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Abstract. We present a survey of some recent results concerning joint
numerical ranges of n-tuples of Hilbert space operators, accompanied
with several new observations and remarks. Thereafter, numerical ranges
techniques will be applied to various problems of operator theory. In par-
ticular, we discuss problems concerning orbits of operators, diagonals of
operators and their tuples, and pinching problems. Lastly, motivated by
known results on the numerical radius of a single operator, we examine
whether, given bounded linear operators T1, . . . , Tn on a Hilbert space
H, there exists a unit vector x ∈ H such that |〈Tjx, x〉| is “large” for all
j = 1, . . . , n.

1. Foreword

The numerical range of a linear operator on a normed linear space is a
subset of the scalar field that reflects not only the algebraic structure of the
space but also the norm structure. The theory of joint numerical ranges,
studying the joint behavior of several operators, is a developing area with
a spectacular growth over the last years. The purpose of this article is to
collect some recent contributions to this theory, mostly due to the authors
and reflecting their tastes. Occasionally, we give proofs, which mainly serve
just an illustration of some typical arguments. Of course, the notes below
are very far from any complete account.

2. Numerical ranges and essential numerical ranges

In this section, after introducing the central notions of this survey, we
present all instrumental theorems that will be applied in the sequel.

Let H be a (complex) Hilbert space with the inner product 〈·, ·〉 and B(H)
be the space of all bounded linear operators on H.
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2 V. MÜLLER AND YU. TOMILOV

Definition 2.1. For T ∈ B(H) we define the numerical range

W (T ) = {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}

and the numerical radius

w(T ) = sup{|λ| : λ ∈ W (T )} = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ = 1}.

The geometry of W (T ) encodes the structure of T, and as far as W (T ) is
easily computable, at least in approximate sense, it makes W (T ) an impor-
tant object of operator theory. A good discussion of W (T ) from a historical
perspective and with emphasis on its fine geometric properties can be found
in [44], see also [45] and [54].

Let us summarize some of very basic properties of the numerical range
and numerical radius of a single operator. The basic reference for numerical
ranges are [13] and [14]. For a more recent treatment one may consult the
book [43] and the references therein.

For a bounded linear operator T on H we denote by σ(T ) its spectrum
and by r(T ) its spectral radius. All of the statements in the next theorem
can be found in [43, Chapter 1].

Theorem 2.2. Let T ∈ B(H). Then the following holds.
(1) (The Toeplitz-Hausdorff Theorem) W (T ) is a convex subset of C.
(2) One has

(2.1) conv σ(T ) ⊂ W (T ),

where conv σ(T ) denotes the convex hull of the spectrum of T .
(3) T ∗ = T if and only if W (T ) ⊂ R.
(4) If T is normal then w(T ) = ‖T‖ = r(T ) and W (T ) = conv σ(T ).
(5) One has ‖T‖ ≥ w(T ) ≥ 1

2‖T‖. So w(·) is a norm equivalent to ‖ · ‖.

The convexity of W (T ) is a heart matter of the whole of theory of nu-
merical ranges, and underpins many of its directions. The result is due to
Toeplitz [82] and Hausdorff [47], and has got a number of proofs since then.
Three of them can be found in a recent survey [15]. The property (4) is
the first illustration of the interplay between W (T ) and the spectrum of T .
There is a plethora of statements of that kind. To give a couple of samples,
recall that if T is normal, then every extreme point of W (T ) is an eigenvalue
of T, in a similar vein, for any T ∈ B(H) a corner point of the boundary
∂W (T ) (where a parametrization of W (T ) fails to be differentiable) is an
eigenvalue of T as well, see e.g. a discussion in [43, p. 21].

For the sake of completeness we mention also some deeper properties of
the numerical ranges. All of them but the last one are elaborated e.g. in
[43, Chapter 2].

Theorem 2.3. (6) For every n ∈ N one has w(Tn) ≤ w(T )n.
(7) One has w(T ) ≤ 1 if and only if there exists a unitary 2-dilation, i.e.,

there exists a Hilbert space K ⊃ H and a unitary operator U ∈ B(K)
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such that

(2.2) Tn = 2PHUn|H , n ≥ 1.

(8) There exists a universal constant K such that

(2.3) ‖p(T )‖ ≤ K sup{|p(z)| : z ∈ W (T )}

for all T ∈ B(H) and all polynomials p.

The striking estimate (2.3) was obtained in [21] developing the ideas from
[29]. It led to a number of developments and applications in mathematics
including the theory of partial differential equations and numerical analy-
sis. Some of them are thoroughly presented in [22]. The estimate implies,
for instance, that any T ∈ B(H) is similar to an operator having a normal
∂W (T )-dilation, or that T has a so-called skew-normal dilation on ∂W (T )
(where ∂W (T ) stands for the boundary of W (T ).) For more details on appli-
cations of (2.3) to dilation theory we refer to [21], [22] and [75]. The famous
open problem posed by Crouzeix is finding the best constant K = Kbest in
(2.3). Crouzeix conjectured that Kbest = 2, and, as of now, the best known
result is K = 1 +

√
2. See [23] for the proof of this result, and also the

recent papers [9], [19] and [77] for further references, alternative proofs and
related statements. There is a number of close works on mapping properties
of numerical ranges, resembling (6) in Theorem 2.3, but concerning a more
subtle problem on how numerical ranges behave under appropriate holo-
morphic maps. For some of the pertinent references one may consult [43],
although there are stronger and more recent results. We avoid a discussion
of them in this article.

While the spectrum is preserved under the similarity transformation, the
behavior of W (T ) under similarities can be basically arbitrary modulo a
constraint in (2) of Theorem 2.2. The next result clarifying this claim was
proved by Williams [84].

Theorem 2.4. (i) Let T ∈ B(H) and let S ⊂ C be an open convex set
such that σ(T ) ⊂ S. Then there is an invertible R ∈ B(H) such that
W (RTR−1) ⊂ S. As a corollary,

(2.4) conv (σ(T )) = ∩
{

W (RTR−1) : R ∈ B(H), R is invertible
}

.

(ii) Let T ∈ B(H) and let S be a compact subset of C. Then there is an
invertible R ∈ B(H) such that W (RTR−1) ⊃ S.

The relation (2.4) was obtained by Hildebrandt in [51]. It shows, in
particular, that the inclusion in (2.1) is in a sense best possible. In another
paper by Hildebrandt [50], it was shown that conv σ(T ) = W (T ) if and only
if the latter set is the spectral set of T. This further clarifies (2.1).

To finish this section, we touch several issues which are not so popular in
the literature, but seem to be important. First, remark that, in general, it
is not known which subsets of C can be realized as numerical ranges W (T )



4 V. MÜLLER AND YU. TOMILOV

of a general T ∈ B(H) or, for example, compact operators on an infinite-
dimensional Hilbert spaces H. The problem seems to be extremely hard
and only scattered results are available. For example, the set {z ∈ C :
|z| < 1} ∪ {eiθ : θ irrational} is unattainable as W (T ), and a half disc can
not be W (T ) for a compact T on infinite-dimensional H. For more on this,
including the examples above, see e. g. [1] and [76]. From a slightly different,
geometric perspective, the problem of realization of numerical ranges by
operators on Cn was studied in [48].

It is also of importance to know which subsets of H may substitute the
unit sphere to keep the conclusion of the Toeplitz-Hausdorff theorem. Cu-
riously, this question has essentially escaped an attention of experts. For
finite-dimensional H, a deep study of that problem was realized in [35]. In
particular, it was proved there that the unit sphere in H can be replaced by
a closed annulus or by a “slice” of W (T ) if T is selfadjoint.

In another interesting paper [41], the authors showed that for T ∈ B(Cn)
one can introduce a so-called numerical measure µT on W (T ) being a push-
forward of the Haar measure on the unit sphere in Cn under the map
x → 〈Tx, x〉. The support of µT coincides with W (T ), and it seems that
the numerical measure µT captures a lot of information on W (T ). Such
an approach has non-trivial applications to the study of partial differential
equations. However, it seems, it did not attract an attention it deserves.

The theory of numerical ranges is intimately related to optimization the-
ory and convex analysis. However, the interconnections between these sub-
jects seem to be not exploited enough by the operator-theoretical commu-
nity. For sample papers discussing a number of them, see e.g. [52] and
[31].

