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Abstract

We prove convergence of a finite difference approximation of the compressible Navier—Stokes
system towards the strong solution in R?%, d = 2, 3, for the adiabatic coefficient v > 1. Employing the
relative energy functional, we find a convergence rate which is uniform in terms of the discretization
parameters for v > d/2. All results are unconditional in the sense that we have no assumptions on
the regularity nor boundedness of the numerical solution. We also provide numerical experiments to
validate the theoretical convergence rate. To the best of our knowledge this work contains the first
unconditional result on the convergence of a finite difference scheme for the unsteady compressible
Navier—Stokes system in multiple dimensions.
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1 Introduction
We study the viscous compressible fluid flow problem described by the Navier—Stokes system

o + div,(pu) = 0, (1.1a)
O(ou) + div,(ou ® u) + V,p(o0) = div,S, (1.1b)

in the time-space cylinder [0,7] x Q, Q C R% d = 2,3, where g is the density, u is the velocity field,
and S is the viscous stress tensor given by

S = u(Vyu+ Vi) 4+ Mdiveul, >0, g+ A > 0.
The pressure is assumed to satisfy the isentropic law
p=ap’, a>0, v>1. (1.2)
The system (1.1) is complemented with the space—periodic boundary conditions and initial conditions
0(0,x) = gy >0, 0o € L7(Q) U L*(), u(0,x) = ug, uy € WH(Q; RY). (1.3)

The global existence of weak solutions to the Navier—Stokes system (1.1) was proven in [14, 22]. We
would like to point out that the existence results require 7 > d/2 which excludes the diatomic gas for
v = 1.4. Concerning the existence of strong solutions, we refer to the result of Valli [27] for sufficiently
smooth initial data, see also more recent results in [2, 26].

Despite various efficient numerical schemes in literature [3, 4, 15, 18], the numerical convergence
analysis is open in general. To our best knowledge, there are only two unconditional convergent schemes
ready for use for the multi-dimensional Navier—Stokes system (1.1). The pioneering work was done by
Karper [21], where a combined finite element—finite volume method was shown to converge to a suitable
weak solution under the assumption of v > 3. Later, this constraint has been relaxed to v € (£,2)
by Feireisl and Lukacova-Medvid’ova [8], who indeed showed the convergence of Karper’s scheme to a
strong solution via a powerful tool — the weak—strong uniqueness principle in the class of the dissipative
measure—valued (DMV) solutions. Very recently, we have extended this idea to the convergence proof
for a finite volume method for v € (1,2), see [10].



We would also like to mention the error estimates results by Gallouét et al. [16], Liu [23, 24] and
Jovanovié [20] with assumptions either on the boundedness of the numerical solution or higher regularity
of the smooth solution, whose existence hasn’t been proved. The current paper shares some similarities
with the result of [16] in the sense that we both work with staggered grid, upwind flux and error
estimates of the numerical solutions. Nevertheless, the differences are obvious. First our numerical
scheme is different compared to the reference method [16]. We use different mass lumping and our
upwind flux is easier to implement. Moreover, our numerical scheme includes an additional artificial
diffusion term which helps us to prove the unconditional convergence of the numerical solution. Further,
we do not need any assumptions on the asymptotic behaviour of the pressure while the referefence [16]
does.

The first aim of this paper is to show the convergence of a finite difference approximation towards
a strong solution of the system (1.1) for any v > 1. Since there is no result on the existence of strong
solutions to (1.1) on a polygonal domain, we decided to analyze here the space—periodic setting, i.e. the
case of identifying the domain with a flat torus, Q = ([0, 1]]o.1)¢, d = 2,3. The main tool we employ is
the DMV solution pioneered in [8]. Though it has been successfully applied to the convergence analysis
of finite volume schemes for the compressible Euler and the Navier-Stokes(—Fourier) equations in our
recent works [9, 10, 11], it is still a non-trivial task to apply it to the convergence analysis of other
schemes and for a wider range of the adiabatic coefficient . The proof of convergence consists of two
main steps:

e deriving suitable stability estimates and consistency formulation to show that a sequence of numerical
solutions generates a DMV solution of the limit system;

e employing the DMV weak—strong uniqueness principle to conclude the convergence of numerical
solutions to a strong solution of the limit system on the life span of the latter.

Let us emphasize that we do not assume any boundedness nor additional regularity of approximate

solutions other than those provided by the numerical scheme itself which makes our convergence result

unconditional. We also want to emphasize that the limit strong solution has been shown to exist for at

least a short time interval, see [2].

The second aim is to investigate the error between the finite difference approximation of the com-
pressible Navier-Stokes system (1.1) and the strong solution of the latter. Here we have to assume the
same as [16], i.e., that there exists a strong regular solution in C? class. We set a target of deriving
uniform convergence rate in terms of the discretization parameters At and h for any v > d/2. The main
tool we use to reach this goal is the discrete counterpart of the relative energy functional studied in [7],
which reads

€lg.ulrU) = [ (Golu=UF 4 Blalr) ) do, with Blelr) = H(g) ~ H(){e - 1) ~ HO),

(o)

o
The relative energy functioal was designed for the analysis of distance between a suitable weak solution
and the strong solution. Recently, this idea has also been used for the error analysis of numerical
schemes, the distance between a numerical solution and a strong solution, see [16, 17]. More precisely,
we show the error estimates and the appropriate convergence rate following these four steps:
e derive the discrete relative energy inequality which is inherent of the proposed numerical scheme;
e approximate the discrete relative energy inequality with particularly chosen discrete test functions

and suitably rewrite it into terms to be compared with the identity satisfied by the strong solution;

e show the identity (inequality) satisfied by the strong solution, the so-called consistency error;

and H(o) = 9/19 Z%dz satisfying oH'(0) — H(o) = p(0), H"(0) =



e apply Gronwall’s inequality on the combination of the above two inequalities.

To the best of our knowledge this work contains the first unconditional convergence result for a finite
difference approximation of the compressible Navier—Stokes system in multiple dimensions equipped
with uniform convergence rate. Despite the methodologies being already used in related works, the
presented proofs remain highly non-trivial. Convergence analysis of the proposed numerical scheme
requires elaborate treatment and technical estimates linked to the staggered grid and piecewise constant
approximation of the discrete operators.

The rest of the paper is organized as follows: in Section 2 we introduce the numerical scheme, nec-
essary preliminaries, and the main results, i.e. unconditional convergence of the numerical solution and
uniform convergence rate. In the next section we recall the energy stability and present the consequent
uniform bounds, from which we prove the consistency formulation of the scheme. Further, we prove the
convergence of numerical solutions towards strong solution by employing the concept of DMV-strong
uniqueness principle. In Section 4, we prove another main result on the error estimates. Section 5 is
devoted to numerical experiments to support the theoretical results. Concluding remarks come in the
end.

2 The numerical method and main results

We start by introducing the notations. We shall frequently use the notation A < B if A < ¢B, where
¢ > 0 is a constant that does not depend on the discretization parameters At and h. Moreover, A ~ B
means A < B and B < A. We further write ¢ € co{a, b} if min(a,b) < ¢ < max(a,b). In addition, ||-||»
stands for ||||zr(q) and ||-||zrre stands for ||-||r(o,r;09(02)), since the time-space domain is fixed and this
short notation shall bring no confusion. Finally, by |- |nax we denote the maximum norm for continuous
functions.

2.1 Time discretization

We divide the time interval [0, 7] into N; equidistant parts by a fixed time increment At (= 7/N;). By
f7r we denote the value of a function f;, at time " for n € {0,..., N;}, where h is the mesh parameter,
see Section 2.2. Then we use the backward Euler method to discretize the time derivative of a discrete
function fj,

" fn_ n—1
thh: - Ath

To prove the convergence of numerical solutions we will send the discrete parameters h ~ At to zero
and investigate the weak limit of sequences of approximate functions in the LP-setting (p > 1). For this

purpose we interpret quantities defined at the discrete points t" as piecewise constant functions with
respect to the discretization of the time interval,

form=1,2,..., N;.

fult,) = fp for t < At, fu(t) = f for t € [nAt,(n+1)At), ne€{1,...,N;}. (2.1)

Consequently, we may write

D, fy = P10 Z‘t(t —Ah),

Note that we shall work with the approximations gy, u, and p, = p(gs) of the density, velocity and
pressure, respectively.



2.2 Space discretization

In order to introduce the finite difference MAC scheme we define the mesh and some discrete operators.

2.2.1 Mesh

Primary grid The domain 2 is divided into compact uniform quadrilaterals

0= |J K

KeT

where the set of all elements, namely 7, forms the primary grid. We denote by E(K) the set of all faces
of an element K, and by & the set of all faces of the primary grid 7. Further, we define

& ={o € | oisorthogonal to e;}, &(K)=E(K)NE,

for any ¢ € {1,...,d}. Here e; stands for the unit basis vector of the canonical coordinate system. We
denote by xx and x, the mass centers of an element K € 7 and a face 0 € &, respectively. By h we
denote the uniform size of the grid, meaning |xx — x| = h for any neighbouring elements K and L. To
distinguish the exact position of a face o € £(K) we may also use the notation oy ;1 if

h
XUIXK:i:iei, Ze{l,,d}

Further, let /'(K) denote the set of all neighbouring elements of K € 7. For any o S)S' adjacent to

the element K and its neighbour L € N(K), we write 0 = K|L. We denote ¢ = K|L if moreover
X, — Xx = he;. Further n,  denotes the outer normal vector to a face o € £(K).

