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Abstract

We introduce the concept of an abstract evolution system, which provides
a convenient framework for studying generic mathematical structures and
their properties. Roughly speaking, an evolution system is a category endowed
with a selected class of morphisms called transitions, satisfying certain natural
conditions. We illustrate our ideas by a series of examples from several areas
of mathematics.

Evolution systems can also be viewed as a generalization of abstract rewrit-
ing systems, where the partially ordered set is replaced by a category. In our
setting, the process of rewriting plays a nontrivial role, whereas in rewrit-
ing systems only the result of a reduction/rewriting is relevant. An analogue
of Newman’s Lemma holds in our setting, although the proof is a bit more
delicate, nevertheless, still based on Huet’s idea using well founded induction.
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1 Introduction

Let us imagine that a certain evolution or transition system is given, starting from
some initial state Fy and having the amalgamation property, namely, for every two
transitions f, g from the same state z it is possible to make several further transitions
fi,. ooy fus 91, - - -, Gm SO that the compositions

fno...ofiof and gm©...0g10g

are the same, in particular, leading to the same state. It is then natural to expect
that there exists a special infinite process (evolution) accumulating all possible states
and in some sense recording all possible transitions. Specifically, denoting a fixed

transition f from A to B by A ENy; , an infinite evolution process can be represented
as an infinite diagram of the form

AO Jo >A1 f1 >A2 f2 N

where A, is the initial state Ey. Saying that such a process absorbs all possible

transitions means that for every n, given a transition A, EA Y, there exist m > n
and a sequence of transitions

go TN N _
Y /Y]_ 7 ottt /Yk+1—Am

such that the composition f,,_1...f, is the same as gp o ... 0 gy o f or at least
approximates g, o ... 0 gg o f with a given in advance error. It turns out that if
a process with the absorption property exists, it is essentially unique. This means
that every two processes with the absorption property are isomorphic, which in
turn means that there is a way of “jumping” between the first and the second one
infinitely many times (technical details are explained below).

It is rather evident that the proper framework for describing and studying evolu-
tion systems comes from category theory. Namely, the objects are the system states



while the arrows are transitions or, more generally, compositions of transitions. Cat-
egory theory offers elegant and quite strong, yet at the same time manageable, tools.
Perhaps one of the basics is the concept of a functor. In order to describe an infinite
evolution process, it suffices to use functors from the set of non-negative integers
w (more traditionally denoted by N) viewed as a category in which the objects are
natural numbers and arrows are pairs of the form (n,m) with n < m.

Actually, a significant power of category theory lies within the notion of colimit
of a functor, unifying concepts like supremum in partially ordered sets, Cartesian
products, unions of families of structures, and so on. In particular, every functor
from the natural numbers has its colimit in a suitable, possibly bigger, category.

While it is possible to investigate infinite evolutions in their “pure” form, it is
more convenient and more natural to look at their colimits, identifying them with
the isomorphism classes of certain objects in a bigger category. As mentioned above,
actually we get an isomorphism class of a single object, which typically has many
symmetries. This is due to homogeneity, saying that every transition between two
states of evolution processes with the absorption property can be extended to (or
at least approximated by) an isomorphism between these processes.

Our goal is to introduce and study abstract evolution systems, focusing on evolu-
tions with the absorption property. In particular, we show obvious connections with
the theory of universal homogeneous structures. We also present several illustrative
examples.

The note is organized as follows. We start with motivating examples (Section 2)
and we introduce formal definitions in Section 3. Next we present a variant of the
theory of universal homogeneous structures (Section 4), with a result involving a
natural infinite game. The last Section 6 contains more examples and a discussion
of possible further research.

Historical remarks. While the concept of an evolution system is formally new
(although the ideas are at least as old as the theory of categories), the main results
are just adaptation of abstract Fraissé theory of universal homogeneous structures.
It was created by Roland Fraissé [2] in the fifties of the last century, in the language
of model theory. Namely, Fraissé observed that Cantor’s theorem characterizing the
linearly ordered set of the rational numbers can actually be stated and proved in a
much more general setup, using any first-order language. Actually, Fraissé consid-
ered relational structures only, however adding algebraic operations does not change
much. The main result of Fraissé was that, given a suitable class of finite structures
satisfying certain natural conditions (including the amalgamation property), there
exists a unique countable ultra-homogeneous structure from which one can recon-
struct the original class. Ultra-homogeneity (often called just homogeneity) means
that every isomorphism between finite substructures extends to an automorphism.
Fraissé theory was extended by Jénsson [5] to uncountable structures, with extra
cardinal arithmetic assumptions. As it happens, Fraissé theory actually has a purely
category-theoretic nature, although it was formally stated this way (almost forty



years after Fraissé’s work) by Droste and Gobel [I] and few years ago explored
by the first author [11, 9], also in metric-enriched categories. Let us mention that
Fraissé theory received a lot of attention after the seminal work of Kechrs, Pestov,
and Todorcevic [6] that discovers a correspondence between dynamic properties of
the automorphism group of the Fraissé limit and combinatorial properties of the
Fraissé class. Currently there are several lines of research exploring various faces of
the theory of universal homogeneous structures, mainly in model theory (including
its continuous variant dealing with metric structures) and in pure category theory.
Summarizing, mathematical objects resembling Fraissé limits appear in several ar-
eas of mathematics and one of the goals of this note is to present some of them,
through the “looking glass” of evolution systems.