There are hundreds of papers on numerical ranges, their properties and
various generalizations, including descriptions of numerical ranges for par-
ticular classes of operators. However, while for some classes, like Toeplitz
operators, a detailed information is available, the other (even quite close)
classes, such as Hankel operators, have not received an adequate treatment.
We are only aware of an old paper [83] treating the numerical ranges of
Hankel operators among other things. Thus, a lot is still to be done.

3. Joint numerical ranges, joint essential numerical ranges
and their relatives

For an n-tuple T = (T1, . . . , Tn) ∈ B(H)n we define the joint numerical
range as

W (T ) = W (T1, . . . , Tn) = {(〈T1x, x〉, . . . , 〈Tnx, x〉) : x ∈ H, ‖x‖ = 1}.
The set W (T ) can be identified with a subset of R2n if one identifies the
n-tuple T with the (2n)-tuple (Re T1, Im T1, ...,Re Tn, Im Tn) of selfadjoint
operators, where the real (imaginary) part of an operator T ∈ B(H) is
defined by Re T = T+T ∗

2 and Im T = T−T ∗

2i . Such an identification is often
useful, however certain statements require an additional care.
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To deal with operator tuples, it would be convenient to introduce the
following notation. For x, y ∈ H and n ∈ N we will be writing

〈T x, y〉 = (〈T1x, y〉, . . . , 〈Tnx, y〉) ∈ Cn and T x = (T1x, . . . , Tnx) ∈ Hn.

Similarly, for λ = (λ1, . . . , λn) ∈ Cn we write T −λ = (T1−λ1, . . . , T −λn).
Moreover, If T = (T1, . . . , Tn) ∈ B(H)n and R1, R2 ∈ B(H), then we define

R1T R2 := (R1T1R2, . . . , R1TnR2).

For any subspace M ⊂ H we denote by PM the orthogonal projection on
M.

The noncommutativity of operator entries of T makes the study of W (T )
much more demanding than in the setting of a single operator, and it leads
to a number of new geometric phenomena. In particular, the joint numerical
range of an n-tuple of operators is, in general, not convex if n ≥ 2. as the
next example from [63, Example 1.1] shows.

Example 3.1. Let m ≥ 2 and n ≥ 4. Let Ti ∈ B(Cm), 1 ≤ i ≤ n, be defined

as T1 :=
(

1 0
0 −1

)
⊕Om−2, T2 :=

(
0 1
1 0

)
⊕Om−2 T3 :=

(
0 i
−i 0

)
⊕On−2,

T4 :=
(

1 0
0 1

)
⊕Om−2, and if n ≥ 5, we let Tj to be the identity on Cm for

all 5 ≤ j ≤ n. Then the operators Ti, 1 ≤ i ≤ m, are selfadjoint, but W (T )
is not convex, as shown in [61].

Clearly, a similar example can be given for Tj ’s acting on an infinite-
dimensional Hilbert space.

Apparently, the fact that the joint numerical range may fail to be convex
was known already to Hausdorff [47]. The example was first given in [8].
See also [34, p. 33-34] for its variation, and for the claim that T1, T2, and T3

as above were first produced by Halmos for similar purposes.
The n-tuples of operators of the form (T, T 2, . . . , Tn), where T is a fixed

operator T ∈ B(H), are of particular interest since they allow one to link
the theory of joint numerical ranges to fine properties of T. Such tuples
will be of primary importance in the next section. Note that the geometry
of the corresponding numerical ranges W (T, . . . , Tn) is still far from being
understood. In particular, we do not know whether W (T, . . . , Tn) is always
convex if n ≥ 2.

While W (T ) is not convex in general, it still posses some traces of convex-
ity. As shown in [27], with any two points it contains an ellipsoid (perhaps
degenerate) joining them. See also Theorem 3.6 below.

There are several instances when W (T1, . . . , Tn) is convex. For example,
W (T1, . . . , Tn) is convex if n = 3 and Tj , 1 ≤ j ≤ 3, are selfadjoint and
dim H ≥ 3, see [45]. This leads, in particular, to the following curious
observation made in [62].

Proposition 3.2. Let T ∈ B(H), dim H ≥ 3. Then the set

DW (T ) :=
{
(〈Tx, x〉, ‖Tx‖2) : x ∈ H, ‖x‖ = 1

}
⊂ C× R
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is convex.

Proof. It suffices to observe that DW (T ) can be identified with the numer-
ical range of the triple (Re T, Im T, T ∗T ) of selfadjoint operators on H. If
dim H ≥ 3, then this set is convex, as mentioned above. �

Thus, if x, y ∈ H, ‖x‖ = ‖y‖ = 1, and t ∈ [0, 1], then there exists a unit
vector u ∈ H such that

〈Tu, u〉 = t〈Tx, x〉+(1−t)〈Ty, y〉 and ‖Tu‖2 = t‖Tx‖2+(1−t)‖Ty‖2.

The set DW (T ) is called Davis-Wielandt shell in the literature. Clearly,
its geometry provides more information on T than the usual numerical range
W (T ), which is just a projection of DW (T ) on the first coordinate. In
particular, the normality of T ∈ B(Cn) can be described solely in terms of
DW (T ). For more details on DW (T ) one may consult [62] or [65] and the
references cited therein.

An interesting illustration of the interplay between 〈Tx, x〉 and ‖Tx‖2

for x ∈ H, and thus the structure of DW (T ), is provided by Garske’s
theorem,[42]. It says that if T ∈ B(H), then

sup
{x:‖x‖=1}

(
‖Tx‖2 − |〈Tx, x〉|2

)
≥ R2,

where R is the radius of the smallest disk containing the spectrum of T.
Moreover, as shown in [12], if T is normal, then above inequality becomes
equality. For a tuples version of this result see Section 4.

The notion of the Davis-Wielandt shell is closely related to the notion
of maximal numerical range, which has been also studied in the literature.
Among very first papers in this direction, we mention [80] and [38].

We note that for a pair of bounded operators (T1, T2) ∈ B(H)2 another
joint numerical range W(T1, T2) is introduced in the apparently forgotten
paper [7]. In particular, while W (T1, T2) is not in general convex, it was
proved in [7] that the set W(T1, T2) := {(〈T1x, y〉, 〈T2x, y〉) : ‖x‖ · ‖y‖ ≤ 1}
is convex.

Another instance when the convexity of W (T1, ..., Tn) still survives arise
when T has certain special algebraic structure. As a simple illustration one
may recall that W (T1, ..., Tn) is convex if Tj , 1 ≤ j ≤ n, are (bounded) com-
muting normal operators on H, [24]. Here the assumption of commutativity
is essential. Without commutativity it is no longer true.

Example 3.3. There exist normal operators A,B ∈ B(C2) such that W (A,B)
is not convex. Indeed, let A and B be given by the next matrices:

A =
(

1 0
0 0

)
and B =

(
0 0
2 0

)
.

Then A∗ = A, B is normal and

Re B =
(

0 1
1 0

)
, Im B =

(
0 i
−i 0

)
.
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So W (A,B) is identified with W (A,Re B, Im B), which is easy to show to
be non-convex, see [14, p. 138].

Having an arbitrary tuple (T1, ..., Tn) ∈ B(H)n one my create a commut-
ing n-tuple by setting T 0

1 := T1 ⊗ I2 ⊗ · · · ⊗ In, T 0
2 := I1 ⊗ T2 ⊗ I3 ⊗ · · · ⊗

In, · · · , . . . , on the tensor product space H⊗· · ·⊗H of n copies of H. Then,
as shown in [25], the joint numerical range of (T 0

1 , ..., T 0
n) is the Cartesian

product of their respective numerical ranges W (Tj), 1 ≤ j ≤ n, and thus
convex.

Finally, we mention yet another situation when the joint numerical range
is convex. Let H be a separable infinite-dimensional Hilbert space. Denote
by S2(H) the set of all Hilbert-Schmidt operators on H, and by S1(H) the
set of all trace-class operators on H. Then S2(H) with the inner product
given by 〈X, Y 〉S2 = trace (X∗Y ), X, Y ∈ S2, is again a Hilbert space, while
S1 a Banach space with the norm defined as ‖X‖S1 = trace(X∗X)1/2, X ∈
S1(H). We will return to S1(H), S2(H) and similar classes in Section 5.3.
For T ∈ B(H) denote by T̂ : S2(H) → S2(H) the operator defined by
T̂ (X) = TX,X ∈ S2(H). As for subsets of C, if S ⊂ Cn, then the convex
hull of S is denoted by conv S. The next statement seems to be new.

