Let Φ be a set of morphisms between objects in Dc(Mod-A), and let Φ∗ = {f∗ | f ∈ Φ} be
the set of their duals in Dc(A-Mod). Let

V = {X ∈ D(Mod-A) | HomD(Mod-A)(f,X) is zero for all f ∈ Φ}

and

V∨ = {X ∈ D(A-Mod) | HomD(A-Mod)(f,X) is zero for all f ∈ Φ∗}
be the corresponding definable categories of D(Mod-A) and D(A-Mod), respectively.

Then the following properties hold:

(i) for any X ∈ D(Mod-A), we have X ∈ V if and only if X+ ∈ V∨;
(ii) for any Y ∈ D(A-Mod) we have Y ∈ V∨ if and only if Y + ∈ V.

Proof. For any f ∈ Φ and any X ∈ D(Mod-A), we have

HomD(Mod-A)(f,X) is zero⇔ H0 RHomA(f,X) is zero⇔ H0 RHomA(f,X)+ is zero.

We continue by computing as follows using the natural isomorphisms from Lemma 2.1:

H0 RHomA(f,X)+ ' H0(X ⊗L
A f
∗)+ ' H0 RHomAop(f∗, X+) ' HomD(A-Mod)(f

∗, X+).

In conclusion, the morphism HomD(Mod-A)(f,X) is zero if and only if HomD(A-Mod)(f
∗, X+) is zero,

which establishes (i).
(ii) follows by the same argument applied onto Φ∗, as Φ∗∗ = Φ. �

We will say that V and V∨ as above are dual definable subcategories.

Remark 2.4. Given a definable subcategory V of D(Mod-A), its dual definable subcategory is uniquely
determined by the rule V∨ = {X ∈ D(A-Mod) | X+ ∈ V}. Also, since Φ∗∗ = Φ, we have that (V∨)∨ = V,
and in particular we have for any X ∈ V that X++ ∈ V.

For a subcategory C of D(Mod-A) (or D(A-Mod)), we set C∗ = {X∗ | X ∈ C} and C+ = {X+ | X ∈ C}.

Lemma 2.5. Let S be a set of compact objects in Dc(Mod-A). Then V = S⊥0 and V ′ = (S∗)⊥0 are dual
definable subcategories.

Proof. This is a special case of Lemma 2.5 by noticing that S⊥0 is equal to the definable subcategory {X ∈
D(Mod-A) | HomD(Mod-A)(f,X) is zero for all f ∈ Φ} corresponding to the set of identity morphisms
Φ = { idS : S → S | S ∈ S}. �
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2.4. Purity. We briefly recall some basic notions from the theory of purity in derived categories, for
details and further references we refer the reader e.g. to [22, 36, 41]. Along the way, we show that several
classical results on the relation of purity with duality admit a natural generalization to the derived
setting.

A triangle X → Y → Z
h−→ X[1] in D(Mod-A) is a pure triangle if it is taken to a short exact sequence

of abelian groups 0 → HomD(Mod-A)(S,X) → HomD(Mod-A)(S, Y ) → HomD(Mod-A)(S,Z) → 0 by every
functor HomD(Mod-A)(S,−) given by a compact object S ∈ Dc(Mod-A). This is further equivalent to h
being a phantom map in D(Mod-A), that is, HomD(Mod-A)(S, h) is a zero map in Mod-k for any compact
object S ∈ D(Mod-A).

If X → Y → Z → X[1] is a pure triangle, we say that X is a pure subobject and Z is a pure quotient of
Y . An object X ∈ D(Mod-A) is pure-injective if every pure triangle X → Y → Z → X[1] in D(Mod-A)
is a split triangle, or equivalently, if the functor HomD(Mod-A)(−, X) takes pure triangles in D(Mod-A)
to short exact sequences of abelian groups.

The following Lemma shows that the usual characterization of pure-exact sequences in module cate-
gories extends to the derived setting.

Lemma 2.6. Let X → Y → Z
h−→ X[1] be a triangle in D(Mod-A). Then the following conditions are

equivalent:

(i) the triangle X → Y → Z
h−→ X[1] is pure in D(Mod-A),

(ii) the triangle X⊗L
AC → Y ⊗L

AC → Z⊗L
AC

h⊗L
AC−−−−→ X[1]⊗L

AC is pure in D(Mod-k) for any object
C ∈ D(A-Mod),

(iii) the triangle Z+ → Y + → X+ h+[1]−−−→ Z+[1] in D(A-Mod) is split.

Proof. (i) ⇒ (ii) : Let first C be a compact object of D(A-Mod). By Lemma 2.1(iii), the triangle from
condition (ii) is isomorphic to the triangle

RHomA(C∗, X)→ RHomA(C∗, Y )→ RHomA(C∗, Z)→ RHomA(C∗, X[1]).

If K is a compact object in D(Mod-k), then we have an adjunction HomD(Mod-k)(K,RHomA(C∗,−)) '
HomD(Mod-A)(K⊗L

k C
∗,−), and K⊗L

k C
∗ is a compact object of D(Mod-A). Therefore, the purity of the

triangle above in D(Mod-k) follows from (i). For a general object C ∈ D(A-Mod) we argue as follows. Let
F be a cochain complex quasi-isomorphic to C such that F is K-flat and consists of flat left A-modules,
such a complex exists by [56]. By [25, Theorem 1.1], F can be written as a direct limit F = lim−→i∈I Fi of

perfect complexes in the category of cochain complexes of left A-modules. If P is a compact object in
D(Mod-k) and W is an object in D(Mod-A), we have natural isomorphisms

HomD(Mod-k)(P,W ⊗A F ) ' HomD(Mod-k)(P,W ⊗A lim−→
i∈I

Fi) '

' HomD(Mod-k)(P, lim−→
i∈I

(W ⊗A Fi)) ' lim−→
i∈I

HomD(Mod-k)(P,W ⊗A Fi).

For the last isomorphism, consult [52, Proposition 5.4]. Therefore, HomD(Mod-k)(P,−) sends the triangle
from (ii) to a direct limit of exact sequences of abelian groups, and thus to an exact sequence as required.

(ii) ⇒ (iii) : To establish the splitting of the triangle in condition (iii), it is enough to show that
the map h+ is zero. For any object C ∈ D(A-Mod), Lemma 2.1(ii) yields natural equivalences of
morphisms HomD(A-Mod)(C, h

+) ' H0(h ⊗L
A C)+ in Mod-k. Using (ii), the map h ⊗L

A C is a phantom

map in D(Mod-k), and therefore H0(h ⊗L
A C) is a zero map. Consequently, we obtain that the map

HomD(A-Mod)(C, h
+) is zero for any C ∈ D(A-Mod). Put differently, h+ is sent to a zero map in the

functor category [D(A-Mod)op,Mod-k] via the Yoneda embedding D(A-Mod) ↪−→ [D(A-Mod)op,Mod-k],
and therefore h+ must be zero in HomD(A-Mod)(X

+[1], Z+) as well, as desired.
(iii)⇒ (i) : Let S be a compact object in D(Mod-A). By Lemma 2.1(iv), we have a natural equivalence

of maps HomD(Mod-A)(S, h)+ ' H0(S ⊗L
A h

+) in Mod-k. Since the triangle Z+ → Y + → X+ → Z+[1] is

split, so is the triangle S ⊗L
A Z

+ → S ⊗L
A Y

+ → S ⊗L
A X

+ S⊗L
Ah

+[1]−−−−−−→ S ⊗L
A Z

+[1], and therefore, using
Lemma 2.1(iv), the map HomD(Mod-A)(S, h)+ ' H0(S ⊗L

A h
+) is a zero morphism. Consequently by

duality, the map HomD(Mod-A)(S, h) is zero for any compact object S ∈ D(Mod-A). Therefore, h is a

phantom map in D(Mod-A), showing that the triangle X → Y → Z
h−→ X[1] is pure. �
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It will be useful in the sequel to note that the usual evaluation map has a derived counterpart enjoying
similar properties. Let X be an object of D(A-Mod). Using the Hom-⊗ adjunction twice, we get the
following natural isomorphisms:

HomD(A-Mod)(X,X
++) ' HomD(Mod-k)(X

+ ⊗L
A X,W ) ' End D(Mod-A)(X

+).

We let εX ∈ HomD(A-Mod)(X,X
++) be the map which corresponds to the identity of the ring

End D(Mod-A)(X
+) under the isomorphism above and call εX : X → X++ the evaluation morphism.

Now let P be a K-projective quasi-isomorphic replacement of X in D(A-Mod). For any acyclic complex
N of right A-modules, we have the adjunction isomorphism HomA(N,Homk(P,W )) ' Homk(N ⊗A
P,W ). Since P is also K-flat, and Homk(−,W ) is exact, we infer that P+ is a K-injective complex of
right A-modules. Then there is a commutative square of natural isomorphisms

HomD(A-Mod)(X,X
++)

'−−−−→ HomK(A-Mod)(P, P
++)

'
y '

y
End D(Mod-A)(X

+)
'−−−−→ End K(Mod-A)(P

+)

The evaluation map εX ∈ HomD(A-Mod)(X,X
++) corresponds to a map εP ∈ HomK(A-Mod)(P, P

++)

which is mapped to the identity in End K(Mod-A)(P
+) under the vertical arrow. It follows that the

homotopy class εP : P → P++ can be represented by the standard evaluation map given by the rule
εnP (x)(f) = f(x) for each x ∈ Pn and f ∈ (Pn)+ in each coordinate n ∈ Z.

Lemma 2.7. The evaluation map εX : X → X++ realizes X as a pure subobject of X++ for any
X ∈ D(Mod-A).

Proof. As in the discussion above, we can replace εX by a map εP : P → P++, where P is a quasi-
isomorphic K-projective replacement of X such that εP is the usual evaluation map of cochain complexes.
By Lemma 2.6, it is enough to check that ε+P : P+++ → P+ is a split epimorphism in D(A-Mod). But
it is straightforward to check that the evaluation map εP+ : P+ → P+++ of cochain complexes provides
the desired section of ε+P . �

Corollary 2.8. Let C be an object in D(Mod-A). Then the following conditions are equivalent:

(i) C is pure-injective in D(Mod-A),
(ii) the evaluation map εC : C → C++ is a split monomorphism,
(iii) C is isomorphic to a direct summand of D+ for some D ∈ D(A-Mod).

Proof. (i)⇒ (ii) : This follows by combining (i) with Lemma 2.7.
(ii)⇒ (iii) : Obvious.
(iii) ⇒ (i) : By passing to direct summands, it is sufficient to establish the implication in the case

when C = D+. We show that HomD(Mod-A)(−, C) sends pure triangles in D(Mod-A) to short exact
sequences in Mod-k. We apply Lemma 2.6: if

(2.8.1) X → Y → Z
h−→ X[1]

is a pure triangle in D(Mod-A), then the triangle X⊗L
AD → Y ⊗L

AD → Z⊗L
AD

h⊗L
AD−−−−→ X[1]⊗L

AD is pure
in D(Mod-k), and the functor Homk(−,W ) takes it to a split triangle in D(Mod-k). But by adjunction
the latter is isomorphic to the triangle obtained by applying the functor RHomA(−, D+) on the trian-
gle (2.8.1). Passing to cohomology yields that 0 → HomD(Mod-A)(Z,D

+) → HomD(Mod-A)(Y,D
+) →

HomD(Mod-A)(X,D
+)→ 0 is exact, establishing (i). �

2.5. Torsion pairs and TTF triples. A pair (U ,V) of full additive subcategories of D(Mod-A) is a
torsion pair provided that the following conditions hold:

(1) both U and V are closed under direct summands,
(2) HomD(Mod-A)(U ,V) = 0, and
(3) for any object X ∈ D(Mod-A) there is a triangle

U → X → V → U [1]

in D(Mod-A) with U ∈ U and V ∈ V.
6



Then U is called the aisle and V the coaisle of the torsion pair.
A torsion pair (U ,V) is a t-structure (resp. co-t-structure) provided that U [1] ⊆ U (resp. U [−1] ⊆ U).

When (U ,V) is a t-structure, the triangle from condition (3) is determined uniquely up to a unique
isomorphism, and it is always isomorphic to a triangle of form

τU (X)→ X → τV(X)→ τU (X)[1],

where τU (resp. τV) is the right (resp. left) adjoint to the inclusion U ⊆ D(Mod-A) (resp. V ⊆ D(Mod-A)).

Example 2.9. (i) For each n ∈ Z, consider the following subcategories of D(Mod-A):

D≤n = {X ∈ D(Mod-A) | Hk(X) = 0 for all k > n}, and

D>n = {X ∈ D(Mod-A) | Hk(X) = 0 for all k ≤ n}.
In the text, we will freely use the alternative symbols D<n = D≤n−1 and D≥n = D>n−1. We omit a
reference to the groundring A which should always be clear from the context. It is well-known that the
pair (D≤n,D>n) forms a t-structure in D(Mod-A). The functors τD≤n and τD>n are represented by the
soft truncations τ≤n and τ>n of cochain complexes.

(ii) The following construction goes back to [32]. Let (T ,F) be a torsion pair in Mod-A, that is, a
pair of full subcategories of Mod-A such that T = ⊥0F and F = T ⊥0 . Then there is a t-structure (U ,V)
in D(Mod-A), where

U = {X ∈ D≤0 | H0(X) ∈ T }, and

V = {X ∈ D≥0 | H0(X) ∈ F},
called the Happel-Reiten-Smalø t-structure. This construction yields an injective map from the class of
torsion pairs in Mod-A to the class of t-structures in D(Mod-A).

A TTF (torsion-torsion-free) triple is a triple (U ,V,W) formed by two adjacent torsion pairs (U ,V)
and (V,W). It is called suspended (respectively, cosuspended) if V[1] ⊆ V (respectively, V[−1] ⊆ V).

In other words, a suspended TTF triple is a triple (U ,V,W) such that (U ,V) is a co-t-structure,
and (V,W) is a t-structure, while a cosuspended TTF triple is a triple (U ,V,W) such that (U ,V) is a
t-structure, and (V,W) is a co-t-structure.

A t-structure (U ,V) is said to be stable if U and V are triangulated subcategories of D(Mod-A),
or equivalently, U is a localizing subcategory of D(Mod-A), i.e. a full triangulated subcategory which
is closed under coproducts. If V is also closed under coproducts, then U is said to be smashing. By
[46, Corollary 2.4], every smashing subcategory U gives rise to a TTF triple (U ,V,W) which is stable,
i.e. suspended and cosuspended.

We say that a torsion pair (U ,V) is non-degenerate if it satisfies⋂
n∈Z
U [n] = 0 =

⋂
n∈Z
V[n].

A suspended TTF triple (U ,V,W) will be called non-degenerate if so is the t-structure (V,W), and it
will be called intermediate if there are integers m ≤ n such that D≤m ⊆ V ⊆ D≤n. A cosuspended
TTF triple (U ,V,W) will be called non-degenerate if so is the t-structure (U ,V), and it will be called
cointermediate if there are integers m ≤ n such that D≤m ⊆ U ⊆ D≤n.

Moreover, we say that a torsion pair (U ,V), or a TTF triple (U ,V,W), is

• generated by a set of objects S of D(Mod-A) if V = S⊥0 ,
• compactly generated if it is generated by a set of compact objects of D(Mod-A),
• homotopically smashing if V is closed under directed homotopy colimits (see [52], [34, Appendix]).

Note that any set of compact objects S in Dc(Mod-A) generates a TTF triple (⊥0(S⊥0),S⊥0 , (S⊥0)⊥0)
by [2, Theorem 4.3] and [58, Theorem 3.11]. Furthermore, it is shown in [4] that every set of objects S
in D(Mod-A) gives rise to a stable t-structure (Loc(S),S⊥Z) which is generated by the objects of S and
all their shifts. Here Loc (S) denotes the smallest localizing subcategory of D(Mod-A) containing S.

Of course, every compactly generated t-structure has a definable coaisle, and by [41, Theorem 3.11]
every t-structure with a definable coaisle is homotopically smashing.

Recall from [37, Fundamental Correspondence] that any definable subcategory of D(Mod-A) is
uniquely determined by the (indecomposable) pure-injective objects it contains. In what follows, we
show that any t-structure with a definable coaisle is also determined by pure-injectives as a torsion pair.
A torsion pair (U ,V) is said to be

• cogenerated by a subcategory S of D(Mod-A) if U = ⊥0S.
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Proposition 2.10. Let A be a ring and (U ,V) a t-structure in D(Mod-A) such that the coaisle V is
definable. Then (U ,V) is cogenerated by a set of pure-injective objects of D(Mod-A).

Proof. Let B =
⋂
n∈Z V[n]. By [42, Corollary 6.6], there is a stable TTF triple (L,B,K) in D(Mod-A).

Furthermore, by [42, Proposition 6.11], there is a pure-injective object C ∈ D(Mod-A) such that the
t-structure (U ′,V ′) in D(Mod-A) defined by U ′ = ⊥≤0C (which exists by [42, Corollary 5.4]) satisfies
V ′ = V ∩ K, and V = B ? V ′. Then U = U ′ ∩ L. By [46, §4, Theorem] or [21, Proposition 2.5], there
is an object B ∈ D(A− A) in the derived category of A-A-bimodules (in fact, B comes from a suitable
homological epimorphism A → B of dg algebras) such that L = Ker (− ⊗L

A B). Then by adjunction
we have L = Ker RHomA(−, B+). In conclusion, we have U = ⊥0S, where S = {B+[n], C[m] | n ∈
Z,m ≤ 0}. Finally, we know that C is pure-injective, and B+ is a pure-injective object in D(Mod-A) by
Corollary 2.8(iii). �

2.6. Silting and cosilting TTF triples. We say that an object T ∈ D(Mod-A) is silting if the pair
(T⊥>0 , T⊥≤0) is a t-structure, which we call the silting t-structure induced by T . Two silting objects
T, T ′ ∈ D(Mod-A) are equivalent if they induce the same t-structure.

In view of the duality results which will be established in Subsection 3.1, it is convenient to consider
the dual notion of a cosilting object in the unbounded derived category D(A-Mod) of left A-modules
over a ring A. An object C ∈ D(A-Mod) is cosilting if the pair (⊥≤0C,⊥>0C) forms a t-structure, which
we call the cosilting t-structure induced by C. Two cosilting objects are equivalent if they induce the
same t-structure.

