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Abstract

The main objects of the present work are the quantum Navier–Stokes and quantum Euler

systems; for the first one, in particular, we will consider constant viscosity coefficients. We

deal with the concept of dissipative solutions, for which we will first prove the weak-strong

uniqueness principle and afterwards, we will show the global existence for any finite energy

initial data. Finally, we will prove that both systems admit a semiflow selection in the class

of dissipative solutions.
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1 Introduction

At temperatures close to absolute zero, quantum effects appear relevant in the motion of some

fluids: instead of individual atoms bouncing around, the particles move like one single body

and, as a consequence of the vanishing viscosity, the fluid start to “creep” along the surfaces of

its container, coming out of it if the latter is not properly sealed. This bizarre phenomena is just

one of the many applications that motivate the study of quantum fluid dynamics: it provides
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The institute of Mathematics of the Czech Academy of Sciences is supported by RVO:67985840. † The research
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useful tools for understanding not only the behaviour of atomic Bose–Einstein condensates

and the transition of the aforementioned fluids into zero-viscosity ones (superfluids) [39], but

also the mechanics of quantum semiconductors [26] and the trajectories arising from the de

Broglie–Bohm theory [45].

1.1 The system

Motivated by the Thomas–Fermi–Dirac–Weizsäcker density functional theory [46], the motion

of a quantum fluid can be modelled starting from the classical systems describing viscous or

inviscid fluids and adding an extra term containing the Bohm quantum potential [41]

Q(%,∇x%,∇2
x%) =

~
2

∆x
√
%

√
%
, (1.1)

where % denotes the density of the fluid. More precisely, we are going to consider the following

two models.

• The compressible quantum Navier–Stokes system, whenever we are dealing with viscous

fluids:

∂t%+ divx(%u) = 0, (1.2)

∂t(%u) + divx (%u⊗ u) +∇xp(%) = divx S(∇xu) + %∇xQ(%,∇x%,∇2
x%). (1.3)

• The compressible quantum Euler system, in case of inviscid fluids:

∂t%+ divx J = 0, (1.4)

∂tJ + divx

(
J⊗ J

%

)
+∇xp(%) = %∇xQ(%,∇x%,∇2

x%). (1.5)

In both systems, the unknown variables are the density % = %(t, x), the velocity u = u(t, x)

and the momentum J = (%u)(t, x) of the fluid, while p = p(%) denotes the barotropic pressure,

S = S(∇xu) the viscous stress tensor and Q = Q(%,∇x%,∇2
x%) the quantum potential defined

in (1.1). More precisely, we will consider the standard isentropic pressure

p(%) = a%γ (1.6)

with a a positive constant and γ > d
2 the adiabatic exponent, while the viscous stress tensor

will be a linear function of the velocity gradient

S(∇xu) = µ

(
∇xu +∇>x u− 2

d
(divx u)I

)
+ λ(divx u)I (1.7)

where µ > 0 and λ ≥ 0 denote the shear and bulk viscosities, respectively. Notice that we can

write

%∇xQ(%,∇x%,∇2
x%) = divxK(%,∇x%,∇2

x%)

with

K(%,∇x%,∇2
x%) =

~
4

(
∇2
x%− 4 ∇x

√
%⊗∇x

√
%
)
.
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We will study both systems on the set (0,∞) × Ω, where Ω ⊂ Rd, d = 2, 3, is a bounded

domain of class C2, on the boundary of which we impose the homogeneous Neumann condition

for the density and the no-slip condition for the velocity

∇x% · n|∂Ω = 0, u|∂Ω = 0, (1.8)

when considering system (1.2)–(1.3), while we replace the boundary condition for the velocity

with the one for the momentum

∇x% · n|∂Ω = 0, J · n|∂Ω = 0, (1.9)

when considering system (1.4)–(1.5).