Theorem 3.4. Let T = (T1, . . . , Tn) ∈ B(H)n. Then

W (T̂ ) = conv W (T ).

Proof. Let λ ∈ W (T̂ ). Then there exists X ∈ S2 with ‖X‖S2 = 1 and

λ = 〈TX,X〉 = trace (X∗TX) = trace (TY ),

where Y = XX∗ ≥ 0 and ‖Y ‖S1 = 1. Then there exists an orthonormal
basis (en)∞n=1 in H and a sequence (αn)∞n=1 ⊂ [0,∞) such that

∑∞
n=1 αn = 1

and Y =
∑∞

n=1 αnen ⊗ en. Hence

λ =
∞∑

n=1

αn〈T en, en〉.

Clearly λ ∈ conv W (T ). Hence W (T̂ ) ⊂ conv W (T ).
We show now that conv W (T ) ⊂ W (T̂ ). Let µ ∈ conv W (T ) ⊂ Cn and

we will identify further Cn with R2n. Then µ is a convex combination of at
most 2n + 1 elements of W (T ), i.e.,

µ =
2n+1∑
j=1

βj〈Txj , xj〉, βj ≥ 0,
2n+1∑
j=1

βj = 1,

for some unit vectors x1, . . . , x2n+1 ∈ H. Let M =
∨2n+1

j=1 xj . Then µ ∈
conv W (PMT PM ). Note that

conv W (PMT PM ) =
{
f(T ) : f ∈ B(M)∗, ‖f‖ = f(IM ) = 1

}
=

{
trace(PMT PMY ) : Y ∈ B(M), ‖Y ‖S1 = tr Y = 1

}
.
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The assumption ‖Y ‖S1 = trace(Y ) = 1 implies that Y ≥ 0 and that Y can
be represented as

Y =
2n+1∑
j=1

αjej ⊗ ej αj ≥ 0,
2n+1∑
j=1

αj = 1,

for some orthonormal system (ej)2n+1
j=1 in M. Thus we have µ ∈ W (T̂ ). �

Before passing to the next main object of our studies, we mention that the
following problem seems to be open. Recall that for S ⊂ Cn its polynomial
(convex) hull Ŝ is defined as

Ŝ := {z ∈ Cn : |p(z)| ≤ sup
z∈S

|p(z)| for all polynomials p}.

Accordingly, S is polynomially convex if S = Ŝ.

Problem 3.5. Let T ∈ B(H)n. Is W (T ) polynomially convex? If not, then
what are sufficient conditions on T to ensure such a property?

Similarly to the spectral theory of linear operators, there is an “essential
version” of the notion of the joint numerical range. It will play the central
role in our subsequent considerations.

Let dim H = ∞ and T = (T1, . . . , Tn) ∈ B(H)n. We define the joint
essential numerical range We(T ) of T as as the set of all n-tuples λ =
(λ1, . . . , λn) ∈ Cn such that there exists an orthonormal sequence (xk)∞k=1 ⊂
H with

lim
k→∞

〈Tjxk, xk〉 = λj , j = 1, . . . , n.

The joint essential numerical range We(T ) can be also defined as

We(T ) =
⋂

W (T1 + K1, . . . , Tn + Kn),

where the intersection is taken over all n-tuples (K1, . . . ,Kn) of compact
operators on H. For the proof of the equivalence of these definitions one
may consult to [70, Theorem 2]. For n = 1, the essential numerical range
was introduced and studied in depth in the influential paper [36]. A Banach
algebra counterpart of the essential numerical range was defined earlier in
[79].

Being an approximate version of W (T ), the set We(T ) appeared to be
better adopted to the use of spectral theory for T , and its invariance under
compact perturbations illustrates the specifics of We(T ) very well. More-
over, in contrast to W (T ), the joint essential numerical range is always
convex. Some of the geometric properties of W (T ) are summarized in the
next result taken from [63]. Recall that a set S ⊂ Cn is star-shaped if there is
a point in S, called star center, that can be connected by a line segment with
any other point in S. It is known that a star-shaped set is simply connected.
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Theorem 3.6. Let T ∈ B(H)n. Then We(T ) is a compact convex subset of
the star-shaped set W (T ). Moreover, each element in We(T ) is a star center
of W (T ).

The analogy to spectral theory mentioned above may serve as a good
intuition, however the corresponding relations between W (T ) and We(T )
are more involved than those for their spectral counterparts. Note that for
T ∈ B(H) one may have We(T )∩W (T ) = ∅ and points from W (T )∩We(T )
may not be star-centers for W (T ). Moreover, for any n ≥ 2, the set W (T )
may be not convex even if W (T ) is convex, see [63]. The difference between
W (T ) and We(T ) is illustrated by the fact that while realizing convex sets by
numerical ranges is a hard open problem, for any compact convex set S ⊂ Cn

there exist n-tuples T1 and T2 from B(H)n such that S = We(T1) = W (T2),
see [63, Corollary 5.4].

Apparently the convexity of We(T1, . . . , Tn) was first proved in [11, Lemma
3.1] (where even a more general result can be found), see also [63] for a dif-
ferent proof and further penetrating study of We(T ), including its geometric
properties, stability under perturbations, examples, etc.

Let us present yet another argument yielding the convexity of We(T ) and
based on the next simple but useful observation.

Note that if T = (T1, . . . , Tn) ∈ B(H)n, λ ∈ Cn belongs to We(T ) if and
only if for every δ > 0 and every subspace M ⊂ H of finite codimension
there exists a unit vector x ∈ M such that ||〈T x, x〉 − λ||Cn < δ. The
observation was used without proof in [72] and the proof of its non-trivial
implication was given in [73, Lemma 4.1], see also [73, Proposition 5.5]). We
justify the “only if” implication, and omit the other implication whose proof
is straightforward. To this aim, note that if λ ∈ We(T ), then there exists
an orthonormal sequence (xk)∞k=1 in H such that 〈T xk, xk〉 → λ, k → ∞.
If M ⊂ H is a subspace of a finite codimension, then ‖PM⊥xk‖ → 0, and
so ‖PMxk − xk‖ → 0 as k → ∞. Setting uk = PMxk

‖PMxk‖ , k ≥ 1, we infer that
(uk)∞k=1 ⊂ M, limk→∞ ‖uk − xk‖ = 0 and limk→∞〈T uk, uk〉 = λ, hence the
claim follows.

Theorem 3.7. Let T = (T1, . . . , Tn) ∈ B(H)n. Then We(T ) is a closed
convex subset of Cn.

Proof. Either of the two equivalent definitions of We(T ) implies immediately
that We(T ) is a closed set.

To prove the convexity, let λ, µ ∈ We(T ) and t ∈ [0, 1]. Assume that
M ⊂ H is a subspace of finite codimension. By the observation above, there
exists an orthonormal sequence (xk)∞k=1 in M such that limk→∞〈T xk, xk〉 =
λ. Similarly, we can construct inductively an orthonormal sequence (yk)∞k=1
such that for every k ∈ N,

yk ∈ M ∩
{
xm, Tjxm, T ∗j xm : 1 ≤ j ≤ n, 1 ≤ m ≤ k

}⊥
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and limk→∞〈T yk, yk〉 = µ. Let uk =
√

txk +
√

1− tyk, k ∈ N. Clearly
(uk)∞k=1 is an orthonormal sequence in M and

lim
k→∞

〈T uk, uk〉 = t lim
k→∞

〈T xk, xk〉+ (1− t) lim
k→∞

〈T yk, yk〉 = tλ + (1− t)µ.

Hence tλ + (1− t)µ ∈ We(T ). �

Thus, the joint essential numerical range We(T ) has better geometric
properties than the joint numerical range W (T ). On the other hand, the
joint numerical range W (T ) provides more information about the n-tuple
T = (T1, . . . , Tn), and is more explicit. By mere definitions, We(T ) ⊂ W (T ),
but in general We(T ) is not contained in W (T ). One can show that for
T ∈ B(H)n,

(3.1) conv W (T ) = conv
(
W (T ) ∪We(T )

)
,

see [73, Theorem 5.1] and the discussion preceding it. This is a generalization
for operator tuples of the famous theorem due to Lancaster for n = 1.

Lancaster’s theorem yields quite useful results, e.g. descriptions of the
situations, when W (T ) is closed or open. Nevertheless, the presence of
W (T ) on both sides of (3.1) makes the equality somewhat implicit. So, it
is a natural question which part of We(T ) is contained in W (T ). The next
theorem proved in [73, Corollary 4.2] provides a partial answer. For S ⊂ Cn

denote by Int S its topological interior.