Dual grid Each face 0 = K|L is associated to the dual cell D, = D, U D, which is defined as
the union of two half-cells, D, x and D, 1, adjacent to the face o = K|L, see Figure 1(a). We set
D;={D,|oeé&}, ie{l,...,d}. Note that for each fixed i € {1,...,d} it holds

0= U D,, int(Dy)Nint(Dy) =0, for o,0" € &, 0 # 0.

o€E;

Let N*(0) denote the set of all faces whose associated dual elements are the neighbours of D,, i.e.,

N*(o) = {0’ | Dy is a neighbour of D,}.

Bidual grid In order to perform a discrete analogue of integration by parts we need to define a
suitable discrete gradient operator for the velocity. For this purpose, we introduce the dual face and the
bidual grid as in [16, Definition 2.1]. Let £(D,) denote the set of all faces of a dual cell D,. A generic
dual face and its mass center are denoted by € € g (D,) and x., respectively. For any e which separates
the dual cells D, and D,., we write € = D,|D, if x,» — x, = he; for i € {1,...,d}. Similarly to the
definition of the dual cell, a bidual cell D, associated to € = D,| D, is defined as the union of adjacent
halves of D, and D,, see Figure 1(b). Finally, let € be the set of all faces of the bidual grid, and g'z be
the set of all faces of the bidual grid that are orthogonal to e;.
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Figure 1: MAC grid in two dimensions

2.2.2 Function spaces

We work with the staggered grid. On one hand, we approximate the discrete density and pressure on
the center of each element K € T by ox and pg, respectively. On the other hand, we approximate
the discrete velocity on the center of each edge o € & by v;,, for all i € {1,...,d}. For the purpose of
analysis, it is more convenient to extend these quantities to functions defined in the domain 2. Thus,
we define

= oxlk. pa(x) = prle, wn(x) = uislp,. VxeQ (2.2)

KeT KeT c€é;

and introduce the following piecewise constant function spaces

Xr={¢| ¢nlx = constant V K € T},
Yg = (3/1757. . .Y;Lg), Yiyg = {gﬁ | ¢h|DU = constant V o € gz}, 1 € {1, C.. ,d}

where 1x and 1p_ are the characteristic functions. Clearly, g, pr, € X7 and uy, € Y¢ and the following

identities hold
/Thdx = Z |K|rg, and /uhdx = ZZ | Do |u; 5€;
Q

KeT i=1 oc€&;

for 7, being oy or py.

Projection to the primary and dual grids

We define the projection operators to the primary and the dual grid by

My :L{(Q) — X7, yo = Y [Mro)le.  (ré)s = oo o | o
KeT
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Y wh(Q) — Yie, e = Z(Hg)gb)“b”’ (1'6), = [o] /¢ds

el

respectively. Further, for any ¢ = (¢1,...,¢q) we denote Ilg¢p = (H(gl)gbl, e ,Héd)gbd)

Interpolating discrete quantities between the grids

For the proper implementation of the scheme we need to interpolate the functions defined on the primary
grid to the dual grid and vice versa. To this end we define the average operator for any scalar function

T‘hGXT, +
Tk TTL

{rnl, =

If in addition, 0 = K|L € &; for an i € {1, ...,d}, we write

,o=K|Le€€&.

T +7r i i
{ri}d u, and {r, }" => 1p, {ra}
og€e&;
Further, for vector—valued functions r, = (rip,...,ran) € Xﬁ‘} and vy, = (V1 p,-..,van) € Yg, we define

ok = (Lrnd o rand)

Viog i T Viogi_ — —
Uih = Z Le(@in)i,  (Oip) i = == 5 = and (Vi) = Z(Ui,h)Kei-
KeT i=1

Difference operators

As we are working with the staggered grid, we need to define the difference operators for all grids
described above. Thus, for any r, € X7 and vy, € Y, we introduce the following discrete derivatives
forie {1,...,d},

X) = Z 1DU(5g)rh)a, where (5g)rh)g =L TK, oc=K|L €&,

h
oe&;
e 3 Ui|o‘ ; _Ui|o ; (23)
(i n(x Z 1 (00 ) K, where (0, ,) 5 = —25 h R KeT.
KeT

Further, we extend the above notations to the definition of the discrete gradient and divergence operators

divyvy(x Z 8 vip(x) and Ver(x) = (5(51)7“, . ,5(gd)r> (x), (2.4)

which are piecewise constant on the prlmary and dual grid, respectively. It is easy to observe that
(leTVh Z /Vh N, g dS )
ocE(K)
Next, we define the Laplace operators for any r;, € X7 and v, € Yg,

1
Afﬂ”h Z 1K ATT’h where (A’Trh)K = ﬁ Z (’/’L — T’K),

KeT LeEN(K)

1
Agv; p(x Z 1p, (Agvip)o, where (Agvip)y = 73 Z (Uw/ — vw).

o€ a'eN* (o)



Denoting Agﬁ)rh = 8@ (5(5i)rh) we observe Ayr, = Zle Agprh for r, € X7.
We specify the discrete velocity gradient on the bidual grid which is different compared to the gradient
operator defined in (2.4). Indeed,

Vev(x) = (Vi (x), ..., Veog(x))  with Vei(x) = (010;(x), ..., 0qvi(x)),

where
Vo' — Uy S—

0,v;(x) = Z(ﬁjvi)pel[)e and (0,v;)p, = P for e = D,|D,: € gj and 0,0’ € &;.

Gegj

Upwind divergence

We firstly remark the notation
1 1
rt = max{0,r} = 5(7” +1r]), r~ =min{0,r} = 5(7’ —|r),
and define an upwind function for r, € X7 under a given velocity field v, € Y¢

up 2 : up r V; > 0 —_— )
- ] ID up __ lfﬂ 1,0 9 '
rh €& 7 ' { rLa Ui,o’ < O, K|L S gz, ? {1;7d}

o2 E

Then the upwind fluz is given by
Up@rn, vil (%) = > U [, vilodp,,  UpP[rn, vily = riPvig = ric(vie) ™ + 7 (vig)
o€é;

Further, we introduce an upwind divergence operator

divup[rn, vi(x) = divyUp[ry, vi]  with  Uplry, vy] = (Up(l)[rh, Vil Up @y, Vh]> , (2.5)
and easily observe that
S ld 1
divup[ra, Valx = Z Z WUP(Z) [Ty Vh]o€i Do = & Z /r,‘jpvh ‘1, i dS(x).

i=1 0c&(K)

2.3 Preliminaries

In this section we introduce some preliminaries. First, we recall the inverse estimates from [19, Lemma
2.3]. For r, € {X7,Ye} it holds

rallee S hd(%_%)HthLq for any 1 < ¢ <p < 0. (2.6)
Next, by the scaling argument, we report the trace inequality, see [12, equation (2.26)]
78| Lr oy < h_l/pHThHLp(K) for any p € [1, o0]. (2.7)

Further, according to [19, Lemma 2.5] for r, € X7, v, € Y¢ we have

h

2

Some useful estimates related to the projections onto the discrete function spaces are comprised in
the following lemma.

Ul vado = frad vy = 5 [vo] (0F'11),, 0 € E(K), K€ T. (28)



Lemma 2.1. Let ¢ € C', & € C?, then fori € {1,...,d}, we have

00TIr0| S Iollen,  [OPL6] < 6ller, 0T S llen, (2.92)
IVellyd = Vedlliw S lldllce,  IVTe® — Vo1 < B ®]lce. (2.9b)
Arlr® S [@lce, [0 TP®| S [@llc2,  1DTnlss S IDUnllsewioe  (290)

Proof. We will prove only the first inequalities of (2.9a) and (2.9b) as the rest can_b}e done analogously.
By the mean value theorem there exists z* € co{x, zx} such that for any ¢ = K|L € &; it holds

(7¢)r — (rd)x _ 9¢

() _ *
(68 HT¢)0’ - h a‘rl (f[f )
Therefore we get the first inequality of (2.9a), i.e.,
i 9¢
p0nirs] <[22 <ol

Similarly, we know that for any x € D, there exists z** € co{z, z*}, such that

2 2
Oy 92| _ 070 | <10 <y
't - 52| = |55 <[] Sl
which indicates the first inequality of (2.9b). O

It is easy to check the following integration by parts formulae, so we omit the proof here.

Lemma 2.2. [19, Lemma 2.1] Let ry, ¢, € X7, and vy, ®, € Ye. Then

- / AT’f‘h Qbh dz = / VgTh : Vggbh dZL’, —/ Agvh . q)h dz = / VEVh . VE(I)h dZL’, (210&)
Q Q Q Q

d
—/diVth T dx:/vh-Vgrh dzx, —/diVUp[rh,Vh]gbh dx:Z/Up(i)[Th,vh]ﬁg)gbh dz. (2.10b)
Q Q Q =179

The definition of the upwind divergence (2.5) yields a simple corollary of Lemma 2.2.
Corollary 2.3. Let ry, € X7, vy, = [V1h, - ,van] € Ye. Then Z divuy[rs, vi]x = 0.
KeT

The next lemma provides identities necessary to derive the consistency formulation of the proposed
scheme.

