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ON INTERPLAY BETWEEN OPERATORS, BASES,
AND MATRICES

V. MÜLLER AND YU. TOMILOV

Abstract. Given a bounded linear operator T on separable Hilbert
space, we develop an approach allowing one to construct a matrix rep-
resentation for T having certain specified algebraic or asymptotic struc-
ture. We obtain matrix representations for T with preassigned bands of
the main diagonals, with an upper bound for all of the matrix elements,
and with entrywise polynomial lower and upper bounds for these ele-
ments. In particular, we substantially generalize and complement our
results on diagonals of operators from [40]. Moreover, we extend a the-
orem by Stout (1981), and (partially) answer his open question. Several
of our results have no analogues in the literature.

1. Introduction: a glimpse at matrix representations

Following conventional approach to describing operators on finite-dimen-
sional spaces as matrices, one may represent a bounded linear operator T
on infinite-dimensional separable Hilbert space H as the matrix

AT := (〈Tun, um〉)∞n,m=1

with respect to an orthonormal bases (un)∞n=1 ⊂ H and to try to relate
the properties of T to the properties of AT . This very natural idea looks
naive to some extent, and the study of operators on infinite-dimensional
spaces through their matrix representations goes back to the birth of oper-
ator theory in the beginning of 20-th century, and most notably, to Schur’s
multiplication and Weyl-von Neumann’s perturbation theorem for selfad-
joint operators.

While such a coordinatisation approach was neglected in favor of more
revealing and standard by now textbook techniques, there was still a number
of interesting applications of matrix representations scattered around the
literature. Most of them are related to the studies in this paper and serve
as motivations to what follows. So to put the paper into a proper context,
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2 V. MÜLLER AND YU. TOMILOV

we review several significant directions related to matrix representations of
bounded operators.

1.1. Diagonals. The study of diagonals of operators on infinite-dimensional
Hilbert spaces and also of the related issues go back to 70− 80’s with most
essential results due to Fan, Fong, and Herrero. See e.g. [17],[26] and [18]
as samples of the research from that period. The studies got a new im-
petus with foundational works of Kadison and Arveson [29],[30] and [3],
who discovered a subtle structure in the set of possible diagonals of selfad-
joint projections and, more generally, normal operators with finite spectrum,
thus providing infinite-dimensional counterparts of the famous Schur-Horn
theorem. The papers by Arveson and Kadison gave rise to a number of gen-
eralisations in various directions, including similar results for elements of
von Neumann algebras, diagonals of operator tuples, applications to frame
theory, etc. See, in particular, [8], [31], [32], [36] and [40]. As an illustration
we mention the next theorem proved recently in [28].

Theorem 1.1. A complex-valued sequence (dk)∞k=1 is a diagonal of a unitary
operator on H if and only if supk≥1 |dk| ≤ 1 and

2(1− inf
k≥1

|dk|) ≤
∞∑

k=1

(1− |dk|).

A nice survey of recent developments in the theory of operator diagonals
can be found in [34], see also [40] and the references therein.

In [40], we have changed a perspective by describing the diagonals for
a given operator T rather than the set of possible diagonals for operator
classes. Among other things, it was proved in [40] that if the essential
numerical range of a bounded operator T on H has a non-empty interior,
then a sequence from the interior is the diagonal of T if it approaches the
boundary not too fast, satisfying so-called Blaschke-type condition. Such a
condition is often optimal. For a more detailed discussion of some of the
results from [40], see Section 2 below.

It seems that the methods of [40] opens a much wider venue than the one
sketched in [40], and we hope the results of this paper justify this claim.

1.2. Banded matrices. One of the basic advantages in dealing with oper-
ator matrices is that for several important classes of operators their matrices
have so-called banded structure. Recall that for n ∈ N the operator is said
to be n-diagonal operator if it is is unitarily equivalent to a (finite or infi-
nite) direct sum of (finite or infinite) n-diagonal matrices. The n-diagonal
operators are often called band-diagonal when particular value of n is not
crucial.

It is well known (and easy to prove) that selfadjont operators are 3-
diagonal. This fact constitutes a basis for the classical approach to the
study of selfadjoint (mostly unbounded) operators via associated 3-diagonal
Jacobi matrices. However, any 3-diagonal unitary operator is diagonal. In
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fact, any unitary operator is 5-diagonal, and this number of diagonals is
optimal. The relevance of this fact for mathematical physics was recognized
comparatively recently, mainly due to so-called CMV-representations devel-
oped in [11] and [12], see also [44] for an additional insight. Of course, not
only the mere fact of three or five diagonality of the matrix, but also the
availability of concrete and convenient basis is important here.

However, band-diagonality is quite a rare phenomena. In particular, as
proved in [51], see also [22], every normal operator with spectral measure
not supported on a set of planar measure zero is not band-diagonal, and so,
in particular, the multiplication operator (Mf)(z) = zf(z) on L2(D) on the
unit disc D is not band-diagonal. Moreover, there are non-band-diagonal
operators in the intersection of all Schatten p-classes for p > 2, and the set
of all non-band-diagonal operators is dense in the space B(H) of bounded
linear operators on H. At the same time the set of band-diagonal operators
is not norm-dense in B(H) being quite a small subset of B(H) in various
senses. For a discussion of restrictions posed by band-diagonality from the
point of view of C∗-algebras, see e.g. [10]. An illuminating discussion of
band-diagonality can be found in [22].

Another closely related topic concerns universal matrix representations
with sparsified structure, that is representations possessing many zeros. It
seems such representations go back to [52], where they were called staircase
representations. One may prove that any T ∈ B(H) admits a universal
block three-diagonal form with the exponential control on block sizes. The
representations are useful in commutator theory, e.g. in the study of Pearcy-
Topping problem on compact commutators. Their modern and pertinent
discussion can be found in [41]. As examples of other applications of the
three diagonal block representaions we mention [37], where the Olsen lifting
problem was treated, and [21], addressing representations of operators in
B(H) as linear combinations of operators of simple form (e.g. diagonal).

The same issues of sparsifying and arranging certain arrays of zero (and
not only) elements in finite matrices still form a vast area of research. Be-
ing unable to give any reasonable account we refer to [27] and [16] as an
illustration of problems and approaches considered there.

1.3. Big matrices. One of the basic results in the classical harmonic analy-
sis, due to de Leeuw, Kahane, and Katznelson, says that for any (aj)j∈Z ∈
`2(Z) there exists a periodic f ∈ C([0, 2π]) such that the Fourier coefficients
(f̂j)j∈Z of f satisfy |f̂j | ≥ |aj |, j ∈ Z, so that L2([0, 2π])-functions are indis-
tinguishable from C([0, 2π])-functions by the size of their Fourier coefficients.
Later on, numerous extensions of this result were found for other classes of
f including also some spaces of functions analytic in D, see e.g [4] for the
survey of statements of that flavor, called plank type in view of similarity
of the employed methods to the ones in Bang’s theorem on covering convex
body by planks.
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On the way to obtaining noncommutative counterparts of the above dom-
ination result, Lust-Piquard proved in [35] the next elegant theorem on a
possible size of matrices of bounded Hilbert space operators (which can be
formulated for matrices in both Z- and N- settings, and we prefer the latter
convention).

Theorem 1.2. For every matrix of complex numbers A = (aij)i,j≥1 such
that

(1.1) ‖A‖`∞(`2) := sup
i

(
∑

j

|aij |2)1/2 < ∞ and ‖A∗‖`∞(`2) < ∞,

and every basis (uj)∞j=1 ⊂ H there exists T ∈ B(H) satisfying

(1.2) ‖T‖ ≤ K max{‖A‖`∞(`2), ‖A∗‖`∞(`2)} and |〈Tuj , ui〉| ≥ |aij |
for all i, j ≥ 1.

Clearly, the assumption (1.1) is necessary for any estimates as (1.2) to
hold, since (1.1) is satisfied by AT = (〈Tuj , ui〉i,j≥1) in view of AT ∈
B(`2(N)). Apart from being instructive as such, Theorem 1.2 appeared to be
crucial in the characterization of wide classes of Schur multipliers on B(`2),
see e.g. [13].

1.4. Small matrices. The Schur algebras, their structure and also the re-
lated notion of Schur multipliers is a natural scheme where matrix represen-
tations appear as a part of the very first definitions and surrounding basic
results. Without going into details, of this separate and involved area, we
emphasize a result not referring to specific notions and important for our
further considerations.