Theorem 3.8. Let T = (T1, . . . , Tn) ∈ B(H)n. Then

IntWe(T ) ⊂ W (T ).

Moreover, if µ ∈ IntWe(T ) then for every subspace M ⊂ H of a finite
codimension there exists x ∈ M such that ‖x‖ = 1 and(

〈T1x, x〉, . . . , 〈Tnx, x〉
)

= µ.

As a consequence, we can find a joint diagonal compression for T1, . . . , Tn

to an infinite-dimensional subspace of H, see [72, Corollary 4.3]. Recall that
for T ∈ B(H) the problem of characterizing λ ∈ C such that P T P = λP
for an infinite rank projection P was posed in [36, p. 190]. The special case
of n = 1 of the following statement was proved in [3, p. 440].

Corollary 3.9. Let T = (T1, . . . , Tn) ∈ B(H)n. Let λ = (λ1, . . . , λn) ∈
IntWe(T ). Then there exists an infinite-dimensional subspace L ⊂ H such
that

PLTjPL = λjPL, j = 1, . . . , n,

where PL is the orthogonal projection on L.

Proof. By Theorem 3.8, there exists a unit vector x1 ∈ H such that 〈T x1, x1〉 =
λ. Construct inductively a sequence (xk)∞k=1 ⊂ H of unit vectors such that

xk+1⊥{xm, Tjxm, T ∗j xm : 1 ≤ j ≤ n, 1 ≤ m ≤ k} and 〈T xk, xk〉 = λ

for all k ∈ N, using the fact that the span of {xm, Tjxm, T ∗j xm : 1 ≤ j ≤
n, 1 ≤ m ≤ k} is a subspace of finite dimension. Let L be the closed
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linear span of (xk)∞k=1. Clearly L is an infinite-dimensional subspace with
an orthonormal basis (xk)∞k=1. Let y ∈ L. Then, in view of our construction
of (xk)∞k=1, it is easy to see that 〈T y, y〉 = λ||y||2. Since the choice of y is
arbitrary, PLTjPL = λjPL, for all 1 ≤ j ≤ n. �

Closely related to the notion of joint essential numerical range are higher
rank numerical ranges. These numerical ranges have been studied inten-
sively, e.g. in connection with the quantum computing, see [64] and the
references therein.

Let T = (T1, . . . , Tn) ∈ B(H)n and 1 ≤ k ≤ ∞. We define the k-th rank
numerical range Wk(T ) of T as the set of all (λ1, . . . , λn) ∈ Cn such that
there exists a subspace L ⊂ H, with dim L = k satisfying

PLTjPL = λjPL, j = 1, . . . , n.

(Note that Wk(T ) are usually denoted by Λk(T ) in the literature, while the
notation Wk(T ) is used for so-called k-th numerical ranges. However, we
preferred the more intuitive notation above.)

Observe that W1(T ) is the usual joint numerical range and

(3.2) W1(T ) ⊃ W2(T ) ⊃ · · · ⊃ W∞(T ).

For k ∈ N, the set Wk(T ) is, in general, not convex, but it is always non-
empty and star shaped. At the same time, it is easy to see that the infinite
numerical range W∞(T ) can be empty even if n = 1 (by considering an in-
jective positive definite compact operator T1), but W∞(T ) is always convex.
In a sense, We(T ) is an approximate version of W∞(T ). This is summarized
in the theorem below.

Theorem 3.10. Let dim H = ∞ and T = (T1, . . . , Tn) ∈ B(H)n.
(i) For every k ∈ N, the set Wk(T ) is not empty and star-shaped. The

star center is any point in Wm(T ) with m > k(2n + 1).
(ii) The set W∞(T ) is convex.
(iii) One has

We(T ) =
∞⋂

k=1

Wk(T ) and W∞(T ) =
∞⋂

k=1

Wk(T ).

The proofs of this and other related statements were given in [73, Section
5] by means of a unified approach based on essential numerical ranges. A
different proof of a statement slightly less general then (i) can be found in
[64, Proposition 4.1]. The convexity of W∞(T ) can be proved in the same
way as Theorem 3.7, see [73, Theorem 5.6]). We refer to [64, Theorem 4.2]
and [78] for different and earlier proofs of that result. A preceding and
different proof of (iii) can be found in [64, Theorem 4.2] and [64, Corollary
4.5].

Using Theorem 3.8 on joint compressions and the definition of We(T ), we
can further clarify the structure of W∞(T ).



12 V. MÜLLER AND YU. TOMILOV

Theorem 3.11. Let T = (T1, . . . , Tn) ∈ B(H)n. Then

IntWe(T ) ⊂ W∞(T ) ⊂ We(T ).

The statement above is a good illustration of importance of Int We(T ) in
the theory of numerical ranges. It is natural to ask when Int We(T ) is non-
empty. The following statement proved in [73, Proposition 5.10] expresses
this property in algebraic terms.

Theorem 3.12. Let T = (T1, . . . , Tn) ∈ B(H)n. The following are equiva-
lent:

(i) Int We(T ) 6= ∅
(ii) IntW∞(T ) 6= ∅
(iii) the operators Re T1, Im T1, . . . ,Re Tn, Im Tn are linearly independent

in the real vector space of all self-adjoint operators modulo the real
vector space generated by selfadjoint compact operators and real mul-
tiples of the identity.

More precisely, if c, t1, . . . , t2n are real numbers such that
n∑

j=1

(t2n−1Re Tj + t2nIm Tj) + cI

is compact, then t1 = · · · = t2n = 0.

Having an approximate character, essential numerical ranges and sets of
similar nature are traditionally expressed as intersections of numerical ranges
of tuples over appropriate classes of perturbations, usually compact ones.
Somewhat surprisingly, in the following result obtained in [73, Theorem 5.8],
We(T ) is described by means of unions of the infinite numerical ranges of
compact perturbations T +K, where K is an n-tuple of compact operators.

Theorem 3.13. Let T ∈ B(H)n. Then the following holds.
(i) We(T ) =

⋃
K∈K(H)n W∞(T + K), where K(H) denotes the ideal of

compact operators on H.
(ii) There exists an n-tuple K of compact operators such that

We(T ) = W∞(T +K).

4. Joint numerical ranges and spectrum

As it was mentioned in Theorem 2.2 (2), conv σ(T ) ⊂ W (T ) for each sin-
gle operator T ∈ B(H). Unfortunately, for non-commuting tuples there is
no convenient joint spectrum, although the notion of joint numerical range
can be defined properly. On the other hand, for commuting tuples there are
many, comparatively useful definitions of spectrum (Taylor, Harte, approxi-
mate point spectrum, surjective spectrum, ...), which, in general, may differ
from each other. However, all reasonable spectra in this setting have the
same convex hull, [69, Chapter III].
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For definitiveness, we assume below that for T ∈ B(H)n, the notation
σ(T ) stands for the Harte spectrum of T . The next theorem due to V.
Wrobel is a version of Theorem 2.2, (2) for tuples of operators, see [85,
Theorem 2.2].

Theorem 4.1 (Wrobel, 1988). Let T = (T1, . . . , Tn) ∈ B(H)n be a com-
muting n-tuple, then

conv σ(T ) ⊂ W (T ).

A drawback of Theorem 4.1 is that conv σ(T ) only approximates points
from W (T ) rather than matches them. Generalizing Theorem 4.1 and ex-
tending Theorem 3.8, we describe in [73, Theorem 4.2] “big” subsets of
W (T ) itself in spectral terms. Note that in the next Theorem the operators
Tj are not necessarily commuting.

Theorem 4.2. Let T = (T1, . . . , Tn) ∈ B(H)n. Then

Int conv
(
We(T ) ∪ σp(T )

)
⊂ W (T ),

where σp(T ) is the point spectrum of T , that is, the set of all n-tuples
(λ1, . . . , λn) ∈ Cn such that

⋂n
j=1 ker(Tj − λj) 6= {0}.

Using simple properties of polynomial hulls and the coincidence of con-
vex hulls for several joint spectras, one derives the following corollary, [73,
Corollary 4.3].

Corollary 4.3. Let T1, . . . , Tn ∈ B(H) be mutually commuting operators.
Then for T = (T1, . . . , Tn) one has

Int conv σ(T ) ⊂ W (T ).