Lemma 2.4. It holds for ® € WYY(Q) that

/diVTHg(I) :/ diV(I), K e T (211)
K K



Proof. From the definition of divy, we know that

/leTng)dx—Z Z |0|H )QDeZ n"K_Z Z /(IDe, n, i dS(z)

i=1 ge&;(K) =1 0€&;(K)
= > /cp n, i dS(x / dive dz.
oc(K) K
]
Lemma 2.5. Let r, € X7, v, € Ye, ¢ € C?. Then there hold
/ diVUp[Th,Vh]HT¢ dzx = / ThVh Vx¢ dx + / ThVh (Vg(H7’¢) - quﬁ) dz
Q Q Q
+ 5 Z > / raAY (TL7¢) [0 p] da + = Z > / 0% (1L 0) 00 v; 4] d,
=1 KeT i=1 KeT
(2.12)

d
;/Q{{diwp[rh,wz]}}(i) Hg)qbd:)::/grhvh-VdeJr/thvh (Ve(I 1Y ¢) — V,0) da

d
ZZ/rhA( HTH )|U1h|dx (2.13)

i=1 KeT

Z/r;ﬁ( (1119 )0 ;] da.

KeT

+

o s

+

N | >
1M~ 1

Proof. First, we use the integration by parts formulae stated in Lemma 2.2 and the equality (2.8) to get

Z/leUpTh,Vh HT¢d$_ZZ/ Up()Th,Vh (HT¢)

KeT i=1 o€,
= Z Z / {{Th}}( Vi, ha H7-¢ d.l‘ - = Z Z / ’Uz h‘ Th Z)(HT¢> dz
i=1 o€&; i=1 o€é&;
/ ThVp Vg(HTqb d17 + = Z Z / h@ Z) (HTgb) |U, h| )
Q i=1 KeT .
=1
:/rhvh~Vx¢dx+/rhvh- (Vg(HT(Z»—Vx(ﬁ) de + 1.
Q Q

Further, using the chain rule, the term I can be written as

ZZ/rhA ()il da + szm (17 0)0% ] d

i=1 KeT i=1 KeT

which implies (2.12). The proof of (2.13) is more or less similar, and thus we omit the details.

10



We shall also need the following Sobolev—Poincaré—type inequality which can be proved exactly as
in [13, Theorem 11.23].

Lemma 2.6. Let rp, > 0 be a scalar function satisfying

O</Thdx:cM, /TdeSCE for~v>1,
Q Q

where the positive constants cyr and cg are independent of the mesh parameter h. Then the following
Sobolev—Poincaré—type inequality holds true:

2
||Vh||%6(g) < c/ IVevy[2da + ¢ (/ rh|vh|dx) , (2.14)
Q Q

for any vy, € Y¢, where the constant ¢ depends on ¢y, cg but not on the mesh parameter.
In particular, by setting r, = 1 we have

IVallZsey < e (IVevala + IVl -

Since the convergence proof presented in Section 3 is based on the theory of dissipative measure—
valued solutions (DMV), for completeness, we recall the definition of DMV solution [6, Definition 2.1]
and the related weak—strong uniqueness principle [6, Theorem 4.1] for the compressible Navier—Stokes
equations.

Definition 2.7 (DMV solution). We say that a parametrized family of probability measures {Vy 2} .z)e(0,1)x9

Vie € Lt (0.7) x 2 P@)). @ = {leu] | o€ 0.0), we R},

is a DMV solution of the Navier—Stokes system in (0,T) x Q with the initial condition Vy . € P(Q) and
dissipative defect D € L>(0,T), D > 0, if the following holds:

. { /ﬂ <Vt,x;9>¢(t,-)dm} : = /0 ' /Q [(Vias 0) D1+ (Vi ou) - V0] daz dt

for any 0 <7 < T, and any ¢ € C'([0,T] x Q);

t=1 T
{/ (Viz; ou)®(t, ) dx] = / /[(Vm; ou)D,® + (V. ou@u+p(o)l) : V, @] dedt
Q t=0 0 Q

— / / S(V,u) : V@ dzdt +/ (RM; v, ®) dt
0 Q 0
forany 0 <7 <T, and any ® € C’Cl([O,T] x (Q; Rd), where
u, = (Vigsu),u e L0, T; WH(; RY)), S(V,u) = pV,u, and RM € L'(0,T; M(Q));

1 t=1 T
[/ <Vm; —ou® + H(Q)> dﬂ?] +/ / S(V,u) : Vyudedt +D(7) <0,
Q2 T2 t=0 0 JQ

for a.a. 0 < 7 < T.The dissipation defect D dominates the concentration measure R™ , specifically,

(RY(7); )| S E(MD(T)[¢llcw, for some & € L'(0,T).

11



Theorem 2.8 (DMV weak-strong uniqueness). Let Q C R? d = 2,3, be a space—periodic domain.
Suppose the pressure p satisfies (1.2). Let V. be a dissipative measure—valued solution to the barotropic
Navier—Stokes system (1.1) in (0,T) x Q with the initial state represented by Vy in the sense specified
in Definition 2.7. Let (p,u) be a strong solution of (1.1) in (0,T) x Q belonging to the class

0,Vz0,u,Voue C([0,T) x Q), du e L* (0,T;C(1RY), 0> 0.

Then, if the initial states coincide, meaning Vo. = 0(p(0,2),u(0,2)) for a.a. x € Q, then the dissipation
defect D =0, and V: 5 = d(o(ra)u(ra)) for a.a. 7 € (0,T), x € Q.

We refer the interested readers to [6] for further discussion about DMV solutions to the compressible
Navier—Stokes equations.

Remark 1. The DMV weak-strong uniqueness result was originally presented for the no-slip boundary
conditions. Note that it can be extended for the periodic boundary conditions in a straightforward manner.

2.4 The numerical scheme

We are now ready to introduce a novel implicit in time Marker-And-Cell (MAC) finite difference scheme
originally proposed by Hosek and She [19]. The original scheme was based on the set of point values on
the centers of the elements and edges. Here we slightly reformulate the scheme such that the discrete
problem hold on the whole domain thanks to the piecewise constant extension defined in (2.2).

Definition 2.9 (MAC scheme). Given the discrete initial values
(on. 1)) = (700, I7uy)
we seek the solution (o}, u)) € X7 x Yg satisfying

Dyoy, + divup|og, up] — h*Ag ey = 0, (2.15a)

Dy foyum, 37 + {divoplopary,, wpl 3 + 08 p(0f) — nAeur, — 09 divruy

~e 3 o () @)} @as)

7=1
foralli=1,...,d, and for alln =1,..., Ny, with the parameter o satisfying

a€ (1,2y—4d/3) forye(1,2), and a>1 fory>2. (2.15¢)
We recall from [19] the important properties of the scheme (2.15):

e Existence of solution to (2.15).
Let (0),u)) € X7 x Y¢ be such that ¢ > 0 (that is ¢% > 0 for any K € T). Then there exists
a solution (gp,up) = {(oF,up)}™, € X7 x Y¢ to the scheme (2.15). We refer the readers to [19,
Theorem 3.7] for the proof.

e Discrete conservation of mass.
Summing (2.15a) over K € T immediately yields the conservation of mass, i.e.,

/QZd$=/Q%d$ZMO, n=1,...,N;.
Q Q

Indeed, it is a simple consequence of (2.10a) with ¢ = 1 and Corollary 2.3.
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e Positivity of discrete density.
Any solution (o}, u}) € X7 x Y to (2.15) satisfies o' > 0 provided ¢} ' >0, n=1,..., N;.
See [19, Lemma 3.2] for the proof.
2.5 Main results

The first main result is the convergence to the DMV and strong solutions on the lifespan of the latter.

Theorem 2.10 (Convergence). Let {(of, ul)})T, be a family of numerical solutions obtained by the
scheme (2.15) with At ~ h for all v > 1. Let the initial data (00, 0) satisfy (1.3). Then, we have the
following convergence results:

o Any Young measure {V,}izc0m)xq generated by (op,uy) for h — 0 represents a DMV solution
of the Navier—Stokes system (1.1) in the sense of Definition 2.7.

e [n addition, suppose that the Navier—Stokes system (1.1) endowed with the initial data (09, o) and
periodic boundary conditions admits a regular solution (o,u) belonging to the class

0.Vz0,u,V,u€ C([0,T) x Q), du e L? (0,T;C(1RY), 0> 0.
Then

on — o (strongly) in L ((0,T) x ), w, — u (strongly) in L* ((0,T) x Q; RY).

2].  Further, assuming the

Note that the existence of the strong solution has been reported in |
g, we deduce the following

existence of a more regular strong solution and “large” values of v >
convergence rate.