In his study of the Schur multiplication on B(H), Stout discovered in [49]
that if 〈Ten, en〉 ∈ c0(N) for some orthonormal set (en)∞n=1, i.e. 0 belongs
to the essential numerical range We(T ) of T (in fact, Stout used a different
definition of We(T )), then the size of matrix elements 〈Tun, um〉 can also
be made small for an appropriate basis (un)∞n=1. More precisely, the next
theorem holds, see [49, Theorem 2.3].

Theorem 1.3. Let T ∈ B(H). Then the following properties are equivalent.
(i) 0 ∈ We(T );
(ii) For every ε > 0 there exists a basis (un)∞n=1 such that |〈Tum, un〉| < ε

for all m,n ∈ N;
(iii) For every (αn)∞n=1 6∈ `1(N) there exists a basis (un)∞n=1 such that

(1.3) |〈Tun, un〉| ≤ αn

for all n ∈ N.

For motivation of Theorem 1.3, and its relation to the structure of Schur
algebars, see [49] and [50]. The statements similar but slightly weaker than
Theorem 1.3 appeared to be crucial for the study of various matrix norms
on B(H), in particular for comparing them to each other and also to the
operator norm on B(H). See e.g. [20] for this direction of research.
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1.5. Order properties. Quite often, the order properties of matrix ele-
ments prove to be useful. In particular, Radjavi and Rosenthal showed in
[42] that for any T ∈ B(H) there exists a selfadjoint S ∈ B(H) such that
T and S have no common invariant subspaces, and as a consequence the
operators T and S generate B(H). A key step in their approach is to note
that if T ∈ B(H) is not a multiple of the identity, then there exists an or-
thonormal basis {un}∞n=1 such that 〈Tun, um〉 6= 0 for all n and m. In fact,
the statement is true even for a sequence of bounded operators (Tj)∞j=1 on
H rather than a single operator T . This matrix statement was used used
frequently in similar contexts.

In the study of cyclicity and multi-cyclicity phenomena, the next observa-
tion due to Deddens played an important role: if for T ∈ B(H) there exists
a basis (un)∞n=1 in H such that 〈Tun, um〉 are real for all n and m ∈ N, then
T ⊕ T ∗, where T ∗ is adjoint of T, is not cyclic. In particular, if S is the
unilateral shift on H2(D), then S ⊕ S∗ is not cyclic. See [25] for more on
that, though rather unfortunately bases leading to “real” representations of
T have not been studied subsequently in the literature.

1.6. Halmos problem. The next problem appeared while developing the
theory of integral operators, but it is quite natural as such, e.g. in the study
of Schur multiplication and associated Schur operator algebras on Hilbert
spaces, see e.g. [49]. Let us say that T ∈ B(H) is absolutely bounded
if the matrix AT := (|〈Tuj , ui〉|)i,j≥1 defines a bounded operator on `2(N)
for some orthonormal basis (uj)∞j=1 in H, and totally absolutely bounded if
AT ∈ B(`2(N)) for any orthonormal basis (uj)∞j=1 in H. Clearly, not every
T ∈ B(H) is absolutely bounded. The simplest example is probably T on
`2(N) given by the so-called Hilbert matrix (aij)i,j≥1, where aij = (i− j)−1

for i 6= j and aij = 0, otherwise, see e.g. [24, Chapter]. In [23] Halmos asked
for a characterization of absolutely bounded and totally absolutely bounded
T (see [24] for more on theses notions and their motivations.) Independently
and almost simultaneously, it was proved in [47] and [45] that T is totally
absolutely bounded if and only if T = λ + S, where S is a Hilbert-Schmidt
operator. However, the description of absolutely bounded T is still out
of reach, though apart from Halmos, the problem was posed explicitly in
in [47], [45], [46] and [49]. A discussion of this and related matters can
be found in [24, Chapter 10 and Theorem 16.3]. Obviously, the problem
reflects the current lack of understanding on how the entries of AT may
change when (uj)∞j=1 is varying. Another illustration of this problem is the
study of operator diagonals discussed above, where the explicit description
of the set of diagonals is known for very particular choices of T, even if T is
selfadjoint, let along the description of such a set of diagonals for fixed T.

2. Tools, results and strategy

2.1. Numerical ranges. In our studies of matrix representations for a
bounded operator T on a separable (complex) Hilbert space H we will rely
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on elementary properties of its numerical range W (T ) := {〈Tx, x〉 : ‖x‖ = 1}
and its essential numerical range We(T ). Recall that for T ∈ B(H) its es-
sential numerical range We(T ) can be defined as

(2.1) We(T ) := {λ ∈ C : 〈Ten, en〉 → λ, n →∞}.
for some orthonormal sequence (en)∞n=1 ⊂ H. In fact, the orthonormal se-
quences in (2.1) can be replaced by orthonormal bases, see e.g. Theorem
1.3, (ii). Alternatively, λ ∈ We(T ) if and only if for every ε > 0 and every
subspace M of finite codimension there exists a unit vector x ∈ M such
that |〈Tx, x〉 − λ| < ε. Clearly, We(T ) ⊂ W (T ). For any T ∈ B(H), the set
We(T ) is non-empty, compact and convex, and moreover We(T ) contains
the essential spectrum of T. Thus, in view of convexity of We(T ),

(2.2) Int convσe(T ) ⊂ IntWe(T ).

So, for any contraction T with σ(T ) ⊃ T (e.g. unilateral or bilateral shift)
one has D ⊂ Int We(T ), hence the latter set is as large as possible in this
case. The convexity of W (T ) also implies that IntWe(T ) ⊂ W (T ). Since
We(T ) = We((I − P )T (I − P )) for every finite rank projection P, one has

(2.3) Int We(T ) ⊂ W ((I − P )T |(I−P )).

Thus, to be able to find a fixed λ ∈ W (T ) in the numerical range of any re-
striction of T to a finite-codimensional subspace of H it is natural to assume
that λ ∈ IntWe(T ). [IN FACT, MUST ONE ASSUME the latter property ?
NO: ZERO OPERATOR IS A COUNTEREXAMPLE] The property (2.3)
is vital in various inductive arguments given below. Note that, moreover,
λ ∈ IntWe(T ) implies that there exists an infinite rank (orthogonal) projec-
tion P such that PTP = λP. The basic properties of We(T ) can be found
e.g. in [19] or [1]. Some of their analogons for tuples of bounded operators
are proved in [33]. A unified approach to the essential numerical range for
tuples and its relatives, including the properties mentioned above, has been
provided in [39, Section].

Finally, for auxiliary estimates, we will need the next plank type result
from [4, Theorem 2].

Theorem 2.1. Let (uj)n
j=1 ⊂ H be a tuple of unit vectors, and let (aj)n

j=1 ⊂
R+ be such that

∑n
j=1 a2

j = 1. Then there exists a unit vector v ∈ H such
that |〈v, uj〉| ≥ aj for all j.

2.2. Results. Extending and complementing various results on operator
diagonals from the literature, it was proved in [40, Theorem] that for every
T ∈ B(H) and every (λ)∞n=1 ⊂ IntWe(T ) satisfying

(2.4)
∞∑

n=1

dist {λn, ∂We(T )} = ∞,

there exists an orthonormal basis (un)∞n=1 in H such that 〈Tun, un〉 = λn, n ∈
N. The assumption (2.4), introduced in [40] and called there non-Blaschke
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type, is close to be optimal and allows one to construct diagonals for general
T ∈ B(H). Moreover, it has operator-valued counterparts leading to con-
struction of operator-value diagonals and generalisations of the main results
from [7].

It is natural to ask whether (2.4) has further implications and can be
used to preassign a part of the matrix of T larger than the main diago-
nal. We prove that under (2.4), apart from producing the main diagonal
(〈Tun, un〉)∞n=1 by (2.4), the matrix of T can be sparsified by arranging zero
matrix elements in any band outside of (〈Tun, un〉)∞n=1. The result is op-
posite in a sense to the series of results concerning matrices with banded
structure discussed in the introduction. The obtained sparsification is rather
mild, and in this sense the result is certainly weaker than the results on
banded structure. On the other hand, it concerns general T ∈ B(H) rather
than very specific classes of B(H) (normal, unitary, selfadjoint), and it com-
plements the results on banded matrix representation.

