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A PURELY INFINITE CUNTZ-LIKE BANACH ∗-ALGEBRA WITH

NO PURELY INFINITE ULTRAPOWERS

MATTHEW DAWS AND BENCE HORVÁTH

Abstract. We continue our investigation, from [10], of the ring-theoretic infiniteness
properties of ultrapowers of Banach algebras, studying in this paper the notion of being
purely infinite. It is well known that a C∗-algebra is purely infinite if and only if any
of its ultrapower is. We find examples of Banach algebras, as algebras of operators on
Banach spaces, which do have purely infinite ultrapowers. Our main contribution is the
construction of a “Cuntz-like” Banach ∗-algebra which is purely infinite, but does not
have purely infinite ultrapowers. Our proof of being purely infinite is combinatorial,
but direct, and so differs from the proof for the Cuntz algebra. We use an indirect
method (and not directly computing norm estimates) to show that this algebra does
not have purely infinite ultrapowers.

2020 Mathematics Subject Classification. 46M07, 46H10, 46H15 (primary); 43A20
(secondary)

1. Introduction and preliminaries

1.1. Introduction. We continue our study of infiniteness properties of Banach algebras,
and how these interact with reduced products, in the continuous model theory sense,
which we initiated in [10]. Recall that an idempotent p in an algebra A is infinite
if it is (algebraically Murray–von Neumann) equivalent to a proper sub-idempotent of
itself. One prominent property which we did not study in [10] is that of being purely
infinite, which for simple rings could be defined by saying that every left ideal contains
an infinite idempotent. We discuss this notion, and the literature surrounding it, in
Section 1.2 below. This definition is equivalent, for a unital Banach algebra, to A not
being C, and that for a ∈ A non-zero there are b, c ∈ A with bac = 1. This generalises
the definition for C∗-algebras.

As a purely infinite Banach algebra must be simple, the asymptotic sequence algebra
of A is never purely infinite, see Lemma 2.7 below. We thus focus on ultrapowers in
this paper. As in [10], and perhaps not surprisingly from the perspective of continuous
model theory, we find that an ultrapower (A)U is purely infinite if and only if it satisfies
a “metric” form of the definition, where we have some sort of norm control. From this
perspective, it is unsurprising to find that the fact that purely infinite C∗-algebras have
purely infinite ultrapowers follows from such norm control always being available.

In [10] we found examples of Banach algebras which did, and did not, have suitable
forms of norm control. Our major tool was to look at weighted semigroup algebras,

Key words and phrases. Asymptotic sequence algebra, Banach ∗-algebra, Cuntz semigroup, purely
infinite, semigroup algebra, ultrapower
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where the weight allowed us to vary the norm control which we obtained. Surprisingly,
in this paper we have no need to consider weights. Thus our examples are somewhat
more “natural”, and indeed, in showing that our principle example does not have purely
infinite ultrapowers, we proceed in a somewhat indirect way, and avoid directly comput-
ing norms.

The structure of the paper is as follows. In the remainder of the introduction, we
provide a more detailed introduction to purely infinite algebras, and recall the ultrapower
construction. In Section 2 we define a suitable “quantified” definition of being purely
infinite, and show that this does indeed capture when ultrapowers are purely infinite.
We show quickly how this gives that purely infinite C∗-algebras have purely infinite
ultrapowers.

In Section 2.2, we provide natural examples of Banach algebras which do have purely
infinite ultrapowers. These are built as algebras of operators on suitable Banach spaces.
Finally, we show that if a Banach algebra A does have purely infinite ultrapowers, then
it behaves a little like a C∗-algebra, in the sense that continuous unital homomorphisms
out of A must be bounded below. We use this property to show that our main example
does not have purely infinite ultrapowers.

In Section 3 we present our main construction. As in [10], we use the Cuntz semigroup
Cu2, which is a semigroup with zero element, modelled on the relations of the Cuntz
algebra O2. We study the semigroup algebra A = `1(Cu2\{♦},#), where we replace the
semigroup zero by the algebra 0. We recall some of the combinatorics of this semigroup.
There are two natural idempotents in this algebra, and we quotient by the relation that
these idempotents sum to 1, say leading to the algebra A/J . By a delicate combinatorial
argument, we show that the resulting Banach algebra is purely-infinite: for any non-
zero a ∈ A/J we find f ∈ A which maps to a, and g, h ∈ A with g#f#h = 1,
see Theorem 3.16. To show that A/J does not have purely infinite ultrapowers, we
construct a faithful, but not bounded below, representation on the Banach space `1.

The Banach algebra A has been previously studied in [8], but in relation to being
properly infinite (and further we studied a “weighted” version of this algebra in [10]).
The underlying algebra, given by generators and relations, but without the `1-norm com-
pletion, has a much longer history, as noticed by Phillips in [22]; compare Remark 3.5
below. Indeed, Phillips makes a careful study of (in particular) the algebra O1

2, which,
in our language, is the closure of the image of A/J in B(`1). As we consider in Re-
mark 3.29, given the lack of “permanence” properties for purely infinite Banach algebras,
there appears to be no logical connections between our results and those of Phillips. In
particular, Phillips shows that O1

2 is purely infinite, but we have been unable to decide
if O1

2 has purely infinite ultrapowers, or not.
Unless stated otherwise, we will use the same notation and terminology as in [10].

1.2. Purely infinite algebras. Let A be an algebra. We say that two idempotents
p, q ∈ A are algebraically Murray–von Neumann equivalent or simply equivalent (in
notation, p ∼ q) if there exist a, b ∈ A such that p = ab and q = ba. Note that ∼ is
an equivalence relation on the set of idempotents of A. We say that the idempotents
p, q ∈ A are orthogonal (in notation, p ⊥ q) if pq = 0 = qp. An idempotent p is infinite
if p = q + r for orthogonal idempotents q, r ∈ A with p ∼ q and r 6= 0.
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If A is additionally a ∗-algebra, then a self-adjoint idempotent is called a projection.
Here one often takes a different notion of equivalence, which for C∗-algebras is well-
known to give the same definitions; compare [10, Section 2].

The notion of a C∗-algebra being purely infinite is well-known, and has many equiv-
alent definitions, mostly studied for simple algebras, but also in the non-simple case,
[18]. Purely infinite C∗-algebras appear prominently in the classification programme for
C∗-algebras, [21], in particular in the guise of the Kirchberg algebras. It is common to
take as a definition that a C∗-algebra is purely infinite if every hereditary subalgebra
contains an infinite projection.

In a more general direction, the notion of a simple ring being purely infinite was studied
in [2], where it is taken as definition that a simple ring R is purely infinite if every right
(or equivalently, left) ideal of R contains an infinite idempotent. Consideration of what
it means for a non-simple ring to be purely infinite is given in [3].

Common to both definitions (in the simple case) is the following equivalence; for
C∗-algebras see for example [9, Theorem V.5.5] while for rings see [2, Theorem 1.6].

Definition 1.1. A complex unital algebra A is purely infinite if it is not a division
algebra and for every a ∈ A non-zero there exist b, c ∈ A such that 1A = bac.

In this paper, we shall work only with this definition. Note that by the Gel’fand–
Mazur Theorem a complex unital normed algebra is a division algebra if and only if it
is isomorphic to the field of complex numbers C.

We finish the section with the following. We recall that a unital algebra A is properly
infinite if there exist idempotents p, q ∈ A with p ∼ 1A, q ∼ 1A and p ⊥ q.
Lemma 1.2. Let A be a purely infinite algebra. Then A is

(1) simple; and
(2) properly infinite.

Proof. We first show that A is simple. Let J be a non-zero, two-sided ideal in A and
pick a ∈ J non-zero. There exist b, c ∈ A such that 1A = bac, hence 1A ∈ J . Thus
J = A.

We now show that A is properly infinite. Recall that A is not a division algebra,
hence we can find a non-zero, non-invertible element, say a ∈ A. Let b, c ∈ A be such
that 1A = bac. We define p := cba and r := acb, it is clear that p, r ∈ A are idempotents
with p ∼ 1A ∼ r. However p and r need not be orthogonal. Nevertheless, either p 6= 1A
or r 6= 1A (or both), otherwise a were invertible with inverse cb which is not possible.
Without loss of generality we may assume p 6= 1A. Let s := 1A − p, then s ∈ A is a
non-zero idempotent with s ⊥ p. We can find some x, y ∈ A such that 1A = xsy. Define
q := syxs, then q2 = syxssyxs = syxsyxs = syxs = q, and clearly q ∼ 1A. Now p ⊥ q
as p ⊥ s. �

1.3. Ultrapowers of Banach algebras. The main objects of study in this paper are
the following. Let A be a Banach algebra and let `∞(A) be the Banach space of all
bounded sequences (an) in A, turned into a Banach algebra with pointwise operations.
Let U be a non-principal ultrafilter on N and let cU (A) be the closed, two-sided ideal of
`∞(A) formed of sequences (an) with limn→U ‖an‖ = 0. The quotient

(A)U = `∞(A)/cU (A) (1.1)
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is the ultrapower, see [14].
We shall denote by a capital letter A, and so forth, an element A = (an) ∈ `∞(A).

