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Abstract. The block version of classical Gram-Schmidt (BCGS) is often employed to efficiently
compute orthogonal bases for Krylov subspace methods and eigenvalue solvers, but a rigorous proof
of its stability behavior has not yet been established. It is shown that the usual implementation
of BCGS can lose orthogonality at a rate worse than O(ε)κ2(X), where ε is the unit round-off. A
useful intermediate quantity denoted as the Cholesky residual is given special attention and, along
with a block generalization of the Pythagorean theorem, this quantity is used to develop more stable
variants of BCGS. These variants are proved to have O(ε)κ2(X) loss of orthogonality with relatively
relaxed conditions on the intra-block orthogonalization routine. A variety of numerical examples
illustrate the theoretical bounds.
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1. Introduction. Given a matrix X ∈ Rm×n, m ≥ n, we consider the problem
of computing its QR factorization X = QR, where Q ∈ Rm×n has orthonormal
columns and R ∈ Rn×n is upper triangular with positive diagonal entries. In par-
ticular, we are concerned with the use of Block Classical Gram-Schmidt (BCGS) to
accomplish this task, which operates on a block of s vectors each iteration. This
corresponds to partitioning X into a set of p block vectors, each of size m× s:

X = [X1 |X2 | · · · |Xp]. (1.1)

BCGS uses a block version of the Classical Gram-Schmidt (CGS) method to per-
form inter-block orthogonalization. The implementation of a algorithm also requires
choosing an IntraOrtho routine, which is the method used to perform intra-block or-
thogonalization (also sometimes referred to in the literature as “panel factorization”
or “local QR”).

With Q̄ ∈ Rm×n and R̄ ∈ Rn×n denoting the computed analogs of the QR
factorization X = QR, this work primarily aims to bound the loss of orthogonality
in BCGS, ∥∥∥I − Q̄T Q̄

∥∥∥ ,
where we use I to denote the identity matrix of appropriate size (here n×n). Another
salient quantity is the residual ∥∥X − Q̄R̄

∥∥ . (1.2)

We will also consider the Cholesky residual,∥∥∥X TX − R̄T R̄
∥∥∥ ,

∗Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, {carson,
lundka}@karlin.mff.cuni.cz. Both authors are supported by Charles University PRIMUS project
no. PRIMUS/19/SCI/11 and Charles University Research program no. UNCE/SCI/023. The first
author is additionally supported by Lawrence Livermore National Security, LLC Subcontract Award
B639388 under Prime Contract No. DE-AC52-07NA27344.
†Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic,

miro@math.cas.cz. Supported by the Grant Agency of the Czech Republic, Grant No. 20-010745
and by the Czech Academy of Science (RVO 67985840).

1



which emphasizes the connections between BCGS and Cholesky factorization.
Our focus on Gram-Schmidt algorithms for computing the QR factorization is

motivated by their prominent use in Krylov subspace iterative methods for solving
linear systems, least squares problems, and eigenvalue problems. Due to their reduced
synchronization requirements from batching inner products and norms, Block Gram-
Schmidt (BGS) variants, and in particular BCGS, play a vital role in communication-
avoiding Krylov subspace method variants designed for high-performance computing
(HPC), such as s-step [13] and enlarged [11] methods.

The development of s-step Arnoldi and GMRES algorithms dates back to early
work of Walker [19], Joubert and Carey [15], Bai, Hu, and Reichel [2], and others. For
a detailed historical background, see [13]. The idea behind the s-step approach is that
the Krylov subspace is constructed in blocks of O(s) vectors at a time, and blocks are
subsequently orthogonalized using a block orthogonalization routine. We note that
the s-step approach can be seen as a special case of block Krylov subspace methods
but refrain from elaborating on this idea here. In [13, Section 2.4], Hoemmen details
the communication cost of BGS methods and shows that BCGS requires a factor of p
fewer messages versus standard Block Modified Gram-Schmidt (BMGS) on a parallel
machine. For recent performance results of s-step GMRES on a distributed memory
parallel machine, see, e.g., the work of Yamazaki et al. [20].

Although BCGS is widely used to perform orthogonalization in practical implemen-
tations, its stability properties in floating-point arithmetic are not well understood.
To date, there have been no rigorous stability studies of BCGS, and there are only a
few existing results for other block variants; for a comprehensive overview of what
has been studied, see the recent survey [6]. Consequently, theoretical results on the
backward stability of block Krylov subspace methods, particularly communication-
avoiding variants, are lacking.

The most rigorous recent work is that of Barlow and Smoktunowicz [4], who study
a reorthogonalized BGS variant, and Barlow [3], who develops a low-synchronization
BGS, consists of best-case-scenario analysis, where the orthogonalization scheme used
within blocks (which here we refer to as IntraOrtho) is assumed to have O(ε) loss
of orthogonality. Here we take a different approach, seeing how much we can relax
conditions on the IntraOrtho while still ensuring the desired bounds.