2 Some examples

Before going into technical details, we now present several motivating examples that
could fit into our framework.

2.1 Cracking the glass

Let us look at a very natural evolution process starting from a nice “glass” rectangle
S (or any other polygon made of glass), whose transitions are formed by breaking
the glass into smaller and smaller pieces. A state in this system is a finite family of
pairwise disjoint polygons that can be glued together, recovering S. By cracking a
polygon P we mean replacing it by polygons @1, ..., Q) that play the role of the
“pieces” of P, namely, all of them can be translated in such a way that the union is
P and their interiors are pairwise disjoint. A transition from a state {Py,..., P,} to
a state {Q1, ..., Qn} is cracking each P; (or just a selected one) and just collecting
the pieces together. Actually, one should keep track of the possible gluing back, as
it is not unique in general. This can be easily achieved by keeping in mind a con-
tinuous surjective mapping f: UZ; Qi — U;_, P; performing the gluing, namely,
it is an isometry on each (); and each P; is the union of images of some @);s with
pairwise disjoint interiors. So after all, a transition from a state {Py,...,P,} to a
state {Q1, . .., @m} is a suitable continuous function from (JiZ; @; onto |Jj_, P that
‘memorizes’ the cracking in the sense that the function knows how to glue the pieces
back. It is rather clear that this transition system has the amalgamation property:
Given two crackings of a polygon P, there is a very concrete cracking of P refining
both, simply by intersecting all the pieces.

The infinite process of cracking the initial glass polygon S leads to a compact
planar set C', the inverse limit of the sequence of “cracking” mappings. If the process
has the absorption property, C' is homeomorphic to the well known Cantor set.
What is the conclusion? Well, one can say that no matter how nice the initial glass
polygon is, after cracking it thoroughly infinitely many times, we always receive the



same “dust”, namely, the Cantor set whose geometry is rather mediocre, as it lacks
nontrivial connected subsets.

Summarizing, there exist natural evolution processes, like the one described
above, whose limits might be of different nature and outside of the real world.
Nevertheless, investigating such processes and their limits may lead to a better un-
derstanding of the original evolution system.

2.2 Ribbons

Given a flexible ribbon, it is easy to imagine many possibilities of folding it so that
after squeezing (and possibly gluing) the material we obtain another ribbon. Such
a transition can be represented by a continuous surjection f: I — J, where I, J
are the two ribbons, namely compact intervals of the real numbers. Since each two
such intervals have exactly the same structure, we may assume I = J = [0, 1]. The
process of folding and squeezing the ribbon without reverting it can be recorded as
a continuous surjection f: [0,1] — [0, 1]. Thus, we are dealing with an evolution
system where all the states are identical, however the transitions could be quite
complicated. This is indeed the case, as the natural limit of the process with the
absorption property is the pseudo-arc, a rather intriguing planar geometric object.
Mathematically, this is the unique, up to homeomorphism, compact connected subset
[P of the plane which from a far distance looks like the interval (formally it is called
chainable or arc-like), while at the same time it cannot be written as the union of
two connected proper closed subsets. Furthermore, every nontrivial closed connected
subset of P is homeomorphic to P.

The amalgamation property of this system is known under the name Mountain
Climbing Theorem, saying that for each two reasonable (say, piecewise monotone)
continuous surjections f, g from the unit interval onto itself there exist continuous
surjections f’, ¢’ on the unit interval satisfying fo f' = go¢’. Assuming f(0) =0 =
g(0), f(1) =1 = g(1), drawing the graphs of f and g, we can imagine a mountain
and the statement above says that two climbers can go from the bottom to the top
on the two different mountain slopes in such a way that at each moment of time
their altitudes are the same.

The evolution process described above exhibits the fact that sometimes the states
play an inferior role to the transitions that carry all the relevant concrete information
about the process, leading to rather surprising structures, again very different from
the states of the system. On the other hand, the pseudo-arc contains all the relevant
information about possible continuous surjections between closed intervals.