Note in passing that there is a partial analogue of Theorem 2.4 for oper-
ator tuples, obtained in [37]. For commuting operators T1, . . . , Tn and for
every j, 1 ≤ j ≤ n, let Sj be an open convex set containing σ(Tj). Then
there exists an invertible operator R such that W (RTjR

−1) ⊂ Sj for every
j. The commutativity assumption cannot be removed here. The case n = 1
was considered in Theorem 2.4, (i). However the description of conv σ(T ) in
terms of similarities as in Theorem 2.4 is apparently missing in the literature.

It is curious to note that Garske’s theorem mentioned in Section 2, gen-
eralizes to tuples of operators. As proved in [33], if T1, . . . , Tn ∈ B(H) are
mutually commuting, then

sup
{x:‖x‖=1}

 n∑
j=1

‖Tjx‖2 −
n∑

j=1

|〈Tjx, x〉|2
 ≥ R2,

where R is the radius of the smallest ball contaning the (Harte) joint spec-
trum of (T1, . . . , Tn). Moreover, the above inequality becomes equality if
Tj , 1 ≤ j ≤ n, are mutually commuting normal operators on H.

The joint numerical ranges W (T, . . . , Tn) of powers of a single operator
have certainly their own specifics. The next consequence of Corollary 4.3
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proved in [72, Theorem 4.6] is instrumental in all of our applications of
the theory of joint numerical ranges. Note that it allows one to deal with
the polynomial hull σ̂(T ) ⊂ C rather than the much less transparent set
conv σ(T, ..., Tn) ⊂ Cn. Recall that σ̂(T ) can be described as the union of
σ(T ) with all bounded components of the complement C \ σ(T ).

Theorem 4.4. Let T ∈ B(H) and λ ∈ Int σ̂(T ). Then

(λ, λ2, . . . , λn) ∈ IntWe(T, T 2, . . . , Tn),

for all n ∈ N.

5. Several applications of joint numerical ranges

Now we turn to several applications of joint numerical ranges to other
problems in operator theory found recently in [72], [73], and [74]. The gen-
eral ideology developed in [72]-[74] is that to every T ∈ B(H) one associates
an n-tuple Tn := (T, ..., Tn), and tries to uncover fine properties of T in
terms of the structure of the sets

σ(T ), W (Tn), and We(Tn), n ∈ N.

rather than a single set W (T ). While the study of an operator T in terms
of asymptotic or algebraic properties of its powers is a rather standard ap-
proach going back to the birth of operator theory, this idea of invoking the
sequences of numerical ranges W (Tn) and We(Tn) had not been exploited
until recent time.

Apart from the papers [72]-[74] developing the approach above, one may
mention [27], where very particular results on W (T, ..., Tn) were obtained
for T ∈ B(Cn).

In this section, we present various generalizations and improvements of no-
torious operator-theoretical results accomplished by using numerical ranges
techniques.

5.1. Circles in the spectrum. First, we characterize the circle structure
in the spectrum of a bounded linear operator linking in this manner several
statements from ergodic theory, harmonic analysis and spectral theory. We
start with an old and elegant theorem of W. Arveson proved in his PhD
thesis, see [4]. Among motivations for the result is a classical Rokhlin Lemma
for measure preserving transformations, one of the building blocks of ergodic
theory. The result can be considered as a spatial version of the lemma.

Theorem 5.1 (Arveson, 1966). Let U ∈ B(H) be a unitary operator. The
following statements are equivalent:

(i) σ(U) = T, where T denotes the unit circle in the complex plane;
(ii) for every n ∈ N there is a unit vector x ∈ H such that x,Ux, . . . , Unx

are orthogonal.
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Note that the second condition in the above theorem can be reformulated
as

(0, . . . , 0) ∈ W (U,U2, . . . , Un)

for every n ∈ N. This suggests the use of numerical ranges for tuples and,
motivates our studies in Section 4. In view of the results in Section 4 the
implication (i)⇒(ii) can be generalized as follows.

Theorem 5.2. Let T ∈ B(H), 0 ∈ Int σ̂(T ). Then for every n ∈ N there
exists an infinite-dimensional subspace L ⊂ H such that

PLT jPL = 0, j = 1, . . . , n.

Proof. From Theorem 4.4, we have that (0, . . . , 0) ∈ IntWe(T, T 2, . . . , Tn)
and Corollary 3.9 concludes the proof. �

Since for unitary operators T one has σ(T ) ⊂ T, the above corollary can
be further sharpened.

Theorem 5.3. Let U ∈ B(H) be a unitary operator. The following state-
ments are equivalent:

(i) σ(U) = T;
(ii) for every n ∈ N there exists an infinite-dimensional subspace L ⊂ H

such that
PLU jPL = 0, j = 1, . . . , n.

The ultimate general form of Arveson’s Theorem 5.1 seems to be the
following statement, [72, Theorem 1.1].

Theorem 5.4. Let T be a bounded linear operator on H, such that the
spectral radius r(T ) ≤ 1. The following statements are equivalent.

(i) T ⊂ σ(T ).
(ii) For all ε > 0 and n ∈ N there exists x ∈ H such that

|〈Tmx, T jx〉| < ε, 0 ≤ m, j ≤ n− 1,m 6= j,

and
1
2
≤ ‖T jx‖ ≤ 2, 0 ≤ j ≤ n− 1.

(iii) For all ε > 0 and n ∈ N there exists x ∈ H such that

x ⊥ T jx, 1 ≤ j ≤ n− 1,(5.1)

|〈Tmx, T jx〉| < ε, 1 ≤ m, j ≤ n− 1,m 6= j,(5.2)

1− ε < ‖T jx‖ < 1 + ε, 0 ≤ j ≤ n− 1,(5.3)

and

(5.4) ‖Tnx− x‖ < ε.
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Thus presence of T in the spectrum of T can be characterized by ei-
ther “almost-orthonormality” relations in (ii), or by the same kind rela-
tions as in (ii) strengthened by adding orthogonality relation in (5.1) and
“almost-periodicity” property in (5.3). Note that one can drop the assump-
tion r(T ) ≤ 1 assuming in (i) that T is contained in the so-called essential
approximate spectrum σπe(T ) of T. This version of Theorem 5.4 can be
found in [72, Theorem 5.2]. It includes Theorem 5.4, since T ⊂ ∂σ(T ) im-
plies T ⊂ σπe(T ). In fact, the properties of σπe(T ) are quite crucial in the
proof of Theorem 5.4. For a detailed study of essential spectra of bounded
linear operators, including the setting of operator tuples and approximate
spectrum, one may consult [69, Chapter III]. Moreover, dealing with the unit
circle in Theorem 5.4 is just a matter of normalization, and a containment
of any circle from C in σ(T ) can be treated in the same way.

5.2. Numerical ranges and asymptotics of weak orbits. Another mo-
tivation for the study of the circle structure of the spectrum stems from an
interplay of ergodic theory and harmonic analysis. Recall that a positive
measure ν on the unit circle T is called Rajchman if its Fourier coefficients
((Fν)(n))n∈Z satisfy (Fν)(n) → 0, |n| → ∞. While this class of measures
is crucial in many chapters of analysis and appears frequently in the lit-
erature, no handy characterization of it is available so far, see e.g. [68]
for discussions of results and problems behind it. In his studies of weak
mixing properties of dynamical systems, D. Hamdan proved in [46] that if
ν is Rajchman, then supp ν = T if and only if for every ε > 0 there ex-
ists a positive f ∈ L1(T, ν) such that ν-Fourier coefficients of f given by
(Fνf)(n) =

∫
T znf(z) dν(z), n ∈ Z, are uniformly small in the sense that

supn∈Z |(Fνf)(n)| < ε. Note that if (Uf)(z) = zf(z), then U is unitary
on L2(T, ν), Un → 0 in the weak operator topology, and σ(U) = supp ν.
This operator-theoretical interpretation of the Hamdan’s result on Rajch-
man measures leads to the following theorem proved in [46] for unitary
operators induced by measure preserving transformations.

Theorem 5.5 (Hamdan 2013). Let U ∈ B(H) be a unitary operator such
that Un → 0 in the weak operator topology. The following statements are
equivalent.

(i) σ(U) = T.
(ii) For every ε > 0 there exists a unit vector x ∈ H such that

(5.5) sup
n≥1

|〈Unx, x〉| < ε.