The last ingredient we need to formally close the systems is the energy. Introducing the

pressure potential P = P (%) as a solution of

%P ′(%)− P (%) = p(%), (1.10)

which we will consider as

P (%) =
a

γ − 1
%γ ,

the total energy balance associated to the quantum Navier–Stokes system (1.2)–(1.3) with the

boundary conditions (1.8) is

d

dt

ˆ
Ω
E(t) dx+

ˆ
Ω
S(∇xu) : ∇xu dx = 0 with E(t) =

1

2
%|u|2 + P (%) +

~
2
|∇x
√
%|2, (1.11)

and similarly, the total energy balance associated to the quantum Euler system (1.4)–(1.5) with

the boundary conditions (1.9) reads

d

dt

ˆ
Ω
E(t) dx = 0 with E(t) =

1

2

|J|2

%
+ P (%) +

~
2
|∇x
√
%|2. (1.12)

See Section A.2 for more details.

We finally point out that the quantum potential Q = Q(%,∇x%,∇2
x%) can be rewritten as

Q(%,∇x%,∇2
x%) = K(%)∆x%+

1

2
K ′(%)|∇x%|2, (1.13)

choosing the function K = K(%) such that

K(%) =
~
4%
.

Systems (1.2), (1.3) and (1.4), (1.5) with the quantum potential replaced by the more general

expression appearing on the right-hand side of (1.13) are called Navier–Stokes–Korteweg and

Euler–Korteweg systems, respectively; usually, K : (0,∞)→ (0,∞) is a smooth function.
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1.2 State of the art

Given their importance in many applications, quantum fluid systems were widely studied in

the last years. However, in literature we may typically encounter density-dependent instead

of constant viscosity coefficients in the definition of the viscous stress tensor (1.7), leading

to more mathematical difficulties due to the possible presence of vacuum. This alternative

formulation is a consequence of a different derivation of the model, based on a Chapman–

Enskog expansion of the Wigner function [11]. For the quantum Navier–Stokes system with

non-constant viscosity coefficients, the existence of global-in-time weak solutions with special

test function ρφ instead of classical test function φ on the d-dimensional torus, d = 2, 3, was

shown by Jüngel [34] with the constraint γ > 3 for d = 3 and the viscosity constant smaller

than the scaled Plank constant; his result was later improved by Dong [19] and by Jiang [32],

including the cases when the viscosity constant is equal and bigger, respectively, to the scaled

Plank constant. Subsequently, the existence of global-in-time weak solutions with the standard

test function φ was achieved with the help of extra terms in the equations that could guarantee

the velocity to be well-defined even in the vacuum region: for instance, Gisclon and Lacroix-

Violet [30] considered a cold pressure term, while Vasseur and Yu [43] added a damping term

in the balance of momentum. Inspired by Li and Xin [38], Antonelli and Spirito [3] proved the

global-in-time existence result for weak solutions without any extra terms, but requiring the

viscosity and capillarity constants to be comparable. Recently, this assumption was removed by

the same authors in [4], and by Lacroix-Violet and Vasseur [36]. Stability, i.e. the continuous

dependence of solutions on initial data, was studied by Giesselmann, Lattanzio and Tzavaras

[29] via a relative energy approach. Recently, Bresch, Gisclon and Lacroix-Violet [10] proved

the existence of global-in-time dissipative solutions on the d-dimensional torus, d = 2, 3, of

the quantum Navier–Stokes system with a linear density-dependent shear viscosity and zero

bulk viscosity. Moreover, taking the vanishing viscosity limit, they obtained the existence of

global-in-time dissipative solutions to the quantum Euler system (1.4), (1.5). For the latter,

there are several results concerning well-posedness in the class of weak solutions. Donatelli,

Feireisl and Marcati [16] showed that the system is ill-posed as uniqueness fails to be verified:

for sufficiently smooth initial data, the system admits infinitely many weak solutions, even

considering only the class of those satisfying the energy inequality. Later on, Antonelli and

Marcati [2] proved the existence of global-in-time irrotational weak solutions by converting the

Euler system into the non-linear Schrödinger one, while Audiard and Haspot [6] showed global

well-posedness for small irrotational data in dimension d ≥ 3. Last but not least, let us stress

that important progresses have been made on singular limits and other topics for quantum fluid

models [5, 12, 15, 17, 18, 33, 37].