2.3 Simplices

There is a clear definition of a finite-dimensional simplex: The convex hull of an
affinely independent finite set. So, the O-dimensional simplex is a point, the 1-
dimensional simplex is an interval, the 2-dimensional simplex is a triangle, and so



on. All the finite-dimensional simplices could be thought of states of some evolution
system. The question is how to describe transitions. The obvious possibility is to
consider embeddings onto faces, namely, the k-dimensional simplex A, can be iso-
metrically embedded into any A,, with m > k so that its extreme points are within
the extreme points of A,,. Let us assume that m = k + 1. Then there are exactly
(k+ 1) (k+2) = (k+ 2)! possibilities for such embeddings. This definitely makes
sense, nevertheless every infinite process in this system is actually the same: it is
a strictly increasing chain of finite-dimensional simplices in which the successor of
each simplex is built by adding one more vertex in a new dimension. It turns out
that another natural transition from Ay to Agy; can be a pair consisting of the
embedding as above together with a fixed affine projection p: Ary1 — Ag. Note
that p is actually determined by choosing a point z, € Aj. In any case, now our
evolution system becomes much more complicated, once we insist on recording the
projections. One can explain this approach by assuming that each simplex is actu-
ally a very flexible geometric figure, so that choosing a point inside of it one can pull
it out, obtaining a more complicated simplex-like figure, recording where the point
initially was. The reverse of the procedure of pulling out is affine, of course.

This evolution system clearly has the amalgamation property. An evolution pro-
cess with the absorption property leads to the Poulsen simplez, the unique (up to
affine homeomorphism) metrizable simplex (contained in the Hilbert space) whose
set of extreme points is dense.

Contrary to the previous examples, the Poulsen simplex contains all finite-
dimensional simplices, in fact every inverse limit of finite-dimensional simplices with
affine projections is affinely homeomorphic to a face of the Poulsen simplex. The
fact that the Poulsen simplex carries more information about the evolution system
than the other objects, like the Cantor set or the pseudo-arc is just illusion. An
explanation is very simple: The transitions in the system producing the Poulsen
simplex are capable of recording the history, namely, each simplex A, appears as a
concrete face of A,, for every m > k. This is not the case in the previous example
of glass polygons, where the transitions actually change the particles, by breaking
them into smaller ones.

2.4 Evolving populations

A population can be modeled by a set, possibly with some extra structure. For in-
stance, this extra structure could consist of an ordering representing some hierarchy.
Another possibility is adding graph relations representing various connections be-
tween the individuals (elements of the population). Summarizing, a population is
a finite set X together with several binary relations. Each relation could be either
a partial ordering imposing some hierarchy on the elements of X, or a symmetric
relation representing some connections between the elements of X. The set of all
types of the relations is called the language of the structure.

We can start with the empty population (). A transition from a population X



to X’ could be any mapping e: X — X’ preserving all the relations in the sense
that (xg,21) € E if and only if (e(xg),e(z1)) € E for every binary relation E that
is in the common language of X and X’. A more restrictive (and perhaps more
natural) option is requiring that X’ differs from X by at most one element. The
amalgamation property may sometimes fail. It will hold once we take all possible
finite structures (populations) in a fixed language. Once we add some axioms and
restricting the class, the amalgamation property needs to be verified, of course.

In any case, once our class of populations has the amalgamation property, there
exists an evolution sequence of populations whose limit is a random population,
namely, a countably infinite population realizing all possible relations between its
finite subsets.

Perhaps a more natural evolution system can be described by specifying the
ancestors, namely, a population A consists of two disjoint subsets ¢(A) and J'(A)
and a transition to another population B is specified by two mappings m: B — Q(A)
and f: B — &'(A) saying that m(z) is the mother and f(z) is the father of x € B.
Additionally, some relations on the populations can be imposed, for example, not
allowing to have ancestors from the same grandparents. The problem here is that
populations may deteriorate, namely, given a population A, it is always possible to
make a transition f: A — B such that B is much smaller than A. A reasonable
assumption on a population X is that both sets @(X), & (X) are nonempty. By this
way, there is a minimal population E;, such that Q(Eu) = {F} and &'(Epm) =
{M}. Clearly, every population admits a transition to Fyy,.

3 Preliminaries

We adopt the convention which many category-theorists support, namely, that ar-
rows are more important than objects. Thus, a category € will be identified with
its class of arrows and €(A, B) will denote the set of all €-arrows with domain A
and codomain B. For our purposes it will be sufficient to assume that all categories
are locally small, therefore €(A, B) is indeed a set, not a proper class. The class of
¢-objects will be denoted by Obj(€). The composition of €-arrows f: A — B and
g: B — C will be denoted by go f.

By a sequence in a category € we mean a covariant functor from N (treated as
a linearly ordered category) into €. Sequences will be denoted by Z, d@, etc. Given
a sequence Z: N — € we denote X,, = Z(n) and z" the bonding arrow from X,
to Xy, (n < m). When X € Obj(€) is the colimit of &, we write X = limZ and
we denote by z°° the colimiting arrows from X,, to X. In particular, 22° = z7° o z7"
whenever n < m.