Let πU : `∞(An)→ (An)U be the quotient map; then

‖πU (A)‖ = lim
n→U
‖an‖. (1.2)

In particular, given any a ∈ (A)U we can always find A = (an) ∈ `∞(A) with π(A) = a
and ‖A‖ = supn ‖an‖ = ‖a‖. We always assume that our ultrafilters are non-principal,
which on a countable indexing set, is equivalent to being countably-incomplete (see [14,
Section 1]).

2. Norm control

In [10] we “quantified” Dedekind-finiteness, pure infiniteness and stable rank one, in
order to characterise when an ultrapower (A)U has these ring-theoretic properties of the
underlying Banach algebra A. We follow our previous approach in the present paper.

Definition 2.1. Let A be a unital Banach algebra. For a ∈ A \ {0} define

CApi(a) = inf{‖b‖‖c‖ : b, c ∈ A, bac = 1}

with CApi(a) =∞ if there are no b, c ∈ A with bac = 1.

Then a unital Banach algebra A is purely infinite exactly when CApi(a) <∞ for each

a ∈ A \ {0}. Note that if a ∈ A is such that CApi(a) <∞ then 1/‖a‖ 6 CApi(a).
By homogeneity, we have

CApi(za) = |z|−1CApi(a) (a ∈ A \ {0}, z ∈ C \ {0}). (2.1)

Thus it is enough to study the unit sphere of A.
Usually, we will drop the superscript on CApi(a) and simply write Cpi(a), whenever it

is clear from the context which Banach algebra the element a is taken from.

Proposition 2.2. Let U be a countably-incomplete ultrafilter. Then for a unital Banach
algebra A the following are equivalent.

(1) (A)U is purely infinite;
(2) There is K > 0 such that Cpi(a) < K for each a ∈ A with ‖a‖ = 1.

Proof. As usual, we may suppose that U is a non-principal ultrafilter on N.
((1)⇒ (2)) : We prove the statement by way of a contraposition. Assume (2) does not

hold. Then in particular we can pick sequence (an) in A consisting of norm one elements
such that Cpi(an) > n for each n ∈ N. Let A := (an) so A ∈ `∞(A). Assume towards
a contradiction that (A)U is purely infinite. Thus we can find B = (bn), C = (cn) ∈
`∞(A) such that π(1) = π(B)π(A)π(C), or equivalently, limn→U ‖1 − bnancn‖ = 0.
Let N := {n ∈ N : ‖1 − bnancn‖ < 1/2}, then N ∈ U . By the Carl Neumann series
xn := bnancn ∈ inv(A) with ‖x−1

n ‖ 6 2 for each n ∈ N . As 1 = x−1
n xn = (x−1

n bn)ancn,
we conclude that

n < Cpi(an) 6 ‖x−1
n bn‖‖cn‖ 6 ‖x−1

n ‖‖bn‖‖cn‖ 6 2‖B‖‖C‖ (n ∈ N ). (2.2)

As N ∈ U and thus N is infinite, this gives a contradiction.
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((2) ⇒ (1)) : Assume (2) holds. Let A = (an) ∈ `∞(A) be such that π(A) 6= 0.
This is equivalent to saying that limn→U ‖an‖ 6= 0, hence there is δ > 0 such that
{n ∈ N : ‖an‖ < δ} /∈ U , that is, M := {n ∈ N : ‖an‖ > δ} ∈ U . Thus we may set
a′n := an/‖an‖ whenever n ∈ M, and a′n := 0 otherwise. Clearly ‖a′n‖ = 1 for each
n ∈M, hence by the assumption it follows that Cpi(a

′
n) < K for each n ∈M. Thus for

every n ∈M we can find b′n, c
′
n ∈ A such that b′na

′
nc
′
n = 1 and ‖b′n‖‖c′n‖ < K. We set

bn :=


√

‖c′n‖
‖b′n‖‖an‖

b′n if n ∈M,

0 otherwise;

and cn :=


√

‖b′n‖
‖c′n‖‖an‖

c′n if n ∈M,

0 otherwise.

(2.3)

Hence bnancn = ‖an‖−1b′nanc
′
n = b′na

′
nc
′
n = 1 for each n ∈M. It is also follows from the

definitions that ‖bn‖ =
√
‖b′n‖‖c′n‖/‖an‖ <

√
K/δ and similarly ‖cn‖ <

√
K/δ, hence

B := (bn), C := (cn) ∈ `∞(A).
Fix ε > 0. Then

M = {n ∈ N : 1 = bnancn} ⊆ {n ∈ N : ‖1− bnancn‖ < ε}, (2.4)

hence from M ∈ U we conclude {n ∈ N : ‖1 − bnancn‖ < ε} ∈ U . Thus limn→U ‖1 −
bnancn‖ = 0, which is equivalent to π(B)π(A)π(C) = π(A). Thus (A)U is purely
infinite. �

Remark 2.3. In view of the comment before Proposition 2.2, we may rewrite condition
(2) as

(2’) There is K > 0 such that Cpi(a) 6 K/‖a‖ for each non-zero a ∈ A.

Consequently (A)U is purely infinite if and only if there exists a K > 0 such that

1/‖a‖ 6 Cpi(a) 6 K/‖a‖ (a ∈ A \ {0}). (2.5)

Corollary 2.4. Let U be a countably-incomplete ultrafilter, and let A be a Banach
algebra such that (A)U is purely infinite. Then A is purely infinite.

Proof. By the assumption we can take some K > 0 which satisfies the conditions of
Proposition 2.2. Let a ∈ A be non-zero. We set a′ := a/‖a‖, then Cpi(a

′) < K. Thus

there exist b′, c′ ∈ A such that b′a′c′ = 1. Now define b := b′/
√
‖a‖ and c := c′/

√
‖a‖,

thus bac = 1 as required. �

In fact, we can make a quantitative statement in this direction. Given a Banach
algebra A and an ultrafilter U , define

ιA : A → (A)U ; a 7→ πU ((a)) (2.6)

to be the “diagonal” isometric embedding.

Lemma 2.5. Let A be a unital Banach algebra. If U is an ultrafilter, then

C
(A)U
pi ◦ ιA = CApi . (2.7)
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Proof. (>): Let a ∈ A, and put A := (a) ∈ `∞(A). Assume B = (bn), C = (cn) ∈ `∞(A)
are such that πU (1) = πU (B)πU (A)πU (C), which is equivalent to limn→U ‖1−bnacn‖ = 0.
Let us fix ε ∈ (0, 1). Then

Nε := {n ∈ N : ‖1− bnacn‖ < ε} ∈ U , (2.8)

and by the Carl Neumann series xn := bnacn ∈ inv(A) with ‖x−1
n ‖ 6 (1− ε)−1 for each

n ∈ Nε. Thus 1 = x−1
n xn = (x−1

n bn)acn, and consequently

CApi(a) 6 ‖x−1
n bn‖‖cn‖ 6 ‖x−1

n ‖‖bn‖‖cn‖ < (1− ε)−1‖bn‖‖cn‖ (n ∈ Nε). (2.9)

Therefore CApi(a) 6 limn→U ‖bn‖‖cn‖(1 − ε)−1 = ‖πU (B)‖‖πU (C)‖(1 − ε)−1, which

holds for all ε ∈ (0, 1), hence CApi(a) 6 ‖πU (B)‖‖πU (C)‖. Consequently CApi(a) 6

C
(A)U
pi (πU (A)) = C

(A)U
pi (ιA(a)), as claimed.

(6): Let a ∈ A. Assume b, c ∈ A are such that 1 = bac. Putting A := (a), B :=
(b), C := (c) ∈ `∞(A), we clearly have πU (1) = πU (B)πU (A)πU (C). Consequently

C
(A)U
pi (ιA(a)) = C

(A)U
pi (πU (A)) 6 ‖πU (B)‖‖πU (C)‖ = ‖b‖‖c‖, (2.10)

and therefore C
(A)U
pi (ιA(a)) 6 CApi(a), as required. �

One might wonder whether the converse to Corollary 2.4 could be true. We will show
that this is not the case: there is a purely infinite Banach ∗-algebra which does not have
purely infinite ultrapowers (see Theorems 3.21 and 3.27 ).