Theorem 2.2. Let T ∈ B(H), and let (λ)∞n=1 ⊂ IntWe(T ) be such that∑∞
n=1 dist {λn, ∂We(T )} = ∞. Then for every K ∈ N there exists an ortho-

normal basis (un)∞n=1 in H such that

(2.5) 〈Tun, un〉 = λn, n ∈ N,

and

(2.6) 〈Tuj , uk〉 = 0, 1 ≤ |j − k| ≤ K.

Th next corollary of Theorem 2.2 is straightforward.

Corollary 2.3. Let T ∈ B(H) be such that 0 ∈ IntWe(T ). For every K ∈ N
there exists an orthonormal basis (un)∞n=1 in H such that

(2.7) 〈Tuj , uk〉 = 0

for all j, k ∈ N with |j − k| ≤ K.

To distinguish the representations satisfying (2.7) from the representa-
tions with band structure, one may call the matrix of T ∈ B(H) with
respect to an orthonormal basis (un)∞n=1 windowed with window of width K
if 〈Tuj , uk〉 = 0 for all j and k such that |j − k| ≤ K. In this terminology,
any T ∈ B(H) with 0 ∈ IntWe(T ) allows a window matrix representation
of any (finite) width.

If (λn)∞n=1 ⊂ IntWe(T ) is well-separated from the boundary of We(T ),
then by e.g. Theorem 2.2 the sequence (λn)∞n=1 is realizable as the main di-
agonal (〈Tun, un〉)∞n=1. It appears that in this case there are only size restric-
tions on the other two main diagonals (〈Tun, un+1〉)∞n=1 and (〈Tun+1, un〉)∞n=1

of T . The next statement supports this claim. For simplicity we formulate
it for contractions.
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Theorem 2.4. Let T ∈ B(H), ‖T‖ ≤ 1 and let ε > 0 be fixed. Let
(λn)∞n=1 ⊂ IntWe(T ), and let (µn)∞n=1, (νn)∞n=1 ⊂ C satisfy

dist {λn, ∂We(T )} > 2ε, sup
n≥1

(|µn|, |νn|) <
ε
√

ε

16

for all n ∈ N. Then there exists an orthonormal basis (un)∞n=1 in H such
that for all n ∈ N :

(1) 〈Tun, un〉 = λn;

(2) 〈Tun, un+1〉 = µn;

(3) 〈Tun+1, un〉 = νn.

Next, instead of preassigning a part of the AT we are interested in making
the entries AT vanishing fast enough at infinity. The method used in the
proof of Theorems 2.2 and 2.4 works here as well, and a weaker assumption
that 0 ∈ We(T ) will suffice for this purpose. In the following result one
spreads out the estimate in (1.3) over the whole of matrix AT of T with
respect to an appropriate orthonormal basis (un)∞n=1.

Theorem 2.5. Let T ∈ B(H) satisfy 0 ∈ We(T ), and let (aj)∞j=1 be a
sequence of positive numbers such that (aj)∞j=1 6∈ `1. Then there exists an
orthonormal basis (un)∞n=1 in H such that

(2.8) |〈Tun, uj〉| ≤
√

anaj

for all n, j ∈ N.

Note that for the diagonal elements 〈Tun, un〉, n ≥ 1, the estimate (2.8)
yields |〈Tun, un〉| ≤ an for all n ∈ N, which is precisely Stout’s condition
(1.3). Thus Theorem 2.5 is a generalization of Stout’s result to the matrix
context. See also an open question on [49, p. 45] containing a version of
Theorem 2.5. One may also consult [40, Theorem ] for generalizations of
(1.3) in the framework of diagonals for operator tuples. Note that (2.8)
is essentially the same as in (1.3) for the elements of AT near the main
diagonal, but weakens away from the main diagonal, e.g. one looses

√
an in

the first row or column.
By considering T − λ for any λ ∈ We(T ) and applying Theorem 2.5 to

T − λ one gets the following corollary concerning arbitrary T ∈ B(H).

Corollary 2.6. For every sequence of positive numbers (aj)∞j=1 satisfying
(aj)∞j=1 6∈ `1 and every T ∈ B(H) there exists an orthonormal basis (un)∞n=1

in H such that
|〈Tun, uj〉| ≤

√
anaj

for all n, j ∈ N, n 6= j.

Choosing (aj)∞j=1 ∈ `2(N)\`1(N) in Theorem 2.5, we get the next corollary
complementing Corollary 2.3 in the case when e.g. Int We(T ) = ∅.
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Corollary 2.7. For all T ∈ B(H), λ ∈ We(T ), and K ∈ N there exists an
orthonormal basis (un)∞n=1 in H such that

T = λ + W + S,

where W ∈ B(H) satisfy 〈Wuj , uk〉 = 0, |j − k| ≤ K, and S is a Hilbert-
Schmidt operator on H.

Next we consider a problem opposite in a sense to the one addressed
in Theorem 2.5. For fixed operator T ∈ B(H) we would like to find a
basis (un)∞n=1 giving rise to a matrix AT of T with large entries 〈Tun, uj〉.
Since the task of getting the lower bounds for 〈Tun, uj〉 seems to be more
demanding than the one concerning the upper bounds, we restrict ourselves
to the polynomial scale of bounds. However, to illustrate the sharpness
of our lower estimates we provide the upper estimates as well. In terms
of the size of constructed AT , the result given below is of course weaker
than Theorem 1.2. However, while in Theorem 1.2 one looks just for any
operator satisfying (1.2), our theorem produces an operator having large
matrix entries and belonging to the unitary orbit of a fixed T ∈ B(H) if
We(T ) is large enough.

Theorem 2.8. Let T ∈ B(H) be an operator which is not of the form
T = λ + K for some λ ∈ C and a compact operator K ∈ B(H). Then
there exist an orthonormal basis (un)∞n=1 ⊂ H and strictly positive constants
c1, c2, and d such that

|〈Tun, un〉| ≥ d, n ∈ N,

and
c1 min{n, j}1/2

max{n, j}3/2
≤ |〈Tun, uj〉| ≤

c2

max{n, j}1/2

for all n, j ∈ N, n 6= j.

Accidentally, the assumption of Theorem 2.8 is equivalent to the fact that
T is a commutator (or that T is similar to an operator having an infinite-
dimensional zero compression), see e.g. [1, p. 440] and also [9]. Some
methods and observations from the early days of commutator theory are
similar in spirit to our proof of Theorem 2.8. However, we are not aware
of any deeper relations between our results and the commutator properties.
On the other hand, estimates of the matrix elements were, in particular,
important in the study of commutators in e.g. [9, Section 3], [14] and [15].

2.3. Strategy. It would be instructive and helpful to underline a general
idea behind our arguments, since it may possibly be modified and used in
similar contexts as well. While fine details of the proofs of above theo-
rems differ from each other and require the corresponding adjustments, the
general approach can be roughly described as follows.

Usually it is rather simple to find an orthonormal sequence (un) satisfying
the required property. The main problem is to ensure that this sequence is
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a basis. This is achieved in the following way. First fix a countable sequence
(ym) of unit vectors which generates all the space. Write N =

⋃∞
m=1 Am

(disjoint union), where the sets Am are properly chosen.
The orthonormal basis (un) is constructed inductively. Let n ≥ 1 and sup-

pose that the vectors u1, . . . , un−1 have already been constructed. Choose
a unit vector vn orthogonal to all (finitely many) vectors that appeared in
the construction up till now and satisfying the required property. Then un

will be a small perturbation of vn,

un −
√

1− cnvn + cn(I − Pn−1)ym(n),

the where Pn−1 is the orthogonal projection onto the subspace Mn−1 =∨n−1
j=1 uj , n ∈ Am(n) and cn is ”small”.
If we do it properly then un will be a unit vector still satisfying the

required property, un ⊥ u1, . . . , un−1 and

dist 2{ym(n),Mn} ≤ (1− c2
n)dist {ym(n),Mn−1}.

So if the numbers cn are chosen properly, then we will have

lim
n→∞

dist {ym,Mn} = 0

for all m ∈ N. So ym ∈
∨∞

n=1 un for all m, and so the constructed sequence
(un) will be an orthonormal basis satisfying the required property.