Theorem 2.11 (Convergence rate). Let v > 2. Let (r,U) be a strong solution to the Navier-Stokes
system (1.1) which belongs to the class

re C*0,T] x Q), r <r(t,r) <7, U ecC*[0,T] x Q; RY). (2.16)
Then under the assumptions of Theorem 2.10 there exists a positive number
c= C<M07 E07 T, |p/|Cl([Lﬂ)7 || (V$r7 atr7 6tvrra 87527’7 U7 vﬂsUa ViU, atUa 8tvch) ||L°°((O,T)><Q))

depending tacitly also on T, v, diam(2), ||, such that there holds

sup €(op,up|ry, Up) +Atz /|V —UY)|*dz
0<n<N (2.17)
<e (hA + AL+ €(dh, whlr(0), U(0)) )
where the convergence rate reads
2v—d 1
A:min{ 77 ,5} (2.18)

Remark 2. Qur Theorem 2.11 states the same convergence rate as [106, Theorem 3.2]. However, we
would like to point out that the reference [16] requires an assumption on the asymptotic behaviour of the
pressure while we do not need it due to the additional artificial diffusion.
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3 Proof of Theorem 2.10: convergence

The strategy of employing the DMV solutions as a tool for the convergence analysis of a numerical
scheme consists of two steps:

i) showing that a sequence of approximate solutions generates a DMV solution

ii) proving convergence to strong solution via the DMV weak—strong uniqueness principle.
Thanks to the DMV weak—strong uniqueness result derived in [6, Theorem 4.1] (see also Theorem 2.8),
for the proof of convergence of numerical solutions towards the strong solution it suffices to show that
a sequence of solutions to the proposed MAC scheme (2.15) generates a DMV solution in the sense
of Definition 2.7. To this end we shall prove the essential properties: energy stability and consistency
of the scheme. We recall some of the necessary estimates from [19], where the stability estimates and
the consistency formulation of the MAC scheme (2.15) in the case of the no-slip boundary condition
were derived for the adiabatic coefficient v € (1,2). Note that the space—periodic setting studied in the
present paper causes no major difference in the proof. The main difference lies in applying the Sobolev—
Poincaré-type inequality to bound the discrete velocity in L(0, T; L°(2)), see (2.14). A second difference
is to complement the proof also for v > 2.

3.1 Energy stability

The essential feature of any numerical scheme is its stability. We now recall the energy inequality derived
for the scheme (2.15) in the recent work of Hosek and She [19].

Lemma 3.1. ([19, Theorem 3.5]) Let p satisfy the pressure law (1.2), and let (on,up) be a numerical
solution obtained by the scheme (2.15). Then, for allm =1,..., N, it holds that

4

1 . m
[ (Ge e+ 2} o+ pdtTonlley + Gt APy + 3N < B (3)

j=1
1
where Ey = / <§Q2|ﬁ2|2 + H(Q%)) dz and N} > 0 with
Q

Nf"—AtZZZ/ (h°‘+h|uw|>ﬁ" o [0t

n=1 i=1 oc€&;

// n—1,n
NI = (A)? /H—)\Dt "2y

) dz,

m n—1

NP = (At)ZZ/ Qh2 D7 de,
n=1"%

Nm——AchZ/ oy lup - n, | ‘Vguh| dz.
n=1 g€

Here ngl’" € co{o} ", o}, o+ € colok, o} } for any o = K|L are the remainder terms from the Taylor
eTPansions.

3.1.1 Uniform bounds

The total energy inequality (3.1) implies the following a priori estimates.
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Corollary 3.2 (Uniform bounds). Let (gn,uy) be the solution to the scheme (2.15) with the pressure
satisfying (1.2). Then there exists ¢ > 0 dependent on the initial mass My and energy Fy but independent
of the parameters h and At such that

lon@allzers ST, Nlenllerr ST, Nlontall, 20 ST, (3.2a)
[divrupllrere S 1, [[Vewpllrere S 1, [Janllzere 1, (3.2b)
T
At/ /QZ_1|Dtu_’,;‘|2dzvdt <1, (3.2¢)
/ Z/ P g | Vo]t dedt <1, (3.2d)
o€l

/ / ( (h + hlug)H" (e ) [Veeh]” ) dedt S 1, (3.2¢)

where op+ € co{ok, oL} for any o = K|L € £.

Further, it is convenient to estimate the following norms of the density g, and the momentum
my = QpUp.

Lemma 3.3. In addition to the assumption of Lemma 3.1, let h € (0,1). Then there hold

max{ Satd -2 2d} if v e (1,2),
Hmmmgm,ﬁ:{ d 2 (12)

0, ify > 2,
3a+d 7=2 7 57—6 6
||Qh||L2L6/5 5 h<7 C = maX{ 6y 7 2y d7 6 d} Zf’y & ( 5)
0, ify >3, (3.3)
—iatdify e (1,2),
0, if v > 3.

Proof. First, for the case v > 2, it is clear that the first estimate of (3.3) holds. Indeed,

llonll2r2 S llonlleerr S 1.

Concerning the case v € (1,2) we show the proof in two steps. On one hand a direct application of the
inverse estimate (2.6) leads to

lonllzzre S R ol oo S B9,

~Y

On the other hand, we may start by recalling the Sobolev inequality for the broken norm [5, Lemma
A1]
I fllZe S I fallze + IVefullze, fo € X7,

and the algebraic inequality

7/2 22\? _ O°H(2) 2 :
ary — 0k ) = 00> (or — oK), V 2 € co{or, 0k}, or, 0 > 0 provided v € (1,2).
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Then the estimate of the density jumps (3.2¢) indicates that

T
Ve ez = / [1vegPasacs [ ] #/@VenPardr s
0 Q

Applying the above inequalities together with the inverse estimate (2.6) and the estimate (3.2a) we
derive

T 2/y
louliosm = [ I8P a0< [ (716 ) "
0

. 1/
< ho/) / (Il 2 + 19613 ) " dt < b (Jlgullgozs + Ve 70)
0

_ 3a+4d

< W (llonllzi + [ Vegy %) < 15

Further application of the above inequality together with the Gagliardo—Nirenberg interpolation inequal-
ity, Holder’s inequality, and the density estimate stated in (3.2a) yields

T 1/2 T 1/2 L s et
L A e B N P P Py Ry P P e
0 0

Collecting the above results finishes the proof of the first estimate of (3.3).

Next, the second estimate of (3.3) can be shown in the following way. First, it is obvious for v > g
that
lonllz2rors S llonllery S 1.
Second, we show the proof for v € (1,6/5) in two steps. On one hand, it is easy to observe that
3a+d vy
lonllszon S lenllore 1, o =mx {252, 2220},
On the other hand, due to the inverse estimates (2.6) we have
5.1
lonllzz2zers S llonllpmrors S B lonll poe s
which completes the proof of the second estimate of (3.3).
The last estimate of (3.3) can be shown in the following way: if v € (1, 2)
_ _ 1/2 —91/2
lontinllzoze < IVl o | Vanhllzere = llonll i lontill 20 <
In the case v > 3, it follows by Holder’s inequality
lontnllz2re S llonllreersllunllrzre < llonllzoersllunllz2re < 1.
Finally for v € [2,3), we have by inverse estimate (2.6) and Hélder’s inequality that
_ 1.1 1=3
lontinll 22 S lonllzersllunllzzze S A~ lonll b o [ unll2ze S P57
which completes the proof. O

Next we report the dissipation estimates on the density.
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Lemma 3.4. (/16, Lemma 4.3]) For any (on, us) satisfying the assumptions of Lemma 3.1 there holds

/ / (ox —o1)* - | dS(z) dt < ¢ (3.4)

KI|L maX{QK, or}

for ¢ = c(v, Ey) > 0 provided v > 2.

The following lemma completes the list of useful estimates for the derivation of the consistency
formulation.

Lemma 3.5. Under the assumption of Lemma 3.1 there exists ¢ = ¢(My, Ey) > 0 independent of h and
At such that

/ / I[orn] us - | dS(x) dt < ch?, (3.5)

oel K|L

B ~3 ify> 8
5y—6 .
—3 5 ifve (L)

where

Proof. First, for v > 2 we apply (3.4) and get

/ Z/ [on] up, - n[ dS(z) dt

ei=tot K|L
1/2
/ / ol jasa)ar / / [wn - n| max{oy, ox } dS(z) dt
— xcir max{or, ox } oee Jo=KIL
S B2 0ul| s a1 S B2

as || onl|z2res S llon||Lery < ¢(Ep) provided v > 2.
Next, for v € (1,2) it is easy to check that H"(on1)(ont + 1) > 1. Thus we derive

/ Z/ K‘LH[Qh]]uh n|dS(z dt</ Z/ K‘L|[[Qh]]llh-n| \/H”(ghﬁ)(gh,hu1st(x)dt

el el

~~
>1

</ / el 5t ) </ / KIL (ont + 1) |up - n|dS(z )dt)l/Z

< ch V2 (||onll 2o + 1) unll s < ch™ 2| onlVess < chﬁ,

where thanks to the second estimate of Lemma 3.3 £ reads
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3.2 Consistency formulation

Another step towards the convergence of a sequence of approximate solutions is the consistency of the
numerical scheme.

Lemma 3.6. Let the pressure p satisfies (1.2) with v > 1. Let (op,up) be a solution of the numerical
scheme (2.15) with At ~ h. Then, for any ¢ € C*([0,T] x Q), and any ® € C?([0,T] x Q; R?) it holds
that

T
- / 0360, -) dz = / / [0n0yd + onuy, - Vo] dzdt + O(KPY), B, > 0; (3.6a)
Q o Jo

T
— / ool @ (0, ) dr = / / lonty, - 0P + opuy, @ Uy, 1 V. @ + ppdivy®] do dt
Q 0 Ja
T
— u/ / Vo, : V,®dadt + O(h™2), By > 0. (3.6b)
0 Jo
Proof. First we show the proof for v > 2 in two steps.