The parent algorithm CGS inspires the approach we take with the stability analysis
of BCGS. Prior to work by Giraud et al. [10] and Smoktunowicz et al. [18], the upper
bounds on the only loss of orthogonality established for CGS were rather pessimistic
[1, 5, 16]. Giraud et al. [10] show that the upper bound is actually O(ε)κ2(X ), as
long as O(ε)κ2(X ) < 1. Smoktunowicz et al. [18] clarify that while this bound does
not hold for CGS, it does hold for CGS-P, a variant that computes the diagonals of the
R-factor via the Pythagorean theorem (hence the “P”). The situation turns out to
be similar for BCGS, so we develop BCGS-PIP and BCGS-PIO, two variants which use a
block vector analogy of the Pythagorean theorem. Both variants can be implemented
with favorable communication properties.

The paper is organized as follows. In the next section, we look at the loss of
orthogonality of BCGS and prove a block Pythagorean theorem for deriving BCGS-PIP

and BCGS-PIO. We prove that these P-variants have O(ε)κ2(X ) loss of orthogonality
and O(ε) ‖X‖ residual in Section 3. We demonstrate these bounds with a variety of
numerical examples in Section 4 and give conclusions in Section 5.

Unless otherwise noted, ‖·‖ denotes the Euclidean norm and ε is a given machine
precision. For simplicity, throughout the analysis we use O(ε) to denote ε multiplied
by a low degree polynomial in the problem dimensions m and n. The ith singular value
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of a matrix A is denoted as σi(A), with σmin(A) denoting the smallest. The condition

number κ(A) := ‖A‖
σmin(A) , which is equivalent to ‖A‖

∥∥A−1
∥∥, when A is square and

invertible. We use composition notation ◦ to denote a specific implementation of
BCGS, e.g., BCGS ◦ HouseQR is BCGS with Householder QR as the IntraOrtho.

2. BCGS and its variants. Algorithm 2.1 is a typical implementation of BCGS,
which takes X ∈ Rm×n and returns a matrix Q ∈ Rm×n with orthonormal columns
and square upper triangular R ∈ Rn×n such that X = QR in exact arithmetic. We
denote entries of block matrices R by their non-calligraphic counterparts Rjk ∈ Rs×s.
When we index Q or R, we are always referring to the corresponding contiguous block
component, be it an m×s block vector or s×s block entry, respectively. More clearly,
we define

Q1:j := [Q1 | · · · |Qj ] ∈ Rm×sj ,

where 1 : j ≡ {1, 2, . . . , j} is an indexing vector in the style of Matlab, and similarly,

R1:j,k :=


R1,k

R2,k

...
Rj,k

 ∈ Rsj×s.

The intra-block orthogonalization routine IntraOrtho takes a block vector X ∈
Rm×s and returns a matrix Q ∈ Rm×s with orthonormal columns and upper triangular
R ∈ Rs×s such that X = QR.

Algorithm 2.1 [Q,R] = BCGS(X )

1: [Q1, R11] = IntraOrtho (X1)
2: for k = 1, . . . , p− 1 do
3: R1:k,k+1 = QT

1:kXk+1

4: Wk+1 = Xk+1 −Q1:kR1:k,k+1

5: [Qk+1, Rk+1,k+1] = IntraOrtho (Wk+1)
6: end for

BCGS has one synchronization point (line 1) for the first block column, and two
(lines 3 and 5) for successive block columns. Unlike block modified Gram-Schmidt
(see, e.g., [14]), BCGS has a constant number of synchronization points per step, making
it appealing for communication-avoiding methods [13].

Unfortunately, BCGS can suffer from severe loss of orthogonality, much like CGS,
when κ(X ) is large. In Figure 2.1, we plot loss of orthogonality and relative Cholesky
residual for BCGS ◦ HouseQR against a sequence of matrices X t = UΣtVT ∈ Rm×ps,
where U ∈ Rm×ps has orthonormal columns, Σt ∈ Rps×ps is a diagonal matrix whose
entries are in the logarithmic interval 10[−t,0], and V ∈ Rps×ps is unitary. In this
example, m = 100, p = 20, and s = 2. We refer to such plots as “standard κ-plots.”
Figure 2.2 is similar, we but instead consider glued κ-plots, where the matrices are
built as the “glued” matrices from [18]; we choose m = 1000, p = 20, and s = 2. All
figures are generated with the BlockStab Matlab package in double precision; for
more implementation details, see Section 4.

In Figure 2.1, the loss of orthogonality of BCGS is nearly quadratic in κ(X ),
but the relative Cholesky residual reveals a few orders of magnitude difference from
O(ε), indicating that something is amiss. The glued κ-plots in Figure 2.2 provide a
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Fig. 2.1. Standard κ-plots for BCGS ◦ HouseQR, showing loss of orthogonality (left) and the
relative Cholesky residual (right). In the left plot, the dashed line marks O(ε)κ(X ) and the solid
line marks O(ε)κ2(X ).

Fig. 2.2. Glued κ-plots for BCGS ◦ HouseQR, showing loss of orthogonality (left) and the relative
Cholesky residual (right). In the left plot, the dashed line marks O(ε)κ(X ) and the solid line marks
O(ε)κ2(X ).

solid counterexample: not only does the loss of orthogonality noticeably deviate from
O(ε)κ2(X ), but also the relative Cholesky residual approaches O(1).

2.1. A block generalization of CGS-P. To achieve better numerical behavior,
we need to improve how BCGS computes the block diagonal entries of R, which will
improve the size of the Cholesky residual. Taking inspiration from [18], we can achieve
this through a generalization of the Pythagorean theorem.