3. Matrices with several given diagonals:proofs

We start with a proof of Theorem 2.2 being a generalization of [40, Corol-
lary 4.2] in case of a single operator. (Concerning the setting of tuples
see Section 6.) The argument employed there is a good illustration of the
strategy described above, and its variants will be used several times in the
sequel.

Proof of Theorem 2.2 Let (ym)∞m=1 be a sequence of unit vectors in H
such that

∨∞
m=1 ym = H.

For r = 0, 1, . . . ,K let Br = {n ∈ N : n = r mod (K + 1)}, and note
that there exists r0 ∈ {0, . . . ,K} such that

∑
n∈Br0

dist {λn, ∂We(T )} = ∞.
Represent Br0 as Br0 =

⋃∞
m=1 Am, where Am ∩An = ∅,m 6= n, and∑

n∈Am

dist {λn, ∂We(T )} = ∞

for all m ∈ N.
For n ∈ Br0 let m(n) be the unique integer satisfying n ∈ Am(n).
We construct the vectors un, n ≥ 1, inductively. Let n ≥ 1 and suppose

that the vectors u1, . . . , un−1 have already been constructed.
Suppose first that n /∈ Br0 . Let n̂ = min{n′ ∈ Br0 : n′ > n}. Find

un ∈ {uj , Tuj , T
∗uj j = 1, . . . , n− 1, yn̂, T yn̂, T ∗yn̂}⊥

such that 〈Tun, un〉 = λn. Clearly un ⊥ u1, . . . , un−1,

〈Tuj , un〉 = 0, j = max{1, n−K}, . . . , n− 1,
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and

〈Tun, uj〉 = 〈un, T ∗uj〉 = 0, j = max{1, n−K}, . . . , n− 1.

So un satisfies (2.5) and (2.6).
Suppose now that n ∈ Br0 . Let Pn−1 be the orthogonal projection onto

the subspace Mn−1 :=
∨n−1

j=1 uj .
If ym(n) ∈ Mn−1 then find a unit vector

un ∈ {uj , Tuj , T
∗uj : j = 1, . . . , n− 1}⊥

such that 〈Tun, un〉 = λn. Then un satisfies (2.5) and (2.6) again.
Suppose that ym(n) /∈ Mn−1. Set

bn =
(I − Pn−1)ym(n)

‖(I − Pn−1)ym(n)‖
.

Let

ρn := |〈Tbn, bn〉 − λn| and δn :=
1
2
dist {λn, ∂We(T )}.

If 〈Tbn, bn〉 = λn then set µn = λn. If 〈Tbn, bn〉 6= λn then let µn ∈ C be the
unique number satisfying

〈Tbn, bn〉 − λn

ρn
=

λn − µn

δn
.

Clearly µn ∈ IntWe(T ). Using (2.3), find a unit vector

vn ∈ {uj , Tuj , T
∗uj , j = 1, . . . , n− 1; bn, T bn, T ∗bn}⊥

satisfying 〈Tvn, vn〉 = µn. Set

un =
√

ρ

ρn + δn
vn +

√
δn

ρn + δn
bn.

Since vn ⊥ bn, we have ‖un‖ = 1. We have un ⊥ u1, . . . , un−1 and

〈Tun, un〉 =
ρn

ρn + εn
〈Tvn, vn〉+

δn

ρn + δn
〈Tbn, bn〉

=
ρnµn + δn〈Tbn, bn〉

ρn + δn

=
ρn

ρn + δn
(µn − λn) +

δn

ρn + δn
(〈Tbn, bn〉 − λn) + λn

=λn.

Choose integer j such that max{1, n−K} ≤ j ≤ n−1. Then j, j+1, . . . , n−
1 /∈ Br0 . By construction, uj , . . . , un−1 ⊥ ym(n). So

bn =
(I − Pn−1)ym(n)

‖(I − Pn−1)ym(n)‖
=

(I − Pj−1)ym(n)

‖(I − Pj−1)ym(n)‖
,

hence bn is a linear combination of u1, . . . , uj−1, ym(n), and so Tuj ⊥ bn.
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Thus we have

〈Tuj , un〉 =
√

ρn

ρn + δn
〈Tuj , vn〉+

√
δn

ρn + δn
〈Tuj , bn〉 = 0.

Similarly one can prove

〈Tun, uj〉 = 〈un, T ∗uj〉 =
√

ρn

ρn + δn
〈vn, T ∗uj〉+

√
δn

ρn + δn
〈bn, T ∗uj〉 = 0.

If we continue the construction inductively, we construct an orthonormal
system (un)∞n=1 satisfying (2.5) and (2.6).

It remains to show that it is a basis. Note that

‖(I − Pn)ym(n)‖2 =‖(I − Pn−1)ym(n)‖2 − |〈(I − Pn−1)ym(n), un〉|2

=‖(I − Pn−1)ym(n)‖2 − ‖(I − Pn−1)ym(n)‖2 · |〈bn, un〉|2

=‖(I − Pn−1)ym(n)‖2
(
1− δn

ρn + δn

)
and

ln ‖(I − Pn)ym(n)‖2 ≤ ln ‖(I − Pn−1)ym(n)‖2 + ln
(
1− δn

ρn + δn

)
≤ ln ‖(I − Pn−1)ym(n)‖2 − δn

ρn + δn

≤ ln ‖(I − Pn−1)ym(n)‖2 − dist {λn, ∂We(T )}
6‖T‖

.

Now for fixed m ∈ N, we have

lim
n→∞

ln ‖(I − Pn)ym‖2 ≤ −
∑

n∈Am

dist {λn, ∂We(T )}
6‖T‖

= −∞.

So ym ∈
∨∞

n=1 un for all m. Hence (un)∞n=1 is an orthonormal basis, and the
proof is finished. �

Under assumptions somewhat stronger than those in Theorem 2.2, our
techniques allows one to construct three diagonals of T with upper and
lower sub-diagonals depending only on the sup-norm of its main diagonal.
To this aim, we first prove the next auxiliary lemma.

Lemma 3.1. Let T ∈ B(H), and let a ∈ IntWe(T ) be such that

dist {a, ∂We(T )} > ε > 0.

Let M ⊂ H be a subspace of finite codimension. Then there exists a unit
vector u ∈ M satisfying the following conditions:

(i) 〈Tu, u〉 = a;
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(ii) if w = Tu−〈Tu, u〉u, w′ = T ∗u−〈T ∗u, u〉u and α, β ∈ C, then there
exists z ∈

∨
{w,w′} such that

〈w, z〉 = α, 〈w′, z〉 = β and ‖z‖ ≤ 2(|α|+ |β|)
ε

.

Proof. Since a ± ε and a ± iε ∈ IntWe(T ), the property (2.3) implies that
there exists a unit vector x1 ∈ M such that 〈Tx1, x1〉 = a + ε.

Similarly, there exists a unit vector x2 ∈ M ∩ {x1, Tx1, T
∗x1}⊥ such that

〈Tx2, x2〉 = a + iε, and unit vectors x3 ∈ M ∩ {xj , Txj , T
∗xj : j = 1, 2}⊥

and x4 ∈ M ∩ {xj , Txj , T
∗xj : j = 1, 2, 3}⊥ with 〈Tx3, x3〉 = a − ε and

〈Tx4, x4〉 = a− iε.
Let

u =
1
2
(x1 + x2 + x3 + x4).

Then u ∈ M , ‖u‖ = 1 and

〈Tu, u〉 =
1
4

(
〈Tx1, x1〉+ 〈Tx2, x2〉+ 〈Tx3, x3〉+ 〈Tx4, x4〉+

)
= a.

Let
w = Tu− 〈Tu, u〉u and w′ = T ∗u− 〈T ∗u, u〉u.

Let η ∈ C. Then

〈w + ηw′, x1〉 =〈Tu, x1〉 − 〈Tu, u〉 · 〈u, x1〉+ η〈T ∗u, x1〉 − η〈T ∗u, u〉 · 〈u, x1〉

=
1
2
〈Tx1, x1〉 −

a

2
+

η〈T ∗x1, x1〉
2

− ηā

2

=
a + ε

2
− a

2
+

η(ā + ε)
2

− ηā

2

=
ε(1 + η)

2
and similarly,

〈w + ηw′, x2〉 =〈Tu, x2〉 − 〈Tu, u〉 · 〈u, x2〉+ η〈T ∗u, x2〉 − η〈T ∗u, u〉 · 〈u, x2〉

=
1
2
〈Tx2, x2〉 −

a

2
+

η〈T ∗x2, x2〉
2

− ηā

2

=
a + iε

2
− a

2
+

η(ā− iε)
2

− ηā

2

=
iε(1− η)

2
.