As it is well known (see [13, Section 3.13.7]) the converse to Corollary 2.4 remains
true for C∗-algebras, however. Here we demonstrate how this can easily be deduced
from Proposition 2.2.

Lemma 2.6. Let A be a purely infinite C∗-algebra. Then Cpi(a) = 1 for each a ∈ A with
‖a‖ = 1, consequently (A)U is purely infinite for every countably-incomplete ultrafilter
U .

Proof. Let a ∈ A be norm one. Let us fix ε > 0. Clearly a∗a ∈ A is positive, hence
by [9, Theorem V.5.5] there is some x ∈ A such that (xa∗)ax∗ = x(a∗a)x∗ = 1 and

‖x‖ < ‖a∗a‖−1/2 + ε = 1 + ε. Thus

Cpi(a) 6 ‖xa∗‖‖x∗‖ 6 ‖x‖2‖a‖ < (1 + ε)2, (2.11)

and therefore Cpi(a) 6 1. The “consequently” part follows from Proposition 2.2. �

We note that [9, Theorem V.5.5] has an elementary (functional calculus) proof, passing
by way of an equivalent definition of what purely infinite means for C∗-algebras, compare
our discussion in Section 1.2.

2.1. A word about the asymptotic sequence algebra. Let c0(A) be the closed,
two-sided ideal of `∞(A) which consists of sequences (an) with limn ‖an‖ = 0. In fact,
when A is unital, `∞(An) is the multiplier algebra of c0(A) (compare [12, Section 13] for
example). The asymptotic sequence algebra Asy(A) is the quotient algebra `∞(A)/c0(A).

As opposed to the previously studied properties in [10] such as stable rank one,
Dedekind-finitess and proper infiniteness; the theory for the asymptotic sequence al-
gebra and the ultrapower of a Banach algebra seems to bifurcate here.
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Lemma 2.7. Let A be a non-zero unital Banach algebra. Then Asy(A) is not simple
and hence not purely infinite.

Proof. Note that Asy(A) is simple if and only if c0(A) is a maximal two-sided ideal in
`∞(A). But this latter is not possible, as for example, the following shows. Let U be
a non-principal ultrafilter on N such that 2N ∈ U . Let A := (an) be a sequence in A
defined by a2n := 1A and a2n−1 := 0A for each n ∈ N. Clearly A ∈ `∞(A) and in
fact A ∈ cU (A) by definition. On the other hand clearly A /∈ c0(A). Consequently
c0(A) ( cU (A) which shows that c0(A) cannot be maximal. The last part follows from
Lemma 1.2. �

2.2. Examples of Banach algebras with purely infinite ultrapowers. It is a
good point to give an example of a class of non-C∗, Banach algebras with purely infinite
ultrapowers. In what follows, B(X) and K(X) denote the algebra of bounded linear
operators on a Banach space X and the set of compact operators on X, respectively.
Clearly B(X) is a unital Banach algebra and K(X) is a closed, two-sided ideal in B(X).

Proposition 2.8. Let X be c0 or `p, where 1 6 p < ∞. Then (B(X)/K(X))U is
purely infinite if U is a countably-incomplete ultrafilter. More precisely, for every a ∈
B(X)/K(X) with ‖a‖ = 1 there exist b, c ∈ B(X)/K(X) such that 1 = bac and ‖b‖‖c‖ =
1.

The proof of Proposition 2.8 relies on the following result of G. K. Ware, see [27,
Lemma 3.3.6]. Note that it is a strict strengthening of [26, Lemma 2.1]; the proof works
by extracting a suitable block basic sequence equivalent to the standard unit vector basis
for X.

Lemma 2.9. Let X be c0 or `p, where 1 6 p < ∞. Then for each A ∈ B(X) a
non-compact operator, there exist B,C ∈ B(X) such that

IX = BAC and ‖π(B)‖‖π(C)‖ = 1/‖π(A)‖, (2.12)

where π : B(X)→ B(X)/K(X) the quotient map.

Proof of Proposition 2.8. Let A ∈ B(X) be such that ‖π(A)‖ = 1. Hence by Lemma 2.9
there are B,C ∈ B(X) such that IX = BAC and ‖π(B)‖‖π(C)‖ = 1. This obvi-
ously proves the first part of the claim. In particular, Cpi(π(A)) = 1 follows whenever
‖π(A)‖ = 1. Now Proposition 2.2 yields that (B(X)/K(X))U is purely infinite, whenever
U is a countably-incomplete ultrafilter. �

2.2.1. The connection to a certain maximal ideal. Let us introduce some terminology,
commonly found in the literature, for the property we have been studying. For a unital
algebra A, and given a ∈ A, we say that 1A factors through a, if there exist b, c ∈ A
such that 1A = bac.

In a unital algebra A we define the set

MA := {a ∈ A : 1A does not factor through a}. (2.13)

The following result is folklore and easy to see; we omit the proof.

Proposition 2.10. Let A be a unital algebra.
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• The setMA is closed under scalar multiplication, and under multiplying elements
of it from the left and right by elements from A. Thus it is the largest proper
(and therefore unique maximal) two-sided ideal in A if and only if MA is closed
under addition.
• IfMA is closed under addition and A/MA is not a division algebra, then A/MA

is purely infinite.

Note that in the second bullet point the condition that A/MA is not a division algebra
cannot be omitted. Indeed, Kania and Laustsen showed in [17, Theorem 1.2] that with
X := C[0, ω1], the one-codimensional Loy–Willis ideal coincides with MB(X) and hence
B(X)/MB(X)

∼= C.

When the unital Banach algebra A is B(X) for some “classical” Banach space X, it
happens very often that MB(X) is the unique maximal ideal in MB(X). Here we give a
few examples, a more comprehensive list can be found in [17, p. 4832].

Example 2.11. If X is any of the Banach spaces below then MB(X) is closed under
addition and hence it is the unique maximal ideal in B(X):

• X = c0 or X = `p, where 1 6 p <∞, in this case MB(X) = K(X) (see [15]);
• X = `∞ (see [19, p. 253]);
• X = Lp[0, 1], where 1 6 p <∞ (see [11, Theorem 1.3 and the text after]);
• X = C[0, 1] (see the explanation in [17, p. 4832]).

Remark 2.12. Let A be a unital algebra and let J be a two-sided ideal in A. If A/J
is purely infinite, then MA is closed under addition if and only if J = MA. Indeed,
A/J is simple by Lemma 1.2, or equivalently, J is a maximal ideal. Hence if MA is
closed under addition then it is the unique maximal ideal in A by Proposition 2.10, thus
J =MA. The other direction is trivial.

It is certainly not true however that for a unital Banach algebra A and a closed,
two-sided ideal J of A the quotient A/J is purely infinite only if MA is closed under
addition.

We shall show the above statement by way of a counter-example. In order to do this,
let us recall the following piece of terminology. For Banach spaces X and Y the symbol
GY (X) denotes the closed, two-sided ideal of operators on X which approximately factor
through Y .

Lemma 2.13. Let X := `p ⊕ `q, where 1 6 p < q < ∞. Then MB(X) is not closed

under addition while
(
B(X)/GY (X)

)
U is purely infinite, where Y is `p or `q and U

is a countably-incomplete ultrafilter. More precisely, for every a ∈ B(X)/GY (X) with
‖a‖ = 1 there exist b, c ∈ B(X)/GY (X) such that 1 = bac and ‖b‖‖c‖ = 1.

Proof. The first part of the claim is well known; see e.g. [24, Theorem 5.3.2]. Indeed,
B(X) has exactly two maximal two-sided ideals, namely, G`p(X) and G`q(X). We will
work with Y = `p, the other case in entirely analogous.
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Let us recall that by Pitt’s Theorem [1, Theorem 2.1.4], we can describe B(X) and
G`p(X) as

B(X) =

[
B(`p) B(`q, `p)
B(`p, `q) B(`q)

]
=

[
B(`p) K(`q, `p)
B(`p, `q) B(`q)

]
,

G`p(X) =

[
K(`p) B(`q, `p)
B(`p, `q) B(`q)

]
=

[
K(`p) K(`q, `p)
B(`p, `q) B(`q)

]
.

Consequently,

B(X)/G`p(X) ∼= B(`p)/K(`p),

where the isomorphism is clearly isometric. Hence the result follows from Proposi-
tions 2.8 and 2.2. �

2.3. Further permanence properties. The result below appears to be a very handy
tool when showing that a certain Banach algebra cannot have purely infinite ultrapowers.
Indeed, it is one of the key ideas in the proof of Theorem 3.27.