A silting object is called a bounded silting complex if it belongs to Kb(Proj-A), and a cosilting object
is called a bounded cosilting complex if it belongs to Kb(A-Inj).

Silting t-structures can be characterized as t-structures fitting into certain TTF triples.

Theorem 2.11. ([7, Theorem 4.11], [13, Theorem 4.6]) Let (V,W) be a t-structure in D(Mod-A).
(1) (V,W) is silting if and only if there is a non-degenerate suspended TTF triple (U ,V,W) which is

generated by a set of objects of D(Mod-A).
(2) (V,W) is induced by a bounded silting complex if and only if there is an intermediate suspended

TTF triple (U ,V,W).

It is proved in [43, Theorem 3.6 and Proposition 3.10] that every intermediate suspended TTF triple
in D(Mod-A) is compactly generated, and that every bounded cosilting complex is pure-injective, which
in particular means that the induced t-structure is homotopically smashing. More generally, by [41,
Theorem 4.6], a t-structure (U ,V) is induced by a pure-injective cosilting object if and only if it is
non-degenerate and homotopically smashing, and in this case the coaisle V is automatically definable in
D(A-Mod). Combining this with a result from [42] one obtains the following characterization.

Theorem 2.12. ([41, Theorem 4.6], [7, Theorem 6.13], [43, Proposition 3.10 and Theorem 3.13]) Let
(U ,V) be a t-structure in D(A-Mod).

(1) (U ,V) is induced by a pure-injective cosilting object if and only if there is a non-degenerate cosus-
pended TTF triple (U ,V,W) which is homotopically smashing.

(2) (U ,V) is induced by a bounded cosilting complex if and only if there is a cointermediate cosuspended
TTF triple (U ,V,W). In particular, (U ,V) is then homotopically smashing.

We now restrict to compactly generated silting and cosilting t-structures, for which we will establish
a duality result in Subsection 3.1.

Definition 2.13. We say that a silting object T in D(Mod-A) is of finite type if the induced silting
TTF triple is compactly generated. Similarly, we call a cosilting object C in D(A-Mod) of cofinite type
provided that it induces a compactly generated TTF triple.

By [43, Theorem 3.6 and Example 3.12], any bounded silting complex is of finite type, but bounded
cosilting complexes need not be of cofinite type. However, it is shown in [33, 34] that every pure-
injective cosilting object over a commutative noetherian ring is of cofinite type, and we are going to see
in Theorem 3.11 that the same holds true over hereditary rings.

As an immediate consequence of Theorems 2.11 and 2.12, we obtain the following characterization of
TTF triples induced by (co)silting objects of (co)finite type.

Corollary 2.14. Let A be a ring. Then:

(i) A compactly generated TTF triple is silting if and only if it is suspended and non-degenerate.
(ii) A compactly generated TTF triple is cosilting if and only if it is cosuspended and non-degenerate.
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2.7. Silting and cosilting modules. We now focus on bounded silting or cosilting complexes of length
two. The modules that occur as zero cohomologies of such complexes can be defined as follows. For
details we refer to [13, 24].

Definition 2.15. An A-module T is said to be

• silting if it admits a projective presentation P
σ−→ Q → T → 0 such that GenT coincides with

the class

Dσ = {X ∈ Mod-A | HomA(σ,X) is surjective};
• tilting if GenT = T⊥1 , or equivalently, T is silting and the map σ is injective.

The torsion class GenT generated by a silting (respectively, tilting) module T is called a silting (respec-
tively, tilting) class. Two silting modules T and T ′ are said to be equivalent if they generate the same
silting class, which amounts to having the same additive closure AddT = AddT ′.

Cosilting and cotilting modules and classes are defined dually in terms of the classes CogenC and

Cω = {X ∈ Mod-A | HomA(X,ω) is surjective},

where ω is an injective copresentation of the module C. Two cosilting modules C,C ′ are equivalent if
they cogenerate the same cosilting class, which amounts to the equality ProdC = ProdC ′.

Here is the connection between silting modules, objects, and t-structures: if T is a silting module in
Mod-A with respect to a projective presentation σ, then σ is a silting object (of finite type) in D(Mod-A),
and the t-structure induced by σ is the Happel-Reiten-Smalø t-structure (cf. Example 2.9(ii)) arising
from the torsion pair (GenT, T⊥0). Similarly, if C is a cosilting module with respect to an injective
copresentation ω, then ω is a cosilting object in D(Mod-A), and the t-structure induced by ω arises from
the torsion pair (⊥0C,CogenC). We say that C, or the cosilting class CogenC, is of cofinite type if so is
the cosilting object ω.

Silting and cosilting classes are definable subcategories of Mod-A, i.e. they are closed under direct
products, direct limits, and pure submodules. In fact, the cosilting classes are precisely the definable
torsion-free classes, cf. [6, Corollary 3.9].

Given a definable subcategory D of Mod-A, we denote by D∨ its dual definable subcategory in A-Mod
determined by the property that a right A module M lies in D if and only if M+ lies in D∨.

Proposition 2.16. [11] Let σ be a map between projective right A-modules. If Dσ is a silting class in
Mod-A, then Dσ ∨ = Cσ+ is a cosilting class in A-Mod. Furthermore, if TA is a silting module with
respect to σ, then AT

+ is a cosilting module with respect to σ+.

Corollary 2.17. [11] The assignment D 7→ D∨ defines a bijection between silting classes in Mod-A and
cosilting classes of cofinite type in A-Mod.

3. Compactly generated TTF triples

In this section, we develop some tools to study (co)silting objects of (co)finite type. First of all, in
subsection 3.1 we show that the silting-cosilting duality discussed above on the level of module cate-
gories extends to derived categories. In subsection 3.2, we see that over a commutative noetherian ring
this duality yields a bijection between (equivalence classes of) silting objects of finite type and pure-
injective cosilting objects. The classification of compactly generated t-structures from [3] then provides
a parametrization of these classes by certain chains of specialization-closed subsets of the Zariski spec-
trum. An essential ingredient for these results is the fact that all pure-injective cosilting objects over a
commutative noetherian ring are of cofinite type, which is proved in [34]. In subsection 3.3 we establish
the same result for hereditary rings.

3.1. Silting-cosilting duality. Our aim in this subsection is to prove a triangulated version of Corol-
lary 2.17.

Theorem 3.1. (cf. [58, Theorem 3.11]) There is a 1-1 correspondence{
Compactly generated TTF-triples

in D(Mod-A)

}
Ψ←→
{

Compactly generated TTF triples
in D(A-Mod)

}
.

The correspondence Ψ is given as follows: to the TTF triple in D(Mod-A) generated by a set of compact
objects S in Dc(Mod-A) we assign the TTF triple in D(A-Mod) generated by the set S∗.
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Proof. The only thing we need to prove is that the assignment is well-defined, that is, if S0 and S1 are two
subcategories of Dc(Mod-A) such that S⊥0

0 = S⊥0
1 , then also (S∗0 )⊥0 = (S∗1 )⊥0 . For any Y ∈ D(A-Mod)

we have by Lemma 2.5 that:

Y ∈ (S∗0 )⊥0 ⇔ Y + ∈ S⊥0
0 = S⊥0

1 ⇔ Y ∈ (S∗1 )⊥0 ,

establishing the claim. �

Lemma 3.2. Let (U ′,V ′,W ′) be a compactly generated suspended TTF triple in D(Mod-A) and (U ,V,W)
a compactly generated cosuspended TTF triple in D(A-Mod) corresponding to each other via Ψ. Then:

(i) (U ′,V ′,W ′) is suspended if and only if (U ,V,W) is cosuspended.
(ii)

⋂
n∈Z V ′[n] = 0 if and only if

⋂
n∈Z V[n] = 0.

(iii) If
⋂
n∈ZW ′[n] = 0, then

⋂
n∈Z U [n] = 0.

(iv) (U ′,V ′,W ′) is intermediate if and only if (U ,V,W) is cointermediate.

Proof. (i) For any Y ∈ V ′, we have (Y [1])+ ' Y +[−1], and for any V ∈ V we have (V [−1])+ ' V +[1].
By Lemma 2.5 we infer that V is closed under [−1] if and only if V ′ is closed under [1].

(ii) It follows from Lemma 2.5 that X ∈ V ′[n] if and only if X+ ∈ V[−n]. Therefore, if we assume⋂
n∈Z V[n] = 0, then for any X ∈

⋂
n∈Z V ′[n] we have X+ = 0, and therefore X = 0. The other

implication is proved in the same way.
(iii) First note that

⋂
n∈ZW ′[n] = V ′⊥Z , and

⋂
n∈Z U [n] = ⊥ZV. Suppose that V ′⊥Z = 0, and pick an

object X ∈ D(A-Mod) belonging to ⊥ZV, which means that RHomAop(X,V) = 0. By Lemma 2.5, we
have V ′+ ⊆ V, and thus RHomAop(X,V ′+) = 0. By Lemma 2.1, this translates as RHomA(V ′, X+) = 0.
By assumption it follows X+ = 0 in D(Mod-A), and thus X = 0 in D(A-Mod), as desired.

(iv) Using Lemma 2.5 and Lemma 2.1(i) we infer that for all n ∈ Z, the inclusion D≥n ⊆ V implies
that X+ ∈ V for all X in D≤−n, hence D≤−n ⊆ V ′. Similarly, if m ∈ Z and V ⊆ D≥m, then for all X in
D(Mod-A) the condition X+ ∈ V implies that X ∈ D≤−m, hence V ′ ⊆ D≤−m. The same argument with
the rôles of V and V ′ switched concludes the proof. �

We can now prove the desired triangulated version of the silting-cosilting duality from Corollary 2.17.

Theorem 3.3. The correspondence Ψ induces an injective map{
Silting objects of finite type

in D(Mod-A), up to equivalence

}
↪−→
{

Cosilting objects of cofinite type
in D(A-Mod), up to equivalence

}
which is given by the assignment T 7→ T+, and which restricts to a bijection{

Bounded silting complexes
in D(Mod-A), up to equivalence

}
←→

{
Bounded cosilting complexes of cofinite type

in D(A-Mod), up to equivalence

}
.

Proof. Let T ∈ D(Mod-A) be a silting object of finite type, let (U ′,V ′,W ′) be the induced compactly
generated suspended non-degenerate TTF triple in D(Mod-A), and let (U ,V,W) be its image under Ψ
in D(A-Mod). By Lemma 3.2, we see that the compactly generated TTF triple (U ,V,W) is cosuspended
and non-degenerate, and thus it is cosilting by Lemma 2.14. Put C = T+, and let us show that C is a
cosilting object inducing (U ,V,W).

Since T ∈ V ′, we have C ∈ V. For any X ∈ D(A-Mod), we have by Lemma 2.5 and 2.1 that:

X ∈ ⊥>0C ⇔ RHomAop(X,T+) ∈ D≤0 ⇔ RHomA(T,X+) ∈ D≤0 ⇔ X+ ∈ V ′ ⇔ X ∈ V.
We showed that ⊥>0C = V. It remains to check that U = ⊥≤0C. If X ∈ D(A-Mod) belongs to U , then
HomD(A-Mod)(X,V) = 0. Since V contains C and all its negative shifts, we infer that X lies in ⊥≤0C.
For the other inclusion, consider the approximation triangle with respect to the t-structure (U ,V):

(3.3.1) τU (X)→ X → τV(X)→ τU (X)[1].

Assume X ∈ ⊥≤0C. By the previous consideration, we have τU (X) ∈ ⊥≤0C and τV(X) ∈ ⊥>0C. By
applying HomD(A-Mod)(−, C) onto (3.3.1), we easily see that τV(X) ∈ ⊥ZC. But since T is a silting

complex, it is a generator in D(Mod-A), and it is easy to check that C = T+ is then necessarily a
cogenerator in D(A-Mod), implying that τV(X) = 0, and therefore X ∈ U .

Let us now show the second statement. It is clear that if T is a bounded silting complex in D(Mod-A),
then T+ belongs to Kb(A-Inj). Since any bounded silting object in D(Mod-A) is of finite type, the
assignment T 7→ T+ thus restricts as stated, and we only have to prove surjectivity. Let C be a bounded
cosilting object of cofinite type in D(A-Mod), let (U ,V,W) be the induced cointermediate cosuspended
TTF triple, and (U ′,V ′,W ′) its preimage under Ψ. Then (U ′,V ′,W ′) is intermediate by Lemma 3.2, and

10



by Theorem 2.11 it is induced by a bounded silting complex T ∈ D(Mod-A). Then T+ is a bounded
cosilting object of cofinite type inducing (U ,V,W), and the proof is complete. �

3.2. Over commutative noetherian rings. In this section, we focus on commutative noetherian rings
and strengthen the statements of Theorem 3.3. Our arguments will rely on some important classification
results which we review below. Let us first briefly recall some terminology. Given a commutative
noetherian ring A and an element p in the prime spectrum Spec (A), we denote by κ(p) = Ap/pAp the
residue field of A at p. The support of a complex of A-modules X is defined as suppX = {p ∈ Spec (A) |
X ⊗L

A k(p) 6= 0}, and the support suppX of a subcategory X of D(Mod-A) is the union of the supports
of the objects of X . Notice that for a finitely generated A-module M this definition of support agrees
with the classical support Supp M = {p ∈ SpecA |M ⊗A Ap 6= 0}.

By a well-known result due to Neeman and Hopkins, the assignment of support yields a parametriza-
tion of the localizing subcategories of D(Mod-A) by subsets of Spec (A). Moreover, it was shown by
Alonso, Jeremı́as and Saoŕın that the compactly generated t-structures in D(Mod-A) are parametrized
by certain chains of subsets of Spec (A).

Definition 3.4. A subset P of Spec (A) is said to be closed under specialization if for all primes p ⊆ q,
if p lies in P , then so does q. A filtration by supports of SpecA is a map Φ : Z −→ P(Spec (A)) such
that each Φ(n) is a subset of Spec (A) closed under specialization and Φ(n) ⊇ Φ(n+ 1) for all n ∈ Z.

Every filtration by supports Φ gives rise to a t-structure (UΦ,VΦ) whose aisle

UΦ = {X ∈ D(Mod-A): Supp Hn(X) ⊆ Φ(n) for all n ∈ Z}
coincides with the smallest suspended cocomplete subcategory of D(Mod-A) which contains the set
{A/p[−n] | n ∈ Z, p ∈ Φ(n)}.

Theorem 3.5. Let A be a commutative noetherian ring.
(1) [44, Theorem 2.8] The assignment L 7→ suppL defines a 1-1 correspondence{

localizing subcategories of D(Mod-A)
}
←→

{
subsets of Spec (A)

}
.

The inverse map assigns to a subset P of Spec (A) the localizing subcategory LP = Loc {κ(p) | p ∈ P}.
(2) [3, Theorem 3.11] The assignment Φ 7→ (UΦ,VΦ) defines a 1-1 correspondence{

compactly generated t-structures in D(Mod-A)
}
←→

{
filtrations by supports of Spec (A)

}
.

There is a further ingredient we will need. We have seen in Section 2 that every compactly generated
t-structure is homotopically smashing. Over a commutative noetherian ring the converse is also true.

Theorem 3.6. [34] If A is a commutative noetherian ring, every homotopically smashing t-structure in
D(Mod-A) is compactly generated. In particular, every pure-injective cosilting object is of cofinite type.

We now start by proving the missing implication from Lemma 3.2, which shows that the map Ψ in
Theorem 3.1 respects non-degeneracy.

Lemma 3.7. Let A be a commutative noetherian ring. Then, in the setting of Lemma 3.2, we have⋂
n∈Z U [n] = 0 if and only if

⋂
n∈ZW ′[n] = 0.

Proof. We have to prove the only-if-part, or equivalently, we have to show that ⊥ZV = 0 implies V ′⊥Z = 0.
Since ⊥ZV = 0, for any prime ideal p ∈ SpecA there is V ∈ V such that RHomA(κ(p), V ) is not a zero
object of D(Mod-A). By [33, Proposition 2.3], RHomA(κ(p), V ) belongs to V. Furthermore, the object
RHomA(κ(p), V ) is quasi-isomorphic to a complex of vector spaces over κ(p) in D(Mod-A), and therefore
RHomA(κ(p), V ) '

⊕
n∈ZH

nRHomA(κ(p), V )[−n]. Thus there is n ∈ Z such that HnRHomA(κ(p), V )
is a non-zero vector space over κ(p). Since V is closed under direct summands, we conclude that for each
p ∈ SpecA there is n ∈ Z such that κ(p)[n] ∈ V.

Let W be an injective cogenerator of Mod-A. By Lemma 2.5, RHomA(κ(p)[n],W ) '
HomA(κ(p),W )[−n] ∈ V ′. Since the non-zero A-module HomA(κ(p),W ) is again naturally a vector
space over κ(p), we see that V ′ contains κ(p)[−n]. Let L = ⊥Z(V ′⊥Z). Then L is a localizing subcategory
of D(Mod-A) and V ′ ⊆ L. In particular, L contains κ(p) for all p ∈ Spec (A), and the subset of Spec (A)
corresponding to L under the bijection in Theorem 3.5(1) must be P = Spec (A). Thus L = D(Mod-A)
and V ′⊥Z = 0, as desired. �

As a consequence, the injective map from Theorem 3.3 is now bijective, and we obtain a classification
of silting and cosilting objects over commutative noetherian rings which extends [17, Corollary 3.5].
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Theorem 3.8. Let A be a commutative noetherian ring. There is a bijective correspondence between

(i) equivalence classes of silting objects of finite type,
(ii) equivalence classes of pure-injective cosilting objects,
(iii) filtrations by supports Φ of Spec (A) such that⋃

n∈Z
Φ(n) = Spec (A) and

⋂
n∈Z

Φ(n) = ∅,

which restricts to a bijective correspondence between

(i’) equivalence classes of bounded silting complexes,
(ii’) equivalence classes of bounded cosilting complexes,

(iii’) filtrations by supports Φ of Spec (A) such that there are integers n ≤ m with

Φ(n) = Spec (A) and Φ(m) = ∅.