So

‖w + ηw′‖ ≥max
{
|〈w + ηw′, x1〉|, |〈w + ηw′, x2〉|

}
=

ε

2
max{|1 + η|, |1− η|} ≥ ε

2
.

In the same way, one can show

‖ηw + w′‖ ≥ ε

2
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for all η ∈ C.
Let L be the two-dimensional subspace generated by w and w′. Let P and

P ′ be the orthogonal projections from L onto the one-dimensional subspace
generated by w and w′, respectively. We then have

‖(I − P ′)w‖ ≥ ε

2
and ‖(I − P )w′‖ ≥ ε

2
.

Let α, β ∈ C, and let

z =
α(I − P ′)w
‖(I − P ′)w‖2

+
β(I − P )w′

‖(I − P )w‖2
.

Then

〈w, z〉 =
α〈w, (I − P ′)w〉
‖(I − P ′)w‖2

= α and 〈w′, z〉 = β.

Finally

‖z‖ ≤ |α|
‖(I − P ′)w‖

+
|β|

‖(I − P )w′‖
≤ 2(|α|+ |β|)

ε
.

�

The proof of Theorem 2.4 is similar to the proof of Theorem 2.2, but it
is technically more demanding.

Proof of Theorem 2.4 Note that the assumption ‖T‖ ≤ 1 implies that
|ε| ≤ 1.

Fix an orthonormal basis (ym)∞m=1 in H.
We construct the basis (un)∞n=1 inductively.
For n = 1, find a unit vector u1 ∈ H with 〈Tu1, u1〉 = λ1 such that the

vectors

w1 := Tu1 − 〈Tu1, u1〉u1 and w′1 := T ∗u1 − 〈T ∗u1, u1〉u1

satisfy condition (ii) of Lemma (3.1), i.e., for all α, β ∈ C there exists z ∈∨
{w1, w

′
1} such that

〈w1, z〉 = α, 〈w′1, z〉 = β, and ‖z‖ ≤ 2(|α|+ |β|)
2

.

Set formally v1 = u1, z1 = b1 = 0.
Let n ≥ 2 and suppose that the orthonormal vectors u1, . . . , un−1 satis-

fying (1), (2) and (3) have already been constructed. To run the induction,
we also assume that u1, . . . , un−1 satisfy

un−1 = vn−1 + zn−1 + bn−1,

where ‖zn−1‖ ≤
√

ε
2 , ‖bn−1‖ ≤ ε

√
ε

32 , and

vn−1 ⊥ {u1, . . . , un−2, zn−1, bn−1, T zn−1, T bn−1, T
∗zn−1, T

∗bn−1}.

Moreover, if

wn−1 := Tvn−1−〈Tvn−1, vn−1〉vn−1 and w′n−1 := T ∗vn−1−〈T ∗vn−1, vn−1〉vn−1,
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then supposing, in addition, that wn−1 and w′n−1 satisfy condition (ii) of
Lemma 3.1, i.e., for all α, β ∈ C there exists z ∈

∨
{wn−1, w

′
n−1} with

〈wn−1, z〉 = α, 〈w′n−1, z〉 = β and ‖z‖ ≤ 2(|α|+ |β|)
2

.

Denote by Pn−1 the orthogonal projection onto the subspace Mn−1 :=∨n−1
j=1 uj .

Denote by An the set of all positive integers m such that ym /∈ Mn−1 and

sup
{
|〈(I − Pn−1)ym, z〉| : z ∈

∨
{un−1, Tun−1, T

∗un−1}, ‖z‖ = 1
}

does not exceed
‖(I − Pn−1)ym‖ ·

ε

32
.

Since ym → 0,m →∞, weakly, the set An contains all but a finite number
of m ∈ N, so in particular An 6= ∅.

Let m(n) be any number m ∈ An minimizing the quantity m + card
{
k :

2 ≤ k ≤ n− 1,m(k) = m
}
. (If there are more than one such numbers, then

fix any of them).
Let

bn =
(I − Pn−1)ym(n)

‖(I − Pn−1)ym(n)‖
· ε
√

ε

32
.

Observe that

‖zn−1 + bn−1‖2 ≤
(√ε

2
+

ε
√

ε

32

)2
≤ ε ·

(1
2

+
1
32

)2
≤ 8ε

25
≤ 8

25
,

1− ‖zn−1 + bn−1‖2 ≥17
25

,

and √
1− ‖zn−1 + bn−1‖2 ≥ 4

5
.

By Lemma 3.1, there exists zn ∈
∨
{wn−1, w

′
n−1} such that

〈wn−1, zn〉 =
µn−1 − 〈Tun−1, bn〉√
1− ‖zn−1 + bn−1‖2

,

〈w′n−1, zn〉 =
ν̄n−1 − 〈T ∗un−1, bn〉√

1− ‖zn−1 + bn−1‖2
,

and

‖zn‖ ≤
2
ε

(∣∣∣ µn−1 − 〈Tun−1, bn〉√
1− ‖zn−1 + bn−1‖2

∣∣∣ +
∣∣∣ ν̄n−1 − 〈T ∗un−1, bn〉√

1− ‖zn−1 + bn−1‖2

∣∣∣)
≤2

ε
· 5
4

(2ε
√

ε

16
+ 2‖bn‖

)
≤ 5

√
ε
( 1

16
+

1
32

)
≤
√

ε

2
.
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Note that as above,

‖zn+bn‖2 ≤ 8ε

25
≤ 8

25
, 1−‖zn+bn‖2 ≥ 17

25
and

√
1− ‖zn + bn‖2 ≥ 4

5
.

Set

λ′n =
λn −

〈
T (zn + bn), zn + bn

〉
1− ‖zn + bn‖2

.

We have

|λ′n − λn| ≤
∣∣∣1− 1

1− ‖zn + bn‖2

∣∣∣ +
‖zn + bn‖2

1− ‖zn + bn‖2

=
2‖zn + bn‖2

1− ‖zn + bn‖2

≤
2ε 8

25
17
25

≤ ε.

So dist {λ′n, ∂We(T )} > ε. By Lemma 3.1 there exists a unit vector vn such
that

vn ⊥
n−1∨
j=1

{uj , Tuj , T
∗uj},

vn ⊥ {ym(n), T ym(n), T
∗ym(n)},

{vn, T vn, T ∗vn} ⊥{zn, T zn, T ∗zn, bn, T bn, T ∗bn},
〈Tvn, vn〉 =λ′n,

and the vectors

wn = Tvn − 〈Tvn, vn〉vn and w′n = T ∗vn − 〈T ∗vn, vn〉vn

satisfy condition (ii) of Lemma 3.1.
Note that wn and w′n are orthogonal to

∨
{zn, bn} and similarly Twn,

T ∗wn, Tw′n, and T ∗w′n are orthogonal to
∨
{zn, bn}.

Let
un =

√
1− ‖zn + bn‖2vn + zn + bn.

Since vn ⊥ zn, bn, we have ‖un‖ = 1.
By definition, vn ⊥ Mn−1 and bn ⊥ Mn−1. Moreover,

zn ∈
∨
{wn−1, w

′
n−1} ⊂ {u1, . . . , un−2}⊥.

Furthermore, wn−1, w
′
n−1 ⊥ vn−1 and

{wn−1, w
′
n−1} ⊂

∨
{Tvn−1, T

∗vn−1, vn−1} ⊂ {zn−1, bn−1}⊥.

So zn ⊥ un−1 and un ⊥ u1, . . . , un−1.
Moreover,

Tzn ∈
∨
{Twn−1, Tw′n−1 ⊂

∨
{Tvn−1, T

2vn−1, TT ∗vn−1} ⊂ {zn, bn}⊥.
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We have

〈Tun, un〉 = (1− ‖zn + bn‖2)〈Tvn, vn〉+
〈
T (zn + bn), zn + bn

〉
= (1− ‖zn + bn‖2)λ′n +

〈
T (zn + bn), zn + bn

〉
= λn.