At first sight, the condition (ii) requiring a uniform smallness of the week
orbit of U looks enigmatic. However, the very definition of joint numerical
ranges suggest interpreting the smallness in terms of W (U, ..., Un), n ∈ N.
Vaguely, if one thinks of a numerical range W (U,U2, ..., Un, ...) ⊂ `∞(C)
for the sequence (Un) ⊂ B(H), then one may reword (ii) as saying that
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W (U,U2, ..., Un, ...) has the zero limit point. (See [20] for a definition and
further discussion of joint numerical ranges for operator sequences.)

Using the properties of joint numerical ranges, Theorem 5.5 has been
extended in [72, Corollary 6.3 and Remark 6.4] to the setting of general
bounded operators on H. Moreover it was shown in [72] that one is allowed
to take elements x in (ii) from a specified infinite-dimensional subspace.
Namely, the following result was obtained.

Theorem 5.6. Let T ∈ B(H), and let Tn → 0 in the weak operator topology.
Suppose that 0 ∈ Int σ̂(T ). Then for every ε > 0 there exists an infinite-
dimensional subspace L of H such that

sup
n≥1

‖PLTnPL‖ ≤ ε and lim
n→∞

‖PLTnPL‖ = 0.

In particular, this is true if the assumption 0 ∈ Int σ̂(T ) is replaced by
T ⊂ σ(T ).

If T is unitary then the statement above can be improved. The following
result generalizes Theorem 5.5 (by using a completely different approach
than that of [46]). For its proof see [72, Corollary 6.5].

Corollary 5.7. Let T be a unitary operator on H such that Tn → 0 in the
weak operator topology. Then the following conditions are equivalent.

(i) σ(T ) ⊃ T;
(ii) For every ε > 0 there exists x ∈ H, ‖x‖ = 1, with

sup
n≥1

|〈Tnx, x〉| < ε.

(iii) For every ε > 0 there exists an infinite-dimensional subspace L ⊂ H
such that

sup
n≥1

‖PLTnPL‖ ≤ ε and lim
n→∞

‖PLTnPL‖ = 0.

5.3. Diagonals of operators. Let T ∈ B(H). Assume for definitiveness
that H is an infinite-dimensional separable Hilbert space. The problem
we address in this section is how to describe all possible diagonals of T ,
i.e., all sequences (dk)∞k=1 such that dk = 〈Tuk, uk〉 for all k ∈ N and some
orthonormal basis (uk)∞k=1 in H. The problem appears naturally in many
situations and has been studied intensively. A related, second problem is
how to describe all possible diagonals of operators in a given class. These
problems are naturally connected with the numerical range and its subsets,
since the entries constituting diagonals of T belong to W (T ). For a detailed
discussion of some motivations for such studies we refer to the introduction
in [74]. Here we just quote a claim from [32] speculating that “the diagonal of
an operator carries more information about the operator than its relatively
small size (compare to the ”fat” matrix representation of the operator) may
suggest.”
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Most of research on diagonals concentrated on the second problem. An-
swering a question by A. Gillespie, C. K. Fong showed that in [39] that for
any (dk)∞k=1 ∈ `∞ there exists T ∈ B(H), T 4 = 0 such that (dk)∞k=1 is a
diagonal of T . (As it was remarked later by Herrero the exponent 4 can be
replaced by 2.) His proof was based on a deep theorem due to Fan stating
that if for T ∈ B(H) one has 0 ∈ Int We(T ), then T admits a zero diag-
onal. (There was flaw in Fan’s argument which was corrected recently in
[67].) While Fong’s result led to a further research on diagonals, it remained
essentially the only result of this kind for a long while.

In the beginning of this century, being motivated by problems from the
theory of C∗-algebras, R. V. Kadison described in [55, 56] the diagonals for a
class of selfadjoint projections on H. Kadison’s elegant result can be stated
as follows.

Theorem 5.8 (Kadison, 2002). A sequence (dk)∞k=1 is a diagonal of some
orthogonal projection if and only if (dk)∞k=1 ⊂ [0, 1] and if the sums a :=∑

dk<1/2 dk and b :=
∑

dk≥1/2(1− dk) satisfy either a + b = ∞ or a− b ∈ Z.

(Note that the situation changes dramatically if one drops the orthogo-
nality assumption. The set of diagonals of idempotents on H then fills the
whole of `∞, see [66].) Almost immediately, W. Arveson extended in [6]
the realm of Kadison’s considerations to normal operators with finite spec-
trum, see also [5]. Kadison-Arveson’s perspective generated an activity on
characterizing the set of diagonals for several classes of operators: selfad-
joint, unitary or normal under various spectral assumptions, and gave rise
to a number of deep results. As a sample we mentioned the next recent
characterization of diagonals for a class of unitary operators, see [53].

Theorem 5.9 (Jasper, Loreaux, Weiss, 2018). A complex-valued sequence
(dk)∞k=1 is a diagonal of a unitary operator if and only if supk≥1 |dk| ≤ 1 and

2(1− inf
k≥1

|dk|) ≤
∞∑

k=1

(1− |dk|).

The descriptions of diagonals for operator classes became a part of a long
research program realized by Bownik, Jasper, Kaftal, Loreaux, Weiss, and
others. For some of their achievements, see [17], [18], [57], [58], [66], [53] and
the citations in these papers. There is also a separate and similar direction
in the setting of C∗-algebras. We omit a discussion of it and refer e.g. to
[59], [60] and the references therein.

An inspiration to our studies was the paper [49] by D. Herrero, motivated
in part by [39] and addressing a more demanding problem of description of
diagonals for a fixed operator. Let us first introduce some notation. For a
separable infinite-dimensional space H and T ∈ B(H) let D(T ) be the set of
all diagonals of T , i.e., all sequences (〈Tuk, uk〉) for some orthonormal basis
(uk) in H. Extending this notation for n-tuples T = (T1, . . . , Tn) ∈ B(H)n,
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we set

D(T ) = {(〈T uk, uk〉) : (uk)∞k=1 is an orthonormal basis inH},
where 〈T x, y〉 = (〈T1x, y〉, . . . , 〈Tnx, y〉). Uncovering the role of the interior
of We(T ) in the study of diagonals, Herrero proved in [49] the next nice
result.

Theorem 5.10 (Herrero, 1991). Let T ∈ B(H). If the sequence (dk)∞k=1
belongs to the interior IntWe(T ) of We(T ) and (dk)∞k=1 has a limit point in
IntWe(T ), then (dk)∞k=1 ∈ D(T ).

Now, assume again that the diagonal belongs to the interior of We(T ).
In an effort to extend Herrero’s theorem, we introduced a Blaschke-type
condition

∑∞
k=1 dist {dk, ∂We(T )} = ∞ on the size of diagonal (dk)∞k=1 near

the boundary of We(T ). In view of Theorems 5.8 and 5.9 that condition
looks quite natural. To deal with Blaschke-type assumptions on (dk)∞k=1,
we proposed in [74] a general and new method for constructing a big part
of diagonals that works in a variety of different settings, including opera-
tor tuples and operator-valued diagonals. See [74, Theorem 1.1] and the
comments following it.

Theorem 5.11. Let T = (T1, . . . , Tn) ∈ B(H)n, (dk)∞k=1 ⊂ IntWe(T ) and
∞∑

k=1

dist {dk, ∂We(T )} = ∞.

Then (dk)∞k=1 ∈ D(T ).

The theorem allows a slightly more general formulation involving tuples
of sefadjoint operators on H. Note that for a selfadjoint operator T ∈ B(H)
the spectrum of T may contain an interval, but the interior of W (T ) could
be empty in this case. So, in order not to miss several situations of interest,
one should deal with the notion of relative interior. For more details see
[74].

If n = 1 and We(T ) coincides with the closed unit disc D, then the
assumption

∑∞
k=1 dist {dk, ∂We(T )} = ∞ reduces to the negation of the

classical Blaschke condition
∑∞

k=1(1 − |dk|) = ∞, and this explains our
terminology.

The Blaschke-type assumption in Corollary 3.9 is, in some sense, the best
possible as the next example from [49] shows.

Example 5.12. Let T ∈ B(H) be the unilateral shift and (dk)∞k=1 ⊂ D.
Then (dk)∞k=1 ∈ D(T ) if and only if

∞∑
k=1

(1− |dk|) = ∞.

The technique from [74] led also to a version of Theorem 3.9 for n-tuples
of the form (T, T 2, . . . , Tn). The version was based on the auxiliary estimate
given below, [74, Lemma 4.9].
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Proposition 5.13. Let T ∈ B(H), n ∈ N and let Tn = (T, T 2, . . . , Tn). If
λ ∈ Int σ̂(T ) then (λ, λ2, . . . , λn) ∈ IntWe(T ) and

dist {(λ, λ2, . . . , λn), ∂We(Tn)} ≥ 2−ndist n{λ, ∂σ̂(T )}.