Proof. The bijection between (i) and (ii) is the first part of Theorem 3.3 in conjunction with Theorem 3.6
and Lemma 3.7.

For the bijection with (iii), we have to show that (UΦ,VΦ) is non-degenerate if and only if the filtration
by supports Φ satisfies the stated conditions. The condition on the intersection of the Φ(n) follows
immediately from the fact that

⋂
n∈Z UΦ[n] consists of the objects X ∈ D(Mod-A) whose cohomologies

are supported in
⋂
n∈Z Φ(n). Moreover, if S is a set of compact objects generating (UΦ,VΦ), then the

condition
⋂
n∈Z VΦ[n] = 0 holds if and only if S⊥Z = 0, which amounts to Loc (S) = D(Mod-A).

We claim that the subset P of Spec (A) corresponding to Loc (S) under Theorem 3.5 is precisely
P =

⋃
n∈Z Φ(n). Indeed, since S ⊆ UΦ, and the support suppX of a compact object X is given by the

classical supports
⋃
n∈Z SuppHn(X) of its cohomologies, we have suppS ⊆

⋃
n∈Z Φ(n). The localizing

subcategory corresponding to
⋃
n∈Z Φ(n) must therefore contain Loc (S), hence P ⊆

⋃
n∈Z Φ(n). On

the other hand, the fact that Loc (S) contains UΦ and thus also the set {A/p[−n] | n ∈ Z, p ∈ Φ(n)}
yields the other inclusion. We conclude using Theorem 3.5 that the condition Loc (S) = D(Mod-A) is
equivalent to

⋃
n∈Z Φ(n) = Spec (A).

For the second part, we combine Theorem 2.12 with Theorem 3.6 to see that every bounded cosilting
complex in D(Mod-A) is of cofinite type. The bijection between (i′) and (ii′) then follows from the
second part of Theorem 3.3. Furthermore, the existence of integers n ≤ m such that D≤n ⊆ UΦ ⊆ D≤m

means precisely that the cohomologies of objects in UΦ are arbitrary in degrees ≤ n and vanish in degrees
> m. In other words, Φ(i) = SpecA for all i ≤ n and Φ(i) = ∅ for all i > m. This proves the equivalence
of (ii′) and (iii′). �

3.3. Over hereditary rings. We know from Theorem 3.6 that homotopically smashing t-structures
over commutative noetherian rings are compactly generated. The main result of this section establishes
the same result over hereditary rings. We will work in the unbounded derived category D(A-Mod) of
left A-modules over a ring A and will assume that A is a left hereditary ring. Then the structure of the
derived category simplifies considerably. Indeed, in this case, for any object X ∈ D(A-Mod) we have
isomorphisms X '

⊕
n∈ZH

n(X)[−n] '
∏
n∈ZH

n(X)[−n] (see e.g. [38, §1.6]). As a consequence, for all
X,Y ∈ D(A-Mod) we have

HomD(A-Mod)(X,Y ) ' HomD(A-Mod)(
⊕
n∈Z

Hn(X)[−n],
∏
n∈Z

Hn(Y )[−n]) '

'
∏
n∈Z

(HomAop(Hn(X), Hn(Y ))⊕ Ext1
Aop(Hn(X), Hn−1(Y ))).

Let (U ,V) be a t-structure. We fix the notation

Un = {Hn(X) | X ∈ U} and Vn = {Hn(X) | X ∈ V}.

Then the left heredity of A implies that

U = {X ∈ D(A-Mod) | Hn(X) ∈ Un for all n ∈ Z}, V = {X ∈ D(A-Mod) | Hn(X) ∈ Vn for all n ∈ Z},

as well as the formulas

(3.8.1) Un = ⊥0Vn ∩ ⊥1Vn−1 and Vn = U⊥0
n ∩ U⊥1

n+1.

Lemma 3.9. Let A be a ring, (U ,V) a t-structure in D(A), and X ∈ D(Mod-A). Suppose that C is a
direct summand of τV(X) such that HomD(Mod-A)(X,C) = 0. Then C = 0.
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Proof. Consider the approximation triangle

τU (X)→ X
g−→ τV(X)→ τU (X)[1].

Since τV(X) = C⊕C ′, and HomD(Mod-A)(X,C) = 0, a general argument in triangulated categories shows
that C[−1] is a direct summand of τU (X). Since τU (X) ∈ U , and C[−1] ∈ V, this forces C = 0. �

Remark 3.10. For the proof of the next theorem, we will need to invoke a deep theorem [52, Theorem

A] which allows to lift t-structures in D(A-Mod) to the category D(A-ModI) of coherent diagrams of
shape I, where I is a small category. We provide a short explanation for the process adjusted for our
application here. The reader is referred to [52] for the unexplained terminology of coherent diagrams,
and to [52, Example 2.4] in particular for the situation of the canonical derivator of the derived category
of a Grothendieck category. Let (U ,V) be a t-structure in D(A-Mod), and let I be a small category. By

[52, Theorem A], there is a t-structure (UI ,VI) in D(A-ModI), where

UI = {U ∈ D(A-ModI) | Ui ∈ U for all i ∈ I},

VI = {V ∈ D(A-ModI) | Vi ∈ V for all i ∈ I},
where Xi is the i-th component of the coherent diagram X ∈ D(A-ModI). Therefore, for any X ∈
D(A-ModI) there is an approximation triangle

U →X → V → U [1],

where U ∈ UI and V ∈ VI . By [31, Corollary 4.19], taking the i-th coordinate yields a triangle

Ui →Xi → Vi → Ui[1]

in D(A-Mod) for any i ∈ I. Since Ui ∈ U and Vi ∈ V, this triangle is necessarily isomorphic to the
approximation triangle of Xi with respect to the t-structure (U ,V) in D(A-Mod). Thus, Ui ' τU (Xi).
Let α be an arrow in I. Since τU : D(A-Mod) → U is the right adjoint to the inclusion of U , it follows
by simple diagram chasing that U (α) = τU (X (α)). Therefore, the coherent diagram U is given by
applying the functor τU onto the coherent diagram X . The analogous statement for V follows by a dual
argument.

Theorem 3.11. Let A be a left hereditary ring. Then any homotopically smashing t-structure in
D(A-Mod) is compactly generated. In particular, every pure-injective cosilting object is of cofinite type.

Proof. Let (U ,V) be a homotopically smashing t-structure in D(A-Mod). We claim that for any M ∈ Un,
we can write M = lim−→i∈IMi for a directed system (Mi | i ∈ I) consisting of finitely presented modules

from Un. This is enough for the compact generation of (U ,V) — indeed, by the left heredity of A, any
stalk of a finitely presented left A-module is a compact object of D(A-Mod), and since aisles are closed
under directed homotopy colimits ([52, Proposition 4.2]), we have that (U ,V) is compactly generated.

To prove the claim, we first use [40, Lemma 5.2] to write M = lim−→i∈I Fi, where Fi is a finitely presented

module such that Fi ∈ ⊥1Vn−1. For each i ∈ I, consider the approximation triangle of the stalk complex
Fi[−n] with respect to the t-structure (U ,V):

τU (Fi)→ Fi[−n]→ τV(Fi)→ τU (Fi)[1].

Passing to cohomology, we obtain a long exact sequence of form

· · · → 0→ Hn−1τV(Fi)→ HnτU (Fi)→ Fi → HnτV(Fi)→ Hn+1τU (Fi)→ 0→ · · ·
Recall that τV(Fi) '

⊕
n∈ZH

n(τV(Fi))[−n], and HomD(A-Mod)(Fi[−n], Hn−1τV(Fi)[−n + 1]) '
Ext1

Aop(Fi, H
n−1(τV(Fi))) = 0, as Hn−1(τV(Fi)) ∈ Vn−1. Then Lemma 3.9 applies and shows that

Hn−1(τV(Fi)) = 0. As a consequence, Hn(τU (Fi)) is isomorphic to a submodule of Fi. Now we use [26,
Theorems 2.1.4 and 5.1.6] to see that every submodule of a finitely presented module over a left heredi-
tary ring has a direct decomposition in finitely presented modules. Hence Hn(τU (Fi)) is isomorphic to
a direct sum of finitely presented modules, and these have to belong to Un.

Now we consider F = (Fi[−n] | i ∈ I) as an object in D(A-ModI), the category of all coherent dia-

grams in D(A-Mod) of shape I. Denote by UI the subcategory of D(A-ModI) consisting of those coherent
diagrams such that all their coordinates belong to U , and define VI similarly. By [52, Theorem A], the

pair (UI ,VI) forms a t-structure in the triangulated category D(A-ModI). Consider the approximation
triangle of F with respect to the t-structure (UI ,VI):

U → F → V → U [1].
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By [31], the directed homotopy colimit functor is exact, and thus passing to directed homotopy colimits
yields a triangle in D(A-Mod):

(3.11.1) hocolimi∈IU →M [−n]→ hocolimi∈IV → hocolimi∈IU [1].

Since (U ,V) is homotopically smashing, both U and V are closed under directed homotopy colimits.
Therefore, hocolimi∈IU ∈ U and hocolimi∈IV ∈ V. Then (3.11.1) is an approximation triangle of
M [−n] with respect to (U ,V). But since M ∈ Un, and thus M [−n] ∈ U , we have an isomorphism
M [−n] ' hocolimi∈IU . Passing to the n-th cohomology, we obtain

M ' Hn(hocolimi∈IU ) ' lim−→
i∈I

Hn(τU (Fi)).

But as we have shown above, for each i ∈ I the module Hn(τU (Fi) is isomorphic to a direct sum of
finitely presented modules, all of which belong to Un. Therefore, we have a presentation of M as a direct
limit of modules from Un ∩A-mod, as desired. �

4. Cosilting modules and ring epimorphisms

Inspired by the classification results for commutative noetherian rings in Section 3.2, we proceed to
investigate possible parametrizations of cosilting objects over further classes of rings. Instead of chains
of subsets of the prime spectrum, we will use chains of ring epimorphisms.

In this section, we start by investigating the case of a single ring epimorphism. After some pre-
liminaries in subsection 4.1, we discuss a construction of cosilting modules from ring epimorphisms in
subsection 4.2. Over rings of weak global dimension at most one, or over commutative noetherian rings,
this leads us to a bijection between homological ring epimorphisms and certain cosilting modules (Corol-
laries 4.19 and 4.20). Such cosilting modules will be termed “minimal”, as their construction is dual
to the construction of minimal silting modules over hereditary rings in [14]. In fact, over a hereditary
ring minimal silting and cosilting modules will correspond to each other under silting-cosilting duality
(Corollary 4.22).

4.1. Reminder on ring epimorphisms. Let us first recall some notions and basic results.

Definition 4.1. (1) A ring homomorphism λ : A −→ B is a ring epimorphism if it is an epimorphism in
the category of rings with unit, or equivalently, if the functor given by restriction of scalars λ∗ : Mod-B −→
Mod-A is fully faithful. Further, λ is a homological ring epimorphism if in addition TorAi (B,B) = 0 for
all i > 0, or equivalently, the functor given by restriction of scalars λ∗ : D(Mod-B) → D(Mod-A) is a
full embedding.

(2) Two ring epimorphisms λ1 : A −→ B1 and λ2 : A −→ B2 are said to be equivalent if there is an
isomorphism of rings µ : B1 −→ B2 such that λ2 = µ ◦ λ1. We then say that λ1 and λ2 lie in the same
epiclass of A.

(3) A full subcategory X of Mod-A is called bireflective if the inclusion functor X −→ Mod-A admits
both a left and right adjoint or, equivalently, if it is closed under products, coproducts, kernels and
cokernels.

Theorem 4.2. [28, 27, 23, 53] The assignment which takes a ring epimorphism λ : A → B to the
essential image XB of λ∗ defines a bijection between

• epiclasses of ring epimorphisms A→ B,
• bireflective subcategories of Mod-A,

which restricts to a bijection between

• epiclasses of ring epimorphisms A→ B with TorA1 (B,B) = 0,
• bireflective subcategories closed under extensions in Mod-A.

The partial order on bireflective subcategories given by inclusion corresponds under the bijection in
Theorem 4.2 to a partial order on the epiclasses of A defined by setting

λ1 ≤ λ2

whenever there is a commutative diagram of ring homomorphisms

A
λ1 //

λ2   

B1

B2

µ

>>
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Since bireflective subcategories are determined by closure properties, the poset induced by ≤ is a complete
lattice, and the ring epimorphisms A→ B with TorA1 (B,B) = 0 form a sublattice in it by Theorem 4.2.

Notice that over a ring of weak global dimension at most one, every ring epimorphism A → B with
TorA1 (B,B) = 0 is already a homological ring epimorphism and thus has the properties listed in the next
theorem. The same holds true when A is commutative noetherian, since B is then a flat A-module by
[16, Proposition 4.5]. For details on recollements, we refer to [46].

Theorem 4.3. [46] Let A be a ring and let λ : A → B be a homological ring epimorphism. The
functor λ∗ : D(Mod-B) → D(Mod-A) given by restriction of scalars, together with the adjoint functors
λ∗ = −⊗L

A B and λ! = RHomA(B,−), induces a stable TTF-triple in D(Mod-A)

(L = Kerλ∗, B = Imλ∗, K = Kerλ!)

and a recollement

D(Mod-B) λ∗=λ!
// D(Mod-A)

λ!oo

λ∗oo
j!=j∗ // L
j∗oo

j!oo

with j∗ = − ⊗L
A L[−1] where L is the cone of λ. In particular, for every X in D(Mod-A) there is an

approximation triangle with respect to the stable t-structure (L,B)

j!j
!(X) = X ⊗L

A L[−1] // X // λ∗λ∗(X) = X ⊗L
A B

// j!j!(X)[1]

and an approximation triangle with respect to the stable t-structure (B,K)

λ∗λ
!(X) = RHomA(B,X) // X // j∗j∗(X) = RHomA(L[−1], X) // λ∗λ!(X)[1]

where the maps are given by adjunctions.

For a full subcategory X of Mod-A we consider the full subcategory of D(Mod-A)

DX (A) = {X ∈ D(Mod-A) | Hn(X) ∈ X for all n ∈ Z}.

Theorem 4.4. Let A be a ring, let λ : A → B be a homological ring epimorphism and let X be the
corresponding bireflective subcategory of Mod-A.

(i) [12, Lemma 4.6] The subcategory B = Imλ∗ equals DX (A).
(ii) [12, Lemma 4.2] If BA has projective dimension at most one, the subcategory K = Kerλ! =

Ker RHomA(B,−) equals DC(A) where C = Mod-A ∩ K = B⊥0,1 .
(iii) [20, Theorem 6.1(a)] If AB has weak dimension at most one, the subcategory L = Kerλ∗ =

Ker (−⊗L
AB) equals DE(A) where E = Mod-A ∩ L = {M ∈ Mod-A |M⊗AB = 0 = TorA1 (M,B)}.

(iv) [40, Propositions 2.6 and 3.1] If A is hereditary, the stable TTF-triple (L,B,K) is given by

L = D⊥0,1X (A), B = DX (A), K = DX⊥0,1 (A).

Theorem 4.5. [53, Theorem 4.1] Let A be a ring and Σ be a class of morphisms between finitely generated
projective right A-modules. Then there is a ring homomorphism f : A −→ AΣ such that

(1) f is Σ-inverting, i.e. if σ belongs to Σ, then σ ⊗A AΣ is an isomorphism of right AΣ-modules,
and

(2) f is universal Σ-inverting, i.e. for any Σ-inverting morphism f ′ : A −→ B there exists a unique
ring homomorphism g : AΣ −→ B such that g ◦ f = f ′.

The homomorphism f : A −→ AΣ is a ring epimorphism with TorA1 (AΣ, AΣ) = 0, called the universal
localization of A at Σ.

Recall that a ring A is said to be right semihereditary if all its finitely generated right ideals are
projective. It is well known that every finitely generated submodule of a projective right A-module is
then projective, and therefore mod-A consists of modules of projective dimension at most one.

Theorem 4.6. Let A be a right semihereditary ring. There is a bijection between

(1) wide subcategories (i.e. abelian subcategories closed under extensions) of mod-A,
(2) epiclasses of universal localizations of A,

which assigns to a wide subcategory M ⊆ mod-A the epiclass of the universal localization λM at the
projective resolutions of the modules in M. If A is right hereditary, then there is also a bijection with

(3) bireflective extension closed subcategories of Mod-A,

which assigns to a wide subcategory M⊆ mod-A the perpendicular category M⊥0,1 . Conversely, given a
bireflective subcategory X , the associated wide subcategory is M = ⊥0,1X ∩mod-A.
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Proof. The result goes back to [55, Theorem 2.3],[40, Theorem 6.1] for the case when A is right hereditary.
For the semihereditary case one proceeds similarly. Indeed, first of all, one easily checks that the proof
in [55, Lemma 2.1] is still valid. Given a universal localization λ : A → B, we can thus assume that λ
is the universal localization at a set Σ of injective morphisms between finitely generated projective right
A-modules. We can then consider the bireflective subcategory X of Mod-A associated to λ together with
its left perpendicular subcategory M = ⊥0,1X ∩mod-A, which consists of all finitely presented modules
M whose projective resolutions are inverted by B, that is, M ⊗AB = TorA1 (M,B) = 0, cf. [54, Theorem
5.2]. Since A is right coherent and all finitely presented right A-modules have projective dimension at
most one, we infer from [54, Lemma 5.3] thatM is a wide subcategory of mod-A. By construction, λ lies
in the same epiclass as λM. This shows that the assignment M 7→ λM in the statement is surjective.
The injectivity is shown as in [55, Theorem 2.3]. �

4.2. Minimal cosilting modules. Ring epimorphisms with nice homological properties can be used
to construct silting modules [14, 6]. We now investigate the dual construction, developing work from
[18] on the cotilting case. This is going to shed some light on the connection between ring epimorphisms
and cosilting modules. In fact, it will turn out that the class of cosilting modules obtained from the
dual construction is in general larger than the class of silting modules arising from ring epimorphisms,
cf. Examples 4.23(4) and (5).

Definition 4.7. Let M be a right A-module, and let C be a class of left A-modules. We say that M is
a C-Mittag-Leffler module if the canonical map

ρ : M ⊗A
∏
i∈I

Ci →
∏
i∈I

(M ⊗A Ci)

is injective for any family {Ci}i∈I of modules in C.