Even though there is a wide range of significant results concerning well-posedness of quantum

systems, we emphasize that there aren’t any regarding the existence of global-in-time weak

solutions for the quantum Navier–Stokes system (1.2), (1.3) with constant viscosity coefficients,

even in dimension d = 2, and for the quantum Euler system (1.4), (1.5) for large initial data,

as pointed out by Bresch et al. [10]. Therefore, the latter are important and interesting issues.
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1.3 Structure of the paper

In the present study, we are interested in well-posedness of the aforementioned quantum systems;

specifically, we are concerned with existence and uniqueness of global-in-time solutions for

any finite energy initial data. Inspired by the work of Abbatiello, Feireisl and Novotný [1],

we will consider dissipative solutions, i.e. solutions satisfying the equations and the energy

inequality in the distributional sense but with extra “defect terms”, which we may call Reynolds

stresses, collecting the possible oscillations and/or concentrations arising from the convective,

pressure and quantum terms, cf. Definitions 2.1 and 2.2. This notion of solution can be seen

as a generalization of the concept of dissipative measure–valued solution, developed by Feireisl,

Gwiazda, Świerczewska-Gwiazda and Wiedemann [22], implying in particular that they can be

taken into account in the analysis of convergence of certain numerical schemes and, therefore,

they can be identified as strong limits of finite element–finite volume schemes in the spirit of

Feireisl and Lukáčová–Medvid’ová [24]. We point out that our definition of dissipative solution

differs from the one considered in [10], as the latter is based on a relative energy inequality. A

natural question is whether strong solutions are uniquely determined in the class of dissipative

solutions; in order to give a positive answer, we will prove the weak-strong uniqueness principle:

if the system admits a sufficiently regular solution in the classical sense then it must coincide

with the dissipative solution emanating from the same initial data, cf. Theorems 3.1 and 3.2.

As the name suggests, this technique was first developed by Prodi [40] considering weak/strong

solutions for the incompressible Navier–Stokes equations, and later adapted for compressible

systems (see e.g. [21], [23], [25], [28], [31], [44]). Our next goal is the existence of dissipative

solutions. More precisely, we will first prove the existence result for the quantum Navier–Stokes

system (1.2), (1.3) applying the classical fixed point argument in the spirit of [20], cf. Theorem

4.1, and afterwards, we will obtain the existence result for the quantum Euler system (1.4),

(1.5) as a vanishing viscosity limit of the Navier–Stokes equations, cf. Theorem 4.2. Finally,

to handle the problem of uniqueness, especially in view of the “negative” result stated in [16]

for the quantum Euler system, we may look for that particular dissipative solution in the

class of the ones emanating from the same initial data satisfying the semigroup or semiflow

property : if we let the system run from time 0 to time t1, we restart it and let it run for a time

interval of amplitude t2, the trajectory described by the selected solution will be the same as

we have run the system directly from time 0 to time t1 + t2. We will refer to the process of

finding such particular solution as semiflow selection, cf. Definition 5.1. Clearly, if uniqueness

holds, the semigroup property is verified by any solution and the semiflow selection is simply

the map associating to any admissible data that one unique solution emanating from it. The

construction of a semiflow selection was originally a stochastic tool, first developed by Krylov

[35] to study well-posedness of certain systems and later adapted by Flandoli and Romito [27],

Breit, Feireisl and Hofmanová [8] for the incompressible and compressible, respectively, Navier–

Stokes systems. Inspired by deterministic adaptation of Cardona and Kapitanski [13], we will

prove the existence of a semiflow selection for the quantum Navier–Stokes and quantum Euler

systems in the class of dissipative solutions, cf. Theorems 5.2 and 5.3. We will essentially follow
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the same strategy developed by Breit, Feireisl and Hofmanová [9] for the compressible Euler

system in the class of measure–valued solutions. However, there will be a slightly difference

in the choice of the trajectory space: instead of the space of continuous functions as in [13] or

the space of integrable functions as in [9], we will work with the Skorokhod space of càglàd (a

French acronym for “left-continuous and having right-hand limits”) functions. The advantages

of this choice is that on the one hand we are able to consider the energy, which is typically

a non–increasing quantity with possible jumps, as a third state variable, while on the other

hand we will get the existence of well-defined semiflow selections at any time. We point out

that, thanks to the weak-strong uniqueness principle, solutions in the classical sense are always

contained in the selected semiflow as long as they exist.