Step 1 — Consistency of density equation. To show the consistency formulation (3.6a) we multiply
the discrete density equation (2.15a) with II7¢ for ¢ € C?([0,T] x ) and integrate over Q. In what
follows we handle each term of the product separately.

e Time derivative term. It is easy to calculate

ZAtZ/ Dyol HT(bdm—ZAtZDtgh/gbdx—/ /Dtgh t) dz dt

n=1 KeT n=1 KeT

/ / ont) = onlt = &) 4t
//th‘f drdt — /Tm/ t+At)d:cdt

T T
/ ot ¢ ot + AL / / on()o(t+AL) dH/ / on(t)pt + AL) | o
0 Q At At t T—At At

-/ ' [ (atqs(m%attas(t*)) dede— [ fow)ar- | B | a2 drar

T
= —/ on(t)0s(t) dz dt — / 0v¢(0) dz + Iy
0 Ja Q

where Iy = fo Jo 00 (1) BLOup(t*) da dt — fQ 90,0(t") dz dt for suitable t*,t' € (¢,t + At).
Obviously, I can be controlled by

L] < At|lonl|iz||9llc2 + Atl|opll i l|9ller S e (Mo, Eo, ||¢]c2) At

Therefore, we have

ZAt | D Troda+ / [ dodzdes [ mo(0)do < (Mo, B [olle2) &

= KeT
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e Convective term. Setting r, = g, in (2.12) for the convective term, we get

N T
> ALY divy(on wy) (|K|Tr¢) do = / / onwy, - Veddodt + I + I + I,
0 Q

n=1 KeT

where

T
I = /0 | v+ (Velitro) - 9.0) deat,

T h d ; _
L — / 53 / on A (I ] e i,
0 K

i=1 KeT

Ty A .
fo = /0 2 Z Z /K Qh6é)(HT¢)a£r)‘Ui,h\ dx dt.

i=1 KET
The terms I;, 1 = 1,2,3 can be controlled as follows

| S hllonllpzrers [unllpzrsl|dllc2 S e(Eo, [[9llc2)h,
o] S hllonllpzrers [unllzrsl|fllcz S e(Eo, [[9llc2)h,
3] S hllonllp2rol|divrus| o2 ||@llc2 S e(Eo, ||¢]lc2)h,

where we have used Hélder’s inequality, Lemma 2.1 and the uniform bounds (3.2).

e Artificial diffusion term. Using the integration by parts formula (2.10a) twice together with
the estimate (2.9¢) yields

N T T
D> ALY b Aggp (|K[Trg) :h“/ /ATgh¢dxdt:ha/ /ghATd)dxdt
n=1 KeT 0 JQ 0 JQ
S P onllpinl9ller < e(Eo, [[6]lc2)h®.

Collecting the above proves (3.6a) for v > 2.

Step 2 — Consistency of momentum equation. To show the consistency formulation (3.6b), we
multiply the discrete momentum equation (2.15b) with Il¢® for ® = (®4,...,®,) € C2([0,T] x Q; R?)
and integrate over 2. Then we proceed analogously as in Step 1.

e Time derivative term. Similarly as in Step 1, we have

N d ‘ ' T
Z At Z Z / {{Dt(ghﬂi,h)}}(l) Hg’)@i dx = / Z / Dt(@hﬁh) B drdt + I
n=1 Do 0 K

i=1 o€&; KeT

T
= / / onty, - 0P dr dt — / ovy) - ®(0) dw
0 Q Q

At T At
=5 [ [otw oee)dd- [ [ g o) ded
2 0 Q 0 Q

for suitable t*, ¢ € (t,t + At). Obviously

where

o] S Atllontp || | @]z + Aty 2| ®lcr S e (Eo, ool 2, (a0l 12, | ®]|c2) At.
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Consequently, we have

N d

) T
DAY > / { D1 (onti )} TP @, da + / / onty - 0@ du dt + / oot - ®(0) da
—~ Dy o Ja Q

=1 O'Egi

5 C (Eo, HQHCZ) At.

e Convective term. Setting (74, ¢) = (0nT;n, ®;) in (2.13) for the convective term, we get

d T ' T
Z/ / {[diVUp[Qhﬂjﬁ, uh]}}(l) Hg)q)] dzdt = / /(’l“hllh ® uh) . VI‘I) dz dt + ]1 + [2 + 13,
j=1 0 Q 0 Q

where

d T '
h=Y / / onTTj - (Ve(II9®;) — V,8;) dadt,
= Jo Ja

d T d
h _ i i —
]2 = Z/O' § Z Z /K Qhuj,hA’(T) (HTH(g)CI)]>|UZ’h| dZE dt,
j=1

i=1 KeT
d T d
]3 = Z/ § Z Z / ghﬂj’@é)(HTH(g)(I)j)@(T)|ui,h| dZL’ dt.
j=170 i=1 KeT VK

Employing Lemma 3.3 with v > 2, the terms [;, ¢ = 1,2, 3, can be controlled as follows

11| S hllont || ||9llce S c(Eo, [|9llc2)h,
[Io| S hllontn |22 l[unll2s || Dllcz S e(Eo, ||Allc2)h,
3] S hllontn || 22 ||divrus|| o2 ||@]l o2 S c(Eo, [|¢]lc2)h,

where we have used Hélder’s inequality and the uniform bounds (3.2).
e Pressure term. By (2.11) and the integration by parts formula (2.10b), we have

N d ' ' T
ZNZZ/ oy (T ®; da = —/ 3 / p(on)divy Il ® da dt
n=1 D, K

i=1 oc&; 0 ket

T
= —/ /p(gh)diVTCPd:cdt.
0o Ja

e Diffusion term. Employing (2.10b) we can write
N d 4 T
—ZAtZZ/ Agu?, 1P ®, dz :/ /vﬁuh LV 1@ d
n=1 Ds 0o Jo

i=1 o€&;
T T
= / / Veuh . qu) dz +/ / Veuh . (Veng@ — VI(I)) dl‘,
0 Q 0 Q

N J/
-~

=R

where Holder’s inequality and (2.9b) imply
|R| 5 ||V€uh||L2L2||V€H5<I> — VI¢||L2L2 5 C(Eo, ||(I)||02) h.
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e Artificial diffusion term. We apply (2.10b), Lemma 2.1 and 3.3 and chain rule to get

hO‘ZAtZZ /| Z o2 () @0 a) )} e, de

i=1 o€&;

/ /8(]) {{ zh}} g Qh >Hg)¢)1dxdt
i=1 j=1

/ /{{uz,h L9 (09 0,8 1P P, da di
i=1 j=1

/ ZZ/Q;@” far, 3o e )dxdt

i=1 j=1

/ ZZ/@;LW (B0 0TI, dz dt

7,1]1

/ /gh{{ulh} 6“ ( ])H(Z)q)) dz dt
i=1 j=1

S A onllzore ([[Veun |22 [ @ er + [[un |22 || @l c2)
S c(Eo, [|®@|c2)h”

Collecting the estimates of Step 2 proves (3.6b) and finishes the whole consistency proof for v > 2.
Concerning v € (1,2), the consistency of the numerical scheme (2.15) with the no-slip boundary condi-
tions was shown in [19, Theorems 4.6 and 4.7]. Note that the proof remains the same for the periodic
boundary conditions, thus we omit it here. O

3.3 Convergence to DMV solution

We aim to pass to the limit with the discretization parameter h — 0 to show the convergence of a
sequence of numerical solutions to the DMV solution. Having established the two essential prerequisites,
i.e. stability estimates and consistency formulation in Lemmas 3.1 and 3.6, respectively, the convergence
proof can be done analogously as in our recent work [10] or the pioneering paper [8], in which the same
strategy was used. For completeness we briefly recall the main steps.

Weak limit. First, the energy estimates (3.1) yield, at least for suitable subsequences (not relabelled),

on — o weakly-(*) in L*=(0,7;L7(Q2)), 0 >0
0y, uy, — u weakly in L2((0,7T) x €; R?), where u € L*(0,T; W'?(Q)),
V., — V,u weakly in L2((0,T) x Q; R™9),
ol — ot weakly-(*) in L(0,T; L5+ (Q; RY)),
on (T, @ Ty) + pon)l — {ou® u + p(o)I} weakly-(*) in [L%(0,T; M(Q))]™?,

where ~ and {-} denote the L'-weak limit and the L>°(M(Q))-weak-(*) limit, respectively.
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Young measure generated by numerical solutions. According to the weak convergence state-
ment, we can conclude that the family of numerical solutions (g5, us) = {(o}, u})}V, generates a Young
measure

Vie € L2((0,T) x 2 P([0,00) x RY) for a.a. (t,2) € (0,T) x €, with Vo, = 60 (2),u0(x)]

such that

—_——

(Veas 9(0,0)) = g0, 0)(t, x) for a.a. (t,2) € (0,T) x &,
whenever g € C([0,00) x R?), and

g(on, up) — g(o,u) weakly in L*((0,T) x ).

We refer the reader to, e.g., [1, 25] for more details on a parametrized measure V; .