The well-known Pythagorean theorem for vectors says that if for u,v,w ∈ Rm,
u = v +w and v ⊥ w, then

‖u‖2 = ‖v‖2 + ‖w‖2 .

When dealing with block vectors, ‖·‖ is replaced by the R factor from the QR fac-
torization of a block vector. See [17] for a more concrete sense of the roles that QR
and Cholesky factorizations play as “block norms”. Suppose we have U = V +W ,
where U ,V ,W ∈ Rm×s and V ⊥ W , in the sense that the spaces spanned by the
columns of each block vector are perpendicular to each other. Suppose also we have
the following QR factorizations for each block vector:

U = QURU , V = QV RV , and W = QWRW .
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Then

RTURU = UTU (2.1)

= V TV + W TW (2.2)

= RTV RV +RTWRW , (2.3)

implying
RU = chol(V TV + W TW ) = chol(RTV RV +RTWRW ), (2.4)

where chol denotes an implementation of Cholesky factorization.
We have thus two alternatives for a block version of CGS-P, via either (2.2) or

(2.3). Both allow for a way to compute Rk+1,k+1 in Algorithm 2.1. From lines 4 and
5, we have

Wk+1 = Xk+1 −Q1:kR1:k,k+1 (2.5)

[Qk+1, Rk+1,k+1] = IntraOrtho (Wk+1) .

We can rewrite (2.5) as

Xk+1 = Q1:kR1:k,k+1 + Wk+1,

and let R1:k,k+1 = QRPk+1 be the QR factorization of R1:k,k+1, where QR ∈ Rsk×s
and Pk+1 ∈ Rs×s. Similarly, we let Xk+1 = QXTk+1 be the QR factorization of
Xk+1, where QX ∈ Rm×s and Tk+1 ∈ Rs×s.

From (2.1)-(2.3), the block Pythagorean theorem gives

TTk+1Tk+1 = XT
k+1Xk+1

= W T
k+1Wk+1 +RT1:k,k+1R1:k,k+1 (2.6)

= RTk+1,k+1Rk+1,k+1 + PTk+1Pk+1. (2.7)

Rearranging (2.7), we have

RTk+1,k+1Rk+1,k+1 = TTk+1Tk+1 − PTk+1Pk+1,

and similar to (2.4), we have

Rk+1,k+1 = chol(TTk+1Tk+1 − PTk+1Pk+1),

noting that XT
k+1Xk+1 is symmetric positive definite since X has full column rank.

The resulting algorithms corresponding to (2.6) and (2.7) are given as Algorithms 2.2
and 2.3, respectively. The acronyms “PIP” and “PIO” denote “Pythagorean Inner
Product” and “Pythagorean Intra-Orthogonalization”, respectively.

In terms of communication costs, we note that BCGS has one IntraOrtho at the
outset, plus one block inner product and one IntraOrtho per iteration. BCGS-PIP has
only one IntraOrtho, plus two block inner products per iteration, the second of which
(i.e., RT1:k,k+1R1:k,k+1) grows in size as ks approaches m. The Cholesky factorization
(line 5) and upper triangular inverse (line 7) can be done locally, since they operate on
small s× s matrices. BCGS-PIO has as many calls to IntraOrtho as BCGS– assuming
that the IntraOrtho is implemented in a “smart” way, so that it decouples the block
diagonal matrix in line 5– and the same number of block inner products as BCGS. The
Cholesky factorization and upper triangular solve can again be executed locally.
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Algorithm 2.2 [Q,R] = BCGS-PIP(X )

1: [Q1, R11] = IntraOrtho (X1)
2: for k = 1, . . . , p− 1 do

3:

[
R1:k,k+1

Zk+1

]
= [Q1:k Xk+1]TXk+1

4: Rk+1,k+1 = chol(Zk+1 −RT1:k,k+1R1:k,k+1)
5: Wk+1 = Xk+1 −Q1:kR1:k,k+1

6: Qk+1 = Wk+1R
−1
k+1,k+1

7: end for

Algorithm 2.3 [Q,R] = BCGS-PIO(X )

1: [Q1, R11] = IntraOrtho (X1)
2: for k = 1, . . . , p− 1 do
3: R1:k,k+1 = QT

1:kXk+1

4:

[
∼,
[
Tk+1

Pk+1

]]
= IntraOrtho

([
Xk+1

R1:k,k+1

])
5: Rk+1,k+1 = chol(TTk+1Tk+1 − PTk+1Pk+1)
6: Wk+1 = Xk+1 −Q1:kR1:k,k+1

7: Qk+1 = Wk+1R
−1
k+1,k+1

8: end for

With regards to floating point operations, both BCGS-PIO and BCGS-PIP are
slightly more expensive than BCGS. BCGS-PIP may have an advantage over the other
two if they are using an expensive IntraOrtho. In fact, BCGS-PIP was developed in-
dependently by Yamazaki et al. as a low-synchronization alternative to BCGS◦CholQR
and has favorable performance [21].