Proposition 2.14. Let A and B unital Banach algebras, and let ψ : A → B be a con-
tinuous, unital algebra homomorphism. Assume that (A)U is purely infinite for some
countably-incomplete ultrafilter U . Then the following hold:

(a) The map ψ is bounded below.
(b) If ψ has dense range then it is in fact an isomorphism, hence B is purely infinite.

Proof. We first recall that in view of Proposition 2.2 there is K > 0 such that Cpi(a) < K
for each a ∈ A with ‖a‖ = 1. To prove (a), we assume towards a contradiction that ψ
is not bounded below. Then there exists some a ∈ A with ‖a‖ = 1 such that ‖ψ(a)‖ <
1/(2K‖ψ‖2). We can pick b, c ∈ A with 1A = bac and ‖b‖‖c‖ < K. Consequently
ψ(1A) = ψ(bac) = ψ(b)ψ(a)ψ(c), thus

1 = ‖1B‖ = ‖ψ(1A)‖ 6 ‖ψ‖2‖b‖‖c‖‖ψ(a)‖ < ‖ψ‖2K‖ψ(a)‖ < 1/2, (2.14)

a contradiction. Therefore ψ must be bounded below.
Now (b) follows easily. Indeed, ψ is bounded below, hence if it is assumed to have

dense range, then ψ is in fact an isomorphism. Thus B must be purely infinite. �

3. A “Banach- analogue” of the Cuntz algebra

In this section we construct a purely infinite, infinite-dimensional Banach ∗-algebra
which does not have a (non-trivial) purely infinite ultrapower.

3.1. Preliminaries.

3.1.1. Involutive semigroups with zero elements, and the Banach ∗-algebra `1(S \ {♦}).
We recall that a semigroup S is involutive if there is a map s 7→ s∗, S → S with the
property (s∗)∗ = s and (st)∗ = t∗s∗ for each s, t ∈ S.

We say that S is a monoid with a zero element if S is a monoid with at least two
elements and there exists a ♦ ∈ S such that ♦s = ♦ = s♦ for all s ∈ S. If such a ♦ ∈ S
exists then it is necessarily unique. As we assume that S has more than one element, we
have ♦ is different from the multiplicative identity e ∈ S. Note that if S is additionally
involutive, then necessarily ♦∗ = ♦.
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Let us briefly recall that it is possible to endow the Banach space `1(S \ {♦}) with
a unital Banach algebra structure; see [8] and [10] for details; compare also [16]. This
is accomplished by identifying `1(S \ {♦}) with the quotient algebra `1(S)/Cδ♦, where
`1(S) is endowed with the convolution product. This allows us to define a product # on
`1(S \ {♦}) which satisfies

δs#δt =

{
δst if st 6= ♦
0 if st = ♦

(s, t ∈ S \ {♦}) . (3.1)

In particular it follows from equation (3.1) that (`1(S \ {♦}),#) is a unital Banach
algebra with δe being the unit, and such that ‖δe‖ = 1.

If in addition S is involutive, then the formula

f∗(s) := f(s∗) (f ∈ `1(S \ {♦}), s ∈ S \ {♦}) (3.2)

defines an isometric involution on `1(S \ {♦}). Hence `1(S \ {♦}) is a Banach ∗-algebra.

3.1.2. The Cuntz semigroup Cu2. In the following Cu2 denotes the second Cuntz semi-
group (see also [25, Definition 2.2, p. 141]; this is also occasionally called the “polycyclic
monoid” in the literature, [6]). (We warn the reader that “Cuntz semigroup” now also
means something unrelated in C∗-algebra theory.) That is, Cu2 is an involutive semi-
group with multiplicative identity e and zero element ♦, and generators s1, s2, s

∗
1, s
∗
2

subject to the relations s∗1s1 = e = s∗2s2 and s∗1s2 = ♦ = s∗2s1. In notation, Cu2 is

〈s1, s2, s
∗
1, s
∗
2 : s∗1s1 = e = s∗2s2, s

∗
1s2 = ♦ = s∗2s1〉. (3.3)

We now mostly follow the notation of [8, Section 3.3].

Definition 3.1. We set

In := {(i1, i2, . . . , in) : i1, i2, . . . , in ∈ {1, 2}} (n ∈ N), (3.4)

and I0 := {∅}. Let I :=
⋃
n∈N0

In, and L :=
∏
n∈N{1, 2}.

Let n = (ni) ∈ L, we then set

n0 := ∅,
nl := (n1, n2, . . . nl) ∈ Il (l ∈ N). (3.5)

If i, j ∈ I, then we define ij ∈ I by concatenation

ij :=


i if j = ∅,
j if i = ∅,
(i1, i2, . . . , im, j1, j2, . . . jn) if i = (i1, i2, . . . , im) and i = (j1, j2, . . . , jn).

(3.6)

For each i ∈ I we define si ∈ Cu2 \ {♦} by

si :=

{
e if i = ∅,
si1si2 · · · sin if i = (i1, i2, . . . in) ∈ I \ {∅}.

(3.7)

We clearly have sisj = sij and s∗ij := (sij)
∗ = (sisj)

∗ = s∗j s
∗
i .
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3.2. Basic combinatorics of Cu2. The following result is perhaps the single most
important tool for our purposes. As stated below, it can be found in [10, Lemma 3.7],
where it is attributed to Cuntz (see [7, Lemmas 1.2 and 1.3]).

Lemma 3.2. (1) For every i, j ∈ I we have

s∗i sj =


s∗k if i = jk for some k ∈ I,

sk if j = ik for some k ∈ I,

♦ otherwise.

(3.8)

(2) For every t ∈ Cu2 \ {♦} there exist unique i, j ∈ I such that t = sis
∗
j .

Remark 3.3. Let t ∈ Cu2 \ {♦}. By Lemma 3.2 (2) there exist unique i, j ∈ I such that
t = sis

∗
j . Let α, β ∈ N0 be the unique numbers such that i ∈ Iα and j ∈ Iβ.

Thus we may define the length of t as

length(t) := α+ β. (3.9)

In fact, Lemma 3.2 (2) features so frequently in our arguments that we shall mostly
use it implicitly without referring to it.

A very important corollary of the above is the lemma below, which we will use nu-
merous times throughout the rest of the paper.

Lemma 3.4. Let i, j,m,n ∈ I. Then

s∗i sms
∗
nsj =



s∗qp if i = mp and n = jq for some p,q ∈ I,

s∗r if i = mqr and j = nq for some r,q ∈ I,

sps
∗
q if m = ip and n = jq for some p,q ∈ I,

spq if m = ip and j = nq for some p,q ∈ I,

sr if i = mp and j = npr for some p, r ∈ I,

♦ otherwise.

(3.10)

Consequently, s∗i sms
∗
nsj = e if and only if i = mk and j = nk for some k ∈ I.

Proof. Applying Lemma 3.2 to s∗i sm and s∗nsj, we immediately obtain that

s∗i sms
∗
nsj =



s∗ps
∗
q = s∗qp if i = mp and n = jq for some p,q ∈ I,

s∗psq if i = mp and j = nq for some p,q ∈ I,

sps
∗
q if m = ip and n = jq for some p,q ∈ I,

spsq = spq if m = ip and j = nq for some p,q ∈ I,

♦ otherwise.

(3.11)

Once more we apply Lemma 3.2 to s∗psq, which yields the desired formula (3.10).
The “consequently” part follows from inspecting the cases in the above formula and

from observing that

• s∗qp = e or spq = e or sps
∗
q = e if and only if p = ∅ = q if and only if i = m and

j = n,
• s∗r = e if and only if r = ∅ if and only if i = mq and j = nq,
• sr = e if and only if r = ∅ if and only if i = mp and j = np.

�
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3.3. A purely infinite quotient of (`1(Cu2 \ {♦}),#). From now on we let A :=
(`1(Cu2 \{♦}),#). In this section we show that A has a quotient A/J which is a purely
infinite Banach ∗-algebra.

Remark 3.5. Suppose we start instead with the group ring C[Cu2], which is just the
algebra of finitely supported elements of `1(Cu2), and similarly quotient by the span of
δ♦. As observed in [22, Section 1], the algebra C[Cu2]/Cδ♦ was studied, with a different
presentation, by Cohn in [5, Section 5], and is sometimes called the Cohn algebra C2.