We say that € has the amalgamation property if for every €-arrows f, g with
dom(f) = dom(g) there exist €-arrows f’, ¢’ such that f' o f = ¢’ o g. In Section 4
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we shall consider a specialized variant of the amalgamation property involving tran-
sitions.
For undefined notions concerning category theory we refer to Mac Lane’s mono-

graph [12].

3.1 Evolution systems

An evolution system is a structure of the form & = (U, .7, Ey), where U is a cat-
egory, Fy is a fixed U-object (called the origin) and .7 is a class of U-arrows (its
elements are called transitions). We are interested in evolutions (or evolution pro-
cesses), namely, sequences of the form

Ey—Ag— A == A, — -

where each of the arrows above is a transition. The category U serves as the universe
of discourse and the minimal assumption here is that every evolution has a colimit
in *U. Given a U-object X, we denote

7(X)={f € 7+ dom(f) = X},

that is, the set of all transitions with domain X. Two transitions f,g € 7 (X) are
isomorphic if there is an isomorphism A in U such that g = h o f. The relation of
being isomorphic will be denoted by ~ (formally, it should be ~x, as it depends on
the object X).

Denote by (7) the category generated by 7. The (7 )-arrows will be called
paths. Specifically, a non-identity path is any arrow of the form fyo... o f,,_1 where
fo, -+, fn_1 are transitions. We do not require that identities are transitions.

An object X of (77) will be called finite if there exist transitions fy, ..., f,—1 such
that f;: X; — X;.q for i <n, Xg = Ey and X,, = X. Such a sequence of transitions
can also be called a path of length n from Ey to X. There may be several paths with
the same composition, the minimal length will be called the size of X, denoted by
size(X). In particular, size(Ep) = 0. Formally, there might be a confusion with the
notion of a path, as in graph theory this should be a sequence of arrows or transitions,
while we have decided to use the name path for a composition of transitions and we
believe this little inaccuracy will not lead to any misunderstanding.

Finally, we denote by &% the category of all finite objects with paths, namely,
compositions of transitions (and identities). The length of f € & is the minimal n
such that f is the composition of n transitions. We agree that isomorphisms have
length zero and hence proper transitions (i.e. non-isomorphisms) have length one.

Note that & can also be regarded as an evolution system (a subsystem of
&), suitably restricting the class of transitions, although it would fail the minimal
assumption, as typically the colimit of an evolution is not a finite object.



3.2 More examples

Below we present some natural examples of evolution systems.

Example 3.1. Let .# be a class of finite structures in a fixed first-order lan-
guage consisting of relations only. It is convenient to assume .# is closed under
isomorphisms. Let 0.7 denote the class of all structures of the form | J, ., X», where
{ X, }new 18 a chain in .% . Let U be the category of all embeddings between structures
in 0.7. Let 7 consist of all embeddings of the form f: X — Y, where Y\ f[X] is a
singleton or the empty set. In other words, transitions are one-point extensions and
isomorphisms. Finally, £y might be the empty structure. Clearly, & = (U, .7, Ey) is
an evolution system.

Note that we can also define U to be the category of all homomorphisms between
o.%-objects. Yet another option is to consider embeddings or homomorphisms be-
tween arbitrarily large structures that can be built as unions of directed families
consisting of structures from .#. One can also replace the empty structure by any
(possibly large) structure, declaring it to be the origin Ej.

Finally, one can generalize this by allowing functions and constants in the lan-
guage. Now a transition would be an embedding f: X — Y such that Y is generated
by f[X]U {a} for some a € Y. A very concrete example here could be the class of
all finite fields, where it is natural to define the origin Ej as the p-element field,
where p is a fixed prime. By this way, the category &% consists of all finite fields of
characteristic p.

Example 3.2. Let .# be a fixed class of finite nonempty relational structures and
consider it as a category where the arrows are epimorphisms. A concrete example
could be just finite sets with no extra structure. Define transitions to be epimor-
phisms f: X — Y such that either f is an isomorphism (a bijection) or else there is
a unique y € Y with a nontrivial f-fiber and moreover f~!(y) consists of precisely
two points. Define U to be the opposite category, so that f € U is an arrow from Y
to X if it is an epimorphism from X onto Y. Then & = (0, .7, Ey) is an evolution
system, where Fj is a prescribed finite structure in .%.

Example 3.3 (Monoids). A monoid M = (M, -, 1) is just a category with a single
object M, whose arrows are the elements of M and - is the composition. It can
be turned into an evolution system by selecting any subset of M as the class of
transitions. Evolutions may still lead to something new. A concrete example is the
multiplicative monoid (Z \ {0}, -, 1), where perhaps the most natural choice for the
transitions are all prime numbers (plus possibly the identity, that is 1). An evolution
may be eventually constant one, which corresponds to a concrete natural number.
Otherwise, it corresponds to a so-called super-natural number, namely, a formal
infinite product of nonnegative powers of primes

H pa(p)7

peP



where P denotes the set of all primes and «a(p) € N U {oo}. Note that p> means
that the prime p occurs infinitely many times in the evolution. Of course, the most
complicated evolution corresponds to Hpep p>.