Lemma 4.8. Let T be a silting right A-module, and let C = T+. Then every module in AddT is
CogenC-Mittag-Leffler.

Proof. We know from [13] that T is a tilting module over A = A/I where I = {a ∈ A | Ta = 0} is
the annihilator of T in A. We consider the tilting cotorsion pair (A,GenTA) induced by T in Mod-A
and the dual cotilting class CogenAC. By [9, Corollary 9.8], every module in A is CogenAC-Mittag-

Leffler. Now, any module M ∈ AddT is an A-module contained in A. Moreover, since Mod-A is closed
under products and submodules, and C = Homk(T,W ) is an A-module, every module X in CogenAC
is contained in CogenAC and satisfies M ⊗A X ∼= M ⊗A X. Hence the Mittag-Leffler property over A
entails the Mittag-Leffler property over A. �

Proposition 4.9. Let T be a silting right A-module and let

(4.9.1) A
f−→ T0 → T1 → 0

be an exact sequence such that f is an GenT -preenvelope and T1 lies in AddT . Set C = T+ and
Ci = (Ti)

+ for i = 0, 1 and consider the exact sequence

(4.9.2) 0→ C1 → C0
f+

−→ A+.

Then f+ is a CogenC-precover, C1 lies in ProdC, and the subcategory Y = CogenC∩⊥0C1 is bireflective.

Proof. We know from Proposition 2.16 that C is a cosilting module with cosilting class CogenC =
(GenT )∨. By Hom-⊗-adjunction, for any left A-module X there is a commutative diagram linking the
maps HomA(X, f+), (f ⊗A X)+ and HomA(f,X+). Thus X ∈ CogenC if and only if X+ ∈ GenT ,
which in turn means that HomA(f,X+), or equivalently, HomA(X, f+) is surjective.

Dually to [14, Proposition 3.3], we see that Y is closed under coproducts, kernels and cokernels. By
Hom-⊗-adjunction, ⊥0C1 consists of the left A-modules Y for which T1 ⊗ Y = 0. Now assume that
(Yi)i∈I is a family of left A-modules in Y and consider Y =

∏
i∈I Yi. Of course Y belongs to CogenC.

Moreover, since T1 is CogenC-Mittag-Leffler by Lemma 4.8, we have an injective map ρ : T1 ⊗A Y →∏
i∈I(T1 ⊗A Yi) = 0, showing that Y also belongs to ⊥0C1, and therefore to Y. �

Example 4.10. [14, Example 5.10] Let A be the Kronecker algebra, i.e., the path algebra of the quiver
• //// • over a field k. Every homological ring epimorphism λ : A → B induces a silting module of

the form T = B ⊕ Cokerλ. The silting modules arising in this way are termed “minimal” (cf. [14] and
Definition 4.21). It turns out that the homological ring epimorphisms parametrize all but one silting
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A-modules, that is, all but one silting modules are minimal; the only missing one (up to equivalence) is
the Lukas tilting module.

Let us briefly analyse the Lukas tilting module L in more detail. The tilting class GenL is given by
the right A-modules without indecomposable preprojective summands. Moreover, if

(4.10.1) 0→ A
f−→ L0 → L1 → 0

is an exact sequence such that f is an GenL-preenvelope and L1 lies in AddL, then

GenL ∩ L⊥0
1 = L

⊥0,1

1 = 0.

Consider now the cotilting left A-module W = L+. The class CogenW consists of the left A-modules
without indecomposable preinjective summands, and W is (up to equivalence) the direct sum of the
generic module G and all Prüfer modules S∞, where S runs through a set of representatives of the
simple regular modules (for more details, we refer to Chapter 6). If we apply Proposition 4.9, we obtain
an exact sequence

(4.10.2) 0→ C1 → C0
f+

−→ A+ → 0

where f+ is a CogenW -precover, C1 ∈ ProdW , and

CogenW ∩ ⊥0C1 = 0.

On the other hand, A+ also has a CogenW -cover g with an exact sequence

(4.10.3) 0→W1 →W0
g−→ A+ → 0,

where W1 ∈ AddG and W0 is a direct sum of Prüfer modules by [50, Theorem 7.1]. Here

CogenW ∩ ⊥0W1 = ⊥0,1W1 = ⊥0,1G

contains all Prüfer modules, and it is not closed under direct products. Indeed, for every simple regular
module S the countable product S∞

N contains a copy of the generic module as a direct summand by
[51, Proposition 3]. Notice that HomA(W0,W1) = 0, while C0 and C1 must contain a Prüfer module as
a common direct summand.

Remark 4.11. The following holds true for every cosilting module C: all left A-modules have a CogenC-

cover with kernel in ProdC. Furthermore, given a CogenC-cover C0
g−→ A+ with kernel C1 ∈ ProdC,

the class ProdC0 consists of the split injective objects in CogenC, and the class ProdC1 consists of the
Ext-injective objects in CogenC without split injective summands. In particular, C0 and C1 have no
common direct summands. Here an object X ∈ CogenC is said to be split injective if every monomor-
phism X → Y with Y ∈ CogenC is a split monomorphism, and it is said to be Ext-injective if every
short exact sequence 0→ X → Y → Z → 0 with Z (and hence also Y ) in CogenC is split exact.

In view of the discussion above, we introduce the following terminology.

Definition 4.12. A cosilting left A-module C is said to be minimal if there is an exact sequence

(4.12.1) 0→ C1 → C0
g−→ A+

such that g is a CogenC-precover, C1 lies in ProdC, and

(i) the subcategory CogenC ∩ ⊥0C1 is bireflective, that is, it is closed under direct products,
(ii) HomA(C0, C1) = 0.

The following conditions are needed to construct minimal cosilting modules from ring epimorphisms.

Definition 4.13. [15] A projective presentation P
σ−→ P ′ → T → 0 of an A-module T is called a

presilting presentation if HomD(Mod-A)(σ, σ
(I)[1]) = 0 for all sets I, or equivalently, GenT ⊆ Dσ.

An injective copresentation 0→ C → I
ω−→ I ′ of an A-module C is called a precosilting copresentation

if HomD(Mod-A)(ω
I , ω[1]) = 0 for all sets I, or equivalently, CogenC ⊆ Cω.

Remark 4.14. (1) [15, Proposition 1.3] If λ : A→ B is a ring epimorphism such that B has a presilting
presentation, then B ⊕ Cokerλ is a silting right A-module.

(2) A module C has a precosilting copresentation if and only if its minimal injective copresentation is
precosilting, which amounts to the condition CogenC ⊂ ⊥1C by [6, Lemma 3.3]. In other words, C has
a precosilting copresentation if and only if it is Ext-injective in CogenC.
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Example 4.15. (1) Every (co)silting module has a pre(co)silting (co)presentation.

(2) If λ : A→ B is a homological ring epimorphism such that B has a presilting presentation, then the
left A-module B+ has a precosilting copresentation. Indeed, if σ is a presilting presentation of B, then
GenB ⊆ Dσ, and the dual definable classes satisfy CogenB+ ⊆ Cσ+ , showing that σ+ is a precosilting
copresentation of B+. Example 4.23(4) below will show that the converse is not true.

(3) If λ : A → B is a ring epimorphism such that the left A-module B+ has a precosilting copre-

sentation, then TorA1 (B,B) = 0. Indeed, the assumption entails that AB ∈ CogenB+ ⊂ ⊥1B+, hence

TorA1 (B,B)+ ∼= Ext1
A(B,B+) = 0.

(4) A ring epimorphism λ : A→ B such that the weak dimension of BA is at most one is homological
if and only if the left A-module B+ has a precosilting copresentation. The if-part follows from (3). For
a proof of the only-if-part, we show that CogenB+ ⊂ ⊥1B+. To this end, observe first that B+ is an
injective left B-module, hence Ext1

A(X,B+) ∼= Ext1
B(X,B+) vanishes for all X ∈ ProdB+. Now the

formula Ext1
A(X,B+) ∼= TorA1 (B,X)+ and the assumption on the weak dimension of BA ensure that

Ext1
A(X,B+) vanishes even for X ∈ CogenB+.

(5) A ring epimorphism λ : A → B such that the projective dimension of BA is at most one is
homological if and only if B has a presilting presentation. Indeed, if λ is homological, then Ext1

A(B,X) ∼=
Ext1

B(B,X) vanishes for all X ∈ AddB, hence also for X ∈ GenB. This shows that GenB ⊆ B⊥1 ,
hence any projective resolution of BA is a presilting presentation. The converse implication follows from
(2) and (3).

One can now generalize and refine [18, Theorem 3.3] as follows.

Proposition 4.16. Let λ : A −→ B be a ring epimorphism such that the left A-module B+ has a
precosilting copresentation. Denote by X the associated bireflective subcategory of A-Mod and set C =
CogenX . Then

(1) B+ ⊕Kerλ+ is a minimal cosilting left A-module with cosilting class C.
(2) The classes X and C consist precisely of the left A-modules M whose X -reflection η : M → B⊗AM

is bijective, respectively injective.
(3) (Ker (B ⊗A −), C) is a torsion pair.

(4) For every module M ∈ Mod-A there is an exact sequence 0 → M ′ → M
η→ B ⊗AM → M ′′ → 0

where M ′ and M ′′ belong to Ker (B ⊗A −).
(5) If 0→ X → C → Z → 0 is a short exact sequence with X ∈ X and C ∈ C, then Z ∈ C.

(6) If the weak dimension of BA is at most one, then C ⊆ Ker TorA1 (B,−).

Proof. (1) By Remark 4.14(2) we know that CogenB+ ⊂ ⊥1B+. By arguments as in the proof of
Proposition 4.9, we see that a left A-module X belongs to λ∗(B-Mod) if and only if HomA(X,λ+) is
bijective. In particular, λ+ : B+ → A+ is a ProdB+-cover and a CogenB+-cover. By [6, Proposition
3.5] it follows that B+ ⊕Kerλ+ is a cosilting left A-module.

Moreover, the category Y = CogenB+ ∩ ⊥0Kerλ+ = λ∗(B-Mod) is bireflective, and since B+

is a left B-module, the map λ ⊗A B+ is bijective, which proves that Cokerλ ⊗A B+ = 0 and
HomA(B+,Kerλ+) ∼= (Cokerλ ⊗A B+)+ = 0. Finally, since X is closed under products, C = {M ∈
A-Mod |M embeds into a module from X} = Cogen (B+).

(2) The statement for X is clear. For the second statement, note that the injectivity of η : M → B⊗AM
implies M embeds in the module B ⊗AM from X and therefore lies in C. Conversely, if M ∈ C, there is
a monomorphism M → N with N ∈ X , and the X -reflection η : M → B ⊗AM must be injective.

(3) The cosilting class C is a torsion-free class. A left A-module M belongs to the torsion class
⊥0C = ⊥0X if and only if HomA(M,λ∗(N)) ∼= HomB(B ⊗AM,N) vanishes for any B-module N , which
means that B ⊗AM = 0.

(4) Consider the canonical exact sequence 0 → M ′ → M → M → 0 with M ′ ∈ Ker (B ⊗A −) and
M ∈ C induced by the torsion pair (Ker (B ⊗A −), C). Then B ⊗A M ∼= B ⊗A M . Moreover, the X -
reflection of the torsion-free module M gives rise to a short exact sequence 0→M → B⊗AM →M ′′ → 0
with B ⊗AM ′′ = 0, hence M ′′ belongs to Ker (B ⊗A −). The claim is now obtained by splicing the two
short exact sequences.

(5) Consider the commutative diagram

0 −−−−→ X −−−−→ C −−−−→ Z −−−−→ 0

ηX

y ηC

y ηZ

y ∥∥∥
B ⊗A X −−−−→ B ⊗A C −−−−→ B ⊗A Z −−−−→ 0
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with exact rows. As X ∈ X and C ∈ C, the map ηX is an isomorphism, and the map ηC is a monomor-
phism. Then the Four Lemma shows that ηZ : Z → B ⊗A Z is a monomorphism, and thus Z ∈ C.

(6) By Example 4.15(3), the ring epimorphism λ : A → B is homological. Hence TorA1 (B,N) ∼=
TorB1 (B,N) vanishes for all B-modules N , and since TorA1 (B,−) is left exact, also for all modules in
C. �

Theorem 4.17. The map assigning to a ring epimorphism λ : A → B the class CogenB+ yields a
bijection between

(i) epiclasses of ring epimorphisms λ : A→ B such that B+ has a precosilting copresentation,
(ii) equivalence classes of minimal cosilting modules.

Proof. Proposition 4.16 yields a map (i)→(ii). To prove the injectivity, suppose λi : A → Bi, i = 1, 2,
are two ring epimorphisms as in (i) which are mapped to the same cosilting class. Then, as seen
in the proof of Proposition 4.16, the map λ+

i : B+
i → A+ is a CogenB+

i -cover for i = 1, 2. But
CogenB+

1 = CogenB+
2 , hence B+

1
∼= B+

2 and Kerλ+
1
∼= Kerλ+

2 , and the bireflective subcategories
λ∗(Bi-Mod) = CogenB+

i ∩ ⊥0Kerλ+
i coincide for i = 1, 2, showing that λ1 and λ2 are in the same

epiclass.
Now we show the surjectivity. Take a minimal cosilting module C with an exact sequence

(4.17.1) 0→ C1 → C0
g−→ A+

such that g is a CogenC-precover, C1 lies in ProdC, Y = CogenC ∩ ⊥0C1 is a bireflective subcategory
of B-Mod, and HomA(C0, C1) = 0. Then there is a ring epimorphism λ : A → B such that Y =
λ∗(B-Mod) = {M ∈ A-Mod | λ ⊗A M is bijective } = {M ∈ A-Mod | HomA(M,λ+) is bijective }.
Notice that λ+ : B+ → A+ is then a Y-coreflection. On the other hand, the condition HomA(C0, C1) = 0
implies that C0 ∈ Y, and therefore also g : C0 → A+ is a Y-coreflection. But then B+ is isomorphic
to C0, and in particular B+ has a precosilting copresentation, cf. [6, page 9]. Now it follows e.g. from
Proposition 4.16 that B+ ⊕ Kerλ+ is a cosilting module which is clearly equivalent to C. So, the
equivalence class of C lies in the image of our assignment. �

Remark 4.18. Example 4.10 shows that the conditions (i) and (ii) in the definition of a minimal cosilting
module (Definition 4.12) are independent and depend on the choice of the CogenC-precover. On the
other hand, once we know that C is minimal, we can always guarantee that the CogenC-cover of A+

(which is precisely λ+ : B+ → A+ for the associated ring epimorphism λ : A→ B) satisfies (i) and (ii).
Hence we can rephrase the definition as follows: C is a minimal cosilting module if the CogenC-cover of
A+ satisfies (i) and (ii).

Corollary 4.19. Let A be a ring of weak global dimension at most one. The map assigning to a ring
epimorphism λ : A→ B the class CogenB+ yields a bijection between

(i) epiclasses of homological ring epimorphisms,
(ii) equivalence classes of minimal cosilting modules.

Corollary 4.20. Let A be a commutative noetherian ring. The map assigning to a ring epimorphism
λ : A→ B the class CogenB+ yields a bijection between

(i) epiclasses of homological (that is, flat) ring epimorphisms,
(ii) equivalence classes of minimal cosilting modules.

Proof. Recall from [16, Proposition 4.5] that every ring epimorphism A→ B starting in a commutative

noetherian ring A and satisfying TorA1 (B,B) = 0 is flat, i.e. B is a flat A-module. Combining this with
Example 4.15 (3) and (4) we infer that a ring epimorphism A→ B is homological if and only if it is flat,
if and only if B+ has a precosilting copresentation. �

Definition 4.21. [14] A silting module T over a hereditary ring is said to be minimal if there is an exact
sequence

(4.21.1) A
f−→ T0 → T1 → 0

such that f is an GenT -envelope and T1 lies in AddT .

Corollary 4.22. Let A be a hereditary ring. Then there are bijections between

(i) epiclasses of homological ring epimorphisms;
(ii) equivalence classes of minimal silting modules;
(iii) equivalence classes of minimal cosilting modules.
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Proof. It is shown in [14] that the minimal silting (right) modules over a hereditary ring A correspond
bijectively to the epiclasses of homological ring epimorphisms λ : A→ B. The bijection associates to λ
the silting module B⊕Cokerλ. The bijection (i)↔(iii) is Corollary 4.19. Notice that this correspondence
is the composition of the bijection (i)→(ii) with the map from Corollary 2.17 which associates the
equivalence class of a silting (right) module with the equivalence class of its dual cosilting module. �

Example 4.23. (1) Every finite dimensional (co)silting module over a finite dimensional hereditary
algebra A is minimal. Indeed, A has a GenT -envelope for every finite dimensional silting module
T , and every finite dimensional cosilting module is of cofinite type (e.g. by [11, Corollary 3.8] or by
Theorem 3.11), hence equivalent to T+ for a finite dimensional silting module T .

Over the Kronecker algebra, up to equivalence, the Lukas tilting module L and its dual cotilting
module W are the only non-minimal silting and cosilting modules, respectively, cf. Example 4.10 and
Subsection 6.4.

(2) Let A be a commutative noetherian ring. It is shown in [11] that the cosilting classes in A-Mod
are precisely the torsion-free classes in hereditary torsion pairs, and they are therefore parametrized
by subsets V ⊂ SpecA closed under specialization. The subset V is computed as V = Supp T where
T = ⊥0C is the torsion class associated to the cosilting class C.

Recall further from Corollary 4.20 that every minimal cosilting class corresponds to a flat ring epi-
morphism A → B, thus the hereditary torsion pair is of the form (T = Ker (B ⊗A −), C = CogenB+).
The subsets V corresponding to flat ring epimorphisms are determined in [16, Theorem 4.9]; they are
characterized by the property that their complement is coherent in the sense of [39]. We conclude that
the minimal cosilting classes in A-Mod are parametrized by the specialization-closed subsets of SpecA
having a coherent complement.

(3) If A is a commutative noetherian ring of Krull dimension at most one, the map assigning to a ring
epimorphism λ : A→ B the class CogenB+ yields a bijection between

(i) epiclasses of homological ring epimorphisms,
(ii) equivalence classes of cosilting modules.