Moreover,

〈Tun−1, un〉 =〈Tun−1, zn〉+ 〈Tun−1, bn〉

=
√

1− ‖zn−1 + bn−1‖2〈Tvn−1, zn〉+ 〈Tun−1, bn〉

=
√

1− ‖zn−1 + bn−1‖2〈wn−1, zn〉+ 〈Tun−1, bn〉
=µn−1.

Similarly,

〈Tun, un−1〉 =〈Tzn, un−1〉+ 〈Tbn, un−1〉

=
√

1− ‖zn−1 + bn−1‖2〈Tzn, vn−1〉+ 〈Tbn, un−1〉

=
√

1− ‖zn−1 + bn−1‖2〈zn, w′n−1〉+ 〈Tbn, un−1〉
=νn−1.

We have∣∣〈(I − Pn−1)ym(n), un〉
∣∣ =

∣∣〈(I − Pn−1)ym(n), zn + bn〉
∣∣

≥
∣∣〈(I − Pn−1)ym(n), bn〉

∣∣− ∣∣〈(I − Pn−1)ym(n), zn〉
∣∣

≥‖(I − Pn−1)ym(n)‖ ·
ε
√

ε

32
−‖(I − Pn−1)ym(n)‖ · ‖zn‖ ·

ε

32

≥‖(I − Pn−1)ym(n)‖ ·
ε
√

ε

64
.

So

‖(I − Pn)ym(n)‖2 =‖(I − Pn−1)ym(n)‖2 − |〈(I − Pn−1)ym(n), un〉|2

≤‖(I − Pn−1)ym(n)‖2
(
1− ε3

212

)
.

Clearly
‖(I − Pn)ym‖ ≤ ‖(I − Pn−1)ym‖

for all m ∈ N, m 6= m(n).
Constructing the vectors un inductively, we obtain an orthonormal system

(un)∞n=1 satisfying (1), (2) and (3). It remain to show that it is a basis, i.e.,
that

∨∞
j=1 uj contains all vectors ym,m ∈ N. This is clearly true if ym

belongs to the space Mn for some n. If ym /∈
⋃∞

n=1 Mn, then m(n) = m for
infinitely values of n. Hence

lim
n→∞

‖(I − Pn)ym‖2 ≤ lim
r→∞

(
1− ε3

212

)r
= 0,

so that ym ∈
∨∞

n=1 un.
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Thus (un)∞n=1 is an orthonormal basis satisfying conditions (1),(2) and
(3).

4. Matrices with small entries: proofs

In this section, we extend Stout’s bound from Theorem 1.3, (iii) by pro-
viding a similar bound for all matrix elements for T ∈ B(H) rather than
merely the diagonal of T for an appropriate basis in H. To this aim, we need
a simple lemma.

Lemma 4.1. Let (aj)∞j=1 be a sequence of positive numbers which does not
belong to `1. Then there exists a sequence (a′j)

∞
j=1 which does not belong to

`1(N) such that 0 < a′j ≤ max{1, aj} for all j ∈ N and limj→∞
a′j
aj

= 0.

Proof. Set n0 = 0. We construct numbers nk, k ∈ N inductively.
If k ∈ N and the numbers n0, n1, . . . , nk−1 have already been constructed,

then find nk > nk−1 such that
nk∑

j=nk−1+1

aj ≥ k.

For nk−1 + 1 ≤ j ≤ nk then set a′j = min{1, k−1aj}. So
∑nk

j=nk−1+1 a′j ≥ 1.
If the numbers a′j are constructed in this way, then clearly

∑∞
j=1 a′j = ∞

and limj→∞
a′j
aj

= 0. �

Proof of Theorem 2.5 Without loss of generality we may assume that
‖T‖ ≤ 1.

Using Lemma 4.1, find a sequence (a′j)
∞
n=1 such that 0 < a′n ≤ min{1, aj}

for all n, (a′j)
∞
n=1 /∈ `1 and limn→∞

a′j
aj

= 0.

Let (ym)m∈N be a sequence of unit vectors in H such that
∨

m∈N ym = H.
Find mutually disjoint sets Am ⊂ N such that

⋃
m∈N Am = N and∑

j∈Am

a′j = ∞

for all m ∈ N. We may assume that m ∈
⋃m

k=1 Ak for all m.
For n ∈ N denote by m(n) the uniquely determined integer satisfying

n ∈ Am(n).
Define also

d(n) := min
{

r ∈ N, r ≥ n :
a′k
ak

< aj for all k ≥ r

}
.

So m(n) ≤ n ≤ d(n) for all n ∈ N.
We construct the orthonormal basis (un)∞n=1 inductively. Let n ≥ 1

and suppose that the vectors u1, u2, . . . , un−1 ∈ H have already been con-
structed.
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Since 0 ∈ We(T ), there exists a unit vector vn ∈ H orthogonal to the
union of the sets

{uj , Tuj , T
∗uj : j = 1, . . . , n− 1}

and
{yj , T yj , T

∗yj : j = 1, 2, . . . , d(n)},
and such that

|〈Tvn, vn〉| <
a′n
2

.

Let Pn−1 be the orthogonal projection onto the subspace Mn−1 :=
∨n−1

j=1 uj .
If ym(n) ∈ Mn−1 then set un = vn. Suppose that ym(n) /∈ Mn−1. Let

wn =
(I − Pn−1)ym(n)

‖(I − Pn−1)ym(n)‖
and cn =

√
a′n
2

.

Set
un =

√
1− c2

nvn + cnwn.

Note that wn ∈
∨
{uj : j ≤ n − 1} ∨ {ym(n)}. So wn ⊥ vn, and similarly,

Tvn ⊥ wn and T ∗vn ⊥ wn. In particular, ‖un‖ = 1 and un ⊥ u1, . . . , un−1.
Moreover,

‖(I − Pn)ym(n)‖2 =‖(I − Pn−1)ym(n)‖2 − |〈(I − Pn−1)ym(n), un〉|2(4.1)

=‖(I − Pn−1)ym(n)‖2 − |〈(I − Pn−1)ym(n), cnwn〉|2

=‖(I − Pn−1)ym(n)‖2(1− cn)2

=‖(I − Pn−1)ym(n)‖2

(
1− a′n

4

)
.

We have

|〈Tun, un〉| =
∣∣(1− c2

n)〈Tvn, vn〉+ c2
n〈Twn, wn〉

∣∣
≤|〈Tvn, vn〉|+ c2

n

≤a′n
2

+
a′n
4

<an.

To estimate the non-diagonal terms, let j ≤ n − 1. We distinguish two
cases:

1) If n ≥ d(j), then

|〈Tuj , un〉 = |〈Tuj , cnwn〉| ≤ cn =

√
a′n
2

≤
√

anaj

2
<
√

anaj .

Similarly,
|〈Tun, uj〉| = |〈T ∗uj , un〉| <

√
anaj ,

so that the bound (2.8) holds in this case.



20 V. MÜLLER AND YU. TOMILOV

2) If the opposite case n < d(j) holds. Then

|〈Tuj , un〉| =cn|〈Tuj , wn〉|
≤cn|〈Tvj , wn〉|+ cncj |〈Twj , wn〉|
≤cn|〈Tvj , wn〉|+ cncj .

Let L be the subspace generated by the vectors {vn : 1 ≤ n ≤ n − 1} and
ym(1), . . . , ym(n). We have

wn ∈
∨
{u1, . . . , un−1, ym(n)} ⊂ {v1, . . . , vn−1, w1, . . . , wn−1, ym(n)}.

By induction, wn ∈ L.
Note that the vectors v1, . . . , vn−1 are mutually orthogonal. Indeed, if

k < k′ ≤ j − 1, then by construction, we have vk′ ⊥ u1, . . . , uk and vk′ ⊥
ym(k), since m(k) ≤ k < k′ ≤ d(k′). Moreover, vk is a linear combination of
u1, . . . , uk, ym(k). So vk ⊥ vk′ .

Similarly, Tvk ⊥ vk′ and T ∗vk ⊥ vk′ .
Thus the subspace L∩{vj}⊥ contains the vectors vk, 1 ≤ k ≤ n−1, k 6= j,

and the vectors ym(1), . . . , ym(n) since m(k) ≤ k ≤ n < d(j) for all k ≤ n.
Similarly, Tvj ⊥ ym(k) for any k such that 1 ≤ k ≤ n.
Hence Tvj ⊥ (L ∩ {vj}⊥).
Therefore,

|〈Tvj , wn〉| = |〈Tvj , vj〉| · |〈wn, vj〉| ≤ |〈Tvj , vj〉| ≤
a′j
2

,

and then

|〈Tuj , un〉| ≤
cna′j

2
+ cncj ≤

√
a′n · a′j
4

+

√
a′na′j

4
<

√
a′na′j ≤

√
anaj .