We could hence viewA as being a Banach algebra completion of C2. To our knowledge,
this algebra has not been studied from this perspective; for example, it is not mentioned
in [8]. We make remarks about links, or lack thereof, with Phillips’s work in [22] below,
Remark 3.29.

Let us observe first that in view of Lemma 3.2, we may write

f =
∑

t∈Cu2\{♦}

f(t)δt =
∑
i,j∈I

f(sis
∗
j )δsis∗j (f ∈ A). (3.12)

3.3.1. Purely infinite elements of A. Our goal in this section is to find a useful sufficient
condition which guarantees that an element f ∈ A is purely infinite, in other words, that
there exist g, h ∈ A with g#f#h = δe.

Definition 3.6.

• Let v ∈ Cu2 \ {♦}, and let i, j be the unique elements in I with v = sis
∗
j .

– Suppose n ∈ L. We define

vnl := sinl
s∗jnl

= sis(n1,...,nl)s
∗
(n1,...,nl)

s∗j (l ∈ N0). (3.13)

– Suppose n ∈ I. There is a unique α ∈ N0 satisfying n ∈ Iα; hence n =
(n1, n2, . . . , nα), where ni ∈ {1, 2} whenever 1 6 i 6 α. We define vnl as in
(3.13) provided l ∈ N0 is such that l 6 α. Otherwise vnl is undefined.

We have in particular vn0 = sin0s
∗
jn0

= sis
∗
j = v, and that enl = s(n1,...,nl)s

∗
(n1,...,nl)

.

• We say that f ∈ A has zero sums at v = sis
∗
j ∈ Cu2 \ {♦} if∑

l∈N0

f(vnl ) =
∑
l∈N0

f(sinl
s∗jnl

) = 0 (n ∈ L). (3.14)

Notice that as f is an `1 element, the sum in (3.14) is absolutely convergent.

Lemma 3.7. Let n ∈ I ∪ L and f ∈ A. Then

δs∗nl
#f#δsnl

=

(
l∑

k=0

f(enk )

)
δe +

∑
i,j∈I

s∗nl
sis
∗
j snl

/∈{e,♦}

f(sis
∗
j )δs∗nl

sis
∗
j snl

(l ∈ N0). (3.15)

Proof. Let us fix an l ∈ N0. We first note that by Lemma 3.4

{sis∗j : i, j ∈ I, s∗nl
sis
∗
j snl

= e} = {sis∗j : i, j ∈ I, nl = ip, nl = jp for some p ∈ I}
= {sis∗i : i = nk for some 0 6 k 6 l}
= {enk : 0 6 k 6 l}.
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Consequently

δs∗nl
#f#δsnl

=
∑
i,j∈I

s∗nl
sis
∗
j snl
6=♦

f(sis
∗
j )δs∗nl

sis
∗
j snl

=

(
l∑

k=0

f(enk )

)
δe +

∑
i,j∈I

s∗nl
sis
∗
j snl

/∈{e,♦}

f(sis
∗
j )δs∗nl

sis
∗
j snl

,

as claimed. �

Proposition 3.8. Let f ∈ A be such that it does not have zero sums at the multiplicative
unit e ∈ Cu2. Then there exist g, h ∈ A with g#f#h = δe.

Proof. By the assumption there is an n = (n1, n2, . . . , nk, . . .) ∈ L such that
∑

k∈N0
f(enk ) 6=

0. Let us set zN :=
∑N

k=0 f(enk ) for each N ∈ N0. As f ∈ A, the sequence (zN ) con-
verges to some non-zero element in C, therefore there is an ε > 0 and N ′ ∈ N0 such that
|zn| > 2ε for each n > N ′. From Lemma 3.7 we see that

δs∗nl
#f#δsnl

= zlδe +
∑
i,j∈I

s∗nl
sis
∗
j snl

/∈{e,♦}

f(sis
∗
j )δs∗nl

sis
∗
j snl

(l ∈ N0). (3.16)

Let us take an f ′ ∈ A with finite support such that ‖f − f ′‖ < ε. We can hence pick
some M ∈ N such that M > N ′ and M > max{length(t) : t ∈ supp(f ′)}. In particular,
f ′(t) = 0 whenever t ∈ Cu2 \ {♦} is such that length(t) > M .

To ease notation, we put z := zM .

Claim 3.9. There is a p ∈ I such that

δs∗p#δs∗nM
#f ′#δsnM

#δsp = δs∗nMp
#f ′#δsnMp = zδe. (3.17)

Proof of Claim 3.9. By Lemma 3.7 we have

δs∗nM
#f ′#δsnM

= zδe +
∑
i,j∈I

s∗nM
sis
∗
j snM

/∈{e,♦}

f ′(sis
∗
j )δs∗nM

sis
∗
j snM

=: zδe + h0. (3.18)

If h0 = 0 then we are done. Otherwise, H0 := supp(h0) 6= ∅. We claim that there is an
i ∈ {1, 2} such that

|{s∗i tsi : t ∈ H0, s
∗
i tsi 6= ♦}| < |H0|. (3.19)

To show this, observe that as supp(f ′), and hence also H0, is finite, it is enough to
see that s∗1ts1 = ♦ or s∗2ts2 = ♦ for some t ∈ H0. This readily follows however from
{e} 6= H0 (which clearly holds as e /∈ H0).
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For this choice of i, applying Lemma 3.7 again we see that

δs∗nMi
#f ′#δsnM

i = δs∗i #(zδe + h0)#δsi = zδe + δs∗i #h0#δsi

= (z + h0(e) + h0(ei1))δe +
∑
i,j∈I

s∗i sis
∗
j si /∈{e,♦}

h0(sis
∗
j )δs∗i sis∗j si

=: (z + h0(e) + h0(ei1))δe + h1. (3.20)

Note that supp(h1) ⊆ {s∗i tsi : t ∈ H0, s
∗
i tsi 6= ♦}.

On the one hand h0(e) = 0. On the other hand s∗nM
sis
∗
j snM = sis

∗
i if and only if

i = nM i and j = nM i by Lemma 3.4, hence

h0(ei1) = h0(sis
∗
i ) = f ′(snM is

∗
nM i) = 0. (3.21)

The last equality follows because length(snM is
∗
nM i) = 2(M + 1), and f ′ vanishes on

elements of Cu2 of length at least M + 1. Consequently,

δs∗nMi
#f ′#δsnM

i = zδe + h1, (3.22)

where H1 := supp(h1) is such that |H1| < |H0|.
Let us fix some k0 > | supp(f ′)|. Continuing recursively, we obtain i1, i2, . . . , ik0 ∈

{1, 2} and finitely supported functions (hk)
k0
k=1 in A with Hk := supp(hk) such that

δs∗
nM (i1,...,ik)

#f ′#δsnM
(i1,...,ik) = zδe + hk (1 6 k 6 k0), (3.23)

|H0| > |H1| > . . . > |Hk0 |. (3.24)

As supp(f ′) is finite, we must have that Hk0 = ∅ or equivalently hk0 = 0. Thus setting
p := (i1, . . . , ik0) ∈ I yields the claim. �

From the claim we obtain

‖δe − z−1δs∗nMp
#f#δsnMp‖ = |z|−1‖δs∗nMp

#(f ′ − f)#δsnMp‖

6 |z|−1‖f − f ′‖ < 1/2, (3.25)

thus the Carl Neumann series implies u := z−1δs∗nMp
#f#δsnMp ∈ inv(A). Hence setting

g := u−1#z−1δs∗nMp
and h := δsnMp concludes the proof. �

3.3.2. The description of purely infinite elements in terms of the ideal J . In the follow-
ing, let J denote the closed, two-sided ideal in A generated by the element

f0 := δe − δs1s∗1 − δs2s∗2 . (3.26)

Clearly f0 is an projection in A, in other words, f2
0 = f0 and f∗0 = f0. We immediately

see from the formula (3.12) and Lemma 3.2 (2) that

J = span{g#f0#h : g, h ∈ A} = span{δsis∗k#f0#δsls∗j : i, j,k, l ∈ I}. (3.27)

Corollary 3.10. A/J is a Banach ∗-algebra.

Proof. We already saw that A is a Banach ∗-algebra, hence it is enough to show that
the closed, two-sided ideal J is also a ∗-ideal. This however readily follows from (3.27)
and f∗0 = f0. �
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Remark 3.11. Continuing Remark 3.5, in the Cohn Algebra C2
∼= C[Cu2]/Cδ♦ we could

also consider the ideal, say J2, generated by f0. Then C2/J2 is seen to be isomorphic to
the Leavitt algebra L2, see [22, Section 1], which was first considered (over the field with
2 elements) in [20].