The claim is a special case of Corollary 4.20. It follows from (2) by noting that every subset of SpecA
is coherent when A has Krull dimension at most one, see [39, Corollary 4.3].

(4) Let A be a commutative noetherian local domain. Then the embedding λ : A ↪→ Q into the
quotient field Q is a flat ring epimorphism which corresponds to the subset V = SpecA \ {0} and to
the cotilting torsion pair (T = Ker (Q ⊗A −), C = CogenQ+) given by the torsion and torsionfree A-
modules, respectively. The dual tilting class D consists of all divisible modules. Assume that Q is not
countably generated over A. Combining a result of Kaplansky [35] with [10, Theorem 1.1], we infer
that the A-module Q has projective dimension at least two, the tilting module generating D has not
the shape Q ⊕ Cokerλ, and A does not admit a D-envelope, in contrast with the bijection (i)↔(ii) in
Corollary 4.22 for the hereditary case. Moreover, it follows from Remark 4.14(1) that Q cannot have a
presilting presentation.

(5) The bijection (i)↔(ii) in Corollary 4.22 cannot be extended to rings of weak global dimension at
most one. For example, if A is a valuation domain (that is, a commutative local ring of weak global
dimension at most one), then the silting modules up to equivalence correspond to flat ring epimorphisms,
which coincide with the classical localizations of A, this is a consequence of [11, Theorem 4.7]. On the
other hand, if A is not strongly discrete, meaning that A admits a non-trivial idempotent ideal, then
there are homological ring epimorphisms over A which are not flat. They correspond to minimal cosilting
modules which are not of cofinite type, see subsection 6.2 for a more general statement. For a simple
example of a valuation domain which is not strongly discrete, see e.g. [21, Example 5.24].

5. TTF triples and ring epimorphisms

We now want to exploit the construction of cosilting modules from ring epimorphisms studied in the
previous section. We turn to chains of ring epimorphisms and use them to construct TTF triples and
cosilting objects in the derived category.

In subsection 5.1, we provide a construction of a t-structure with definable coaisle from an in-
creasing chain . . . λn ≤ λn+1 . . . of ring epimorphisms λn : A → Bn such that all left A-modules
B+
n have a precosilting copresentation, or in other words, from a chain of nested cosilting classes

. . . CogenB+
n ⊆ CogenB+

n+1 . . . We show that our construction is a natural extension of the construc-
tion of compactly generated t-structures from filtrations by supports discussed in subsection 3.2 for the
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commutative noetherian case. Then we determine the conditions ensuring that our t-structure will be
induced by a cosilting object. In subsection 5.2 we specialize to rings of weak global dimension at most
one. Here, as in the commutative noetherian case, every t-structure with a definable coaisle encodes a
sequence of nested cosilting classes. We can then characterize the t-structures obtained from ring epi-
morphisms by our construction as those where all cosilting classes involved are minimal. Recall further
that over a hereditary ring our construction yields compactly generated, cosuspended TTF triples. In
subsection 5.3, we turn to the dual construction and determine the corresponding suspended TTF triples
associated under the bijection Ψ from Theorem 3.1.

5.1. Constructing t-structures from chains of epimorphisms. First of all, we show how to con-
struct a t-structure with definable coaisle.

Proposition 5.1. Let A be a ring, and let

· · · ⊆ Vn−1 ⊆ Vn ⊆ Vn+1 ⊆ · · ·

be a (not necessarily strictly) increasing Z-indexed sequence of definable classes closed under extensions
in A-Mod, satisfying the following condition: Whenever f : Vn → Vn+1 is a map with Vn ∈ Vn and
Vn+1 ∈ Vn+1 for some n ∈ Z, then Ker (f) ∈ Vn and Coker(f) ∈ Vn+1. Then there is a t-structure
(U ,V) in D(A-Mod) with definable coaisle

V = {X ∈ D(A-Mod) | Hn(X) ∈ Vn for all n ∈ Z}.

Proof. Invoking [36, Proposition 3.11], [45, Proposition 1.4] and [42, Theorem 4.7], it is enough to
show that V is closed under extensions, cosuspensions, products, pure subobjects, and pure quotients.
Closure under cosuspensions is clear because Vn ⊆ Vn+1 for all n ∈ Z. Since the cohomology functor
Hn : D(A-Mod)→ A-Mod sends products to products, and pure-exact triangles to pure-exact sequences
by [29, Lemma 2.4], the last three closure properties follow from the definability of Vn.

Finally, we need to show that V is closed under extensions. Let X → Y → Z → X[1] be a triangle in
D(A-Mod) with X,Z ∈ V and consider the induced exact sequence on cohomology

Hn−1(Z)
f−→ Hn(X)→ Hn(Y )→ Hn(Z)

g−→ Hn+1(X).

By the hypothesis, the cokernel of the map f belongs to Vn, and the kernel of g belongs to Vn. As Hn(Y )
is an extension of these two, and Vn is closed under extensions, we conclude that Hn(Y ) ∈ Vn for all
n ∈ Z. Therefore, Y ∈ V, as desired. �

Remark 5.2. (1) It is proved in [19, Proposition 3.7] that if A is a ring of weak global dimension at most
one, then every definable coaisle in D(A-Mod) arises as in Proposition 5.1.

(2) By [42, Proposition 5.7] any t-structure (U ,V) with definable coaisle V can be completed to a
cosuspended TTF (U ,V,W).

Recall from subsection 4.1 that epimorphisms starting in a ring A form a lattice, where the partial
order is induced by inclusion of the corresponding bireflective subcategories. In this lattice, we now fix
a (not necessarily strictly) increasing chain

(5.2.1) · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · ·

of ring epimorphisms λn : A→ Bn such that the left A-modules B+
n have a precosilting copresentation.

Then TorA1 (Bn, Bn) = 0, cf. Example 4.15(3). Therefore, the bireflective subcategories corresponding to
the λn are all extension closed by Theorem 4.2.

For every n ∈ Z we also fix the induced homological ring epimorphism µn : Bn+1 → Bn given by the
diagram

(5.2.2) A
λn //

λn+1 !!

Bn

Bn+1

µn

<< .

The following observation will be needed later.

Lemma 5.3. If all λn in the chain (5.2.1) are homological ring epimorphisms, then in D(Mod-A) we
have

Cone(µn) ∼= Cone(λn)⊗L
A Bn+1.
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Moreover, there is a triangle

Cone(λn+1)→ Cone(λn)→ Cone(µn)→ Cone(λn+1)[1].

Proof. For the first statement, consider the diagram obtained by applying the functor − ⊗L
A Bn+1 on

(5.2.2) and use the natural isomorphisms Bn+1 ⊗L
A Bn+1

∼= Bn+1 and Bn ⊗L
A Bn+1

∼= Bn. The second
statement follows from the octahedral axiom. �

Proposition 5.4. (The construction) Denote by Xn the extension-closed bireflective subcategories of
A-Mod corresponding to the chain (5.2.1), and set

Cn = Cogen (Xn) and Vn = Cn ∩ Xn+1

for all n ∈ Z. Then there is a t-structure (U ,V) in D(A-Mod) with definable coaisle

V = {X ∈ D(A-Mod) | Hn(X) ∈ Vn for all n ∈ Z}.

Proof. We check the conditions of Proposition 5.1 for the sequence (Vn | n ∈ Z). Clearly Cn ⊆ Cn+1, and
therefore we have Vn ⊆ Vn+1 for all n ∈ Z. The classes Cn are minimal cosilting classes by Theorem 4.17.
In particular, Xn and Cn are definable and extension closed, and so is Vn for any n ∈ Z. Therefore, we
are left with showing that Ker (f) ∈ Vn and Coker(f) ∈ Vn+1 for any homomorphism f : Vn → Vn+1

with Vi ∈ Vi for i = n, n + 1. Denote K = Ker (f), C = Coker(f), I = Im f , and consider the exact
sequences

0→ K → Vn → I → 0,

and

0→ I → Vn+1 → C → 0.

As Cn is closed under submodules, K ∈ Cn. Moreover, since Vn lies in Xn+1 and Vn+1 embeds in a
module from Xn+1, the module I is the image of a map in Xn+1 and therefore lies in Xn+1. Applying
Proposition 4.16(5) to the second exact sequence, we infer that C ∈ Cn+1. Then also C ∈ Cn+2, and
therefore the natural map ηC : C → Bn+2 ⊗A C is a monomorphism. As C is an epimorphic image of
Vn+1 ∈ Xn+2, the map ηC is also an epimorphism, and thus finally C ∈ Xn+2, establishing C ∈ Vn+1. �

Now we restrict to the special case of homological ring epimorphisms λ : A→ Bn such that the right
A-modules Bn have weak dimension at most one.

Proposition 5.5. Assume that all λn in the chain (5.2.1) are homological ring epimorphisms such that
the right A-modules Bn have weak dimension at most one. Then the definable coaisle V of Proposition 5.4
can be expressed as follows:

V = {X ∈ D(A-Mod) | Cone(λn)⊗L
A X ∈ D≥n for all n ∈ Z}.

Proof. Recall from Example 4.15(4) that the left A-module B+
n has a precosilting copresentation for

each n ∈ Z, and therefore Proposition 5.4 applies. So, setting Vn = Cn ∩ Xn+1, we obtain a definable
coaisle V = {X ∈ D(A-Mod) | Hn(X) ∈ Vn for all n ∈ Z} in D(A-Mod). We need to prove that V
equals Ṽ = {X ∈ D(A-Mod) | Cone(λn) ⊗L

A X ∈ D≥n for all n ∈ Z}. From the long exact sequence of
cohomology induced by the natural map X → Bn ⊗L

A X we infer that

Cone(λn)⊗L
A X ∈ D≥n ⇔

⇔ H l(X)→ H l(Bn ⊗L
A X) is an isomorphism for all l < n and a monomorphism for l = n.

Since H l(Bn⊗L
AX) ∈ Xn, we conclude that if X ∈ Ṽ, then Hn(X) ∈ Cn ∩Xn+1 for each n ∈ Z, and thus

X ∈ V. Conversely, if X ∈ V, consider the soft truncation triangle

τ<nX → X → τ≥nX
+−→ .

Since X ∈ V, the truncation τ<nX lies in DXn
(A) = D(Bn-Mod), and thus Cone(λn)⊗L

A τ
<nX = 0, see

Theorem 4.4. Therefore, to show that X ∈ Ṽ, it is enough to show that Cone(λn)⊗L
A τ
≥nX ∈ D≥n. We

truncate further to obtain a triangle

Hn(X)[−n]→ τ≥nX → τ>nX
+−→ .

Since the right A-module Bn has weak dimension at most one, Cone(λn) can be replaced by a complex
of right flat A-modules concentrated in degrees -1 and 0, and therefore Cone(λn)⊗L

A τ
>nX ∈ D≥n. Also,

Cone(λn)⊗L
AH

n(X)[−n] ' Cone(Hn(X)→ Bn⊗L
AH

n(X))[−n] ∈ D≥n, because Hn(X) ∈ Cn, and thus

Tor1
A(Bn, H

n(X)) = 0 by Proposition 4.16(6). �
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Example 5.6. Let A be a commutative noetherian ring, and let · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · · be an
increasing chain of homological ring epimorphisms λn : A→ Bn. Recall from Example 4.23(2) that all Bn
are flat A-modules, and that every λn corresponds to a hereditary torsion pair (Tn = Ker (Bn⊗A−), Cn =
CogenB+

n ), hence to a minimal cosilting class Cn, and to a specialization-closed subset Vn ⊂ SpecA which
has a coherent complement. We obtain a filtration by supports Φ : Z −→ P(Spec (A)), n 7→ Vn which
gives rise to a t-structure (UΦ,VΦ). By [4, Theorem 3.11]

VΦ = {X ∈ D(A-Mod) | RΓVnX ∈ D>n for all n ∈ Z}
where RΓVn is the right derived functor of the torsion radical ΓVn of the torsion class Tn. In the notation
of Theorem 4.3, we have that RΓVn = j!j

∗ = j!(− ⊗L
A Cone(λn)[−1], see [16, Remark 3.3]. Hence we

deduce that
VΦ = {X ∈ D(A-Mod) | Cone(λn)⊗L

A X ∈ D≥n for all n ∈ Z},
that is, the t-structure associated to Φ coincides with the t-structure constructed in Proposition 5.4.

In particular, it follows from Example 4.23(3) that all compactly generated t-structures over a com-
mutative ring of Krull dimension at most one arise in this way.

Next, we look for conditions ensuring that the t-structure in Proposition 5.4 is non-degenerate and is
thus induced by a cosilting object.

Proposition 5.7. Assume that all λn in the chain (5.2.1) are homological ring epimorphisms such
that the right A-modules Bn have weak dimension at most one. Denote by Xn the extension closed
bireflective subcategories of A-Mod, and by Ln = Ker (Bn⊗L

A−) the smashing subcategories of D(A-Mod)
associated with λn via Theorems 4.2 and 4.3. Then the t-structure (U ,V) is induced by a cosilting object
in D(A-Mod) if and only if the following conditions hold true.

(5.7.1)
⋂
n∈Z
Xn = 0 and

⋂
n∈Z
Ln = 0.

In this case, the t-structure (U ,V) is induced by the (pure-injective) cosilting object

C =
∏
n∈Z

RHomAop(Bn+1,Cone(λn)+)[−n] ∼=
∏
n∈Z

Cone(µn)+[−n].

Proof. (1) We first prove that the conditions (5.7.1) are necessary. If our t-structure (U ,V) is induced
by a cosilting object, then it must be non-degenerate. Recall that Xn ⊆ Cn ∩ Xn+1 = Vn for all n ∈ Z.
Then we have a chain of inclusions

· · · ⊆ Vn−1 ⊆ Xn ⊆ Vn ⊆ Xn+1 ⊆ · · ·
It follows that

⋂
n∈Z V[n] = 0 if and only if

⋂
n∈Z Vn = 0 if and only if

⋂
n∈Z Xn = 0.

For the rest, it is enough to show that
⋂
n∈Z U [n] = 0 implies that

⋂
n∈Z Ln = 0. Recall again from

Theorem 4.4 that Ln = DEn(A), where En = Ker (Bn ⊗L
A −)∩A-Mod. Therefore it is enough to show

that
⋂
n∈Z En = 0. We proceed by proving that En ⊆ U [n − 1] for all n ∈ Z. Let M ∈ En and consider

the approximation triangle with respect to (U ,V):

U →M [−n]→ V → U [1].

Denote Ln = Cone(λn). Since M [−n] ∈ Ln, we know from Theorem 4.3 that M [−n] ' Ln[−1]⊗L
AM [−n].

Applying Ln[−1]⊗L
A − we thus obtain a triangle

Ln[−1]⊗L
A U →M [−n]→ Ln[−1]⊗L

A V → Ln[−1]⊗L
A U [1].

By Proposition 5.5 we get that Ln[−1]⊗L
A V ∈ D>n. As M [−n] ∈ D≤n, the map M [−n]→ Ln[−1]⊗L

A V
from the latter triangle is zero, and thus M [−n] is a direct summand of Ln[−1]⊗L

AU . Since Ln[−1] ∈ D≤1,
Ln[−1] ⊗L

A U belongs to U [−1] (cf. [33, Proposition 2.3]). In conclusion, M is a direct summand of
Ln[n− 1]⊗L

A U ∈ U [n− 1].
(2) We now assume that the conditions (5.7.1) hold true, and prove that C is a cosilting object

inducing our t-structure. It is enough to show that C ∈ V, that C is a cogenerator of D(A-Mod), and
that ⊥>0C = V (cf. [48, Proposition 4.13]).

Set Cn = RHomAop(Bn+1,Cone(λn)+) so that C =
∏
n∈Z Cn[−n]. By Lemma 2.1 we can rewrite Cn

as
Cn ' (Cone(λn)⊗L

A Bn+1)+ ' Cone(µn)+.

Consider the triangle
B+
n+1[−n− 1]→ Cn[−n]→ B+

n [−n]→ B+
n+1[−n].
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Since B+
n ∈ Xn ⊆ Vn and B+

n+1 ∈ Xn+1 ⊆ Vn+1, we see that Cn[−n] ∈ V. Therefore, C ∈ V.
Notice that for any object X ∈ D(A-Mod), we have the following equivalence:

X ∈ ⊥ZCn ⇔ µn ⊗L
A X is an isomorphism in D(A-Mod).

Assume that X ∈ ⊥Z
∏
n≥l Cn for some l ∈ Z. Then for each n ≥ l, we have an isomorphism of the

triangles

X −−−−→ Bn+1 ⊗L
A X −−−−→ Yn+1 −−−−→ X[1]∥∥∥ yµn⊗L

AX

y' ∥∥∥
X −−−−→ Bn ⊗L

A X −−−−→ Yn −−−−→ X[1]

induced as in Theorem 4.3 by the homological ring epimorphisms λn, where Yn ∈ Ln for all n ∈ Z. As
a consequence, Yl ' Yn ∈ Ln for each n ≥ l, and Yl ∈

⋂
n≥l Ln = 0. We conclude that X ' Bl ⊗L

A X ∈
D(Bl-Mod) = DXl

(A).
Now assume that X ∈ ⊥ZC. Then, by the previous computation, the cohomologies of X belong to⋂
l∈Z Xl = 0, and we conclude that X = 0. Therefore, C is a cogenerator in D(A-Mod).

Finally, let us prove that ⊥>0C = V. Using Lemma 2.1, we compute:

X ∈ ⊥>0C ⇔ RHomAop(X,C) ∈ D≤0 ⇔ Cone(µn)⊗L
A X ∈ D≥n for all n ∈ Z

⇔ for all n ∈ Z : H l(µn ⊗L
A X) is an isomorphism for all l < n and Hn(µn ⊗L

A X) is a monomorphism.