2 Dissipative solutions

In this section, we provide the definition of dissipative solution for both the quantum Navier–

Stokes and quantum Euler systems. We will refer to the measure R appearing in the weak

formulations of the balance of momentum and energy inequality as Reynolds stress. For the

definition of all the involved spaces see Section A.1.

Definition 2.1 (Dissipative solution of the quantum Navier–Stokes system). The pair of func-

tions [%,u] with total energy E constitutes a dissipative solution to problem (1.2)–(1.3) with

the isentropic pressure (1.6), the viscous stress tensor (1.7), the boundary conditions (1.8) and

the initial data

[%(0, ·), (%u)(0, ·), E(0−)] = [%0,J0, E0] ∈ Lγ(Ω)× L
2γ
γ+1 (Ω;Rd)× [0,∞)

if the following holds:

(i) regularity class: % > 0 in (0,∞)× Ω and

% ∈ Cweak,loc([0,∞);Lγ(Ω)) ∩ L∞(0,∞;W
1, 2γ
γ+1 (Ω)) (2.1)

%u ∈ Cweak,loc([0,∞);Lq(Ω;Rd)), q = max

{
2γ

γ + 1
,

4γd

(3d− 2)γ + d

}
, (2.2)

u ∈ L2
loc(0,∞;W 1,2

0 (Ω;Rd)), (2.3)

E ∈ D([0,∞)); (2.4)

(ii) weak formulation of the continuity equation: the integral identity[ˆ
Ω
%ϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[%∂tϕ+ %u · ∇xϕ] dxdt (2.5)

holds for any τ > 0 and any ϕ ∈ C1
c ([0,∞)× Ω);

(iii) weak formulation of the balance of momentum: there exists

R ∈ L∞(0, T ;M+(Ω;Rd×dsym))
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such that the integral identity[ˆ
Ω
%u ·ϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[%u · ∂tϕ+ (%u⊗ u) : ∇xϕ+ p(%) divxϕ] dxdt

+
~
4

ˆ τ

0

ˆ
Ω

[
∇x% · divx∇>xϕ+ 4(∇x

√
%⊗∇x

√
%) : ∇xϕ

]
dxdt

−
ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xϕ dxdt+

ˆ τ

0

ˆ
Ω
∇xϕ : dR dt

(2.6)

holds for any τ > 0 and any ϕ ∈ C1
c ([0,∞);C2(Ω;Rd)), ϕ|∂Ω = 0;

(iv) energy inequality: there exists a constant λ > 0 such that

ˆ
Ω

[
1

2
%|u|2 + P (%) +

~
2
|∇x
√
%|2
]

(τ, ·) dx+
1

λ

ˆ
Ω

d Tr[R](τ) = E(τ)

for a.e. τ > 0, and the energy inequality

[
E(t)ψ(t)

]t=τ+2
t=τ−1

−
ˆ τ2

τ1

Eψ′ dt+

ˆ τ2

τ1

ψ

ˆ
Ω
S(∇xu) : ∇xu dxdt ≤ 0 (2.7)

holds for any 0 ≤ τ1 ≤ τ2 and any ψ ∈ C1
c ([0,∞)), ψ ≥ 0.

Definition 2.2 (Dissipative solution of the quantum Euler system). The pair of functions [%,J]

with total energy E constitutes a dissipative solution to problem (1.4)–(1.5) with the isentropic

pressure (1.6), the boundary conditions (1.9) and the initial data

[%(0, ·),J(0, ·), E(0−)] = [%0,J0, E0] ∈ Lγ(Ω)× L
2γ
γ+1 (Ω;Rd)× [0,∞)

if the following holds:

(i) regularity class: % > 0 in (0,∞)× Ω and

% ∈ Cweak,loc([0,∞);Lγ ∩W 1, 2γ
γ+1 (Ω))

J ∈ Cweak,loc([0,∞);Lq(Ω;Rd)), q = max

{
2γ

γ + 1
,

4γd

(3d− 2)γ + d

}
,

E ∈ D([0,∞));