Similarly,
|〈Tun, uj〉| = |〈T ∗uj , un〉| ≤

√
anaj .

Thus, the two estimates above imply that (2.8) holds in the second case
too.

Constructing the vectors un, n ∈ N, in this way, we get the orthonormal
system (un)∞n=1 such that

|〈Tun, uj〉| ≤
√

anaj

for all n, j ∈ N.
We claim that, moreover, (un)∞n=1 is an (orthonormal) basis of H. Let

m ∈ N be fixed.
We have

‖(I − Pk)ym‖ ≤ ‖(I − Pk−1)ym‖
for all k ∈ N, and taking into account (4.1),

‖(I − Pk)ym‖2 ≤ ‖(I − Pk−1)ym‖2
(
1−

a′k
4

)
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for all k ∈ Am. So

lim
k→∞

‖(I − Pk)ym‖2 ≤
∏

k∈Am

(
1−

a′k
4

)
and

lim
k→∞

ln ‖(I − Pk)ym‖2 ≤
∑

k∈Am

ln
(
1−

a′k
4

)
≤ −

∑
k∈Am

a′k
4

= −∞.

Hence ym ∈
∨
{un : n ∈ N}. Since

∨
m∈N ym = H, the claim follows. This

finishes the proof. �

5. Matrices with large entries: proofs

This section is devoted to the proof of Theorem 2.8.
We will need the next Lemma similar in spirit to considerations in [9,

Section 2], see also [43]. It is probably of independent interest.
Recall that T ∈ B(H) is compact if and only if We(T ) = {0}. So T is of

the form T = λI + K for some λ ∈ C and a compact operator K ∈ B(H) if
and only if We(T ) is a singleton, i.e., the diameter

diam We(T ) = max{|λ− µ| : λ, µ ∈ We(T )} = 0.

Lemma 5.1. Let T ∈ B(H) be an operator which is not of the form
T = λI + K for some λ ∈ C and a compact operator K ∈ B(H). Then
diam We(T ) > 0. Let 0 < C < diam We(T )

4 and 0 < D < diam We(T )

2
√

2
. Then for

any subspace M ⊂ H of finite codimension there exists a unit vector u ∈ M
such that

|〈Tu, u〉| ≥D,

‖Tu− 〈Tu, u〉u‖ ≥C

and
‖T ∗u− 〈T ∗u, u〉u‖ ≥ C.

Proof. Since T 6= λI + K, the set We(T ) contains at least two points. Let
λ, ν ∈ We(T ) satisfy |λ − ν| = diam We(T ). Without loss of generality, we
may assume that |λ| ≥ |ν|0. Set µ = λ+ν

2 . Then µ ∈ We(T ) since it is a
convex set.

We have
|λ− µ| = |λ− ν|

2
=

diam We(T )
2

and
|λ + µ| = |3

2
λ +

1
2
ν| ≥ |λ| ≥ diam We(T )

2
.

Let C and D such that

0 < D <
diam We(T )

2
and 0 < C <

diam We(T )
2
√

2
.
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Let M ⊂ H be a subspace of a finite codimension.
Let ε > 0 satisfy ε < |λ+µ|

2 −D and ε < |λ−µ|
2 − C

√
2.

Find a unit vector x ∈ M such that |〈Tx, x〉 − λ| < ε. Let M ′ = M ∩
{x, Tx, T ∗x}⊥. Then codim M ′ < ∞ and there exits a unit vector y ∈ M ′

such that |〈Ty, y〉 − µ| < ε.
Set

u =
x + y√

2
.

Clearly u ∈ M . Since y ⊥ x, we have ‖u‖ = 1.
We have

|〈Tu, u〉| = |〈Tx, x〉+ 〈Ty, y〉|
2

≥ |λ + µ|
2

− ε > D.

Furthermore,

‖Tu− 〈Tu, u〉u‖ ≥
∣∣〈Tu, x〉 − 〈Tu, u〉 · 〈u, x〉

∣∣ ≥ ∣∣∣〈Tx, x〉√
2

− 〈Tu, u〉√
2

∣∣∣
≥ 1√

2

∣∣〈Tx, x〉 − 〈Ty, y〉
∣∣

2
≥ |λ− µ|

2
√

2
− ε√

2
> C,

and similarly,

‖T ∗u− 〈T ∗u, u〉u‖ ≥
∣∣〈T ∗u, x〉 − 〈T ∗u, u〉 · 〈u, x〉

∣∣ ≥ ∣∣∣〈T ∗x, x〉√
2

− 〈T ∗u, u〉√
2

∣∣∣
≥ 1√

2

∣∣〈T ∗x, x〉 − 〈T ∗y, y〉
∣∣

2
≥ |λ̄− µ̄|

2
√

2
− ε√

2
> C.

�

Next we proceed with the proof of Theorem 2.8 producing large matrix
entries for T ∈ B(H) with We(T ) containing more than two points.

Proof of Theorem 2.8 Without loss of generality we may assume that
‖T‖ = 1.

Fix a sequence (ym)∞m=0 of unit vectors in H such that
∨∞

m=1 ym = H.
For n ∈ N denote by m(n) the unique non-negative integer such that

n = 2m(n)(2k − 1) for some k ∈ N.
Let C and D be the constants given by Lemma 5.1, i.e., for every subspace

M ⊂ H of finite codimension there exists a unit vector u ∈ M with

|〈Tu, u〉| ≥ D, ‖Tu− 〈Tu, u〉u‖ ≥ C and ‖T ∗u− 〈T ∗u, u〉u‖ ≥ C,

where C and D are independent of M.
Let d = D

2 . Fix a ≥ 1 such that

4
a
≤ D and

54√
a
≤ C2.

Set
c1 =

C

3
√

a
and c2 =

1√
a
.
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We construct the vectors un, n ≥ 1, inductively. Let n ≥ 1 and suppose
we have constructed mutually orthogonal vectors u1, . . . , un−1 satisfying

(5.1) |〈Tuk, uk〉| ≥ d, (1 ≤ k ≤ n),

and
(5.2)

c1 min{n, j}1/2

max{n, j}3/2
≤ |〈Tun, uj〉| ≤

c2

max{n, j}1/2
(1 ≤ k, j ≤ n, k 6= j)

as well as,

‖(I − Pk)Tuj‖2 ≥ C2j

2k
, 1 ≤ j ≤ k ≤ n− 1,(5.3)

‖(I − Pk)T ∗uj‖2 ≥ C2j

2k
, 1 ≤ j ≤ k ≤ n− 1,(5.4)

and

(5.5) ‖(I − Pn−1)ym‖2 ≤
∏

j≤n−1
m(j)=m

(
1− 1

2aj

)
, m ≥ 0,

where Pk, 1 ≤ k ≤ n − 1, is the orthogonal projection onto the subspace
Mk :=

∨
{u1, . . . , uk}. (Note that if 2m > n − 1 then the product in (5.5)

is over the empty set and, by definition, it is equal to 1. The inequality
‖(I − Pn−1)ym‖2 ≤ ‖ym‖2 = 1 is then satisfied automatically).

We construct the vector un satisfying (5.1)–(5.5) in the following way.
Using Lemma 5.1, find a unit vector

vn ⊥
{
uj , Tuj , T

∗uj , ym(j), 1 ≤ j ≤ n− 1;Tym(j), T
∗ym(j), 1 ≤ j ≤ n

}
such that

|〈Tvn, vn〉| ≥D,

‖Tvn − 〈Tvn, vn〉vn‖ ≥C,

and
‖T ∗vn − 〈T ∗vn, vn〉vn‖ ≥ C.

Consider now the (2n−1)-tuple of vectors (I−Pn−1)Tuj , (I−Pn−1)T ∗uj ,
j = 1, . . . , n− 1, and (I − Pn−1)ym(n).