Given X ∈ ⊥>0C, consider again the morphism of triangles

X −−−−→ Bn+1 ⊗L
A X −−−−→ Yn+1 −−−−→ X[1]∥∥∥ yµn⊗L

AX

yαn

∥∥∥
X −−−−→ Bn ⊗L

A X −−−−→ Yn −−−−→ X[1]

and the induced map on long exact sequences of cohomology. For any l ∈ Z, using the Four Lemma
twice, we see that H l(αn) is an isomorphism for all l < n and a monomorphism for l = n. In particular, it
follows that Hk(Yl) ∼= Hk(Yn) when k < l. By Theorem 4.4, the smashing subcategory Ln is determined
on cohomology, and thus the soft truncation τ<l(Yl) ' τ<l(Yn) belongs to Ln for all l ≤ n. By our
hypothesis, this implies τ<l(Yl) = 0, and so Hk(X) → Hk(Bl ⊗L

A X) ∈ Xl is an isomorphism for all
k < l. Furthermore, the map Hk(µk ⊗L

A X) : Hk(X) ' Hk(Bk+1 ⊗L
A X) → Hk(Bk ⊗L

A X) ∈ Xk is a
monomorphism. Together, this proves that Hk(X) ∈ Ck ∩ Xk+1 for all k ∈ Z, and therefore X ∈ V.

Conversely, let X ∈ V = {X ∈ D(A-Mod) | Cone(λn)⊗L
A X ∈ D≥n for all n ∈ Z}. Then the triangle

from Lemma 5.3 shows that Cone(µn) is an extension of Cone(λn) and Cone(λn+1)[1], and therefore
Cone(µn)⊗L

A X belongs to D≥n, showing that X ∈ ⊥>0C. �

5.2. Minimal cosuspended TTF triples. The goal of this subsection is to determine the t-structures
in D(A-Mod) that arise from chains of homological ring epimorphisms in the case when the weak global
dimension of the ring A is at most one.

We say that a subcategory C of D(A-Mod) is determined on cohomology if the following equivalence
holds for any object X ∈ D(A-Mod):

X ∈ C ⇔ Hn(X)[−n] ∈ C for all n ∈ Z.

For example, the definable coaisle obtained in Proposition 5.4 is determined on cohomology, by con-
struction. Moreover, all aisles and coaisles of t-structures over hereditary rings are determined on co-
homology, cf. subsection 3.3. For rings of weak global dimension at most one, it was proved in [19,
Theorem 3.4] that all definable coaisles are determined on cohomology. We are now going to establish
the same result for the corresponding aisles. We will also see that in such case the t-structure determines
a sequence of module-theoretic cosilting classes. Before that, we need the following simple but very useful
Lemma.

Lemma 5.8. Let A be a k-algebra of weak global dimension at most one. For any complex of right
A-modules X, any complex of left modules Y , and any n ∈ Z there is a short exact sequence

0→
⊕
p+q=n

Hp(X)⊗A Hq(Y )→ Hn(X ⊗L
A Y )→

⊕
p+q=n+1

TorA1 (Hp(X), Hq(Y ))→ 0

in Mod-k.
24



Proof. This follows directly from an application of the Künneth formula, see the proof of [21, Proposition
3.6]. �

Given a t-structure (U ,V), we denote again Un = {Hn(X) | X ∈ U} and Vn = {Hn(X) | X ∈ V}.

Theorem 5.9. Let A be a ring of weak global dimension at most one, and let (U ,V) be a t-structure
in D(A-Mod) such that V is definable. Then both the aisle U and the coaisle V are determined on
cohomology. Furthermore, the class Cn = Cogen (Vn) is equal to U⊥0

n and it is a cosilting class in A-Mod
for all n ∈ Z.

Proof. The coaisle V is determined on cohomology by [19, Theorem 3.4].
By Proposition 2.10, the t-structure (U ,V) is cogenerated by the pure-injective objects of V. Let

X ∈ V be pure-injective. Since V is definable, we have X++ ∈ V (see Remark 2.4). Furthermore, X is a
direct summand of X++ by Corollary 2.8. In conclusion, the t-structure (U ,V) is cogenerated by V++.
Using the derived Hom-⊗ adjunction, we have for any X ∈ D(A-Mod):

X ∈ U ⇔ RHomAop(X,V++) ∈ D>0 ⇔ (V+ ⊗L
A X) ∈ D<0.

Now it follows from Lemma 5.8 that the condition (V+ ⊗L
A X) ∈ D<0 depends only on the co-

homology of X. More precisely, we have by Lemma 5.8 that (V+ ⊗L
A X) ∈ D<0 if and only if

(V+ ⊗L
A (
⊕

n∈ZH
n(X)[−n])) ∈ D<0 and therefore X ∈ U if and only if

⊕
n∈ZH

n(X)[−n] ∈ U . Since
U is closed under direct summands and coproducts, U is determined on cohomology. In other words,
U = {X ∈ D(A-Mod) | Hn(X) ∈ Un for all n ∈ Z}.

We claim that Cn = U⊥0
n . First, since Un[−n] ⊆ U and Vn[−n] ⊆ V, we have that Vn ⊆ U⊥0

n , and
therefore Cn = Cogen (Vn) ⊆ U⊥0

n . For the converse implication, let M ∈ U⊥0
n and consider the following

approximation triangle with respect to the t-structure (U ,V):

U →M [−n]→ V → U [1].

Passing to cohomology, we obtain an exact sequence

Hn(U)→M → Hn(V ).

Since Hn(U) ∈ Un, the map Hn(U) → M above is zero, and therefore M embeds into Hn(V ). Since
Hn(V ) ∈ Vn, we conclude that M ∈ Cn.

In particular, we proved that the subcategory Cn = U⊥0
n is closed under extensions in A-Mod. Since

Cn = Cogen (Vn) is also a definable subcategory of A-Mod by [47, Proposition 3.4.15], it is a definable
torsion-free class, and thus a cosilting class in A-Mod. �

Recall from Remark 5.2 that a t-structure (U ,V) as in Theorem 5.9 gives rise to a cosuspended TTF
triple (U ,V,W). Moreover, both the aisle U and the coaisle V are determined by the cohomological
projections Un,Vn ⊆ A-Mod, and the classes Vn form a chain

· · · ⊆ Vn−1 ⊆ Vn ⊆ Vn+1 ⊆ · · ·

satisfying the conditions of Proposition 5.1. Fix the notation Cn = Cogen (Vn) for all n ∈ Z.

Lemma 5.10. In the situation of Theorem 5.9, assume that there is l ∈ Z such that the cosilting class
Cn is minimal for all n > l. For n > l denote by λn : A → Bn the homological ring epimorphism and
by Xn the extension closed bireflective subcategory of A-Mod associated with Cn via Corollary 4.19 and
Theorem 4.2. Then:

(i) Vn = Cn ∩ Xn+1 for any n ≥ l.
(ii) Xn ⊆ Xn+1 for any n > l.

Proof. Fix n ≥ l, and recall from Proposition 4.16 that Cn+1 = CogenXn+1 is a torsion-free class
consisting of the left A-modules M whose Xn+1-reflection M → Bn+1 ⊗AM is injective.

(i) Pick M ∈ Vn. Obviously, M lies in Cn = Cogen (Vn) ⊆ Cn+1, hence the map M → Bn+1 ⊗A M
is injective. We claim that it is even bijective, which will yield M ∈ Xn+1. Notice that Bn+1 ⊗A M
lies in Xn+1 ⊆ Cn+1 = Cogen (Vn+1). Since Vn+1 is closed under products, there is a monomorphism
ι : Bn+1 ⊗AM → N for some N ∈ Vn+1, and we have a commutative diagram with exact rows

0 −−−−→ M −−−−→ Bn+1 ⊗AM −−−−→ M ′′ −−−−→ 0∥∥∥ yι y
0 −−−−→ M −−−−→ N −−−−→ Y −−−−→ 0
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Because M ∈ Vn and N ∈ Vn+1, the cokernel Y belongs to Vn+1 ⊆ Cn+1. On the other hand, we know
from Proposition 4.16(4) that M ′′ belongs to the torsion class Ker (Bn+1 ⊗A −) = ⊥0Cn+1. Since the
rightmost vertical map M ′′ → Y is necessarily injective, the only possibility is that M ′′ = 0. We showed
that Vn ⊆ Cn ∩ Xn+1.

For the converse inclusion, assume M ∈ Cn ∩ Xn+1 and let us show that M ∈ Vn. Consider the
approximation triangle of M [−n] with respect to (U ,V),

U →M [−n]→ V → U [1],

yielding an exact sequence on cohomology:

Hn(U)→M → Hn(V )→ Hn+1(U)→ 0.

Since M ∈ Cn, and Cn = U⊥0
n by Theorem 5.9, the leftmost map Hn(U) → M is zero. Therefore, we

actually have a short exact sequence of form

0→M → Hn(V )→ Hn+1(U)→ 0.

We know that Hn(V ) ∈ Vn ⊆ Cn ⊆ Cn+1, and that M ∈ Xn+1. It follows from Proposition 4.16(5)

that Hn+1(U) ∈ Cn+1. But Hn+1(U) ∈ Un+1, and Cn+1 = U⊥0
n+1 by Theorem 5.9 again, resulting in

Hn+1(U) = 0. Therefore, M ' Hn(V ) ∈ Vn, as desired.
(ii) Assume now n > l and pick a module M ∈ Xn. From part (i) we know that Vn = Cn ∩Xn+1, and

therefore Cn = Cogen (Vn) = Cogen (Cn∩Xn+1). As M ∈ Xn ⊆ Cn, there is a monomorphism ι : M → Y
to a module Y ∈ Cn ∩ Xn+1. Denote X = Coker(ι) and consider the following commutative diagram,
where the vertical maps are the natural morphisms:

0 −−−−→ M −−−−→ Y −−−−→ X −−−−→ 0y y y' y
TorA1 (Bn+1, X) −−−−→ Bn+1 ⊗AM −−−−→ Bn+1 ⊗A Y −−−−→ Bn+1 ⊗A X −−−−→ 0

Since M ∈ Xn and Y ∈ Cn, we infer from Proposition 4.16(5),(6) that X ∈ Cn ⊆ Cn+1 ⊆
Ker TorA1 (Bn+1,−), so TorA1 (Bn+1, X) = 0. The fact that X ∈ Cn+1 also implies that the rightmost
vertical map of the commutative diagram is injective. Then the Snake Lemma shows that the Xn+1-
reflection M → Bn+1 ⊗AM is surjective. Since it is clearly also injective, we can finally conclude that
M ∈ Xn+1. �

Definition 5.11. Let A be a ring of weak global dimension at most one. A cosuspended TTF-triple
(U ,V,W) such that V is a definable subcategory of D(A-Mod) is minimal if Cn = CogenVn is a minimal
cosilting class for all n ∈ Z. A pure-injective cosilting object C is minimal if so is the corresponding
TTF-triple (U ,V,W) with V = ⊥>0C.

Furthermore, we say that two chains of homological epimorphisms over a ring A are equivalent if they
give rise to the same chain of bireflective subcategories in A-Mod.

Theorem 5.12. If A is a ring of weak global dimension at most one, there is a bijection between

(i) equivalence classes of chains · · ·λn ≤ λn+1 · · · of homological ring epimorphisms;
(ii) minimal cosuspended TTF-triples in D(A-Mod)

which restricts to a bijection between

(i’) equivalence classes of chains · · ·λn ≤ λn+1 · · · of homological ring epimorphisms with (5.7.1);
(ii’) equivalence classes of minimal cosilting objects in D(A-Mod).

Proof. By Propositions 5.4 and 4.16, there is a well-defined map (i) → (ii). By Theorem 5.9 the
t-structure (U ,V) determines the minimal cosilting classes (Cn = CogenVn | n ∈ Z) and thus, by
Corollary 4.19, the epiclasses of the (λn | n ∈ Z). This shows that the map (i) → (ii) is injective.
Moreover, by Lemma 5.10, every TTF-triple as in (ii) gives rise to an increasing chain of bireflective
subcategories (Xn | n ∈ Z) such that Vn = Cn ∩ Xn+1 for all n ∈ Z, which proves the surjectivity. The
second statement follows from Proposition 5.7. �

5.3. Constructing suspended TTF triples. We have seen that every chain of homological epimor-
phisms starting in a hereditary ring A gives rise to a homotopically smashing, and therefore compactly
generated cosuspended TTF triple in D(A-Mod). We now want to determine the suspended TTF triple
in D(Mod-A) which is associated under the bijection Ψ from Theorem 3.1.
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To this end, we now switch to right modules. Let A be an arbitrary ring. This time we fix a (not
necessarily strictly) increasing chain

(5.12.1) · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · ·
of ring epimorphisms λn : A → Bn such that the right A-modules Bn have a presilting presentation.
Then the left A-module B+

n has a precosilting copresentation, and TorA1 (Bn, Bn) = 0 by Example 4.15(2)
and (3), so the corresponding bireflective subcategories X ′n of Mod-A are all extension closed. For every
n ∈ Z we also fix the induced homological ring epimorphism µn given by the diagram (5.2.2), and the
subcategory Dn = Gen (X ′n) of Mod-A, which is the silting class induced by the minimal silting right
A-module Bn ⊕Coker(λn) from Remark 4.14(1). In particular, Dn is a definable subcategory of Mod-A.
We start with a dual version of Proposition 5.4.

Proposition 5.13. (The dual construction) Denote by X ′n the extension closed bireflective subcate-
gories of Mod-A corresponding to the chain (5.12.1), and set

Dn = Gen (X ′n), V ′n = Dn ∩ X ′n+1

for all n ∈ Z. Then there is a t-structure (V ′,W ′) in D(Mod-A) with definable aisle

V ′ = {X ∈ D(Mod-A) | H−n(X) ∈ V ′n for all n ∈ Z}.

Proof. One can prove that V ′ is a definable subcategory of D(Mod-A) closed under suspension and
extension by dualizing the proofs of Propositions 5.1 and 5.4. In fact, the definability of V ′ follows by
precisely the same argument as in the proof of Proposition 5.1. Since Xn and X ′n, as well as Cn and Dn,
are dual definable subcategories of A-Mod and Mod-A, respectively, it follows that V and V ′ are dual
definable subcategories of D(A-Mod) and D(Mod-A), respectively. The closure of V ′ under suspensions
and extensions then follows immediately by applying the duality functor. Now [42, Theorem 4.7 and
Proposition 5.10] show that V ′ is indeed an aisle of a t-structure. �

In analogy to our approach on the cosilting side, we now restrict to the case of homological ring
epimorphisms λn : A→ Bn such that the right A-modules Bn have projective dimension at most one.

Proposition 5.14. Assume that all λn in the chain (5.12.1) are homological ring epimorphisms such
that the right A-modules Bn have projective dimension at most one. Then the definable aisle V ′ of
Proposition 5.13 can be expressed as follows:

V ′ = {X ∈ D(Mod-A) | RHomA(Cone(λn), X) ∈ D≤−n for all n ∈ Z}.

Proof. Recall from Example 4.15(5) that the right A-module Bn has a presilting presentation, therefore
Proposition 5.13 applies. We adopt the same notation and set V ′n = Dn ∩ X ′n+1 for each n ∈ Z. Let
us start with an object X ∈ D(Mod-A) such that H−n(X) ∈ V ′n for all n ∈ Z. We have to show that
RHomA(Cone(λn), X) ∈ D≤−n for all n ∈ Z.

By Theorems 4.3 and 4.4, there is a sequence of stable TTF triples

(Ker (−⊗L
A Bn),Bn = Im (λn)∗,Kn)

in D(Mod-A), where Bn = DX ′n(A) and Ln = Cone(λn) ∈ Ker (− ⊗L
A Bn) for all n ∈ Z. Since all

cohomologies of (τ>−n(X)) lie in X ′n, we have τ>−n(X) ∈ Bn, and therefore RHomA(Ln, τ
>−n(X)) = 0.

On the other hand, since Bn is a right A-module of projective dimension at most one, Ln can
be replaced by a complex of projective A-modules concentrated in degrees −1 and 0. Therefore,
RHomA(Ln, τ

<−n(X)) ∈ D≤−n.
It remains to show that RHomA(Ln, H

−n(X)[n]) ∈ D≤−n. We show more: RHomA(Ln,M) ∈ D≤0

for any M ∈ Dn. In fact, since X ′n ⊆ Bn, we have RHomA(Ln, X) = 0 for all X ∈ X ′n, and this implies
the statement, because M ∈ GenX ′n and Ln can be replaced by a complex of projectives concentrated
in degrees -1 and 0.

For the converse inclusion, let X ∈ D(Mod-A) be such that RHomA(Ln, X) ∈ D≤−n for all n ∈ Z.
By Theorem 4.3, there is for each m ∈ Z a triangle of form

RHomA(Bm, X)→ X → RHomA(Lm[−1], X)→ RHomA(Bm, X)[1],

inducing for any n ∈ Z an exact sequence

H−nRHomA(Lm, X)→ H−nRHomA(Bm, X)→ H−n(X)→ H−n+1RHomA(Lm, X).

Using the assumption on X, we see from the last exact sequence that the map H−nRHomA(Bm, X)→
H−n(X) is surjective if m = n, and it is an isomorphism if m > n. Since H−nRHomA(Bm, X) ∈ X ′m by
Theorem 4.3, we conclude that H−n(X) ∈ Dn ∩ X ′n+1, showing that X ∈ V ′. �
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Proposition 5.15. Assume that all λn in the chain (5.12.1) are homological ring epimorphisms such
that the right A-modules Bn have projective dimension at most one. Denote by X ′n the extension closed
bireflective subcategories of Mod-A and by Kn = Ker RHomA(Bn,−) the triangulated subcategories of
D(Mod-A) associated with λn via Theorems 4.2 and 4.4. Then the t-structure (V ′,W ′) is induced by a
silting object if and only if the conditions

(5.15.1)
⋂
n∈Z
X ′n = 0 and

⋂
n∈Z
Kn = 0

hold true. In this case, the t-structure (V ′,W ′) is induced by the silting object

T =
⊕
n∈Z

Cone(µn)[n].