3. Loss of orthogonality and residual bounds. The primary goal of this
section is to prove bounds on the loss of orthogonality and the residual in BCGS-PIP

and BCGS-PIO. In particular, we prove that if certain constraints on the IntraOrtho

routine are satisfied, the loss of orthogonality in BCGS-PIP and BCGS-PIO depends
quadratically on κ(X ) as long as

O(ε)κ2(X ) < 1/2. (3.1)

The final bounds are summarized in Theorem 3.4.
Throughout this section we will make use of standard error results (see, e.g.,

[12], especially Sections 2.2 and 3.5 and Lemma 6.6) for matrix addition and matrix
multiplication, which we state here for completeness. Here and in the remainder of
this section, a bar over a quantity means that it is the result of a finite precision
computation. For the computation C = A+B, with A,B ∈ Rj×k,∥∥C − C̄∥∥ ≤ ε ·min

(√
j,
√
k
)(
‖A‖+ ‖B‖

)
≤ O(ε)

(
‖A‖+ ‖B‖

)
. (3.2)

For the computation of the matrix product C = AB ∈ Rj×`, with A ∈ Rj×k, B ∈
Rk×`, ∥∥C − C̄∥∥ ≤ ε · 2kmin

(√
j,
√
`
)
‖A‖ ‖B‖ ≤ O(ε) ‖A‖ ‖B‖ . (3.3)

For simplicity, we make use of a single subroutine, given as Algorithm 3.1, which
applies to both BCGS-PIP and BCGS-PIO variants. The floating point error in Algo-
rithm 3.1 is equivalent to lines 4-7 of Algorithms 2.2 and lines 4-8 of 2.3. We assume

6



that the IntraOrtho handles block diagonal matrices by ignoring the zero off-diagonal
blocks and acting on each diagonal block separately.

Algorithm 3.1 [Qk+1, Rk+1,k+1,R1:k,k+1] = BCGS-P step(Q1:k,Xk+1)

1: R1:k,k+1 = QT
1:kXk+1

2: if BCGS-PIP then
3: Ck+1 = XT

k+1Xk+1 −RT1:k,k+1R1:k,k+1

4: else if BCGS-PIO then

5:

[
∼,
[
Tk+1

Pk+1

]]
= IntraOrtho

([
Xk+1

R1:k,k+1

])
6: Ck+1 = TTk+1Tk+1 − PTk+1Pk+1

7: end if
8: Rk+1,k+1 = chol(Ck+1)
9: Wk+1 = Xk+1 −Q1:kR1:k,k+1

10: Qk+1 = Wk+1R
−1
k+1,k+1

11: return Qk+1, Rk+1,k+1, R1:k,k+1

We first prove a theorem that says that given particular residual bounds, we have
a bound on the loss of orthogonality. From now on, to simplify notation we will denote
Rk+1 := Rk+1,k+1, R1:k,1:k := R1:k, and similarly for other quantities.

Theorem 3.1. Let X ∈ Rm×n be a matrix with block structure given in (1.1)
that satisfies (3.1). If

R̄T1:kR̄1:k = X T
1:kX 1:k + ∆E1:k, ‖∆E1:k‖ ≤ O(ε) ‖X 1:k‖2 , and (3.4)

Q̄1:kR̄1:k = X 1:k + ∆D1:k, ‖∆D1:k‖ ≤ O(ε)
(
‖X 1:k‖+

∥∥Q̄1:k

∥∥∥∥R̄1:k

∥∥ ), (3.5)

then ∥∥∥I − Q̄T
1:kQ̄1:k

∥∥∥ ≤ O(ε)κ2(X 1:k)

1−O(ε)κ2(X 1:k)
, (3.6)

∥∥Q̄1:k

∥∥ ≤ 1 +O(ε)κ2(X 1:k)

1−O(ε)κ2(X 1:k)
≤ 3, and (3.7)

‖∆D1:k‖ ≤ O(ε) ‖X 1:k‖ . (3.8)

Proof. We first note that from (3.4), we have∥∥R̄1:k

∥∥2 ≤ (1 +O(ε)) ‖X 1:k‖2 , (3.9)

and a Weyl bound on
∥∥R̄−1

1:k

∥∥2
follows directly from (3.4) and (3.1):∥∥R̄−1

1:k

∥∥2
=

1

σ2
min(R̄1:k)

≤ 1

σ2
min(X 1:k)(1−O(ε)κ2(X 1:k))

. (3.10)

Taking (3.5) and multiplying it by its transpose, we have

R̄T1:kQ̄
T
1:kQ̄1:kR̄1:k = X T

1:kX 1:k + X T
1:k∆D1:k + ∆DT

1:kX 1:k + ∆DT
1:k∆D1:k,

and then multiplying on the left by R̄−T1:k and on the right by R̄−1
1:k and using (3.4),

we obtain

Q̄T
1:kQ̄1:k = I − R̄−T1:k ∆E1:kR̄−1

1:k + R̄−T1:kX
T
1:k∆D1:kR̄−1

1:k

+ R̄−T1:k ∆DT
1:kX 1:kR̄−1

1:k + R̄−T1:k ∆DT
1:k∆D1:kR̄−1

1:k. (3.11)
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Ignoring terms of order O
(
ε2
)

and using (3.4), (3.5), (3.9), and (3.10), this gives the
bound∥∥Q̄1:k

∥∥2 ≤ 1 + ‖∆E1:k‖
∥∥R̄−1

1:k

∥∥2
+ 2 ‖∆D1:k‖ ‖X 1:k‖

∥∥R̄−1
1:k

∥∥2

≤ 1 +O(ε) ‖X 1:k‖2
∥∥R̄−1

1:k

∥∥2
+O(ε) ‖X 1:k‖

∥∥R̄−1
1:k

∥∥2 ∥∥Q̄1:k

∥∥∥∥R̄1:k

∥∥
≤ 1

1−O(ε)κ2(X 1:k)
+
O(ε)κ2(X 1:k)