Note that to formulate and to prove such a result for tuples of powers one
has to invoke (the polynomial hull of) σ(T ), rather than We(T ). Its proof
can be found in [74, Corollary 4.11].

Theorem 5.14. Let T ∈ B(H), n ∈ N and let (λk)∞k=1 ⊂ Int σ̂(T ) satisfy
∞∑

k=1

dist n{λk, ∂σ̂(T )} = ∞.

Then there exists and orthonormal basis (uk)∞k=1 in H such that

〈T juk, uk〉 = λj
k, k ∈ N, j = 1, . . . , n.

Proof. Let Tn = (T, T 2, . . . , Tn). Since We(Tn) is convex, by Theorem 4.4,

We(Tn) ⊃ conv{(λ, . . . , λn) : λ ∈ Int σ̂(T )}.

By Proposition 5.13, (λk, . . . , λ
n
k) ∈ IntWe(Tn) for all k ∈ N, and

∞∑
k=1

dist {(λk, λ
2
k, . . . , λ

n
k), ∂We(Tn)} = ∞.

So the statement follows from Theorem 5.11. �

An interesting interplay between the assumption 0 ∈ We(T ) and the struc-
ture of D(T ) was discovered by Q. Stout in his studies of so-called Schur al-
gebras. These are commutative Banach algebras of infinite matrices defined
by Schur multiplication, i.e., the termwise product of the matrix representa-
tions of operators of a Hilbert space (given an orthonormal basis). Q. Stout
in [81] proved that the condition of zero belonging to the essential numerical
range of T ∈ B(H) is equivalent to several properties revealing the structure
of a Schur algebra. The next result, due to Q. Stout ([81, Theorem 2.3]),
relates the essential numerical range of T to its diagonals.

Theorem 5.15 (Stout, 1981). Let T ∈ B(H) and 0 ∈ We(T ). For each
sequence of positive numbers (αk)∞k=1 /∈ `1 there exists an orthonormal basis
(uk)∞k=1 in H such that

(5.6) |〈Tuk, uk〉| ≤ |αk|

for all k ∈ N.

This theorem generalizes an older result of J. Anderson that arises in the
study of commutators of operators. Recall that 0 ∈ We(T ) if and only if
there exists (dk)∞k=1 in D(T ) such that (dk)∞k=1 belongs to c0(N). Anderson
proved that 0 ∈ We(T ) is in fact equivalent to the existence of a p-summable
sequence in D(T ) for every p > 1.
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Corollary 5.16 (Anderson, 1971). Let T ∈ B(H), 0 ∈ We(T ) and p > 1.
Then there exists an orthonormal basis (uk)∞k=1 in H such that

∞∑
k=1

|〈Tuk, uk〉|p < ∞.

A similar statement (with a different proof) was used in [40, Theorem
4.1] in the study of operator norms.

In [74], we extended Theorem 5.15 to tuples of operators. Also, we showed
that any sequence (λk)∞k=1 ⊂ We(T ) can be approximated by a diagonal in
the sense of (5.6), whereas Stout’s statement treats just zero sequences. For
the proof of the following theorem see [74, Theorem 1.2].

Theorem 5.17. Let T = (T1, . . . , Tn) ∈ B(H)n. For every (λk)∞k=1 ⊂
We(T ) and every (αk)∞k=1 /∈ `1 there exists an orthonormal basis (uk)∞k=1 in
H such that ∥∥〈T uk, uk〉 − λk

∥∥ ≤ |αk|
for all k ∈ N.

Note that the following question of Stout and related to Theorem 5.15
seems to be not yet answered. Given an operator T ∈ B(H) such that
0 ∈ We(T ), and a sequence (an)∞n=1 of positive numbers which is not in
`2, does there exist a basis (en)∞n=1 and a bijection π from N × N onto N
such that |〈Ten, em〉| < aπ(n,m) for all n and m ? (Apparently, there is a
misprint in the formulation of this question in [81].) It was also asked in
[81] whether for an arbitrary T ∈ B(H) there exist a basis (en)∞n=1 and
S ∈ B(H) such that |〈Ten, em〉| = 〈Sen, em〉 for all n and m. The question
is still open. While formally there are no numerical ranges involved here,
we feel our technique could be useful here as well.

An importance of Theorem 5.17 can be illustrated by the fact that it
yields a description of the set of diagonals D(T ) up to p-Schatten class
perturbations of T , that is the set D(T +K), where K is an n-tuple of oper-
ators from the Schatten class Sp(H). We recall that for 1 ≤ p < ∞, Sp(H)
is the Banach space equipped with the norm ||T ||Sp = (

∑∞
n=1 |sn|p)1/p, for

s1(T ) ≥ s2(T ) ≥ . . . ≥ 0 the singular values of T . (Observe that we have
already encountered the spaces S2(H) and S1(H) in Section 3.) In this more
general setting, we are able to construct the diagonals satisfying weakened
Blaschke-type conditions (see [74, Corollary 5.1]). Moreover, the diagonals of
perturbations may not necessarily belong to We(T ) but should only approx-
imate We(T ) good enough, where the rate of approximation is determined
by the Schatten class of perturbations. This is a far reaching generalization
of [49, Theorem, (ii) and (iii)].

Corollary 5.18. Let T = (T1, . . . , Tn) ∈ B(H)n and p > 1. Let (λk)∞k=1 ⊂
Cn satisfy

∞∑
k=1

dist p{λk,We(T )} < ∞.



22 V. MÜLLER AND YU. TOMILOV

Then there exists an n-tuple of operators K = (K1, . . . ,Kn) with Kj from
the Schatten class Sp(H), 1 ≤ j ≤ n, such that (λk)∞k=1 ∈ D(T +K).

Our results on compact perturbations provide several characterizations of
the subset

Dconst(T ) :=
{
λ ∈ Cn : (λ, λ, . . . ) ∈ D(T )

}
consisting of constant diagonals. Understanding the structure of Dconst(T )
for a fixed T and relating it to the structure of We(T ) was a natural next
step. Clearly we have that

IntWe(T ) ⊂ Dconst(T ) ⊂ We(T ).

By Theorem 3.7, the set We(T ) is convex, and since the interior of a convex
set is convex, so is Int We(T ). However, the question whether Dconst(T ) is
convex is still open, although we have a positive answer if n = 1 (unpub-
lished). This problem has been raised by J.-C. Bourin in [16].

5.4. Block operator diagonals. A natural generalization of diagonals are
block diagonals. Block diagonals arise in a variety of issues from operator
theory ranging from the study of quasitriangularity and quasidiagonality to
the investigations of unitary and similarity orbits and their spans. Being un-
able even to touch them, we mention the paper [26] as a sample, where block
diagonals and numerical ranges appeared to be crucial in the latter circle of
problems. Note that the block diagonals are sometimes called “pinchings”
in the literature.

As we will see below, the study of block diagonals is intimately related to
essential numerical ranges. However, besides the numerical ranges structure,
one has to use new operator-theoretical constructions somewhat similar to
dilations. Their description however falls out of the scope of this survey,
and we refer to [74] for more explanations and details.

The following result was proved in [16].

Theorem 5.19 (Bourin 2003). Let T ∈ B(H) with We(T ) ⊃ D. Let Lk, k ∈
N, be separable Hilbert spaces (finite or infinite-dimensional), and let Ck ∈
B(Lk) be contractions satisfying supk ‖Ck‖ < 1. Then there exist projections
PKk

, k ∈ N, onto mutually orthogonal subspaces Kk ⊂ H such that
∞⊕

k=1

Kk = H

and PKk
TPKk

is unitarily equivalent to Ck, for all k ∈ N.

In [74], we extended Theorem 5.19 to the setting of tuples and replace
the uniform contractivity condition on operator diagonal by a more general
assumption of Blaschke’s type, see [74, Theorem 1.3]). Such an assumption
is, in general, necessary even for scalar diagonals as Example 5.12 shows.

Theorem 5.20. Let T ∈ B(H) with We(T ) ⊃ D. Let Lk, k ∈ N, be sep-
arable Hilbert spaces (finite or infinite-dimensional) and let Ck ∈ B(Lk) be
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contractions satisfying
∑∞

k=1(1 − ||Ck||) = ∞. Then there exist projections
PKk

, k ∈ N, onto mutually orthogonal subspaces Kk ⊂ H such that

H =
∞⊕

k=1

Kk,

and PKk
T |Kk

is unitarily equivalent to Ck, for all k ∈ N.