(ii) weak formulation of the continuity equation: the integral identity[ˆ
Ω
%ϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[%∂tϕ+ J · ∇xϕ] dxdt (2.8)

holds for any τ > 0 and any ϕ ∈ C1
c ([0,∞)× Ω);

(iii) weak formulation of the balance of momentum: there exists

R ∈ L∞(0, T ;M+(Ω;Rd×dsym))
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such that the integral identity[ˆ
Ω

J ·ϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[
J · ∂tϕ+

J⊗ J

%
: ∇xϕ+ p(%) divxϕ

]
dxdt

+
~
4

ˆ τ

0

ˆ
Ω

[
∇x% · divx∇>xϕ+ 4(∇x

√
%⊗∇x

√
%) : ∇xϕ

]
dxdt

+

ˆ τ

0

ˆ
Ω
∇xϕ : dR dt

(2.9)

holds for any τ > 0 and any ϕ ∈ C1
c ([0,∞);C2(Ω;Rd)), ϕ|∂Ω = 0,;

(iv) energy inequality: there exists a constant λ > 0 such that

ˆ
Ω

[
1

2

|J|2

%
+ P (%) +

~
2
|∇x
√
%|2
]

(τ, ·) dx+
1

λ

ˆ
Ω

d Tr[R](τ) = E(τ)

for a.e. τ > 0, and the energy inequality

[
E(t)ψ(t)

]t=τ+2
t=τ−1

−
ˆ τ2

τ1

Eψ′ dt ≤ 0 (2.10)

holds for any 0 ≤ τ1 ≤ τ2 and any ψ ∈ C1
c ([0,∞)), ψ ≥ 0.

3 Weak–strong uniqueness

In this section, our goal is to prove the weak–strong uniqueness principle: if the quantum

Navier–Stokes (or quantum Euler) system admits a sufficiently regular classical solution, then

it must coincide with the dissipative solution emanating from the same initial data. Hereafter,

let

p1 := min

{
γ

γ − 1
,

2dγ

(d+ 2)γ − d

}
,

p2 := min

{
2dγ

(d+ 2)γ − 2d
,

2dγ

4γ − d

}
,

p3 := min

{
dγ

2γ − d
,

2dγ

(6− d)γ − d

}
.

Theorem 3.1 (Weak–strong uniqueness for the quantum Navier–Stokes system). Let [%̃, ũ]

with %̃ > 0 and

%̃ ∈ L∞(0,∞;Lγ ∩W 1, 2γ
γ+1 (Ω)),

ũ ∈ L∞(0,∞;L2p1(Ω;Rd)) + L2
loc(0,∞;W 1,2

0 (Ω;Rd)),
(3.1)

be a strong solution of system (1.2)–(1.3), satisfying the constitutive relations (1.6)–(1.7) and

the boundary conditions (1.8), where in addition the density %̃ is such that
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∂tP
′(%̃) ∈ L1

loc(0,∞;Lp1(Ω)),

∇xP ′(%̃) ∈ L2
loc(0,∞;Lp2(Ω;Rd)) + L1

loc(0,∞;L2p1(Ω;Rd)),

∂t∇x log %̃ ∈ L1
loc(0,∞;L

2γ
γ−1 (Ω;Rd)),

∇2
x log %̃ ∈ L2

loc(0,∞;L
2dγ
2γ−d (Ω;Rd×d)) + L1

loc(0,∞;L∞(Ω;Rd×d)),

(3.2)

the velocity ũ is such that

∂tũ ∈ L2
loc(0,∞;Lp2(Ω;Rd)) + L1

loc(0,∞;L2p1(Ω;Rd)),

∇xũ ∈ L∞(0,∞;Lp3(Ω;Rd×d)) + L2
loc(0,∞;L2p3(Ω;Rd×d))

+ L1
loc(0,∞;L∞(Ω;Rd×d)),

divx ũ ∈ L1
loc(0,∞;L∞(Ω)),

divx∇>x ũ ∈ L1
loc(0,∞;L

2γ
γ−1 (Ω;Rd)),

(3.3)

and
S(∇xũ)

%̃
∈ L2

loc(0,∞;L
2dγ
2γ−d (Ω;Rd×d)).