Proof. (1) We start by proving that the conditions (5.15.1) hold whenever the t-structure (V ′,W ′) is
non-degenerate. Recall that X ′n ⊆ Dn ∩ X ′n+1 = V ′n. Since there is clearly a chain

· · · ⊆ X ′n ⊆ V ′n ⊆ X ′n+1 ⊆ · · · ,

we have that
⋂
n∈Z X ′n = 0 if and only if

⋂
n∈Z V ′n = 0 if and only if

⋂
n∈Z V ′[n] = 0. It remains to check

that
⋂
n∈ZKn = 0 provided that

⋂
n∈ZW ′[n] = 0. SinceKn is determined on cohomology by Theorem 4.4,

it is enough to show that for any stalk complex M such that M ∈ Kn we have M ∈ W ′[−n+1]. Consider
the truncation triangle of M [n] with respect to the t-structure (V ′,W ′):

V ′ →M [n]→W ′ → V ′[1].

Denote Ln = Cone(λn). Since M [n] ∈ Kn, Theorem 4.3 yields M [n] ' RHomA(Ln[−1],M [n]), and we
have a triangle

RHomA(Ln[−1], V ′)
g−→M [n]→ RHomA(Ln[−1],W ′)→ RHomA(Ln[−1], V ′)[1].

By Proposition 5.14, RHomA(Ln[−1], V ′) ∈ D<−n, and therefore the map g in the latter triangle is zero.
It follows that M [n] is a direct summand in RHomA(Ln[−1],W ′). Because Ln[−1] ∈ D≤1, the complex
RHomA(Ln[−1],W ′) belongs to W ′[1] (cf. [33, Proposition 2.3]), and so M ∈ W ′[−n+ 1].

(2) Now we assume the conditions (5.15.1) and show that T =
⊕

n∈Z Cone(µn)[n] is a silting object
inducing the t-structure (V ′,W ′). This is done similarly as in Proposition 5.7. Indeed, it is enough to
show that T ∈ V ′, that T is a generator in D(Mod-A), and that T⊥>0 = V ′. Since Cone(µn) is an
extension of Bn and Bn+1[1] for each n ∈ Z, we infer that T ∈ V ′. Recall from Theorem 4.3 that for
every X ∈ D(Mod-A) there is a triangle

Zn → RHomA(Bn, X)→ X → Zn[1],

where Zn = RHomA(Ln, X) ∈ Kn, and RHomA(Bn, X) ∈ Bn = DX ′n(A). For all n, l ∈ Z, the map
RHomA(µn, X) induces a morphism of triangles:

(5.15.2)

Zn −−−−→ RHomA(Bn, X) −−−−→ X −−−−→ Zn[1]

ζn

y RHomA(µn,X)

y ∥∥∥ ζn[1]

y
Zn+1 −−−−→ RHomA(Bn+1, X) −−−−→ X −−−−→ Zn+1

Assume first that X ∈ T⊥Z . Then RHomA(Cone(µn), X) = 0, implying that RHomA(µn, X) is a quasi-
isomorphism for all n ∈ Z, and thus so is ζn for all n ∈ Z. It follows that Zn ' Zn+1 in D(Mod-A) for
all n ∈ Z, and therefore Zn ∈

⋂
n∈ZKn = 0. Then X ' RHomA(Bn, X) ∈ Bn for all n ∈ Z, and thus

X = 0. We proved that T is a generator of D(Mod-A).
It remains to show that T⊥>0 = V ′. Since V ′ = {X ∈ D(Mod-A) | RHomA(Ln, X) ∈ D≤−n for all n ∈

Z} by Proposition 5.14, the inclusion V ′ ⊆ T⊥>0 follows by observing that Cone(µn) is an extension of
Ln by Ln+1[1], cf. Lemma 5.3. To prove the converse, pick X ∈ T⊥>0 . From the long exact sequence
of cohomologies we infer that H−l(RHomA(µn, X)) is an isomorphism whenever l < n, and it is an
epimorphism for l = n. By the Four Lemma, the map H−l(ζn) is an isomorphism whenever l < n, and it
is an epimorphism for l = n. Then τ>−l(Zl) ' τ>−l(Zn) for all l < n. By Theorem 4.4, the subcategory
Kn is determined on cohomology for any n ∈ Z. Hence τ>−l(Zl) ∈

⋂
n∈ZKn = 0 for each l ∈ Z.

This establishes the isomorphisms H−n(RHomA(Bn+1, X)) ' H−n(X), showing that H−n(X) ∈ X ′n+1.
Furthermore, the map H−n(RHomA(µn, X)) : H−n(RHomA(Bn, X)) → H−n(RHomA(Bn+1, X)) '
H−n(X) is an epimorphism, and therefore H−n(X) ∈ Gen (X ′n) = Dn. We proved that X ∈ V ′. �
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Proposition 5.16. Let A be a right hereditary ring, and let · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · · be an
increasing chain of homological ring epimorphisms λn : A→ Bn. Then the t-structure (V ′,W ′) with de-
finable aisle V ′ constructed in Proposition 5.13 can be completed to a compactly generated suspended TTF
triple (U ′,V ′,W ′) in D(Mod-A), which corresponds under the map Ψ of Theorem 3.1 to the compactly
generated TTF triple (U ,V,W) in D(A-Mod) given by Proposition 5.4.

Proof. To prove the existence of a compactly generated suspended TTF triple of the stated shape, it is
enough to exhibit a set S of compact objects of D(Mod-A) such that V ′ = S⊥0 . Let (Mn | n ∈ Z) be the
sequence of wide subcategories of mod-A corresponding to the homological epimorphisms λn : A → Bn
via Theorem 4.6. It is proved in [14, Corollary 5.15 and Proposition 5.2] that Dn = Ker Ext1

A(Mn,−)∩
Mod-A/In where In = Ker (λn) is an idempotent two-sided ideal of A. Since A is right hereditary,
In is a projective right A-module, and it is well known that In admits a direct sum decomposition
In =

⊕
α∈κn

Iαn , where κn is a cardinal and Iαn is a finitely generated projective right A-module for each
α ∈ κn, n ∈ Z. We consider the subset of Dc(Mod-A)

S =
⋃
n∈Z

(Mn+1 ∪ {Iαn | α ∈ κn})[n],

and claim that an object X ∈ D(Mod-A) satisfies HomD(Mod-A)(S, X) = 0 if and only if X ∈ V ′. Since A
is right hereditary, and both V ′ and Ker HomD(Mod-A)(S,−) are closed under direct sums and summands,
it is enough to check this when X = M [n] is a stalk complex given by some M ∈ Mod-A. Since In is an
idempotent ideal, clearly Mod-A/In = I⊥0

n ⊆ Mod-A. Then we compute, using again the right heredity
of A, and the fact that Iαn is projective for each α ∈ κn:

M [n] ∈ S⊥0 ⇔M ∈M⊥1
n ∩M

⊥0
n+1 ∩ I⊥0

n .

Since Mn+1 ⊆ Mn, this is further equivalent to M satisfying M ∈ M⊥0,1

n+1 and M ∈ M⊥1
n ∩ I⊥0

n . But

M⊥0,1

n+1 = X ′n+1 and M⊥1
n ∩ I⊥0

n = Dn. Therefore,

M [n] ∈ S⊥0 ⇔M ∈ Dn ∩ X ′n+1 ⇔M [n] ∈ V ′,
as desired.

The map Ψ from Theorem 3.1 now provides a compactly generated TTF triple (U ,V,W) in D(A-Mod),
where V ′ and V are dual definable subcategories. In other words, V is uniquely determined by the property
that a complex X ∈ D(A-Mod) lies in V if and only if X+ lies in V ′, cf. Lemma 2.3 and Remark 2.4. But
then, by construction, V has to be the definable coaisle obtained from the chain · · · ≤ λn ≤ λn+1 ≤ · · ·
as in Proposition 5.5. �

6. Classification results

We finish this note by discussing our results for specific classes of rings, elaborating on the interplay
between TTF triples, (co)silting objects, and ring epimorphisms in these special cases.

6.1. Commutative noetherian rings of Krull dimension at most one. Let A be a commutative
noetherian ring. Recall from Corollary 4.20 that the flatness of a ring epimorphism is determined by the
closure properties of the corresponding bireflective category, and consequently the collection of epiclasses
of flat ring epimorphisms forms a complete lattice as in the discussion after Theorem 4.2.

Theorem 6.1. Let A be a commutative noetherian ring of Krull dimension at most one. Then there
are bijections between the following collections:

(i) equivalence classes of chains · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · · in the lattice of flat ring epimor-
phisms over A such that the meet

∧
n∈Z λn and the join

∨
n∈Z λn equal the trivial homomorphism

0A : A→ 0 and the identity idA : A→ A, respectively;
(ii) equivalence classes of silting objects T of finite type in D(Mod-A);
(iii) equivalence classes of pure-injective cosilting objects C in D(Mod-A).

The representatives of the equivalence classes of objects in (ii) and (iii) are obtained from (i) by the
constructions of Proposition 5.15 and Proposition 5.7, respectively.

Proof. By Example 5.6, the Krull dimension of A being at most one implies that the assignment

(λ : A→ B) 7→ V = {p ∈ Spec (A) | A/p⊗A B = 0}
yields a bijection between the epiclasses of flat ring epimorphisms over A and the specialization closed
subsets of Spec (A). Recall that under this identification, V = Supp T where T = Ker (B ⊗A −) is
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the hereditary torsion class induced by the flat ring epimorphism λ. It follows that there is an anti-
isomorphism of complete lattices between the lattice of epiclasses of flat ring epimorphisms and the set-
theoretic lattice of specialization closed subsets of Spec (A). Therefore, we naturally obtain a bijection
between the equivalence classes of chains of flat ring epimorphisms satisfying the conditions of (i), and
the filtrations by supports on Spec (A) satisfying the conditions in Theorem 3.8(iii). In this way, we have
established the bijections (i) ↔ (ii)↔ (iii).

Since the ring epimorphism λn : A → Bn is flat for all n ∈ Z, Proposition 5.7 applies and yields
the cosilting object C. Finally, since the Krull dimension of A is at most one, for any n ∈ Z the
projective dimension of the flat module Bn over A is at most one by [49, Corollaire 3.2.7], and therefore
the assumptions of Proposition 5.15 are satisfied as well, yielding the silting object T . �

Example 6.2. We compute explicitly the silting and cosilting objects of Theorem 6.1 in the case of the
ring of integers Z. Let · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · · be a chain of flat ring epimorphisms satisfying the
conditions (i) of Theorem 6.1. Inspecting the shape of the lattice, this amounts to a choice of an integer
l ∈ Z which is the smallest with respect to property Bl 6= 0, and then a choice of a decreasing sequence

P ⊇ P0 ⊇ P1 ⊇ P2 ⊇ · · ·
of subsets of the set P of prime numbers such that

⋂
n≥0 Pn = ∅, determined by the property that Bl+n

is isomorphic to Z[P−1
n ], the localization of Z at all the prime numbers from Pn. For each n ≥ l, the

connecting ring epimorphism µn : Bn+1 → Bn is injective, and

Cone(µn) = Coker(µn) '
⊕

p∈Pn\Pn+1

Z∞p ,

where Z∞p is the Prüfer p-group. The remaining non-trivial morphism µl−1 is of form µl−1 : Bl → 0, and
thus

Cone(µl−1) = Bl[1] = Z[P−1
l ][1].

Applying the constructions of Proposition 5.15 and Proposition 5.7, we obtain that the desired silting
object is the split complex

T = (
⊕
n≥0

⊕
p∈Pn+1\Pn

Z∞p [l + n])⊕ Z[P−1
l ][l]

and the cosilting object is the split complex

C = (
∏
n≥0

∏
p∈Pn+1\Pn

Jp[−l − n])⊕ Z[P−1
l ]+[−l],

where Jp = HomZ(Z∞p ,Q/Z) is the group of p-adic integers. Finally, note that T is a bounded silting
complex if and only if C is a bounded cosilting complex if and only if there is n ≥ 0 such that Pn = ∅.

In subsection 6.4, we will show that a construction of silting and cosilting objects similar to Example 6.2
is available also for the Kronecker algebra over a field.

6.2. Commutative rings of weak global dimension at most one. In the commutative case, we can
refine Theorem 5.12 and determine which TTF triples are compactly generated. An essential ingredient
is the classification of definable coaisles over valuation domains provided in [19]. Recall that a valuation
domain is an integral domain such that its ideals are totally ordered by inclusion. Also, a commutative
ring A is of weak global dimension at most one if and only if its localization Ap at each prime p ∈ Spec (A)
is a valuation domain ([30, Corollary 4.2.6]).

Theorem 6.3. Let A be a commutative ring of weak global dimension at most one. Then the bijection
of Theorem 5.12 restricts to a bijection between

(i) equivalence classes of chains · · ·λn ≤ λn+1 · · · of flat ring epimorphisms;
(ii) minimal cosuspended TTF-triples in D(A-Mod) which are compactly generated.

Proof. Let (U ,V,W) be a minimal cosuspended TTF triple in D(Mod-A) corresponding to a chain
· · ·λn ≤ λn+1 · · · via Theorem 5.12. For any prime ideal p ∈ Spec (A) and any subcategory C of
D(Mod-A) denote Cp = {X ⊗A Ap | X ∈ C}, viewed as a subcategory of D(Mod-Ap). By [19, Lemma
8.6], the pair (Up,Vp) forms a t-structure in D(Mod-Ap) and Vp ⊆ V for all p ∈ Spec (A). Using the
latter inclusion, it follows easily that Vp = V ∩ D(Mod-Ap), and also that the subcategory Vp consists
precisely of those complexes X such that Hn(X) belongs to Vn ∩Mod-Ap for any n ∈ Z, where Vn is the
subcategory of Mod-A defined in Proposition 5.4. Then it is straightforward to check that the t-structure
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(Up,Vp) is obtained from the chain · · · (λn⊗AAp) ≤ (λn+1⊗AAp) · · · of homological epimorphisms over
the ring Ap via Proposition 5.4. Therefore, there is a minimal cosuspended TTF triple (Up,Vp,Wp) in
D(Mod-Ap).

It follows from the proof of [19, Theorem 8.7] that the t-structure (U ,V) is compactly generated
in D(Mod-A) if and only if (Up,Vp) is compactly generated in D(Mod-Ap) for all p ∈ Spec (R). By
[19, Theorem 9.4], the t-structure (Up,Vp) is compactly generated in D(Mod-Ap) if and only if the
chain · · · (λn⊗AAp) ≤ (λn+1⊗AAp) · · · consists of flat epimorphisms over the valuation domain Ap. In
conclusion, the t-structure (U ,V) is compactly generated if and only if λn⊗AAp is a flat ring epimorphism
for each n ∈ Z and p ∈ Spec (A), which in turn is equivalent to λn being a flat ring epimorphism over A
for each n ∈ Z. This establishes the bijection. �

The situation of Theorem 6.3 becomes even nicer if the ring is in addition coherent. Coherent rings
of weak global dimension at most one are precisely the semihereditary rings, that is, rings such that any
finitely generated ideal is projective. Semihereditary commutative rings include valuation domains, and
more generally, Prüfer domains.

Recall that a hereditary torsion pair (T , C) in A-Mod is of finite type if C is closed under direct limits.

Proposition 6.4. If A is a left semihereditary ring, the bijection in Corollary 4.19 assigning to a ring
epimorphism λ : A → B the minimal cosilting class CogenB+ takes universal localizations of A to
minimal cosilting classes of cofinite type, and it induces a bijection between

(i) epiclasses of flat ring epimorphisms,
(ii) hereditary torsion pairs of finite type.

In particular, every hereditary torsion pair of finite type is induced by a minimal cosilting module of
cofinite type.

Proof. Let λ : A→ B be a universal localization. By Theorem 4.6, the finitely presented left A-modules
whose projective resolutions are inverted by B form a wide subcategory M of A-mod such that λ is
equivalent to the universal localization λM at the projective resolutions of the modules in M. Consider
the torsion pair (TB = Ker (B⊗A−), CB = CogenB+) in A-Mod. The torsion class TB obviously contains
M and thus also ⊥0(M⊥0), which in turn contains GenM, and from [54, Lemma 5.1 and Theorem 5.5]
it even follows that TB = ⊥0(M⊥0) = GenM. We conclude that (TB , CB) is the torsion pair generated
by M, which shows that CB is a minimal cosilting class of cofinite type.

Assume now that λ : A → B is a flat ring epimorphism. Then (TB , CB) is obviously a hereditary
torsion pair of finite type. Conversely, every hereditary torsion pair of finite type (T , C) is associated
to a Gabriel topology with a basis of finitely generated ideals (cf. [57, Chapter VI, Theorem 5.1, and
Chapter XIII, Proposition 1.2]), which are also projective by assumption on A. It then follows from
[57, Chapter XI, Propositions 3.3 and 3.4] that there is a flat ring epimorphism λ : A → B such that C
consists of the left A-modules M whose reflection η : M → B ⊗A M is injective. By Proposition 4.16,
this means that C = CB . Finally, λ is equivalent to a universal localization by [8, Proposition 5.3], hence
C is a minimal cosilting class of cofinite type. �

Proposition 6.5. If A is a commutative semihereditary ring then any compactly generated cosuspended
TTF triple in D(Mod-A) is minimal.

Proof. Let (U ,V,W) be a compactly generated cosuspended TTF triple in D(Mod-A). Recall from
Theorem 5.9 that V = {X ∈ D(Mod-A) | Hn(X) ∈ Vn for all n ∈ Z} where Vn = {Hn(X) | X ∈ V}.
Setting again Cn = Cogen (Vn), we obtain an ascending sequence of cosilting classes . . . Cn ⊆ Cn+1 . . ..
By [19, Proposition 3.10 and its proof], for all n ∈ Z, the subcategory Vn is closed under taking injective
envelopes in Mod-A, and there is a hereditary torsion pair (Tn, Cn) of finite type. By Proposition 6.4,
this means that all Cn are minimal cosilting classes. Hence the TTF triple is minimal according to
Definition 5.11. �

If we confine Proposition 6.5 to the module-theoretic case, we see that over a commutative semihered-
itary ring the correspondence of Corollary 4.19 restricts to a bijection between (equivalence classes of)
flat ring epimorphisms and cosilting modules of cofinite type. Notice moreover that the flat ring epi-
morphisms coincide with the universal localisations in this case ([8, Proposition 5.3] and [21, Theorem
7.8]).