Again, A/J is a Banach algebraic completion of L2, which again seems not to have
been considered in the literature before. Compare with Remark 3.29 below.

Let us introduce some new terminology which will render the technical proofs in this
section significantly more transparent.

Definition 3.12.

(i) An element t = sis
∗
j ∈ Cu2 \ {♦} is symmetric if i = j.

(ii) We say that t ∈ Cu2 \ {♦} is a symmetric extension of r = sms
∗
n ∈ Cu2 \ {♦}

if there exists a symmetric u ∈ Cu2 \ {♦} with t = smus
∗
n. If in addition u 6= e

then we say that t is a proper symmetric extension of r.
(iii) For some t ∈ Cu2 \ {♦} the set of symmetric extensions of t is denoted by St.
(iv) An element of Cu2 \ {♦} has no symmetry if it is not the proper symmetric

extension of any element in Cu2 \ {♦}.
The following are immediate from the definition.

Remark 3.13.

• An element t ∈ Cu2 \ {♦} is a symmetric extension of r = sms
∗
n ∈ Cu2 \ {♦} if

and only if there exists i ∈ I with t = smis
∗
ni. Also, t is a proper extension of r

if and only if i 6= ∅.
• An element t ∈ Cu2 \ {♦} has no symmetry if and only if whenever m,n, i ∈ I

are such that t = smis
∗
ni then i = ∅.

Lemma 3.14. The set

{Sv : v ∈ Cu2 \ {♦} has no symmetry} (3.28)

forms a partition of Cu2 \ {♦}.
Proof. Let t ∈ Cu2 \ {♦} be arbitrary. There exist unique p,q ∈ I such that t = sps

∗
q.

Let α ∈ N0 be maximal with respect to the property that there is an i ∈ Iα with p = mi
and q = ni for some m,n ∈ I. Then t = sps

∗
q = smis

∗
ni = sm(sis

∗
i )s
∗
n shows that t is

the symmetric extension of v := sms
∗
n. Observe that v has no symmetry. For assume

towards a contradiction it has, then there exists k ∈ I\ I0 such that v = saks
∗
bk for some

a,b ∈ I. Therefore m = ak and n = bk must hold, consequently t = smis
∗
ni = sakis

∗
bki.

This contradicts the maximality of α.
Let v, w ∈ Cu2 \ {♦} be without symmetry. Assume there is some t ∈ Sv ∩ Sw. Let

i, j ∈ I be unique with v = sis
∗
j , then t = siks

∗
jk for some k ∈ I. Similarly, let p,q ∈ I

be unique with w = sps
∗
q, then t = spls

∗
ql for some l ∈ I. As siks

∗
jk = t = spls

∗
ql, it

follows that ik = pl and jk = ql. We want to show that v = w, equivalently i = p and
j = q. Let α, β ∈ N0 be the unique numbers such that k ∈ Iα and l ∈ Iβ. Note that it
is enough to show that α = β. Assume towards a contradiction that, say, α < β. Then
there are m ∈ Iβ−α and n ∈ Iα with l = mn. Thus ik = pmn, hence from k,n ∈ Iα
we obtain i = pm. Similarly, we get j = qm. But then v = sis

∗
j = spms

∗
qm, which by

β − α > 0 contradicts that v has no symmetry. �
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Proposition 3.15. Suppose f ∈ A is such that it has zero sums at some v ∈ Cu2 \ {♦}.
Define h :=

∑
t∈Sv

f(t)δt ∈ A. Then h ∈ J .

Proof. Let i, j ∈ I be such that v = sis
∗
j . Then Sv = {siks∗jk : k ∈ I} and hence

h =
∑

k∈I f(siks
∗
jk)δsiks∗jk . From f0 ∈ J we immediately get

δsims∗jm − δsim1s
∗
jm1
− δsim2s

∗
jm2

= δsim#f0#δs∗jm ∈ J (m ∈ I). (3.29)

In particular, setting m := ∅ in (3.29) yields

δv − δsi1s∗j1 − δsi2s∗j2 ∈ J . (3.30)

Hence from

h = f(v)δv + f(si1s
∗
j1)δsi1s∗j1 + f(si2s

∗
j2)δsi2s∗j2 +

∑
k∈I\(I0∪I1)

f(siks
∗
jk)δsiks∗jk (3.31)

and (3.30) we see that (
f(v) + f(si1s

∗
j1)
)
δsi1s∗j1 +

(
f(v) + f(si2s

∗
j2)
)
δsi2s∗j2

+
∑

k∈I\(I0∪I1)

f(siks
∗
jk)δsiks∗jk − h ∈ J

⇐⇒
∑
k∈I1

(
f(v) + f(sie

k
1s
∗
j )
)
δsiek1 s∗j

+
∑

k∈I\(I0∪I1)

f(siks
∗
jk)δsiks∗jk − h ∈ J . (3.32)

Continuing inductively, we obtain∑
k∈In

(
f(v) +

n∑
l=1

f(sie
k
l s
∗
j )

)
δsiekns∗j

+
∑

k∈I\
⋃n

r=0 Ir

f(siks
∗
jk)δsiks∗jk − h ∈ J (n ∈ N).

(3.33)

That f has zero sums at v is to say f(v) = −
∑

l∈N f(sie
k
l s
∗
j ). Therefore (3.33) is

equivalent to

−
∑
k∈In

(∑
l>n

f(sie
k
l s
∗
j )

)
δsiekns∗j

+
∑

k∈I\
⋃n

r=0 Ir

f(siks
∗
jk)δsiks∗jk − h ∈ J (n ∈ N).

(3.34)

Now
∑

t∈Cu2\{♦} |f(t)| <∞ implies

∑
k∈In

∣∣∣∣∣∑
l>n

f(sie
k
l s
∗
j )

∣∣∣∣∣→ 0 and
∑

k∈I\
⋃n

r=0 Ir

|f(siks
∗
jk)| → 0 (n→∞). (3.35)

As J is closed, we conclude from (3.35) and (3.34) that h ∈ J . �

The main result of this section is the following.
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Theorem 3.16. Let f ∈ A be such that f /∈ J . Then there exist g, h ∈ A such that
g#f#h = δe.

Proof. Assume first that there exists v = sis
∗
j ∈ Cu2 \ {♦} without symmetry such that

f does not have zero sums at v. We claim that f := δs∗i #f#δsj ∈ A does not have zero
sums at e. To see this, let us fix an n ∈ L. Using Lemma 3.4 we see that∑

l∈N0

f(enl ) =
∑
l∈N0

f(snl
s∗nl

) =
∑
l∈N0

(δs∗i #f#δsj)(snl
s∗nl

)

=
∑
l∈N0

∑
p,q∈I

f(sps
∗
q)δs∗i sps∗qsj

 (snl
s∗nl

) =
∑
l∈N0

f(sinl
s∗jnl

) =
∑
l∈N0

f(vnl ),

(3.36)

hence the claim follows because f does not have zero sums at v. We can thus ap-
ply Proposition 3.8; there exist g, h ∈ A with δe = g#f#h. Consequently δe =
(g#δs∗i )#f#(δsj#h).

Assume towards a contradiction that f has zero sums at every v ∈ Cu2 \ {♦} without
symmetry. We set fv :=

∑
t∈Sv

f(t)δt for every v ∈ Cu2 \ {♦} without symmetry. As
Cu2 \ {♦} is countable, the set of elements without symmetry may be enumerated as
(vn). In view of Lemma 3.14 the set {Svn : n ∈ N} consists of mutually disjoint sets,
consequently ∥∥∥∥∥f −

N∑
n=1

fvn

∥∥∥∥∥ =
∑

t∈Cu2\{♦}
t/∈∪Nn=1Svn

|f(t)| → 0 (N →∞). (3.37)

The convergence of the right-hand side of (3.37) follows from Lemma 3.14; namely, that
{Svn : n ∈ N} covers Cu2 \ {♦}. This shows f ∈ span{fvn : n ∈ N}. Proposition 3.15
yields however fvn ∈ J for each n ∈ N. Thus f ∈ J must hold, a contradiction. �

From now on we let πJ : A → A/J denote the quotient map.

Corollary 3.17. Let a ∈ A/J be non-zero. Then there exist b, c ∈ A/J such that
bac = 1A/J .

Proof. Let f ∈ A be such that a = πJ (f). That a is non-zero is equivalent to f /∈ J .
Hence by Theorem 3.16 there are g, h ∈ A such that g#f#h = δe. Setting b := πJ (g)
and c := πJ (h) finishes the proof. �

Note that in order to conclude that A/J is purely infinite we still need to show that
it is not isomorphic to C. This will immediately follow from Proposition 3.19 in the next
section.