1−O(ε)κ2(X 1:k)

∥∥Q̄1:k

∥∥ .
Thus altogether we have the quadratic inequality∥∥Q̄1:k

∥∥2 − O(ε)κ2(X 1:k)

1−O(ε)κ2(X 1:k)

∥∥Q̄1:k

∥∥− 1

1−O(ε)κ2(X 1:k)
≤ 0,

which gives ∥∥Q̄1:k

∥∥ ≤ 1 +O(ε)κ2(X 1:k)

1−O(ε)κ2(X 1:k)
≤ 3/2

1/2
= 3, (3.12)

which proves (3.7).
From (3.11), following a similar process, we obtain∥∥∥I − Q̄T

1:kQ̄1:k

∥∥∥ ≤ O(ε) ‖X 1:k‖2
∥∥R̄−1

1:k

∥∥2
+O(ε) ‖X 1:k‖

∥∥R̄−1
1:k

∥∥2 ∥∥Q̄1:k

∥∥∥∥R̄1:k

∥∥ ,
and using (3.9), (3.10), and (3.12), we have∥∥∥I − Q̄T

1:kQ̄1:k

∥∥∥ ≤ O(ε)κ2(X 1:k)

1−O(ε)κ2(X 1:k)
,

which proves (3.6).
Finally, combining (3.5) with (3.9) and (3.12),

‖∆D1:k‖ ≤ O(ε)
(
‖X 1:k‖+

∥∥Q̄1:k

∥∥∥∥R̄1:k

∥∥ )
≤ O(ε) ‖X 1:k‖ ,

which completes the proof.

Now that Theorem 3.1 is established, it only remains to prove that these residual
bounds do indeed hold. For this, we will use an inductive approach on the block
vectors of X .

Theorem 3.2. Let X ∈ Rm×n be a matrix with block structure given in (1.1)
that satisfies (3.1). Further, assume that for all X, the following hold for [Q̄, R̄] =
IntraOrtho (X):

R̄T R̄ = XTX + ∆E, ‖∆E‖ ≤ O(ε) ‖X‖2 , (3.13)

and
Q̄R̄ = X + ∆D, ‖∆D‖ ≤ O(ε)

(
‖X‖+

∥∥Q̄∥∥∥∥R̄∥∥ ). (3.14)

For BCGS-PIO, we furthermore require that (3.13) in IntraOrtho(X) holds for all
X regardless of condition number. Then the following hold for [Q̄, R̄] = BCGS-P ◦
IntraOrtho(X ), where BCGS-P is either BCGS-PIO or BCGS-PIP:

R̄T1:kR̄1:k,1:k = X T
1:kX 1:k + ∆E1:k, ‖∆E1:k‖ ≤ O(ε) ‖X 1:k‖2 , and (3.15)

Q̄1:kR̄1:k = X 1:k + ∆D1:k, ‖∆D1:k‖ ≤ O(ε)
(
‖X 1:k‖+

∥∥Q̄1:k

∥∥∥∥R̄1:k

∥∥ ),
(3.16)

for all k = 1, . . . , p.
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Proof. For the base case k = 1, we just run IntraOrtho on X 1, and thus (3.15)
and (3.16) clearly follow from (3.13) and (3.14).

Now assume that (3.15) and (3.16) hold for some k ≥ 1. We note that this means
that (3.6)-(3.8) from Theorem 3.1 hold for k. In particular, we have

∥∥Q̄1:k

∥∥ ≤ 3, and
thus we will absorb this quantity into O(ε) terms when applicable. We will now show
that (3.15) and (3.16) also hold for k + 1. We can write R̄1:k+1 as

R̄1:k+1 =


R̄1:k︸︷︷︸
ks×ks

R̄1:k,k+1︸ ︷︷ ︸
ks×s

0︸︷︷︸
s×ks

R̄k+1︸ ︷︷ ︸
s×s

 .
We focus first on (3.15) and look at R̄T1:k+1R̄1:k+1 block by block:

R̄T1:k+1R̄1:k+1 =

[
R̄T1:kR̄1:k R̄T1:kR̄1:k,k+1

R̄T1:k,k+1R̄1:k R̄T1:k,k+1R̄1:k,k+1 + R̄Tk+1R̄k+1

]
, (3.17)

where R̄1:k,k+1 denotes the computed matrix in line 1 of Algorithm 3.1. For this
computed matrix, using (3.3) and eq:Qbound, we can write

R̄1:k,k+1 = Q̄T
1:kXk+1 + ∆R1:k,k+1, ‖∆R1:k,k+1‖ ≤ O(ε) ‖Xk+1‖ . (3.18)

Note that this also gives∥∥R̄1:k,k+1

∥∥ ≤ ∥∥Q̄1:k

∥∥ ‖Xk+1‖+ ‖∆R1:k,k+1‖ ≤ (3 +O(ε)) ‖Xk+1‖ . (3.19)

For the off-diagonal entries in (3.17), using (3.18) and (3.16), we have

R̄T1:kR̄1:k,k+1 = R̄T1:k(Q̄T
1:kXk+1 + ∆R1:k,k+1)