Let [%,u] be a dissipative solution of the same system with dissipation defect R in the sense

of Definition 2.1. If

[%̃(0, x), (%̃ũ)(0, x)] = [%(0, x), (%u)(0, x)] for a.e. x ∈ Ω (3.4)

then R ≡ 0 and

[%̃(t, x), ũ(t, x)] = [%(t, x),u(t, x)] for a.e. (t, x) ∈ (0,∞)× Ω. (3.5)

Theorem 3.2 (Weak–strong uniqueness for the quantum Euler system). Let [%̃, ũ] with

%̃ ∈ L∞(0,∞;Lγ ∩W 1, 2γ
γ+1 (Ω)),

ũ ∈ L∞(0,∞;L2p1(Ω;Rd)),
(3.6)

be a strong solution of system (1.4)–(1.5) satisfying the constitutive relation (1.6), where in

addition the density %̃ > 0 and the velocity ũ are such that ũ · n|∂Ω = 0 and

∂tP
′(%̃) ∈ L1

loc(0,∞;Lp1(Ω)),

divx ũ ∈ L1
loc(0,∞;L∞(Ω)),

∇xP ′(%̃), ∇x∆x log %̃, ∂tũ ∈ L1
loc(0,∞;L2p1(Ω;Rd)),

∂t∇x log %̃, divx∇>x ũ ∈ L1
loc(0,∞;L

2γ
γ−1 (Ω;Rd)),

∇2
x log %̃, ∇xũ ∈ L1

loc(0,∞;L∞(Ω;Rd×d)).

(3.7)
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Let [%,J] be a dissipative solution of the same system with dissipation defect R in the sense of

Definition 2.2. If

[%̃(0, x), (%̃ũ)(0, x)] = [%(0, x),J(0, x)] for a.e. x ∈ Ω

then R ≡ 0 and

[%̃(t, x), (%̃ũ)(t, x)] = [%(t, x),J(t, x)] for a.e. (t, x) ∈ (0,∞)× Ω.

The proofs are based on showing that a slightly modified version of the energy, known as

relative energy, and the Reynolds stress vanish almost everywhere.

3.1 Proof of Theorem 3.1

We introduce the relative energy functional :

E(%,∇x%,u | %̃,∇x%̃, ũ) =
1

2
%|u− ũ|2 +P (%)−P ′(%̃)(%− %̃)−P (%̃) +

~
2

∣∣∣∣∇x√%−√%

%̃
∇x
√
%̃

∣∣∣∣2 .
To simplify notation, we introduce the drift velocities

v =
∇x
√
%

√
%
, ṽ =

∇x
√
%̃√

%̃
, (3.8)

and therefore the relative energy functional can be rewritten as

E(%,u,v | %̃, ũ, ṽ) =
1

2
%|u− ũ|2 + P (%)− P ′(%̃)(%− %̃)− P (%̃) +

~
2
% |v− ṽ|2 .

Step 1. First of all, proving Theorem 3.1 is equivalent in showing that

R ≡ 0, E(%,u,v | %̃, ũ, ṽ) ≡ 0 a.e. in (0,∞)× Ω. (3.9)

Indeed, since the pressure % 7→ p(%) is strictly increasing in (0,∞), the pressure potential

% 7→ P (%) is strictly convex. For a differentiable function, this is equivalent in saying that the

function lies above all of its tangents,

P (%) ≥ P ′(%̃)(%− %̃) + P (%̃) (3.10)

for all %, %̃ ∈ (0,∞). Therefore, we can deduce that

E(%,u,v | %̃, ũ, ṽ) ≥ 0. (3.11)

Moreover, the equality in (3.10) holds if and only if % = %̃ and consequently the equality in