Non-zero integers with multiplication actually encode all embeddings of the
group (Z,+) into itself (an embedding is determined by the image of 1). Thus,
super-natural numbers correspond to sequences of self-embeddings of (Z,+). Their
colimits are torsion-free abelian groups whose all finitely generated subgroups are
cyclic. The most complicated one is (Q, +), corresponding to [] p p™.

Example 3.4 (Posets). Let P = (P, <) be a partially ordered set with a fixed
element L. For simplicity, we may assume L is minimal and P is well founded. In
that case it is natural to say that a pair (z,y) is a transition if x < y and there is no
z with z < z < y. By this way, P becomes an evolution system with origin L. Recall
that every poset (in fact, a quasi-ordered set) is a category in which the arrows are
pairs (z,y) with x <y and identities are pairs (x,z). In our case, an evolution is a
sequence
l=zg<1 < - <2y < Ty < -+

such that no z € P is strictly between two consecutive elements. Finite objects are
those that can be reached from L by finitely many transitions. For instance, if P is
a tree and L is its root, then finite objects are those living on the finite levels.

Example 3.5. Fix an arbitrary category U and fix a U-object Ey. Define .7 = Q.
Then & = (0,7, Ey) is obviously an evolution system. It is perhaps a bit more
interesting when Ej is weakly initial in 20 (that is, B(Ey, X) # ) for every X €
Obj(*Y)). In any case, this shows that every category can be easily converted to an
evolution system.

The last example indicates that evolution systems are so general that perhaps
they lead to nothing interesting. One of our goals is to convince the readers that
this is not the case.

4 Generic evolutions

In this section we show that, under some natural assumptions, there exists an evolu-
tion with the absorption property and it is unique up to isomorphism of the colimits.
Next we show that such an evolution is “the most complicated one” and it can be
described in terms of a natural infinite game.

Most of the results are adaptations of the classical theory of universal homoge-
neous structures, due to Fraissé [2], developed in the fifties of the last century in the
context of model theory. Game-theoretic approach is due to Krawczyk and the first
author [10, 7]. Throughout this section we assume that & = (0, .7, E) is a fixed
evolution system.
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Definition 4.1 (Absorption property). Let @ be an evolution. We say that @ has
the absorption property if for every n € w, for every transition ¢: U, — Y there are
m >n and a path g: Y — U, such that got = u".

In other words, any transition going out of the evolution is “absorbed” at some
point. The key tool for proving the existence of such an evolution is the amalgama-
tion property, which has been considered many times in pure and applied category
theory. Below we state its variant involving transitions, often more convenient to
check in concrete examples.

Definition 4.2 (Amalgamation property). We say that & has the finite amalga-
mation property (FAP) if for every two transitions f, g with dom(f) = dom(g) €
Obj(&1) there exist transitions f, ¢’ such that f'o f = ¢’ o g, that is, the following
square

1s commutative.

It might seem more natural to define the amalgamation property for all transi-
tions, not restricting to finite objects. On the other hand, the FAP is relevant for
the existence of a generic evolution and it does generally not imply the amalgama-
tion property at infinite objects (even though in most of the natural examples the
amalgamation property holds everywhere).

The next simple lemma is actually quite crucial.

Lemma 4.3. The FAP implies that &™ has the amalgamation property. More pre-
cisely, if f, g are &% -arrows with dom(f) = dom(g) and f is a transition, then there
exist &M -arrows f',q" such that f'o f = ¢’ og and ¢ is a transition.

Proof. Easy induction on the length of &"-arrows. ]

The last ingredient needed for the existence of an evolution with the absorption
property is some kind of smallness, formally defined below.

Definition 4.4. We say that an evolution system & = (0,7, Ey) is essentially
countable if for every finite object X there is a countable set of transitions .7 (X) C
7 (X) such that for every transition f € .7 (X) there is an isomorphism h such that
hofe . Z(X).

We are now ready to state the main “existential” result.

Theorem 4.5. Assume & is an essentially countable evolution system that has
the finite amalgamation property. Then there exists a unique, up to isomorphism,
evolution with the absorption property.

11



Proof. The existence can be proved by easy induction with a suitable bookkeeping.
Uniqueness is a standard back and forth argument. Below we provide some details.

The existence. We use the powerful fundamental property of the infinity: The
set w of non-negative integers can be decomposed into infinitely many infinite sets,
say, w = U, Bn, where each B, is infinite and B; N B; = () whenever ¢ # j. The
sets B,, will be used for bookkeeping.

Namely, we start at the origin Fy by enumerating all transitions from Ej (up
to isomorphism) using the numbers from B,. We use the first one to obtain the
first step of our evolution eq: Ey — FE;. We enumerate all the isomorphic types of
transitions from FE;, using the numbers from Bj.