Passing to the limit. We pass to the limit with A~ — 0 in the consistency formulation (3.6) and the
energy inequality (3.1) to get

[/Q Via: 0) o(7, -)dx] z:; _ /OT/Q (Vi 0) 8:6 + (Vew, 0u) - Vo] dadt (3.7)

for any 0 < 7 < T and any ¢ € C*°([0,T] x Q);

t=1 T
V <Vt,m;@u>"1’(0,-)dw} =/ / [(Vt,m;9u>-8t<1>+ Viz;oa®@u+p(o)l) : V,®| dz dt
Q t=0 0 Q

T T (38>
—,u/ /Vzu : qu)dxdt—I—/ /R :V,®drdt
0o Ja 0o Ja
for any 0 <7 < T, ® € C®([0,T] x Q; RY), where R is the concentration remainder,
R ={ou®u+p(o)I} — (Vo ou@u+p(o)l) € [L=(0,T; M(2))] ",
1 t=1 T
{/ 5 (Viw; 0u® + H(0)) dx} + u/ / V.ul*de dt +D(7) <0 (3.9)
Q t=0 0 Q
for a.e. 7 € [0,T], where D is the dissipation defect
, 1 , 1,
D<T> = lim _Qh|uh| + H(Qh) dr — VT,x; —Q’ll| + H(Q) dz
+lim/ /\VeuhIde dt—/ /|qu\2dx dt,
h=0Jo Ja 0o Ja
which, using [6, Lemma 2.1], can be shown to satisfy
| IRl dt £ () (3.10)
0

The detailed passage to the limit can be found in our recent work [10]. Based on relations (3.7)-(3.10)
we finally conclude that the Young measure {Vt’z}tyxe(O’T)XQ represents a DMV solution of the Navier—
Stokes system (1.1) in the sense of Definition 2.7 which proves the first result of Theorem 2.10. The
second result is an immediate consequence of Theorem 2.8. O
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4 Proof of Theorem 2.11: convergence rate

The proof of error estimates via the relative energy functional requires the derivation of three estimates,
namely
i) consistency error: the identity (inequality) satisfied by a strong solution;
ii) discrete relative energy: the discrete counterpart of the continuous version of the relative energy
inequality;
iii) approximate relative energy: approximation of the discrete relative energy with a particularly
chosen discrete test functions and suitably transformed terms.
Application of the Gronwall inequality on a suitable combination of the approximate relative energy
inequality and the consistency error shall yield the desired convergence rate at the end of this section.
We start the proof by reporting the consistency error satisfied by a strong solution from [16, Lemma
7.1] (see also [17, Lemma 7.1]).

Lemma 4.1 (Consistency error). Let (op,ur) € X7 X Y¢ and uy, satisfy the estimates (3.2b), i.e
[divrupllpere S 1 [IVeupllpere S 10 flunllreps S L

Let (r,U) be a solution of the Navier—Stokes system (1.1) that belongs to the class (2.16). Then for any
m=1,..., Ny and (rp, Uy) := (Il7r,11gU) the following identity holds true:

where |R}Y| S h+ At and
AtZ,u/VU"' (uy —Up)dz, Jr= AtZ/ ~'D,U,, (w; —U,,) da,

=AY [ - ) (U= OO a0 (), @)

n=1 KeT occ&(K)
Jy :AtZ/p(r,’f)[diva dz, Js= AtZ/ p(rp)ay, - [Ver]™ da.
n=1 Q

Next, recalling [16, Lemma 8.1] (see also [17, Lemma 8.1]) we have the following estimates.

Lemma 4.2. Let (on,up) € X7 X Y¢ satisfy the uniform bounds stated in Corollary 3.2. Let (r,U) be
a solution to the Navier—Stokes system (1.1) that belongs to the class (2.16). Then it holds that

6 5

Y Qi+> Ji="P

i=1 i=1

where |Py| < cAtY " E(op,uf|ry, UR) + ALY " ||Ve(uf — UR)||2 with 0 sufficiently small with
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respect to p, and

Q= —AtZu/ V.Up : V(uy —Up)dz, Q= AtZ/ 1DtUh — 1) da,
Q=YY Y [ i (O =) - (U = T (U™ ) (o),

n=1 KETUEE(K

Q4=—At2 / plep)[div, U]  dz, Qs = Atz / P on? )[@r]
:—Atz /

[ Vyr]" de.

4.1 Exact relative energy inequality

In this section, we derive the relative energy on the discrete level.

Lemma 4.3 (Discrete relative energy). Let (o, up) € X7 X Y¢ be a solution to the MAC scheme (2.15).
Then for any (rp, Uy) € X7 X Ye, 7, > 0, and form =1,... Ny it holds

1 m|=m FT — 770 m|,.m
/95 (Qh [w; — U, | — opluj — Uh‘z) dz + /Q (E(Qh ry') — E(Q%V"g)) dz
m 8
+AY [ (Vi - U+ 3T <0,
n=1 Q

=1

(4.3)

where T; = > At T* and T}* read

i
n=1

I = ,u/ V U}, : V(up — Uj)dz,
Q

—n—1 =N
n n— —n (U +U —n—
T2 = _/ oy 1DtUh (% -1y 1> dl‘,

T=) 2 / W (O W) Uh(ug - no ) dS (),

KeT oe&(K

-3 3 / p(}) (U} - ng i) dS(a),

KeT oeé(K

n __ Qh ! r(.n—1
T5——/Q O () — ) e,

-2 2 / MPH (rp ) (u) - mg ) dS(),

KeT oce&(K

Ty = h‘l/ AropH' (rp~ 1) dz,
0

= ha/ Veop - VeU, - {U, —u;}} da.
Q
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Proof. We multiply the discrete density equation (2.15a) by |Uh|2 [ ?)

We integrate the resulting equations over €2 to get

T2 — 2 2 2
O:/Dgh—| 1l [ d$+/d1VUp[Qh,uh]—| 1l [ dz — h“/A Lo

2 2
= Z Ik,
k=1

and (H'(g})

WO — [T

2

= /QDt@Z (H'(e}) — H'(rp ™)) do + / divup[oy, wp] (H'(eh) — H'(ry ™)) da

Q

e / Angy (H'(gp) — H'(rp ™)) do = ka,
Q

H'(r ).

3
Y 2
Then we multiply the discrete momentum equation (2. 15b) by ( - U] h), and sum over ¢t = 1,...,d.

dx

0= /Q Dy fehu} - (ufp — Up) o+ / {divuplehug, wil} - (u — Up) do + /Q Vep(ar) - (uj

o [ de (up Undx—haz/z ) () 0an) B (- v

Now we sum up all I terms and derive the desired inequality in 7 steps:

e The sum of I; and [7 yields 73"

—n =N —n— FTn—1
I+ 1= w/[d,:ruh—uhﬁ—gh =T da

1 —n
by e (- O - (OG- 2w+ 2w T ) o
1 nj=n _ TI1° —n— y—1 n
=oAL . [Qh’uh_UhF_Qh [t -0, |2] dz + 715" + Dx,
where
D, = L oy Hapt —up)?dz > 0.
2At -

e Term I results in 73"

—U}) dx

11
) dz =: Zlk.
k=7

1 n n— 1 * n— 1 . . o
= g [ ) - e+ g -] e f i - e
1
= / E(g2 ) — E(ol " r"Y) dz + T2 + Doy + D,
tJa
where
D31 . H'(00) (o} — o H)2dz > 0
' 2At Jq h/\&h h =Y
1 n n— n— n n— 1 " n .
e E/ﬂ [H( A = 1>} =5 QH//(Th)(Th —rp )2z >0



e Term 77 comes from adding I, and Ig together:

nup—nup __” i n,up|ﬁh|2_|UZ|2 n
I+ 1y = Z Z U,) — o, — 5 uj, -0, x dS(z)

KeT oeé(K
. —n —n U,+U —
Z /QKuh n, ] (§|UK—uL|2+(UK U)) (% uK)> dS(x)
o=K|LeE”?
+ Z /UQLuh ;] (§|uL_uK|2+(UL Uy) (%_HL>> dS(z)
o=K|Le&
:T§L+D37

where

Z / Plag — afPluf - ng k| dS(z) > 0.

o=K|Le&

e The sum of I5 and Iy yields both T} and T§"

b= Y S [ L6006 — ) no = (e (0 = UF) - no] dS(o)
KeT oe&(K)

where

D, = Z Z / "PH'(o}) p(gﬁ))uz-na,K dS(zx)

KeT 0e€(K)
= 3 ()  H) ek — o) — Hle) aS(e)
o=K|LeE"
+ D /“h n, ] (H(op) — H' (k) (07 — o) — H(0k))dS(z) > 0.
o=K|Le&

e The sum of I3 and [;; gives exactly 73"

(4)
UL - 2 d d , N
I+ Iy = —h° /A ghM—hQZ{{ZaQ({{agh}@5992)}} (ul'y — UTy) da
/Vth Ve ‘Uh|2_|uh’ d$+hQZZ/{{uzh}} s Qh z,h_m)dx

=1 j=1

_hazzfé 39T U Y dx—haZZ/{{ulh}} oY opod U, da = T3

=1 j=1 =1 j=1

e Term I4 results in 77

Is =17 + Dy,
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where

Ds=h*Y" Z/vggh VeH'(gp) dS(z) = h* Y Z/nghFH” 1) ds(z) > 0.

KeT oe€(K) KeT oe&(K)

e Finally, by rewriting Iy in a convenient way we get 77"
Im:u/veu’[{: —Ujp)dx = /|V —UY)Pdz + T7.
Q

Collecting all the above calculations and summing them up for all times steps ¢ = 1,...,m finishes
the proof.
O

4.2 Approximate relative energy inequality

In this subsection, we further analyse the inequality derived in Lemma 4.3 (for the numerical solution).
The aim is to derive the @; terms stated in Lemma 4.2 (for the strong solution) from the T; terms, such
that we can use the result of Lemmas 4.1 and 4.2 to estimate the relative energy between the numerical
and strong solutions. To this end, the test function pair (rp, Up) in Lemma 4.3 must be chosen properly,
see the result below.