= (Q̄1:kR̄1:k)TXk+1 + R̄T1:k∆R1:k,k+1

= (X 1:k + ∆D1:k)TXk+1 + R̄T1:k∆R1:k,k+1

= X T
1:kXk+1 + ∆DT

1:kXk+1 + R̄T1:k∆R1:k,k+1︸ ︷︷ ︸
=:∆E1:k,k+1

, (3.20)

with

‖∆E1:k,k+1‖ ≤ ‖∆D1:k‖ ‖Xk+1‖+
∥∥R̄1:k

∥∥ ‖∆R1:k,k+1‖
≤ O(ε) ‖X 1:k‖ ‖Xk+1‖ , (3.21)

where we have used (3.18), (3.8), and∥∥R̄1:k

∥∥2 ≤ (1 +O(ε)) ‖X 1:k‖2 ,

which follows from (3.15).
The upper diagonal block of (3.17) can be handled directly with the induction

hypothesis (3.15). We now focus on the bottom diagonal entry of (3.17). We first
show that the computed arguments of chol in line 4 of Algorithm 2.2 and line 5
of Algorithm 2.3 are symmetric positive definitive and numerically nonsingular. We
denote both arguments as Ck+1 and their computed versions as C̄k+1.
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We begin with BCGS-PIP. Applying (3.3) to the computation of the products
R̄T1:k,k+1R̄1:k,k+1 and XT

k+1Xk+1 each, and (3.2) to the computation of their differ-
ence, gives

‖∆Ck+1‖ ≤ O(ε) ‖Xk+1‖2 .

For BCGS-PIO, we first apply IntraOrtho to R̄1:k,k+1 and Xk+1 each to obtain
Cholesky residual bounds for both:

T̄Tk+1T̄k+1 = XT
k+1Xk+1 + ∆Tk+1, ‖∆Tk+1‖ ≤ O(ε) ‖Xk+1‖2 , (3.22)

P̄Tk+1P̄k+1 = R̄T1:k,k+1R̄1:k,k+1 + ∆Pk+1, ‖∆Pk+1‖ ≤ O(ε)
∥∥R̄1:k,k+1

∥∥2
. (3.23)

The bounds from (3.22) and (3.23) give a relationship for the exact products T̄Tk+1T̄k+1

and P̄Tk+1P̄k+1. We must still apply (3.2)-(3.3) to the floating-point computation of
the products and of their difference, which gives

‖∆Ck+1‖ ≤ O(ε) ‖Xk+1‖2 .

Thus for both BCGS-PIP and BCGS-PIO, we can write

C̄k+1 = XT
k+1Xk+1 − R̄T1:k,k+1R̄1:k,k+1 + ∆Ck+1, (3.24)

‖∆Ck+1‖ ≤ O(ε) ‖Xk+1‖2 . (3.25)

It follows from (3.15), (3.20)-(3.21), and (3.24)-(3.25) that

X T
1:k+1X 1:k+1 =

[
X T

1:kX 1:k X T
1:kXk+1

XT
k+1X 1:k XT

k+1Xk+1

]
=

[
R̄T1:kR̄1:k R̄T1:kR̄1:k,k+1

R̄T1:k,k+1R̄1:k C̄k+1+R̄T1:k,k+1R̄1:k,k+1

]
︸ ︷︷ ︸

=:Pk+1

−
[

∆E1:k ∆E1:k,k+1

∆ET1:k,k+1 ∆Ck+1

]
︸ ︷︷ ︸

=:∆Ẽ1:k+1

where1∥∥∥∆Ẽ1:k+1

∥∥∥ ≤ ∥∥∥∥[ ‖∆E1:k‖ ‖∆E1:k,k+1‖
‖∆E1:k,k+1‖ ‖∆Ck+1‖

]∥∥∥∥ ≤ ∥∥∥∥[ ‖∆E1:k‖ ‖∆E1:k,k+1‖
‖∆E1:k,k+1‖ ‖∆Ck+1‖

]∥∥∥∥
F

≤ ‖∆E1:k‖+ 2 ‖∆E1:k,k+1‖+ ‖∆Ck+1‖

≤ O(ε) ‖X 1:k+1‖2 ,

where the final bound follows from (3.15), (3.21), and (3.25).
Clearly Pk+1 is symmetric, and by Weyl’s inequality it follows that

λmin(Pk+1) ≥ σ2
min(X 1:k+1)

(
1−O(ε)κ2(X 1:k+1)

)
> 0,

where λmin denotes the smallest eigenvalue. Therefore Pk+1 is symmetric positive
definite and, equivalently, so its Schur complement, C̄k+1. More specifically, it follows
that κ(C̄k+1) ≤ κ(Pk+1); see, e.g., [7, Lemma 4.2]. Since

κ(Pk+1) ≤ (1 +O(ε))κ2(X 1:k+1)