By Theorem 2.1, there exists a unit vector

zn ∈
∨ {

(I − Pn−1)Tuj , (I − Pn−1)T ∗uj , 1 ≤ j ≤ n− 1; (I − Pn−1)ym(n)

}
such that ∣∣〈(I − Pn−1)ym(n), zn〉

∣∣ ≥ 1√
2
· ‖(I − Pn−1)ym(n)‖,∣∣〈(I − Pn−1)Tuj , zn〉

∣∣ ≥ 1
2
√

n
· ‖(I − Pn−1)Tuj‖,∣∣〈(I − Pn−1)T ∗uj , zn〉

∣∣ ≥ 1
2
√

n
· ‖(I − Pn−1)T ∗uj‖.
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for all 1 ≤ j ≤ n− 1 (since
(

1√
2

)2
+ 2(n− 1)

(
1

2
√

n

)2
< 1).

Note that zn ∈ M⊥
n−1 and vn ⊥ zn.

Set

un =
1√
an

zn +

√
1− 1

an
vn.

Clearly ‖un‖ = 1 and un ⊥ u1, . . . , un−1.
Let us show that un satisfies conditions (5.1)–(5.5).
We have

|〈Tun, un〉| =
∣∣∣(1− 1

an

)
〈Tvn, vn〉+

1
an
〈Tzn, zn〉

∣∣∣
≥|〈Tvn, vn〉| −

1
an

− 1
an

≥ |〈Tvn, vn〉| −
2
an

≥D − 2
a
≥ D

2
= d.

So un satisfies (1).
For j = 1, . . . , n− 1 we have

|〈Tuj , un〉| =
1√
an
|〈Tuj , zn〉| =

1√
an

∣∣〈(I − Pn−1)Tuj , zn〉
∣∣

≥ 1√
an

· 1
2
√

n
· ‖(I − Pn−1)Tuj‖

≥ 1
2n
√

a
· Cj1/2√

2(n− 1)

by the induction assumption. So

|〈Tuj , un〉| ≥
Cj1/2

3
√

an3/2
=

c1j
1/2

n3/2
.

Obviously

|〈Tuj , un〉| =
1√
an
|〈Tuj , zn〉| ≤

1√
an

=
c2

n1/2
.

The inequalities

c1j
1/2

n3/2
≤ |〈T ∗uj , un〉| = |〈Tun, uj〉| ≤

c2

n1/2

for j = 1, . . . , n− 1 can be proved analogously. So un satisfies (5.2).
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Let j = 1, . . . , n− 1. We have

‖(I − Pn)Tuj‖2 =
∥∥(I − Pn−1)Tuj

∥∥2 −
∣∣〈(I − Pn−1)Tuj , un〉

∣∣2
=‖(I − Pn−1)Tuj‖2 − 1

an

∣∣〈(I − Pn−1)Tuj , zn〉
∣∣2

≥‖(I − Pn−1)Tuj‖2
(
1− 1

an

)
≥ C2j

2(n− 1)
· an− 1

an

≥ C2j

2(n− 1)
· n− 1

n
=

C2j

2n
.

Similarly one can prove that

‖(I − Pn)T ∗uj‖2 =
∥∥(I − Pn−1)T ∗uj

∥∥2 −
∣∣〈(I − Pn−1)T ∗uj , un〉

∣∣2 ≥ C2j

2n
.

To prove (5.3), it remains to estimate

‖(I − Pn)Tun‖2 = ‖(I − Pn−1)Tun‖2 − |〈(I − Pn−1)Tun, un〉|2.

We have

‖(I − Pn−1)Tun‖2

=
∥∥∥√

1− 1
an

Tvn + (I − Pn−1)Tzn

∥∥∥2

≥
(
1− 1

an

)
‖Tvn‖2 −

2
√

1− 1
an√

an
‖Tvn‖ · ‖Tzn‖+

1
an
‖(I − Pn−1)Tzn‖2

≥‖Tvn‖2 − 1
an

− 2√
an

≥ ‖Tvn‖2 − 3√
an

≥‖Tvn‖2 − 3√
a

and∣∣〈(I − Pn−1)Tun, un〉
∣∣ = |〈Tun, un〉|

=
∣∣∣(1− 1

an

)
〈Tvn, vn〉+

√
1− 1

an√
an

(
〈Tvn, zn〉+ 〈Tzn, vn〉

)
+

1
an
〈Tzn, zn〉

∣∣∣
≤|〈Tvn, vn〉|+

1
an

+
2√
an

+
1
an

≤|〈Tvn, vn〉|+
4√
a
.
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So

‖(I − Pn)Tun‖2 =‖(I − Pn−1)Tun‖2 −
∣∣〈(I − Pn−1)Tun, un〉

∣∣2
≥‖Tvn‖2 − 3√

a
−

(
|〈Tvn, vn〉|+

4√
a

)2

≥
(
‖Tvn‖2 − |〈Tvn, vn〉|2

)
− 3√

a
− 8√

a
− 16

a
≥ C2 − 27√

a
≥ C2

2
.

The inequality

‖(I − Pn)T ∗un‖2 ≥ C2

2
can be proved similarly. So un satisfies (5.3) and (5.4).

Inequality (5.5) is trivial for all m 6= m(n). For m(n) we have

‖(I − Pn)ym(n)‖2 =‖(I − Pn−1)ym(n)‖2 −
∣∣〈(I − Pn−1)ym(n), un〉

∣∣2
=‖(I − Pn−1)ym(n)‖2 − 1

an

∣∣〈(I − Pn−1)ym(n), zn〉
∣∣2

≤‖(I − Pn−1)ym(n)‖2
(
1− 1

an

)
,

which is (5.5).
So the vectors u1, . . . , un satisfy all conditions (1)–(5).
If we continue the construction inductively, we construct an orthonormal

system (un)∞n=1 satisfying (1) and (2). It remains to show that (un) is a
basis.

Let m ≥ 0. We have

lim
n→∞

ln ‖(I − Pn)ym‖2 ≤ lim
n→∞

∑
j≤n

m(j)=m

ln
(
1− 1

aj

)

= lim
k→∞

k∑
j=1

ln
(
1− 1

a · 2m(2j − 1)

)
≤−

∞∑
j=1

1
2ma(2j − 1)

= −∞.

Hence
lim

n→∞
‖(I − Pn)ym‖2 = 0

and ym ∈
∨∞

j=1 uj . Since
∨∞

m=0 ym = H, we conclude that (un)∞n=1 is an
orthonormal basis.

This finishes the proof. �

6. Final remarks

Note that Theorems 2.2, 2.4 [IS IT SO ???] and 2.5 have their counter-
parts for tuples of bounded linear operators T = (T1, . . . , Tn) ∈ B(H)n and
for tuples of selfadjoint operators if one replaces the interior of the essential
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numerical range with an appropriate relative interior. We have decided to
present their single operator versions to simplify the presentation and to
illustrate the method rather than its technicalities.

Recall that for T ∈ B(H)n the essential numerical range We(T ) of T is
defined as the set of all n-tuples λ = (λ1, . . . , λn) ∈ Cn such that there exists
an orthonormal sequence (uj)∞j=1 in H satisfying

lim
j→∞

〈Tkuj , uj〉 = λk

for all k = 1, . . . , n. This definition is completely analogous to the one given
in Section 2 for n = 1. Arguing as in the case n = 1, cf. [40] for a “tuple
argument”, one gets the following statement.

Theorem 6.1. Let T ∈ B(H)n, let (λ)∞n=1 ⊂ IntWe(T ) be such that∑∞
n=1 dist {λn, ∂We(T )} = ∞, and let K ∈ N be fixed. Then there exists an

orthonormal basis (un)∞n=1 ⊂ H such that

〈T un, un〉 = λn, n ∈ N,

and
〈T uj , uk〉 = 0, 1 ≤ |j − k| ≤ K.

The formulation of a tuples analogue of Theorem 2.5 is also straightfor-
ward.

Theorem 6.2. Let T ∈ B(H)n be such that 0 ∈ We(T ), and let (aj)∞j=1 ⊂
R+ satisfy (aj)∞j=1 6∈ `1. Then there exists an orthonormal basis (un)∞n=1 in
H such that

|〈T un, uj〉| ≤
√

anaj

for all n, j ∈ N.

[SHOULD ONE ALSO GIVE AN EXAMPLE OF THEOREM WITH
RELATIVE INTERIOR ? COULD BE A BIT LESS TRIVIAL]

Remarks on relations to the Kadison-Singer problem.
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