Remark 6.6. Let us give further comments on the minimality condition in the local case, that is, over
a valuation domain A. In this situation, whether a cosuspended TTF triple with a definable middle
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term is minimal depends on certain invariants of a topological nature. In what follows, we adhere closely
to [19]. For any valuation domain A, [19, Theorem 8.3] establishes a bijection between the definable
coaisles in D(A-Mod) (and thus, also between the cosuspended TTF-triples with a definable middle
term) and certain sequences of sets of intervals in Spec (A) called the admissible sequences. Furthermore,
[19, Theorem 9.4] shows that, under this bijection, the minimal cosuspended TTF-triples correspond to
admissible sequences which are non-dense, an additional topological condition. For example, if Spec (A)
is countable then all admissible sequences are non-dense, [19, Remark 9.5], and therefore all cosuspended
TTF triples in D(A-Mod) with a definable middle term are minimal. On the other hand, there are
valuation domains A with a rich supply of admissible sequences with density, see [18, Example 5.1] or
[19, Example 7.6] for examples of cosilting modules and TTF triples which are not minimal.

Finally, let us sketch how the topological information given by an admissible sequence fits together
with the chain of ring epimorphisms under the minimality condition. Let · · ·λn ≤ λn+1 · · · be a chain
of homological ring epimorphisms λn : A → Bn over a valuation domain A corresponding to a minimal
cosuspended TTF-triple in D(A-Mod). Then the n-th term of the corresponding non-dense admissible
sequence is a collection of admissible intervals in the terminology of [21], such that it recovers the Zariski
spectrum Spec (Bn) by taking the disjoint union of the intervals it contains via [21, Lemma 5.8] or under
the correspondence [21, Theorem 5.23], see [19, §9] for details.

6.3. Finite dimensional hereditary algebras. Our next result provides a classification of the compact
silting objects over a finite dimensional hereditary algebra A, establishing a bijection with finite chains of
finite dimensional homological ring epimorphisms. In particular, when A has finite representation type,
this yields a classification of all bounded silting complexes.

Theorem 6.7. Let A be a finite dimensional hereditary algebra over a field k. Every compact silting
complex T over A arises as in Proposition 5.15 from a finite chain of finite dimensional homological ring
epimorphisms 0A ≤ λn ≤ . . . ≤ λm ≤ idA.

Proof. To prove this, let V ′ = T⊥>0 and (U ′,V ′,W ′) be the compactly generated suspended TTF triple
in D(Mod-A) induced by T . We fix an integer n an denote

V ′n = {H−n(X) | X ∈ V ′}, W ′n = {H−n(X) | X ∈ W ′}, and Dn = GenV ′n.
Since A is a finite dimensional algebra, the co-t-structure (U ′,V ′) restricts to a bounded co-t-structure

in Kb(proj-A), see [13, Remark 4.7(2)]. So, there is a triangle

U → A[n]
f→ V → U [1]

where U and V are compact objects in U ′ and V ′, respectively. Taking cohomology, we obtain a morphism

fn : A→ Vn

in mod-A which is clearly a V ′n-preenvelope of A. By choosing a left minimal version of fn we can even
assume w.l.o.g. that fn is a V ′n-envelope. Moreover, it is easy to see that fn is also a Dn-envelope of A,
and that this implies Dn = GenVn.

Dualizing the arguments in the proof of Theorem 5.9, we see that Dn = ⊥0W ′n is a torsion class.
Since Vn ∈ mod-A, it follows that Dn ∩mod-A = gen Vn is a functorially finite torsion class in mod-A,
which is therefore generated by a finite dimensional silting (that is, support τ -tilting) module Tn, see [1,
Proposition 1.1 and Theorem 2.7]. In particular, it follows from [15, Lemma 4.6] that Dn = GenTn is a
minimal silting class.

By [14, Corollary 5.12] we can choose Tn of the form Tn = Bn ⊕ Cokerλn where λn : A → Bn is a
homological ring epimorphism to a finite dimensional algebra Bn. Observe that GenBn = GenTn = Dn,
and λn is also a Dn-envelope of A. But then, since envelopes are unique up to isomorphism, we can also
set Tn = Vn ⊕ Cokerfn.

Now we apply the map Ψ of Theorem 3.1. The TTF triple (U ′,V ′,W ′) corresponds to a compactly
generated TTF triple (U ,V,W) in D(A-Mod) which is induced by the dual cosilting object C = T+.
Denote again

Vn = {Hn(X) | X ∈ V} and Cn = CogenVn.
We know from Lemma 2.1(i) that Vn and V ′n are dual definable subcategories. As in Proposition 4.9
we see that f+

n : V +
n → A+ is a Vn-precover of A+, and we deduce that Cn = CogenV +

n = CogenT+
n .

Using Corollary 4.22, we conclude that Cn is a minimal cosilting class for all n ∈ Z. Hence (U ,V,W) is a
minimal cosuspended TTF triple, and it follows from Theorem 5.12 that the minimal cosilting object C
arises from a chain of homological ring epimorphisms with (5.7.1) by the construction in Proposition 5.7.
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Since C is a compact complex, this chain has to be finite. Moreover, the conditions (5.7.1) imply that
the first term has to be the trivial epimorphism A → 0, and the last term has to be idA. Finally, the
silting complex constructed as in Proposition 5.15 from the same chain must be equivalent to T by
Proposition 5.16. �

6.4. The Kronecker algebra. Throughout this subsection, unless stated otherwise, A denotes the
Kronecker algebra, i.e., the path algebra of the quiver • //// • over a field k. This algebra has infinite
representation type, but we can still classify the silting objects of finite type and the pure-injective
cosilting objects, as we are going to see below.

We adopt terminology and notation from [50]. In particular, we denote by p, t,q the classes of inde-
composable preprojective, regular, and preinjective A-modules (right or left, depending on the context).
We fix a complete irredundant set of quasi-simple (i.e. simple regular) modules U, and for each S ∈ U,
we denote by S[m] the module of regular length m on the ray

S = S[1] ⊂ S[2] ⊂ · · · ⊂ S[m] ⊂ S[m+ 1] ⊂ · · ·
and let S[∞] = lim−→S[m] be the corresponding Prüfer module. The adic module S[−∞] corresponding to
S ∈ U is defined dually as the inverse limit along the coray ending at S. If the field k is algebraically
closed, the elements of U can be identified with points in the projective line P1(k).

Observe that the dual of a Prüfer right A-module is the corresponding adic left A-module. Moreover,
viewed in D(Mod-A), the Prüfer modules occur as cones of homological ring epimorphisms. Indeed, the
universal localization of A at (the projective presentations of the quasi-simple modules in) a subset U of

U gives rise to a short exact sequence 0 → A
λ→ AU →

⊕
S∈U S∞ → 0 in Mod-A. In particular, when

U = U, we obtain a short exact sequence 0 → A
λ→ AU →

⊕
S∈U S∞ → 0 where the right A-module

AU ∼= G2 is isomorphic to a direct sum of two copies of the generic module G, and T = G ⊕
⊕

S∈U S∞
is (equivalent to) the tilting module arising from λ as in Remark 4.14(1).

Let us review the classification of cosilting classes in A-Mod. We already know from [11, Corollary
3.8] that every cosilting class is of cofinite type, and therefore any cosilting left A-module is equivalent
to the dual of a right silting A-module. Then the dual version of [14, Example 5.18] gives a complete
classification of cosilting classes in A-Mod, cf. also Example 4.10. In particular, the only cosilting class
that is not minimal is Cogen (W ), where W = L+ is the dual of the Lukas tilting module in Mod-A. This
cosilting class induces the torsion pair (Add (q),Cogen (W )) in A-Mod.

Lemma 6.8. Let (U ,V) be a compactly generated t-structure in D(A-Mod) and let (Cn | n ∈ Z) be the
increasing chain of cosilting classes obtained by setting Cn = Cogen (Vn). Suppose that Cl = Cogen (W )
for some l ∈ Z. Then D>l ⊆ V ⊆ D≥l.

Proof. We fix a set of representatives q = {Q0, Q1, Q2, . . .} of all indecomposable preinjective left A-

modules. Since Cogen (W ) = U⊥0

l by Theorem 5.9, it follows that Ul+1 ⊆ Ul ⊆ Add (q). As every
module from q has a local endomorphism ring, Add (q) consists (up to isomorphism) of direct sums
of copies of objects of q. Since both Ul and Ul+1 are closed under direct summands and direct sums,
these two subcategories are determined by the objects from the set q they contain. Recall that Vl =

U⊥0

l ∩ U⊥1

l+1 ⊆ U
⊥0,1

l+1 . If Ul+1 6= 0, then it contains at least one object from q, say Qk. Therefore,

Vl ⊆ Q
⊥0,1

k = Add (Qk+1) (see [14, Example 5.18]). But Vl ⊆ Cl = Cogen (W ) contains no non-
zero preinjective, which forces Vl = 0, a contradiction with Cogen (Vl) = Cogen (W ) 6= 0. Therefore,

necessarily Ul+1 = 0. Since Vn = U⊥0
n ∩ U⊥1

n+1 = A-Mod for any n > l, we proved that D>l ⊆ V.

To prove that V ⊆ D≥l, notice that 0 6= Ul ⊂ Add q must contain Qj for some j ≥ 0. Then for all

k < l we have that Vk = U⊥0

k ∩ U⊥1

k+1 ⊆ U
⊥1

l ⊆ Q⊥1
j . By the Auslander-Reiten formula Q⊥1

j = ⊥0Qj+2,
since we have an almost split sequence

0→ Qj+2 → Q2
j+1 → Qj → 0.

On the other hand, the modules in Vk ⊆ Cl = Cogen (W ) can’t have summands isomorphic to one of
Q0, Q1, . . . , Qj+1 and are therefore cogenerated by Qj+2. This shows that Vk = 0 for all k < l. �

Recall from Theorem 3.11 that homotopically smashing t-structures in D(A-Mod) are precisely the
compactly generated ones, and pure-injective cosilting objects are precisely the ones cofinite type. We
are now ready for the first classification result.

Theorem 6.9. Let A be the Kronecker algebra over a field k. The following is a complete list of
homotopically smashing t-structures in D(A-Mod):
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(i) t-structures obtained from an increasing chain of homological epimorphisms via Proposition 5.4,
(ii) shifts of the Happel-Reiten-Smalø t-structure induced by the torsion pair (Add (q),Cogen (W )).

Proof. If the corresponding TTF triple is minimal, then we are in case (i) by Theorem 5.12. Otherwise
there is an integer l such that Cl is not minimal. Then Cl = Cogen (W ), as that is the unique non-minimal
cosilting class in A-Mod. So Lemma 6.8 applies and (U ,V) is the Happel-Reiten-Smalø t-structure
induced by the torsion pair (Add (q),Cogen (W )) shifted to degree l. �

According to Propositions 5.7 and 5.15, the cosilting t-structures, and the silting t-structures are
determined by the chains of homological ring epimorphisms (λn) satisfying the condition (5.7.1), and
(5.15.1), respectively. We are now going to see that over the Kronecker algebra these conditions can
both be rephrased by saying that the chain (λn) has meet A→ 0 and join idA.

We recall the shape of the lattice of homological ring epimorphisms from [14, Example 5.19]

idA

...

λ0 λ1 λ2 ... {λx|x ∈ U}

......... .........

... µ2 µ1 µ0

{λU\{x}|x ∈ U}

...

λU

0

where the interval between idA and λU represents the dual poset of subsets of U. The ring epimorphisms
with infinite dimensional target are those in frames, that is, those of the form λU with ∅ 6= U ⊆ U. The
remaining ring epimorphisms are universal localizations at indecomposable preprojective or preinjective
modules; their targets, viewed as A-modules, are preprojective or preinjective, and as rings they are all
Morita equivalent to k.

Proposition 6.10. Let A be a hereditary ring. Consider a chain · · · ≤ λn ≤ λn+1 ≤ · · · of homological
ring epimorphisms λn : A → Bn, and denote by Xn and X ′n the corresponding bireflective subcategories
of A-Mod and Mod-A, respectively. Moreover, define as above the subcategories Ln = Ker (Bn ⊗L

A −) of
D(A-Mod) and Kn = Ker RHomA(Bn,−) of D(Mod-A).

(1)
⋂
n∈Z X ′n = 0 if and only if

⋂
n∈Z Xn = 0, and this means precisely that the meet

∧
n∈Z λn equals

the trivial ring epimorphism A→ 0.
(2)

⋂
n∈ZKn = 0 implies

⋂
n∈Z Ln = 0, which in turn implies that the join

∨
n∈Z λn equals idA.

(3) If A is the Kronecker algebra, then
⋂
n∈Z Ln = 0 if and only if

⋂
n∈ZKn = 0, and this means

precisely that the join
∨
n∈Z λn equals idA.

Proof. (1) is clear.
(2) The first implication follows from Lemma 3.2 (or by checking directly using the duality (−)+).

Moreover, by Theorem 4.4, the condition
⋂
n∈Z Ln = 0 is equivalent to

⋂
n∈Z

⊥0,1Xn = ⊥0,1(
⋃
n∈Z Xn) = 0,

which implies that the join
∨
n∈Z λn equals idA. To see the latter, recall from Theorem 4.6 that λn

coincides with the universal localization at the wide subcategory Mn = ⊥0,1Xn ∩ A-mod of A-mod,

and that Xn = M⊥0,1
n . Now it is easy to check that the join

∨
n∈Z λn is the universal localization at⋂

n∈ZMn, which is contained in ⊥0,1(
⋃
n∈Z Xn).

(3) We have to verify that
⋂
n∈ZKn = 0 whenever the join

∨
n∈Z λn equals idA. Observe that⋂

n∈ZKn =
⋂
n∈Z X ′n ⊥Z = (

⋃
n∈Z X ′n)⊥Z .

Now we have two cases. In the first case, the chain involves only a finite number of different ring
epimorphisms. Then the join coincides with the largest member of the chain, hence

⋃
n∈Z X ′n = Mod-A,

and the claim is proven.
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In the second case, there is a chain of strictly decreasing subsets U ⊇ U0 ⊃ U1 ⊃ U2 ⊃ · · · of the
representative set U of all quasi-simples such that λn : A → Bn is the universal localization at the
(projective presentations of the simple regular modules in the) set Un for each n ∈ ω. Now one can see,
e.g. from the shape of the lattice, that for any simple regular left A-module S there is n ∈ Z such that
S ∈ X ′n, and moreover, that all λn lie above the universal localization at U, which means precisely that
G ∈ X ′n. It follows that Loc (

⋃
n∈Z X ′n) contains the right A-module T = G⊕

⊕
S∈U S∞, which is a right

tilting A-module and therefore satisfies T⊥Z = 0. This shows the claim. �

As a consequence, we get the following classification of the pure-injective cosilting objects, and dually,
of silting objects of finite type.

Theorem 6.11. Let A be the Kronecker algebra over a field k. Every pure-injective cosilting object
in D(A-Mod) arises from a chain of homological ring epimorphisms with meet 0A : A → 0 and join
idA : A→ A, or it is equivalent to a shift of the cotilting module W .

The following is a complete list of all pure-injective cosilting objects, up to equivalence:

(i) shifts of the non-minimal cotilting module W ;
(ii) for any finitely dimensional homological epimorphism λ : A→ B, and for all integers l ≤ m, the

cosilting object

C = B+[−l]⊕ Cone(λ)+[−m]

with induced t-structure arising from the following chain of bireflective subcategories of A-Mod:

Xn =


0 n < l

XB l ≤ n ≤ m
A-Mod l > m;

(iii) for any l ∈ Z, and any chain of subsets U ⊇ U0 ⊇ U1 ⊇ U2 ⊇ · · · such that
⋂
n∈ω Un = ∅, the

cosilting object

C = B+
0 [−l]⊕

∏
n∈ω

(
∏

S∈Un\Un+1

S−∞[−n− l]),

where λn : A → Bn denotes the universal localization at the set Un, and the induced t-structure
arises from the following chain of bireflective subcategories of A-Mod:

Xn =

{
0 n < l

XBn−l
l ≤ n.

Theorem 6.12. Let A be the Kronecker algebra over an algebraically closed field k. The assignment
T 7→ T+ induces a bijection between

(1) equivalence classes of silting objects of finite type in D(Mod-A),
(2) equivalence classes of pure-injective cosilting objects in D(A-Mod).

Every silting object of finite type in D(Mod-A) arises from a chain of homological ring epimorphisms
with meet 0A : A→ 0 and join idA : A→ A, or it is equivalent to a shift of the Lukas tilting module L.

The following is a complete list of all silting objects of finite type, up to shift and equivalence:

(i) the non-minimal tilting module L;
(ii) for any finite-dimensional homological epimorphism λ : A→ B, the silting object

B ⊕ Cone(λ)[m];

(iii) for any chain of subsets U ⊇ U0 ⊇ U1 ⊇ U2 ⊇ · · · such that
⋂
n∈ω Un = ∅, the silting object

B0 ⊕
⊕
n∈ω

(
⊕

S∈Un\Un+1

S∞[n]),

where λn : A→ Bn denotes the universal localization at Un.

Proof. By the classification of pure-injective cosilting objects of D(A-Mod), any minimal cosilting object
C is induced by a chain of homological epimorphisms with meet 0A : A → 0 and join Id : A → A.
According to Propositions 5.16 and 6.10, this chain also gives rise to a silting object of finite type in
D(Mod-A), which is the preimage of C under the injective map Ψ in Theorem 3.3. We infer that the
assignment T 7→ T+ induces a bijection between silting objects of finite type in D(Mod-A) and pure-
injective cosilting objects in D(A-Mod). The classification then follows from the classification of cosilting
objects in D(A-Mod) and Proposition 5.15. �
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[17] L. Angeleri Hügel, M.Saoŕın, t-structures and cotilting modules over commutative noetherian rings, Mathema-
tische Zeitschrift 277 (2014), 847–866.

[18] S. Bazzoni, Cotilting modules and homological ring epimorphisms, Journal of Algebra 441 (2015): 552-581.

[19] S. Bazzoni, M. Hrbek, Definable coaisles over rings of weak global dimension at most one, arXiv preprint
1901.04577 (2018).

[20] S. Bazzoni, L. Positselski, Matlis category equivalences for a ring epimorphism, arXiv preprint arXiv:1907.04973
(2019).
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[42] R. Laking and J. Vitória, Definability and approximations in triangulated categories, arxiv:1811.00340.
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