1−O(ε)κ2(X 1:k+1)
,

1See, e.g., P.15.50 in [9].
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it is straightforward to see that O(ε)κ(C̄k+1) < 1.
We can therefore apply [12, Theorem 10.3] to the Cholesky factorization in line 8

of Algorithm 3.1, and combining this with (3.24) gives

R̄Tk+1R̄k+1 = C̄k+1 + ∆Fk+1, ‖∆Fk+1‖ ≤ O(ε)
∥∥C̄k+1

∥∥
= XT

k+1Xk+1 − R̄T1:k,k+1R̄1:k,k+1 + ∆Sk+1,

where ∆Sk+1 = ∆Ck+1 + ∆Fk+1. From (3.19) and (3.25), we can write

‖∆Fk+1‖ ≤ O(ε) ‖Xk+1‖2 ,

and then with (3.25) we have

‖∆Sk+1‖ ≤ ‖∆Ck+1‖+ ‖∆Fk+1‖ ≤ O(ε) ‖Xk+1‖2 . (3.26)

Then using (3.15), (3.20), and applying (3.26) to the bottom diagonal entry of
(3.17),

R̄T1:k+1R̄1:k+1 =

[
X T

1:kX 1:k X T
1:kXk+1

XT
k+1X 1:k XT

k+1Xk+1

]
︸ ︷︷ ︸

=XT
1:k+1X 1:k+1

+

[
∆E1:k ∆E1:k,k+1

∆ET1:k,k+1 ∆Sk+1

]
︸ ︷︷ ︸

=∆E1:k+1

.

Using (3.15), (3.21), and (3.26), we can bound ‖∆E1:k+1‖ much as we did
∥∥∥∆Ẽ1:k+1

∥∥∥:

‖∆E1:k+1‖ ≤ ‖∆E1:k‖+ 2 ‖∆E1:k,k+1‖+ ‖∆Sk+1‖

≤ O(ε) ‖X 1:k+1‖2 .

Therefore, (3.15) holds for k + 1.
We now turn towards proving that (3.16) holds for k + 1. Let W̄k+1 and Q̄k+1

denote the computed factors in lines 9-10 of Algorithm 3.1, respectively. Applying
(3.2) and (3.3) to the computation of Wk+1 in line 9 and using (3.7) and (3.19) leads
to

W̄k+1 = Xk+1 − Q̄1:kR̄1:k,k+1 + ∆Wk+1, ‖∆Wk+1‖ ≤ O(ε) ‖Xk+1‖ . (3.27)

We now look at the triangular system solve in line 10. We can apply [12, Theo-
rem 8.5 & Lemma 6.6] to the inversion of the upper triangular Cholesky factor R̄k+1

on rows W̄k+1(j, :)T of W̄k+1 to obtain

(R̄Tk+1 + ∆R̄Tj )Q̄k+1(j, :)T = W̄k+1(j, :)T ,
∥∥∆R̄j

∥∥ ≤ O(ε)
∥∥R̄k+1

∥∥ ,
for j = 1, . . . ,m. We can then write

Q̄k+1R̄k+1 = W̄k+1 + ∆Gk+1, (3.28)

with ∆Gk+1(j, :)T := ∆R̄Tj Q̄k+1(j, :)T denoting the rows. Then

‖∆Gk+1‖2 ≤ ‖∆Gk+1‖2F ≤ O
(
ε2
) ∥∥R̄k+1

∥∥2 ∥∥Q̄k+1

∥∥2
,

leading to
‖∆Gk+1‖ ≤ O(ε)

∥∥Q̄k+1

∥∥∥∥R̄k+1

∥∥ . (3.29)
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Then combining (3.27) and (3.28), we have

Q̄k+1R̄k+1 = Xk+1 − Q̄1:kR̄1:k,k+1 + ∆Yk+1,

where ∆Yk+1 = ∆Wk+1 + ∆Gk+1, and using (3.27) and (3.29), we have the bound

‖∆Yk+1‖ ≤ O(ε)
(
‖Xk+1‖+

∥∥Q̄k+1

∥∥∥∥R̄k+1

∥∥ ). (3.30)

Now, note that

Q̄1:k+1R̄1:k+1 =
[
Q̄1:kR̄1:k Q̄1:kR̄1:k,k+1 + Q̄k+1R̄k+1

]
=
[
X 1:k Xk+1

]︸ ︷︷ ︸
=X 1:k+1

+
[
∆D1:k ∆Yk+1

]︸ ︷︷ ︸
=∆D1:k+1

,

and using (3.30) together with (3.16),

‖∆D1:k+1‖ ≤ ‖∆D1:k‖+ ‖∆Yk+1‖
≤ O(ε) ‖X 1:k‖+O(ε)

( ∥∥Q̄k+1

∥∥∥∥R̄k+1

∥∥+ ‖Xk+1‖
)

≤ O(ε)
(
‖X 1:k+1‖+

∥∥Q̄1:k+1

∥∥∥∥R̄1:k+1

∥∥ ).
Therefore (3.16) holds for k + 1 and this completes the proof.

Remark 3.3. A particularly nice feature of this approach is that we do not need
to make an explicit assumption on κ(R̄k+1), as is done in, e.g., [4]. Our assumptions
are purely a priori, meaning we only restrict properties of the input matrix X , its
dimensions, and features of the IntraOrtho. We also note that the assumptions on the
IntraOrtho (3.13) and (3.14) are satisfied by most commonly-used orthogonalization
algorithms, including CGS, MGS, Householder QR, and Cholesky QR. One example of
an IntraOrtho that does not satisfy these assumptions, namely (3.14), is a Cholesky-
based approach that computes A = XTX, obtains the R factor through chol(A),
and then computes Q = (XA−1)RT .