At step n, we take the first transition ¢ from some E; with ¢ < n that was not
considered yet and we define e,,: E,, — F, .1 as the result of the amalgamation

E, — E,

f Jen

X —— B

which is possible due to Lemma 4.3. Note that the horizontal arrows in the square
above are compositions of transitions, namely, arrows of &%, We enumerate all
transitions from FE, 1 (up to isomorphism), using the set By 1.

After infinitely many steps, we obtain an evolution

Ey y B > B,

that has the absorption property, because each transition (up to isomorphism) has
been taken into account.

Uniqueness. Suppose u, ¥ are two evolutions with the absorption property. We
start with the absorption of @, obtaining a suitable &-arrow fy: Vo — Uy,. Then
we use the absorption property of ¥ to obtain a suitable arrow go: Uy, — V4,. And so
on. Instead of writing the technical details, we present the relevant (infinite) diagram

Uy —— U,

w27 N
% S ..

> Vi, > Vi, > V)

in which Uy = Ey = V. Note that the sequences { f, }ne. and {g, }nen converge to
pairwise invertible arrows between the colimits U,, = lim @ and V,, = lim ¢, showing
that U, and V, are isomorphic. O

Corollary 4.6. Theorem 4.5 is valid if FAP is replaced by the amalgamation prop-
erty of &,

Proof. Replace & by a new evolution system in which transitions are arbitrary &fn-
arrows. ]
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4.1 An abstract Banach-Mazur game

Fix a locally countable evolution system & with the finite amalgamation property.
We define the following game BM (&, U) for two players, say, Fve and Odd. Here,
U is a fixed U-object. The rules are as follows. Eve starts the game by choosing a
transition eqg: Ey — Ag. Odd responds with a transition e;: Ay — A;. Eve responds
with an transition e5: A; — As; Odd responds with a transition es: Ay — Az. And
SO on.

Note that the rules for both players are identical. After infinitely many steps,
the players build an evolution a@. We say Odd wins if the colimit of @ is isomorphic
to U. Otherwise, Fve wins.

Definition 4.7. An object U is generic if Odd has a winning strategy in the game
BM (&,U).

Note that a generic object is unique up to isomorphism (as long as it exists, of
course). The reason is simple: Assuming U, V are generic, Odd can use a winning
strategy aiming at U while at the same time Eve can use strategy Odd’s strategy
aiming at V. Playing such a game, the colimit is isomorphic to both U and V.

Theorem 4.8. The following conditions are equivalent.

(a) Odd has a winning strategy in BM (&, U).
(b) U is the colimit of an evolution with the absorption property.

Proof. (b) = (a) Suppose we are given a finite step of the game

e e en
Ey —— A) —— - —5 A,

and it is Odd’s turn (that is, n is even). He chooses i < n and a transition t: A; — B.
He responds with a transition e, 1: A, — A, 1 realizing an amalgamation of ¢ and
the given path from A; to A, (namely, the composition e, o...o0e¢;y1). This strategy
is winning as long as Odd makes a suitable bookkeeping, so that all transitions from
A;s are taken into account. This is possible, since & is locally countable.

(a) = (b) Suppose Odd has a winning strategy in BM (&, U). Eve can use the
strategy described above, so that the resulting evolution has the absorption property.
This shows that U is the colimit of an evolution with the absorption property. [J

By the result above, a generic evolution will be the one whose colimit is a generic
object in the sense described above. Thus, once our evolution system has the finite
amalgamation property and is locally countable, a generic evolution is precisely the
one with the absorption property. Without amalgamations, a generic evolution may
still exist. In pure category theory this has been treated in [3]. The original Banach-
Mazur game was invented by Mazur in the thirties of the last century, it was played
with open intervals of the real line. It was later generalized to arbitrary topological
spaces by Choquet, therefore it is also known under the name Choquet game. We
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refer to the survey article [14] for detailed information on infinite topological games
and to [10, 7] for a recent study of the model-theoretic variant of the Banach-Mazur
game. We also refer to the monogrpahs [3, 15] for more general infinite games in
model theory.

4.2 Cofinality

We now turn to universality, or rather cofinality, as the term “universal object” has
different meanings in category theory and model theory. So, given a category €, we
say that a €-object U is cofinal if for every €-object X there is a €-arrow from X to
U. This becomes interesting when the €-arrows are some kinds of monics (in model
theory: embeddings). Recall that we are working with a fixed evolution system &
with the finite amalgamation property.

Theorem 4.9 (Cofinality). Let 4 be an evolution with the absorption property.
Given another evolution T, there exists a B-arrow from lim ¥ to lim .