Lemma 4.4 (Approximate relative energy). Let (on,up) € X7 X Ye be a solution to scheme (2.15),
and let (rn, Up) = (I7rr, [1gU) for (r,U) be a strong solution to the system (1.1) that belongs to the
class (2.16). Then there exists a positive constant

c= C(M07 E07 T, Fa ‘p/‘C([z,?])a H (Vwra atry atvwr7 at2ra U7 va7 V§U, 8tU7 atva) ”LOO(Q)>

such that for allm =1,..., N, it holds
E(op' s uy'|ry', Uy — (thuh|7"h( ), Un(0)) + Atz / Ve(uy — Uy |2d$ < ZQz + Ry + G,
where Q;,1 =1,...,6 are given in (4.2) and

G < ent S (e ulrt U, RY| < (VAT E Y, A= T1EED
ify > 2.

[

n=1

Proof. We start the proof from the inequality (4.3) derived in the previous Lemma 4.3. We only need
to deal with the terms T}, « = 1,...,8, as the other terms will remain the same.

e We keep the term 77 unchanged and set (), = —T;.

e The second term 75 can be rewritten as

=—n—1 =n
U U 1—n
—Ty, = At § j/ -1D,U, (hTH —art 4+ 50 iﬁ;;) dz =
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= Qs+ At Z/ 1D, UL(U, " —U,)dz + At Z/ ~'DU, (W — w7 da,

J

~\~
=R

where by the interpolation estimate (2.9¢) and the uniform bounds (3.2) we have

At Z/ “1p, 0T, — U da + At Z/ DU, —ap ) de

—n—112 1/2
u —u
sAtughuwuatvuiwwlm+Hahu;ﬁluaﬂumwm( / / o1 [0 i [ - A )dmdt)

< o( By, |[U]|c2) At.

|Ry| =

e From the third term 75 we get

= _Atzz 3 / nae (G0N @) T (] - ) dS(2)
n=1 KeT oce&(K)

m

= —Atz Z Z / P (U, —ap™) - Uy () - n, i) dS(7) + R,

n=1 KeT occ&(K)

where

m

Ror =&Y S [ (O - (U) - Uitah no) dS(0)
n=1 KeT 0c&(K)"“ 7

m

9 Z Z / QK|UK UL| [u} - ng k)" +QL|UK UL| [uy - n, ] }dS( ).

n=1 o=K|LeE
Seeing the equality
S S [ AR ) aS(0) = 0o 7 = g (O3 )
KeT oe&(K)
we have

Ty = Atzz > / P (O — ™) - (Ur —Up) (Ul - ny i) dS(x) + Ray

n=1 KT cc&(K

_Atzz Z / h —nup _nup) (Un Uh)(UZup na,K)dS($)+RQ,1+R2,2

n=1 Ke€T oce&(K)

= Qs+ Ra1 + Ry,

where

Ba=a Y Y [ (O ) - (U] = U (U — ) - ne dS()

n=1 Ke€T oce&(K)
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=32 S [ (O ) (O - UPTT ) St
n=1 KeTUEE(K)

Pary Y S / w (T — ) - (T — U™ — ) - no dS(e)

n=1 Ke€T ce&(K)
= Roo1 + Ra2o.

Given v > %l > g, we get
|Roa| S llonllzopors [anllzrs (Ve Ull o) S e(Eo, [[Ullen ),

by using Holder’s inequality, the uniform bounds (3.2) and the trace inequality (2.7). Further, by
a similar argument it holds

[Rooa| S c(|Ullen) ALY &(of, uplr™, UM,

n=1

and

m
[Rool S INUllor |v/enlpe ALY - €(ch, wilr, U 2[5 — i oo

n=1

1_1 - n nl|..n n
< Ul llenl Y2, (zfd@ DRV ewn 3 + ALY €(gf uhlr", U >>

n=1

< e(Eo, |[U[|e)h ™ + e(Bo, [|U]|c1) AtZ@@muh!r U,

n=1
where we have also used Young’s inequality. Here ¢ = % € (2,6) provided v > %.

e The fourth term T} directly yields

~Ty = —Atzz Z/ p(ap)divU, dS(x :—Atzz Z/ plap)[divU]™ dS(z)

n=1 KeT sc&(K) n=1 KeT se&(K)
= Qa1

e We proceed with the fifth term 75 and obtain

Ty = AtZ/T’Z ) — B ) da

ry —0 n n— H,”<Tn7*) n n—
Sy [ (H”(rh)( =) - oy ) o
= Qs+ Rs1 + R0,

where

= TR = Oh H/”(Ti?*) n —1\2
Ry, = —At / h ry —ry dx,
n§:1 N 5 (rh h)



Rso = AtZ/ - Qh )(Dtrh [Opr]") da

The two residual terms can be estimated as follows

|Rs1| S Atllrn — onll oot [P e eap |0 | oo e S ¢ Mo, |||l ey, 17 ller) At
|Rs2| < Atllry — onll e pr [P or o (11077 oo oo + |0, Var || oo poe ).

e Term Ty yields (D¢ after a suitable manipulation and estimating three residual terms. Indeed,

=AY Y Z/ W () () 1 ) dS (),

n=1 KeT ce&(K)

=AY Y > /gh (H'(rp~ ") — H'(er™ 1)) (uf -, 1) dS(2)

n=1 KeT oce&(K)

+Atz >y / P — o) (H (rp ) — H'(Tgr™ 1)) (uff - 0y i) dS(x)

n=1 KeT ce&(K)

N J/

R4,1

—A 2L 2 / RH (17757 = Her™ ) (uf - ng) dS(e) + R

1 KeT oe&(K

=93 IDY / RE (17 ) (rf ™ = Ter"™ (- g ) dS ()

n=1 Ke€T ce&(K

(. J

R4,2

= —Atz / nH"(r 7 [Ver)"hda 4+ Ryy + Rag

+ Atz >y / mH (r "l e (T - ul) - ng x dS(x)

n=1 Ke€T ce&(K)

N J/

=:R43

= Q6+ Ryt + Ry + Ras,

where we have used the following equality in the last second line

Z / (rx — Her)a, - 0y dS(z) = /Kﬁh- [V,r]de.

ce€(K)
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Now we estimate the residual terms R4 ;,¢ = 1,2,3. It holds

|Ryn| = Atz Z Z / W= o) (H'(rph) = H'(er™ ™)) (u)f - g, i) dS(2)

n=1 KeT oce&(K)

Ay Y Y / (65 = 00 mo] B30 =T as(e)

n=1 KeT cc&(K

< hlp’Cl ([r,7]) “V THLOOLOC/
0 KeToee(k

¢ (Eo, pler e, 1Varll o) Y2,

/ ‘Vggh u, - | dx dt

where we have used Lemma 3.5. Further, given v > (2—1 > g, we get

|Ryo| = At Z Y / PH (g ) — Ter™ N2 (uf - ng ) dS(x)

n=1 KeT cc&(K)
S hlplerqean I Vorll e oo lonll o poss [ unl| 2o
< ¢ (Eo, [P lor ey IV ar [T o)

Finally, by using Holder’s inequality, the trace inequality (2.7), the velocity bounds (3.2b), and
Lemma 3.3 we get

|Rys| = AtZ > 2 /QZH" nt = Ter™ ) (W) — up) - 0k dS()

n=1 KeT ce&(K
S hlp' |CO([L?])||VJ||L°°L°°||Qh||L2L2||VeUhHL2L2
< ¢ (Bo, [P |com I Var || oo poe ) 1P,
where

p= (4.5)

1+ 324> 20 iy el4,2),
1>3 if v > 2.

e For the seventh term 77 we get

;| = Ath“Z/QATQZH'(TZ_l)dx =

Athaz / PALH (1) da

S Ay |Cl([§,ﬂ)|lvmr‘|L°°L°°||QhHL1L1 S R e | Var || oo e |l onl| Lo o
< c(Eo, [P|cr () | Var | Loeore) A

Ath® Y / —Veol - VeH' (1Y) dz
n=1 Q

e The last term Ty yields the bound

iZZ/é n6 h{{Uznh Zh}}(j) dz

n=1 i=1 j=1

ITy| = Athe
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NE
M:“

= Ath®

d .
> [ o (00T (75— ) ) do

n=1 i=1 j=1
— Athe | /Q o (Ar0; - {0~ w}) da
n=1
m d d i ] .
sane Y-S5 [ ol T -0 (U - ) ae
n=1 i=1 j=1 7

h¥llonllperossl[Ulle2 (1Unllco + l[unl|zeze) + h*lonllret [UNEr + A Ullerllenllzerz | Veun | 2re
c(IIUllcz, llonllzora, lanllzzze) B + e (1U]lor, [[unll oo, [V ewn| e ) S,

ANRIA

where we have used the inequality

j 7 @)
109 L, B N e S 118wl e,

and ( = a— 1+ > A with § being given in (4.5) due to the same trick as in the estimate of the
term R4,3.