3.4. Representing A/J in B(`1). In this section we show how to represent a quotient
of A inside B(`1(N)), the unital Banach algebra of bounded linear operators on `1(N).
As an application, we will see that A/J is infinite-dimensional, hence together with
Corollary 3.17 we conclude that A/J is purely infinite (see Theorem 3.21).
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To this end, we first define operators A1, A2, B1, B2 on `1 := `1(N) by

(A1x)(n) = x2n, (A2x)(n) = x2n−1 (x ∈ `1), (3.38)

and

(B1x)(n) =

{
xn/2 if n ∈ 2N,
0 otherwise,

(B2x)(n) =

{
x(n+1)/2 if n ∈ 2N− 1,

0 otherwise.
(x ∈ `1).

(3.39)

It is immediate that Ai, Bi,∈ B(`1) with ‖Ai‖ = 1 = ‖Bi‖ for i ∈ {1, 2}. Moreover,
the following relations hold:

A1B1 = I`1 = A2B2, A1B2 = 0 = A2B1, B1A1 +B2A2 = I`1 , (3.40)

where I`1 denotes the identity operator on `1.

Remark 3.18. Let us note that the set {Bn
1 : n ∈ N} is linearly independent in B(`1).

Indeed, suppose (αn)Nn=1 is a finite family of scalars such that
∑N

n=1 αnB
n
1 = 0. Let (en)

be the standard unit vector basis of `1. We see that

0 =
N∑
n=1

αnB
n
1 e1 =

N∑
n=1

αne2n , (3.41)

hence αn = 0 must hold whenever 1 6 n 6 N .

Proposition 3.19. There is a continuous, unital algebra homomorphism
Θ: A/J → B(`1) with

Θ(πJ (δs∗i )) = Ai and Θ(πJ (δsi)) = Bi (i ∈ {1, 2}). (3.42)

In particular A/J is infinite-dimensional and non-commutative.

Proof. The operators A1, A2, B1, B2 ∈ B(`1) are subject to the relations A1B1 = I`1 =
A2B2 and A2B1 = 0 = A1B2, hence there is a unique semigroup homomorphism

φ : Cu2 → B(`1) (3.43)

which satisfies φ(s∗1) = A1, φ(s1) = B1, φ(s∗2) = A2 and φ(s2) = B2. Notice that in par-
ticular φ(e) = φ(s∗1s1) = φ(s∗1)φ(s1) = A1B1 = I`1 and φ(♦) = φ(s∗1s2) = φ(s∗1)φ(s2) =
A1B2 = 0. By Lemma 3.2 (2), and because the operators A1, A2, B1, B2 ∈ B(`1) have
norm one, we see that ‖φ(t)‖ 6 1 for every t ∈ Cu2.

It follows that there is a unique continuous algebra homomorphism

θ : A = (`1(Cu2 \ {♦}),#)→ B(`1) (3.44)

such that ‖θ‖ 6 1 and θ(δt) = φ(t) for all t ∈ Cu2 \ {♦}.
In particular θ is unital as θ(δe) = φ(e) = I`1 . Moreover, from the relation B1A1 +

B2A2 = I`1 we see

θ(f0) = θ(δe)− θ(δs1)θ(δs∗1)− θ(δs2)θ(δs∗2) = I`1 −B1A1 −B2A2 = 0, (3.45)

consequently J ⊆ ker(θ). Therefore there is unique continuous algebra homomorphism

Θ: A/J → B(`1) (3.46)
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with ‖Θ‖ 6 1 such that Θ ◦ πJ = θ, where πJ : A → A/J is the quotient map. Clearly
Θ(πJ (δt)) = θ(δt) = φ(t) for each t ∈ Cu2 \ {♦}. Consequently the required relations
hold.

Let us show that A/J is infinite-dimensional. We observe that

{Bn
1 : n ∈ N} = {Θ(πJ (δsn1 )) : n ∈ N} ⊆ Ran(Θ), (3.47)

and hence Ran(Θ) is infinite-dimensional by Remark 3.18. From this it readily follows
that A/J is infinite-dimensional too.

Finally, it is clear that A/J is non-commutative. �

Remark 3.20. It is obvious that the continuous homomorphism θ : A → B(`1) in the
proof above is not injective. We remark in passing however, that it is possible to find
(even explicitly construct) a continuous, unital, faithful ∗-homomorphism A → B(`2);
see [8, Remark 3.16].

Theorem 3.21. A/J is an infinite-dimensional, purely infinite Banach ∗-algebra.

Proof. This is immediate from Corollaries 3.10 and 3.17, and from Proposition 3.19. �

3.4.1. A description of the annihilator J ⊥. Let us start by pushing the characterisation
of J given by (3.27) a bit further:

Lemma 3.22. The following holds:

J = span{δsi#f0#δs∗j : i, j ∈ I}. (3.48)

Proof. Let us fix k ∈ I \ I0. In view of Lemma 3.2 (1) we have either

• s∗ks1 = ♦ and s∗ks2 = s∗p, where p ∈ I is such that k = 2p; or
• s∗ks2 = ♦ and s∗ks1 = s∗q, where q ∈ I is such that k = 1q.

We may assume without loss of generality that the first bullet point holds. Consequently

δs∗k#f0 = δs∗k − δs∗k#δs1s∗1 − δs∗k#δs2s∗2 = δs∗k − 0− δs∗ps∗2 = 0. (3.49)

With an entirely analogous argument we can show f0#δsl = 0 for any l ∈ I \ I0.
Hence from (3.27) and the above we conclude

J = span{δsis∗k#f0#δsls∗j : i, j,k, l ∈ I} = span{δsi#f0#δs∗j : i, j ∈ I}, (3.50)

as required. �

Let us define the maps

τk : Cu2 \ {♦} → Cu2 \ {♦}; sis
∗
j 7→ siks

∗
jk (k ∈ {1, 2}). (3.51)

Lemma 3.2 (2) ensures that τk is in fact well-defined. By the very same result we actually
find that τk is injective.

For both k ∈ {1, 2}, we can find “induced” bounded linear operators

Tk : A → A with Tk(δt) = δτk(t) (t ∈ Cu2 \ {♦}). (3.52)

From injectivity of τk it easily follows that Tk is an isometry. Let T := T1 + T2. Then T
is a bounded linear operator on A.
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In the following, A∗ denotes the (continuous) dual of A, which we identify with
`∞(Cu2 \ {♦}) as a Banach space. Let T ∗ : A∗ → A∗ denote the adjoint of T . We
observe that

(T ∗µ)(sis
∗
j ) = 〈T ∗µ, δsis∗j 〉 = 〈µ, Tδsis∗j 〉 = 〈µ, T1δsis∗j 〉+ 〈µ, T2δsis∗j 〉

= 〈µ, δτ1(sis
∗
j )〉+ 〈µ, δτ2(sis

∗
j )〉 = 〈µ, δsi1s∗j1〉+ 〈µ, δsi2s∗j2〉

= µ(si1s
∗
j1) + µ(si2s

∗
j2) (i, j ∈ I). (3.53)

We recall that the annihilator of J is J ⊥ := {µ ∈ A∗ : 〈f, µ〉 = 0 for all f ∈ J }. In
what follows, IA denotes the identity operator in A.

Lemma 3.23. The following hold:

(1) J = Ran(IA − T ), and
(2) J ⊥ = {µ ∈ A∗ : T ∗µ = µ}.

Proof. That J = Ran(IA − T ) is immediate from Lemma 3.22 and (3.52).
We now prove (2). Let us fix µ ∈ A∗. Suppose first T ∗µ = µ. Then 〈f, µ〉 = 〈f, T ∗µ〉 =

〈Tf, µ〉 or equivalently 〈f − Tf, µ〉 = 0 for every f ∈ A. Hence by continuity, 〈g, µ〉 = 0
for every g ∈ Ran(IA − T ). By (1) this is equivalent to µ ∈ J ⊥.

In the other direction suppose µ ∈ J ⊥. By (1) we clearly have f−Tf ∈ Ran(IA−T ) =
J , and hence 〈f −Tf, µ〉 = 0 or equivalently 〈f, µ〉 = 〈Tf, µ〉 = 〈f, T ∗µ〉 for each f ∈ A.
Thus T ∗µ = µ. �

3.4.2. A/J does not have purely infinite ultrapowers.

Proposition 3.24. Let F ⊆ I be finite with ∅ /∈ F , and set f :=
∑

i∈F δs∗i . Then

‖πJ (f)‖ = |F |.