Proof. Our goal is to obtain an infinite sequence of &"-arrows fo, fi,..., so that
the following infinite diagram

u: UO > Uk1 > > Ukn,1 > Ukn >
fOT f1T fnflT fn]\
T: Xo > X1 > Xno1 > Xn

is commutative. Given f,_1, in order to find f,, we first amalgamate f,_; and

xr_y: X1 — X, obtaining a commutative square

Ukn71 —t> Y

b

anl z"—> Xn
n—1

in which ¢ is a transition. Next we use the absorption property of @ so that f,, is the

composition of g and a suitable &%"-arrow h satisfying h ot = uig_l. Finally, the
colimiting arrow fu: lim # — lim @ witnesses that U (lim Z, lim @) # 0. O

4.3 Homogeneity

We fix an evolution « with the absorption property. Let U = lim . Recall that u°
denotes the colimiting arrow from U, to U. A trail is an arrow of the form u2° o f,
where n € w and f € &',

Theorem 4.10 (Homogeneity). Assume X is a finite object and i,5: X — U are
trails. Then there exists an automorphism h: U — U such that j = hoi.

14



Proof. Let us recall the infinite diagram from the proof of uniqueness (Theorem 4.5):

U() —_— ng

W[ 27N N
Vb S ..

> Vi, > Vi, > V)

Note that the same inductive arguments can be used when the sequence v is replaced
by @ and g, is replaced by any &i-arrow. Next, we replace Uy by X, knowing that
i = ug od and j = ue o j’ for some ko, fo. Finally, we have the following infinite
diagram

s/
X —— Uy, > Uy, ——

| 27 Ny 27Ny
J
Ugo yoe Ugn

> Ur, > » Uppyy — -+

built inductively, using the absorption property. The colimiting arrow is the required
automorphism. O

In model theory (see Example 3.1), homogeneity is often phrased as follows:
Every isomorphism between finitely generated substructures extends to an auto-
morphism. This holds when the class of structures under consideration is hereditary,
namely, closed under finitely generated substructures and isomorphisms.

5 Confluence and termination

The reader may have already noticed that evolution systems resemble abstract
rewriting systems (see e.g. [1]), namely, structures of the form X = (X, —), where —
is a binary relation, called rewriting or reduction. The so-called reflexive-transitive
closure of — gives a quasi-ordering of X, therefore X becomes a category. The only
missing ingredient is the origin, which could be any element of X. Rewriting systems
are meant to model processes like reducing certain expressions (term rewriting) or
processes (graph rewriting), and so on. A typical feature is termination which, in our
language, says that there are no evolutions or every evolution “stops” in the sense
that from some point on all possible transitions are isomorphisms. Another useful
feature is confluence, which corresponds precisely to the amalgamation property of
the category of finite objects with paths.

We shall now formalize these concepts in the language of evolution systems and
we prove a generalization of the celebrated Newman’s Lemma (also called the dia-
mond lemma, see [13] and [1]) saying that in a terminating system local confluence
implies the global one.

15



Definition 5.1. An evolution system & is confluent if the category & of finite
objects with paths has the amalgamation property.

The system & is called locally confluent if for every finite object X, for every two
transitions f, g € 7 (X) there exist paths f’, ¢’ such that f'o f = ¢ og.

Note that local confluence is formally weaker than the FAP, while confluence is
sufficient for the theory of generic evolutions (by Corollary 4.6). Actually, there is a
subtle problem here: Absorption property needs to be refined.

Definition 5.2. An evolution @ has the path absorption property if for every n € w,
for every path f: U, — Y there exists a path g: Y — U, with m > n, such that

gof=ur.

One of the motivations of introducing the finite amalgamation property is that
it gives equivalence of the absorption property and the path absorption property.
The results of Section 4 can be rephrased as follows:

Theorem 5.3. Assume & is a confluent, locally countable evolution system. Then
there exists an evolution u with the absorption property. Its colimit lim u is generic
in the sense of the Banach-Mazur game introduced in Section j.1. Furthermore, it
is homogeneous with respect to &% and cofinal in &°.

The proof is actually repeating the arguments from Section 4, replacing transi-
tions by paths.

Definition 5.4. A transition is called trivial if it is an isomorphism. An evolution
system is terminating if there is no evolution consisting of nontrivial transitions. An
object X is normalized if 7 (X) consists of isomorphisms (i.e. all transitions from
X are trivial).

In other words, an evolution system is terminating if every path starting from
the origin ends at a normalized object. The term “normalized” is inspired by the
“normal form” in the theory of rewriting systems.

Definition 5.5 (Isomorphism Amalgamation Property). An evolution system &
has the isomorphism amalgamation property (briefly: IAP) if for every transition
f: X =Y, for every isomorphism h: X — X there exist a transition #': X — Y
and an isomorphism f’: Y — Y satisfying f o f = h' o h.

This property can possibly be called “transferring transitions” as it really says
that every transition can be “moved” by an arbitrary isomorphism.
We are now ready to state our variant of Newman’s Lemma.