]

4.3 End of error estimates

Collecting the estimates in Lemmas 4.1, 4.2, and 4.4 immediately yields the following inequality

E(oy, uytlrm™, um) —l—AtZ /|V —UY)|*de

¢ [W4 VAL + (0, uflr(0),U(0))] + cAt > €(a, uglr”, U),

n=1

for all m =1,..., N. Here, the convergence rate A is defined in (2.18), and the positive constant
¢ = (Mo, Eo, v, 7, [Pl |(Var, Oir, 0,V 4r, 07r, U, V, U, V2U, 0,U, 9,V U)| =0

depends tacitly also on T, v, diam(2), |€2].
Finally, applying Gronwall’s inequality to the above estimates, we finish the proof of Theorem 2.11.

5 Numerical experiments

Concerning the performance of scheme (2.15), we refer to [19, Section 5], where both the homogeneous
Dirichlet and periodic boundary conditions were implemented. Here we aim to validate the theoretical
results stated in Theorem 2.11, that is the convergence rate derived in terms of the relative energy.
Hence, we measure the following errors

€¢ = Sup QE(QZ,ﬁZ’?”(tn, ')7 U(tn7 ))7 Evu = ”ve<uh - U)HLQ(O,T;Q)a
1<n<N; (5.1)
eo = llon = rllom),  en = llun = Ullzzore), € = lp(on) — p(r)ll=omre0)
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between the numerical solution (g, uy) and the reference solution (r, U). For this purpose we perform
two experiments in the domain 2 = [0,1]?. In the first experiment the reference solution is explicitly
given by considering suitable external force in the momentum equation. In the second experiment the
reference solution is set as the numerical solution computed on a very fine mesh. In both tests, we set
p =1, a = 1.6 satisfying (2.15¢).

5.1 Experiment 1
We first consider the following analytical solution

t

sin(27x) cos(2my)e "
(2mz) cos(2my)e ™ ) k= 0.01, (5.2)

r(z,y.t) =1 Ulz,y,t) = ( — cos(2mz) sin(2my)e
that is driven by the corresponding external force in the momentum equation. We show in Table 1
the relative errors in the norms presented in (5.1) for different values of 7. Clearly, we observe the
second order convergence rate for the relative energy and the first order convergence rate for the density,
velocity and the gradient of velocity.

Table 1: Experiment 1: error norms at 7" = 0.1 for different ~

h \ e \ EOC \ evu \ EOC \ €o \ EOC \ €u \ EOC \ ep \ EOC
vy=1.4
1/32 | 1.34e-02 — 5.03e-01 - 3.90e-03 — 4.31e-02 - 9.73e-02 —

1/64 | 3.44e-03 | 1.96 | 2.53e-01 | 0.99 | 1.93e-03 | 1.02 | 2.16e-02 | 0.99 | 5.03e-02 | 0.95
1/128 | 8.71e-04 | 1.98 | 1.27e-01 | 1.00 | 9.57e-04 | 1.01 | 1.08e-02 | 1.00 | 2.55e-02 | 0.98
1/256 | 2.19e-04 | 1.99 | 6.35e-02 | 1.00 | 4.76e-04 | 1.01 | 5.42e-03 | 1.00 | 1.28e-02 | 0.99
v =1.67
1/32 | 1.39e-02 - 5.02e-01 - 3.86e-03 - 4.28e-02 - 1.15e-01 -

1/64 | 3.58e-03 | 1.96 | 2.53e-01 | 0.99 | 1.91e-03 | 1.01 | 2.15e-02 | 0.99 | 5.93e-02 | 0.95
1/128 | 9.07e-04 | 1.98 | 1.27e-01 | 1.00 | 9.50e-04 | 1.01 | 1.08e-02 | 1.00 | 3.00e-02 | 0.98
1/256 | 2.28e-04 | 1.99 | 6.34e-02 | 1.00 | 4.72e-04 | 1.01 | 5.40e-03 | 1.00 | 1.51e-02 | 0.99
v=2
1/32 | 1.45e-02 - 5.00e-01 = 3.82e-03 - 4.26e-02 = 1.36e-01 -
1/64 | 3.75e-03 | 1.95 | 2.52e-01 | 0.99 | 1.90e-03 | 1.01 | 2.14e-02 | 0.99 | 7.02e-02 | 0.95
1/128 | 9.50e-04 | 1.98 | 1.26e-01 | 1.00 | 9.41e-04 | 1.01 | 1.07e-02 | 1.00 | 3.56e-02 | 0.98
1/256 | 2.39e-04 | 1.99 | 6.32¢-02 | 1.00 | 4.68e-04 | 1.01 | 5.37e-03 | 1.00 | 1.79e-02 | 0.99

5.2 Experiment 2

This experiment is the so-called Gresho—vortex problem that has been studied in [12, 18] and references
therein for the isentropic flow. Initially, a vortex of radius Ry = 0.2 is prescribed at location (zg,yo) =
(0.5,0.5) with the velocity field given by

o= Vo= (s )
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where R = \/(z — 0.5)2 + (y — 0.5)2 and the radial velocity of the vortex u, is given by

2R/ R, if0 < R < Ro/2,
UR(R> = ﬁ 2(1 — R/R()) if R0/2 <R< Ro,
0 if R > Ry.

As there is no analytical solution to this problem, we take the solution to scheme (2.15) computed on
the very fine mesh for h = 1/1024 as the reference solution. We present the error of numerical solutions
with respect to the reference solution in Table 2 for different values . Similarly as in Experiment 1, we
see the second order convergence rate for the relative energy and the first order convergence rate for the
density, velocity and the gradient of velocity.

Table 2: Experiment 2: error norms at 7" = 0.1 for different ~

h \ ee \ EOC \ fven \ EOC \ €o \ EOC \ €u \ EOC \ ep \ EOC
vy=1.4

1/32 | 6.98e-04 — 6.09e-02 — 1.25e-05 — 3.25e-03 — 1.91e-04 —
1/64 | 2.05e-04 | 1.77 | 3.39e-02 | 0.84 | 4.00e-06 | 1.65 | 1.86e-03 | 0.80 | 6.04e-05 | 1.66
1/128 | 8.35e-05 | 1.29 | 2.08¢-02 | 0.71 | 1.62e-06 | 1.31 | 1.12e-03 | 0.73 | 2.45e-05 | 1.30
1/256 | 1.76e-05 | 2.25 | 9.37e-03 | 1.15 | 6.38e-07 | 1.34 | 5.11e-04 | 1.14 | 9.62¢-06 | 1.35
v =1.67
1/32 | 8.38e-04 — 6.67e-02 — 1.37e-05 — 3.56e-03 — 2.50e-04 —
1/64 | 2.47e-04 | 1.76 | 3.65e-02 | 0.87 | 4.41e-06 | 1.64 | 1.97¢-03 | 0.85 | 7.93e-05 | 1.66
1/128 | 7.29e-05 | 1.76 | 1.94e-02 | 0.91 | 1.76e-06 | 1.33 | 1.06e-03 | 0.90 | 3.17e-05 | 1.32
1/256 | 1.80e-05 | 2.02 | 9.47e-03 | 1.04 | 7.04e-07 | 1.32 | 5.16e-04 | 1.03 | 1.26e-05 | 1.33
v=2
1/32 | 7.43e-04 — 6.34e-02 - 1.50e-05 — 3.46e-03 — 3.29e-04 -
1/64 | 3.05e-04 | 1.29 | 3.99e-02 | 0.67 | 4.89e-06 | 1.61 | 2.13e-03 | 0.70 | 1.06e-04 | 1.64
1/128 | 7.62e-05 | 2.00 | 1.99e-02 | 1.01 | 1.94e-06 | 1.33 | 1.08e-03 | 0.99 | 4.20e-05 | 1.33
1/256 | 1.91e-05 | 1.99 | 9.73e-03 | 1.03 | 7.81e-07 | 1.31 | 5.30e-04 | 1.02 | 1.68e-05 | 1.32

Remark 3. On one hand we have proven the theoretical convergence rate of 1/2 for the relative energy
functional (see Theorem 2.11). On the other hand we have observed the first order convergence rate for
the density and velocity (see Table 1 and 2), and the second order convergence rate for the relative energy
functional, as it is a function of the density and velocity squared. FEven if the theoretical convergence
rate 1s not optimal, we would like to emphasize that it is unconditional, meaning there is no assumption
on the reqularity nor boundedness of the numerical solution. Moreover, as far as we know, it is the best
theoretical convergence rate proven in the literature. Nevertheless, assuming the numerical solution is
bounded would allow the convergence rate to reach the value 2 in the case of relative energy (1 for the
density and velocity).

Conclusion

We have studied a finite difference scheme on the staggered grid for the multi-dimensional compressible
isentropic Navier—Stokes equations in a periodic domain originally proposed in [19]. The solutions of the
scheme were shown to exist while preserving the positivity of the discrete density. Employing the stability
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and consistency estimates we have shown in Theorem 2.10 that the numerical solutions of the scheme
(2.15) unconditionally converge to a strong solution of the limit system (1.1) on its lifespan. Further,
we have derived uniform convergence rate for the error between the finite difference approximation and
the corresponding strong solution in terms of the relative energy functional. Finally, we have presented
two numerical experiments to support our theoretical results. To the best of our knowledge, this is the
first rigorous result concerning convergence analysis of a finite difference scheme for the compressible
Navier—Stokes equations in the multi-dimensional setting.
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