Proof. Clearly ‖f‖ =
∑

i∈F ‖δs∗i ‖ = |F | and hence ‖πJ (f)‖ 6 |F |. Thus it suffices to

show ‖πJ (f)‖ > |F |. This in turn follows if we can find ξ ∈ (A/J )∗ satisfying ‖ξ‖ = 1
and |〈πJ (f), ξ〉| > |F |. Recall that π∗J : (A/J )∗ → A∗ is a linear isometry with range

equal to J ⊥. Hence it is sufficient to find µ ∈ J ⊥ satisfying ‖µ‖ = 1 and |〈f, µ〉| > |F |.
We shall now define such a µ. To this end, let us consider the following property. Let

α ∈ N0 be fixed. We say that t ∈ Cu2 \ {♦} has property (α−z) if

t = sis
∗
kj for some i, j ∈ Iα, and k ∈ F. (α−z)

Now define µ : Cu2 \ {♦} → C by setting

µ(t) :=

{
2−α if t has property (α−z) for some α ∈ N0

0 otherwise
(t ∈ Cu2 \ {♦}). (3.54)

We need to check that µ is well-defined. Assume α, β ∈ N0, i, j ∈ Iα, p,q ∈ Iβ and
k, l ∈ F are such that sis

∗
kj = sps

∗
lq. Then it follows from Lemma 3.2 (2) that i = p and

hence α = β.
It is clear that µ is bounded with ‖µ‖ = 1, hence µ ∈ A∗. We want to show that in

fact µ ∈ J ⊥, which in view of Lemma 3.23 (2) is equivalent to the following claim.

Claim 3.25. µ = T ∗µ.
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Proof of Claim. Assume first t ∈ Cu2 \{♦} has property (α−z) for some α ∈ N0. Then
t = sis

∗
kj for some i, j ∈ Iα and k ∈ F . Notice that si1s

∗
kj1 and si2s

∗
kj2 have property

((α+ 1)−z), hence by (3.53)

µ(t) = 2−α = 2−α−1 + 2−α−1 = µ(si1s
∗
kj1) + µ(si2s

∗
kj2)

= (T ∗µ)(sis
∗
kj) = (T ∗µ)(t). (3.55)

Assume now t ∈ Cu2\{♦} does not have property (α−z) for any α ∈ N0. By definition,
µ(t) = 0. By Lemma 3.2 (2) we can find unique α, β ∈ N0 and i ∈ Iα, j ∈ Iβ such that
t = sis

∗
j .

We observe that si1s
∗
j1 does not have property (γ −z) for any γ ∈ N0. For assume

towards a contradiction that there exist γ ∈ N0, p,q ∈ Iγ and l ∈ F such that si1s
∗
j1 =

sps
∗
lq. Then i1 = p and j1 = lq. In particular α+ 1 = γ and lq ∈ Iβ+1.

• Suppose α > β. By the above l ∈ Iβ+1−γ = Iβ−α. Consequently l ∈ I0 must
hold, which is equivalent to saying l = ∅. This contradicts ∅ /∈ F .
• Suppose α < β. Then j = wu for some u ∈ Iα and w ∈ Iβ−α and therefore
t = sis

∗
wu. As t does not have property (α−z) it follows that w /∈ F . However

u1 ∈ Iα+1 and q ∈ Iα+1, thus from wu1 = j1 = lq we conclude w = l ∈ F , a
contradiction.

An analogous argument shows that si2s
∗
j2 does not have property (γ −z) either for any

γ ∈ N0. From (3.53) we obtain (T ∗µ)(t) = (T ∗µ)(sis
∗
j ) = µ(si1s

∗
j1) + µ(si2s

∗
j2) = 0, as

required. �

Lastly, from the definition of µ we see

|〈f, µ〉| =

∣∣∣∣∣∑
i∈F
〈δs∗i , µ〉

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈F

µ(s∗i )

∣∣∣∣∣ =
∑
i∈F

2−0 = |F |. (3.56)

Hence the proposition is proved. �

Proposition 3.26. Let Θ: A/J → B(`1) be a continuous algebra homomorphism such
that Θ(πJ (δs∗i )) = Ai for all i ∈ {1, 2}. Then Θ is injective but it is not bounded below.

Proof. Let us consider the operator S := A1 + A2 ∈ B(`1). It immediately follows from
the definitions of A1 and A2 that Se2k = ek and Se2k−1 = ek for all k ∈ N. Thus,

‖Sx‖ =
∞∑
k=1

|x2k−1 + x2k| 6
∞∑
k=1

(|x2k−1|+ |x2k|) =
∞∑
n=1

|xn| = ‖x‖
(
x ∈ `1

)
.

Thus ‖S‖ 6 1. Let us fix an N ∈ N. We see that (δs∗1 +δs∗2)N =
∑

i∈IN δs
∗
i
, where clearly

|IN | = 2N and ∅ /∈ IN . Therefore by Proposition 3.24 we obtain ‖πJ (δs∗1 + δs∗2)N‖ = 2N .
Hence Θ cannot be bounded below. For assume towards a contradiction that there is

some K > 0 such that K‖πJ (f)‖ 6 ‖Θ(πJ (f))‖ for every f ∈ A. Therefore

K2N = K‖πJ (δs∗1 + δs∗2)N‖ 6 ‖Θ(πJ (δs∗1 + δs∗2)N )‖
6 ‖Θ(πJ (δs∗1)) + Θ(πJ (δs∗2))‖N = ‖A1 +A2‖N

= ‖S‖N 6 1, (3.57)

which is impossible as N ∈ N can be arbitrarily big.
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Lastly, A/J is purely infinite by Theorem 3.21, hence in particular it is simple by
Lemma 1.2 (1). As Θ is a non-zero continuous algebra homomorphism, Ker(Θ) = {0}
must hold. �

Theorem 3.27. The Banach ∗-algebra (A/J )U is not purely infinite for any countably-
incomplete ultrafilter U .

Proof. By Proposition 3.19 there is a continuous, unital algebra homomorphism Θ: A/J →
B(`1) with Θ(πJ (δs∗i )) = Ai for all i ∈ {1, 2}. Thus Θ is not bounded below by Proposi-
tion 3.26. Hence (A/J )U cannot be purely infinite for any countably-incomplete ultra-
filter U by Proposition 2.14 (a). �

Remark 3.28. Even though (A/J )U is not purely infinite for any countably-incomplete
ultrafilter U , it is always properly infinite. Indeed, A/J is purely infinite by The-
orem 3.21 hence it is properly infinite by Lemma 1.2 (2). Now it follows from [10,
Corollary 4.18] that (A/J )U is properly infinite for any ultrafilter U .

Remark 3.29. In [22] Phillips considers certain representations of the Leavitt algebra
L2 (see Remark 3.11) on Lp spaces, in particular on L1 spaces. Indeed, [22, Example 3.1]
constructs a representation of L2 on `1 which is essentially the same as the restriction of
our Θ to L2. Phillips explores generalisations of these representations, which are called
spatial, see [22, Definition 7.4, Lemma 7.5]. It is shown in [22, Theorem 8.7] that all
spatial representations give rise to isometrically isomorphic closures. This gives rise to
the p-analogues of the Cuntz algebras, [22, Definition 8.8]; see also [4] for more recent
study of these algebras. Thus the closure of the image of Θ, inside B(`1), is isometric to
O1

2, in the language of [22]. Our result of course shows that Θ : A/J → O1
2 is not an

isomorphism, because it is not bounded below.
Phillips shows in [23] that, in particular, O1

2 is purely infinite (with the same definition
as we use). The proof, however, is different to our proof that A/J is purely infinite, and
much more closely parallels the C∗-algebraic proof that O2 is purely infinite. A close
examination of the proof shows that it does not work for A/J , as various necessary
norm estimates are different (in the sense of not even being equivalent up to a constant)
for A/J .

It is not obvious to us that the proof in [23] provides an estimate for how C
O1

2
pi behaves,

and hence if O1
2 has purely infinite ultrapowers. Furthermore, given a lack of nice

“permanence” properties for purely infinite Banach algebras, it seems that knowing O1
2

is purely infinite is no direct help in showing that A/J is purely infinite, or vice versa.
We remark that similar questions around “permanence properties” are raised at the end
of [3].

We end the paper with a question of interest to Banach algebraists. Motivated by [23],
we ask if A/J is an amenable Banach algebra? Phillips shows that O1

2 is amenable, but
his techniques do not appear applicable to A/J due to differing (again, incomparable)
norm estimates. However, if A/J were amenable, this would immediately give a new
proof that O1

2 is amenable.
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