Theorem 5.6. A locally confluent terminating evolution system with the isomor-
phism amalgamation property, in which all isomorphisms are transitions, is conflu-
ent.
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Proof. We follow the scheme of Huet’s proof of Newman’s Lemma [1]. Namely, fix
an evolution system & as in the theorem and define a strict ordering on & by
declaring X < Y if there is a path from X to Y and at least one of the transitions
on this path is nontrivial. Since & is terminating, the ordering > is well founded
on the class of all finite objects. This is indeed a strict ordering, as it is impossible
to have both X < Y and Y < X, which would lead to an evolution consisting of
nontrivial transitions. Note that >-minimal elements are precisely the normalized
finite objects and they trivially admit amalgamations in &f".

Now fix an arbitrary finite object Z and two paths f: 7 — X, g: Z — Y. Let
us assume first that ¢ is a transition.

If all the transitions composing f are trivial then f is an isomorphism, therefore
it is a transition, so we amalgamate f, ¢ easily. Otherwise, f = f o foo h, where h is
an isomorphism, fy is a nontrivial transition and f is a path (possibly an identity).
Using the [AP, we amalgamate g and h by a transition and an isomorphism. Thus,
we may assume h =1ily and f = fo f,. Let Z = dom(f). Then Z < Z.

By local confluence, there are paths k, ¢ such that ko fy = ¢ o g. By inductive
hypothesis (over the well founded ordering >), there exist paths f’, k' such that
f'o f =k ok. Finally, f/ and k" o £ provide an amalgamation of f and g.

This actually completes the proof, as the general case, where ¢ is a path, is
settled by an obvious induction on the length. [

Corollary 5.7. Under the assumptions of Theorem 5.6, every evolution is generic.

Proof. Fix an evolution ¢ and let N be a natural number such that F,, is normalized.
Fix n < N and fix a path f: E, — Y. By confluence, there are paths f’, ¢’ such
that f'o f = ¢’ o g, where g = ¢Y: E, — Ey. Since Ey is normalized, ¢’ is an
isomorphism. Thus (¢’) ! o f” shows that f is absorbed by €. Finally, any path from
E}, with k£ > N is an isomorphism, therefore it is absorbed by an isomorphism. [

Example 5.8. Let U be the category of linearly ordered sets and let Ey = (Q, <).
Define 7 (Ejy) to be all automorphism of (Q, <) with one exception: An embedding
e: Q — Q such that e[Q] = Q \ {0}. Define .7 (X) = iy for every other U-object
X. So, there is precisely one nontrivial transition in & = (0, .7, Ey). On the other
hand, paths of the form e o h, where h is an automorphism of (Q, <) are isomorphic
to self-embeddings of QQ corresponding to filling an arbitrary single gap. Obviously,
there are continuum many such paths, up to isomorphism. Consequently, there is
no generic evolution. Note that & totally fails the TAP.

6 Conclusions and future research

It should now be clear that all the examples described in Section 2 can be formally
phrased in the language of evolution systems. One of them (ribbons) actually has
only the approzimate amalgamation property, namely, two transitions f, ¢ (contin-
uous surjections of the unit interval) can be completed by transitions f’,¢" to a
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square

that commutes with a prescribed small error € > 0. That is, |f(f'(t)) —g(¢'(t))] < €
for every t € 1. Formal treatment of such situations needs a category enriched over
complete metric spaces (see [9] for details). On the other hand, in this particular case,
one can restrict to piecewise linear surjections, where the amalgamation property
(the Mountain Climbing Theorem) holds with no errors.

Another example from Section 2, dealing with simplices, does not have this
problem (amalgamation property just holds true), however, there are too many
transitions and the absorption property holds with errors. Again, in order to treat
it formally, one needs to use metric-enriched categories. On the other hand, in this
particular case it is possible to restrict the class of transitions so that the problem
disappears. Specifically, given a simplex A,,, a transition could be an affine surjection
[ Apsr — Ay, that is identity on A,, and the “new” vertex is mapped to a point
of A,, that has rational barycentric coordinates. By this way our evolution system
is locally countable and the theory of Section 4 applies.

Concerning further research, we believe that the concept of evolution systems
will open the gate for investigating new aspects of the theory of generic objects and
related things, like the complexity of the system, the existence of random evolutions,
and so on. In fact, evolution systems without any confluence properties (e.g. trees)
are of some interest too. One of the natural lines of research here is searching for tools
that would allow comparing and classifying evolution systems, perhaps emphasizing
on those admitting generic evolutions.

Another interesting line of research is studying probabilistic approach, especially
when the system is locally finite, where it is natural to impose the uniform proba-
bility. In this setting, evolution systems can model abstract stochastic processes.

Finally, abstract evolution systems could possibly play some role in automata
theory, where an automaton is viewed as a category and transitions are the only way
of moving from one state to another. One can then specify a family of objects that
would be “accepting” the input, that is, the origin of the system in our terminology.
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