Replacing the numerical range condition We(T ) ⊃ D in Theorem 5.20 by
the spectral assumption σ̂(T ) ⊃ D, we can put Theorem 5.20 in a more
demanding context of tuples of powers of T . For a sequence of Hilbert space
contractions (Ck)∞k=1 with norms not approaching 1 too fast, the following
statement, proved in [74, Theorem 6.3], yields pinchings (Ck, . . . , C

n
k ) for a

tuple (T, . . . , Tn), T ∈ B(H), if the spectrum of T is sufficiently large. It
would be instructive to note the analogy to Theorem 5.14.

Theorem 5.21. Let T ∈ B(H), σ̂(T ) ⊃ D, n ∈ N. Let Lk, k ∈ N, be
separable Hilbert spaces, and let Ck ∈ B(Lk), k ∈ N, be contractions such
that

∑∞
k=1(1− ‖Ck‖)n = ∞. Then there are mutually orthogonal subspaces

Kk, k ∈ N, of H such that

H =
∞⊕

k=1

Kk,

and PKk
(T, . . . , Tn)PKk

is unitarily equivalent to (Ck, . . . , C
n
k ) (in an entry-

wise sense) for all k ∈ N.

6. On joint numerical radius

All results of this section are contained in [71] and [30].
Recall that one of the basic properties of the numerical radius is the

inequality

w(T ) ≥ 1
2
‖T‖

for all operators T ∈ B(H). Equivalently, for every ε > 0 there exists x ∈ H,
‖x‖ = 1 such that

|〈Tx, x〉| > 1
2
‖T‖ − ε.

If, moreover, dim H < ∞, then there exists x ∈ H, ‖x‖ = 1, such that
|〈Tx, x〉| ≥ 1

2‖T‖.
In this section we will discuss an analogous property for n-tuples of op-

erators. We consider the following problem:

Problem 6.1. Let T1, . . . , Tn ∈ B(H). Does there exist x ∈ H, ‖x‖ = 1,
such that |〈Tjx, x〉| is ”large” for all j = 1, . . . , n?

The problem is closely related to the so-called Tarski’s plank problem on
covering of a convex body in Rn by strips, its solution by Bang and further
developments by Ball and others. For a nice review of this subject, one may
consult the survey [10].
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We start with a couple of useful reductions. First, dealing with Problem
6.1, one may assume that dim H < ∞. Indeed, it suffices to note that for
(T1, ..., Tn) ∈ B(H)n one has

W (T1, ..., Tn) =
⋃
P

W (PT1P, ..., PTnP ),

where P runs over all finite-rank orthogonal projections (or merely over
orthogonal projections of rank not exceeding n + 1). Second, replacing the
operators Tj by their real and imaginary parts Re Tj and Im Tj , and noting
that

|〈Tjx, x〉| ≥ max {|〈Re Tjx, x〉|, |〈Im Tjx, x〉|} , x ∈ H,

we may consider (without much loss of generality) only tuples of selfadjoint
operators.

Thus we may study the following reformulation of Problem 6.1:

Problem 6.2. What is the best constant cn with the following property:
if dim H < ∞, and T1, . . . , Tn ∈ B(H) are selfadjoint operators, then there
exists x ∈ H, ‖x‖ = 1, such that

|〈Tjx, x〉| ≥ cn‖Tj‖, j = 1, . . . , n.

If the operators Tj are not only selfadjoint, but also positive semi-definite,
then one can obtain the next precise answer.

Proposition 6.3. Let T1, . . . , Tn ∈ B(H) be such that Tj ≥ 0, 1 ≤ j ≤ n.
Let dim H < ∞. Then there exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ 1
n
‖Tj‖, j = 1, . . . , n.

The constant 1/n is the best.

For selfadjoint operators Tj , 1 ≤ j ≤ n, the exact estimate is known only
for n = 2 and n = 3.

Theorem 6.4. (i) Let T1, T2 ∈ B(H), T ∗j = Tj , j = 1, 2, and let
dim H < ∞. Then there exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ 1
3
‖Tj‖, j = 1, 2.

(ii) Let T1, T2, T3 ∈ B(H), T ∗j = Tj , j = 1, 2, 3, and let dim H < ∞.
Then there exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ 1
5
‖Tj‖, j = 1, 2, 3.

The estimates above are the best possible.

Problem 6.2 and Theorem 6.4 are closely related to the following open,
purely geometric question.

Problem 6.5. Let x(1), . . . , x(n) ∈ [−1, 1]n, x(k) = (x(k)
1 , . . . , x

(k)
n ) and

x
(k)
k = 1 (k = 1, . . . , n). Does there exists y = (y1, . . . , yn) from the convex

hull of x(k), 1 ≤ k ≤ n, such that |yk| ≥ 1
2n−1 for all k = 1, . . . , n?



JOINT NUMERICAL RANGES: ADVANCES AND APPLICATIONS 25

A positive answer to this problem would allow us to set cn = 1
2n−1 in

the estimate in Problem 6.2. It is known that the answer is indeed positive
for n = 2 and n = 3, and this is used in the proof of Theorem 6.4. As
remarked in [71, Example 8], the estimate 1

2n−1 in Problem 6.5 cannot be
improved. Indeed, let n ∈ N and let uj = (uj1, . . . , ujn) ∈ Rn be defined
by ujj = 1, j = 1, . . . , n, and ujk = − 1

2n−1 , for 1 ≤ j, k ≤ n, j 6= k. If
v = (v1, . . . , vn) is an arbitrary vector from the convex hull of {u1, . . . un},
then min1≤k≤n |vk| ≤ 1

2n−1 . In general, for n ≥ 4, it is only known that there
exits y ∈ Q from the convex hull of x(k), 1 ≤ k ≤ n, with |yk| ≥ 1

2n
√

n
for all

k.
The last property can be applied in all situations where an appropriate nu-

merical range of (T1, . . . , Tn) is convex. Apart from the situations discussed
in Section 3, we mention the following set-up. Let A be a unital Banach
algebra, and let a1, . . . , an ∈ A. Define the algebraic numerical range

V (a1, . . . , an,A) =
{
(f(a1), . . . , f(an)) : f ∈ A∗, ‖f‖ = 1 = f(1A)

}
.

Then V (a1, . . . , an,A) is a closed convex subset of Cn, see [13, p. 23].
Thus the partial answer to Problem 6.2 leads, for instance, to the following

results.

Theorem 6.6. (i) Let T1, . . . , Tn ∈ B(H) be commuting selfadjoint op-
erators, and let c ∈ (0, 1/2). Then there exists x ∈ H, ‖x‖ = 1, such
that

|〈Tjx, x〉| ≥ c

n
√

n
‖Tj‖, j = 1, . . . , n.

(ii) Let A be a unital Banach algebra, a1, . . . , an ∈ A. Then there exists
f ∈ A∗, ‖f‖ = f(1A) = 1, such that

|f(aj)| ≥
‖aj‖

2en
√

n
, j = 1, . . . , n,

where e is the Euler constant.

One can also prove an asymptotic version of the estimate treated in this
section.

Theorem 6.7. Let T1, . . . , Tn ∈ B(H). Then there exists an orthonormal
sequence (xk)∞k=1 ⊂ H such that

lim
k→∞

|〈Tjxk, xk〉| ≥
‖Tj‖e

4n
√

n
, j = 1, . . . , n,

where ‖T‖e := inf{‖T −K‖ : K ∈ K(H)}.
The best known estimate for the joint numerical range of general operators

is the following result.

Theorem 6.8. Let dim H < ∞, n ∈ N, let T1, . . . , Tn ∈ B(H). Then there
exists a unit vector x ∈ H such that

|〈Tjx, x〉| ≥ ‖Tj‖
4n2

, j = 1, . . . , n.
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If the operators T1, . . . , Tn ∈ B(H) are selfadjoint, then there exists a unit
vector x ∈ H such that

|〈Tjx, x〉| ≥ ‖Tj‖
2n2

, j = 1, . . . , n.

So for the constant cn in Problem 6.2, there is still a large gap between
the plausible upper estimate 1

2n−1 (verified in several particular cases) and
the lower estimate 1

4n2 . We conjecture that cn should be proportional to 1
n .
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