Combining Theorem 3.2 with Theorem 3.1, it is clear that the bound on the loss
of orthogonality (3.6) holds for all k = 1, . . . , p. Note also that from (3.8), we also
have a bound on the residual that depends only on the norm of X in contrast with
the bound in (3.16). We state these results in the following summarizing theorem.

Theorem 3.4. Let X ∈ Rm×n be a matrix with block structure given in (1.1)
that satisfies (3.1). Suppose we execute BCGS-P ◦ IntraOrtho(X ) on a machine
with unit roundoff ε, where BCGS-P is either BCGS-PIO or BCGS-PIP. If for all X,
IntraOrtho (X) computes factors Q̄ and R̄ that satisfy

R̄T R̄ = XTX + ∆E, ‖∆E‖ ≤ O(ε) ‖X‖2 , and

Q̄R̄ = X + ∆D, ‖∆D‖ ≤ O(ε)
(
‖X‖+

∥∥Q̄∥∥∥∥R̄∥∥ ),
then the factors Q̄ and R̄ computed by BCGS-P ◦ IntraOrtho(X ) satisfy∥∥∥I − Q̄T Q̄

∥∥∥ ≤ O(ε)κ2(X ), and

Q̄R̄ = X + ∆D, ‖∆D‖ ≤ O(ε) ‖X‖ .
12



4. Numerical results. We examine the behavior of BCGS, BCGS-PIP, and
BCGS-PIO for different types of IntraOrthos, focusing especially on the interaction
between the loss of orthogonality and the residuals. All methods considered exhibit
O(ε) ‖X‖ residual (1.2), so we omit those plots and focus instead on the relative
Cholesky residual in tandem with loss of orthogonality.

All figures are generated with the BlockStab Matlab package2 using double
precision in MATLAB 2020a on a machine running 64-bit Windows 10 Pro with an
Intel Core i5-8250U CPU and 16GB of RAM. We also use a hand-written Cholesky
code based off [12, Algorithm 10.2], since Matlab’s built-in chol throws an error for
nearly singular matrices, thus limiting observable behavior.

Example 4.1. We first consider the “standard” matrices as described in Section 2.
We see in Figure 4.1 that the P-variants achieve O(ε) relative Cholesky residual but
exhibit instability similar to BCGS once κ(X ) exceeds 108. The behavior of an arbitrary
variant is nearly identical regardless of the IntraOrtho.

Fig. 4.1. Standard κ-plots for different combinations of block variants and IntraOrthos.

Example 4.2. Recall that the glued matrices were first used by Smoktunowicz
et al. [18] to demonstrate how CGS-P corrects the loss of orthogonality of CGS. In
Figure 4.2, we see that the P-variants perfectly satisfy the bounds of Theorems 3.1
and 3.2 until κ(X ) exceeds 108.

Example 4.3. The monomial matrices are generated as follows: a diagonal m×m
operator A with evenly distributed eigenvalues in ( 1

10 , 10) is defined, and q vectors vk,
k = 1, . . . , q, are randomly generated from the uniform distribution and normalized.
The matrix X is then defined as the concatenation of q block vectors

Xk = [vk |Avk | · · · |Ar−1vk],

for a given block size r = n/q (which differs from the partitioning parameter specified
for the block Gram-Schmidt procedure). By varying r, we obtain matrices with a
range of condition numbers, with larger r corresponding to larger κ(X ). In Figure 4.3,
m = 1000, p = 120, and s = 2. These matrices highlight similar behavior as the
glued matrices, but the transition between stable and unstable behavior is much
more dramatic.

2https://github.com/katlund/BlockStab
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Fig. 4.2. Glued κ-plots for different combinations of block variants and IntraOrthos.

Fig. 4.3. Monomial κ-plots for different combinations of block variants and IntraOrthos.

5. Conclusions. Computing a QR factorization via Gram-Schmidt orthogonal-
ization is a fundamental task in numerical linear algebra. Block variants of the Gram-
Schmidt procedure offer potentially increased performance in many scenarios, but
many variants lack fundamental results on their stability in finite precision. Our work
here aims to help fill this gap. We have developed two new BCGS variants, BCGS-PIO
and BCGS-PIP, based on a block analogy of the Pythagorean theorem-based variant of
CGS. Unlike BCGS, for these new block variants the loss of orthogonality is bounded by
O(ε)κ2(X ) with a residual bound on the order of O(ε) ‖X‖ as long as relatively mild
conditions on the IntraOrtho routine are satisfied. These new variants thus offer
potentially better numerical behavior than standard BCGS without significant cost in
terms of performance.

Much open work remains in this area. One avenue to explore is whether the use
of a shift within BCGS-PIO and BCGS-PIP variants can allow the results to extend
to more ill-conditioned matrices, as is done in [8]. Another area of interest is the
analysis of ‘low-sync’ block variants, which have been shown experimentally to offer
increased stability while maintaining the lower communication cost of BCGS; see, e.g.,
[6] and [21]. The development and analysis of reorthogonalization strategies for the
BCGS-PIO and BCGS-PIP variants is also a possibility. There is also the greater question
of whether the results here can be extended to derive results on the stability of block
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Arnoldi and block GMRES methods and their communication-avoiding variants.
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