(3.11) holds if and only if (3.5) holds.
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Step 2. We will now show that any dissipative solution satisfies an extended version of

the energy inequality, whenever [%̃, ũ] are smooth and compactly supported functions. Let us

suppose that

%̃ ∈ C∞c ([0,∞)× Ω),

ũ ∈ C∞c ([0,∞)× Ω;Rd);

then, we can take ϕ = 1
2 |ũ|

2, P ′(%̃), ~
2 |ṽ|

2, ~divx ṽ as test functions in the weak formulation

of the continuity equation (2.5) to get

1

2

[ˆ
Ω
%|ũ|2(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω
%ũ ·

(
∂tũ +∇xũ · u

)
dxdt, (3.12)[ˆ

Ω
%P ′(%̃)(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[%∂tP
′(%̃) + %u · ∇xP ′(%̃)] dxdt, (3.13)

~
2

[ˆ
Ω
%|ṽ|2(t, ·) dx

]t=τ
t=0

= ~
ˆ τ

0

ˆ
Ω
%ṽ ·

(
∂tṽ +∇xṽ · u

)
dxdt, (3.14)

~
[ˆ

Ω
%v · ṽ(t, ·) dx

]t=τ
t=0

= ~
ˆ τ

0

ˆ
Ω

[
%v ·

(
∂tṽ +∇xṽ · u

)
+ %∇xu : ∇xṽ

]
dxdt, (3.15)

where we recall identity (A.6), and ϕ = ũ as test function in the weak formulation of the balance

of momentum (2.6) to get[ˆ
Ω
%u · ũ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[
%u ·

(
∂tũ +∇xũ · u

)
+ p(%) divx ũ

]
dxdt

+ ~
ˆ τ

0

ˆ
Ω

[
1

2
%v · divx∇>x ũ + %v · ∇xũ · v

]
dxdt

−
ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xũ dxdt+

ˆ τ

0

ˆ
Ω
∇xũ : dR dt.

(3.16)

Next, if we sum the integral identities (3.12), (3.14) and subtract (3.13), (3.15), (3.16) from the

energy inequality (2.7), keeping in mind that[ˆ
Ω

[
%̃P ′(%̃)− P (%̃)

]
(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

∂

∂t

[
%̃P ′(%̃)− P (%̃)

]
dxdt =

ˆ τ

0

ˆ
Ω
%̃P ′′(%̃)∂t%̃ dxdt,

we obtain[ˆ
Ω
E(%,u,v | %̃, ũ, ṽ)(t, ·) dx

]t=τ
t=0

+
1

λ

ˆ
Ω

d Tr[R](τ) +

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇x(u− ũ) dxdt

≤ −
ˆ τ

0

ˆ
Ω
%(u− ũ) · [∂tũ +∇xũ · ũ +∇xũ · (u− ũ)] dxdt

−
ˆ τ

0

ˆ
Ω
p(%) divx ũ dxdt

− ~
ˆ τ

0

ˆ
Ω
%(v− ṽ) ·

[
∂tṽ +∇xṽ · ũ +∇xṽ · (u− ũ)

]
dxdt

−
ˆ τ

0

ˆ
Ω
∇xũ : dR dt−

ˆ τ

0
F1(t) dt− ~

ˆ τ

0
F2(t) dt,
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with

F1(t) =

ˆ
Ω

%

%̃
p′(%̃)

(
∂t%̃+ u · ∇x%̃

)
(t, ·) dx−

ˆ
Ω
p′(%̃)∂t%̃(t, ·) dx,

F2(t) =

ˆ
Ω
%

(
1

2
v · divx∇>x ũ + v · ∇xũ · v +

1

2
∇xu : ∇xṽ

)
(t, ·) dx,

recalling that p′(%̃) = %̃P ′′(%̃). Now, we can sum and subtract the following integrals

ˆ τ

0

ˆ
Ω
%(u− ũ) ·

[
∇xP ′(%̃)− 1

%̃
divx S(∇xũ)− 1

%̃
divxK(%̃,∇xṽ)

]
dxdt, (3.17)

ˆ τ

0

ˆ
Ω

[p′(%̃)(%− %̃) + p(%̃)] divx ũ dxdt, (3.18)

~
2

ˆ τ

0

ˆ
Ω

%

%̃
(v− ṽ) · divx

(
%̃∇>x ũ

)
dxdt (3.19)

from the previous inequality to get[ˆ
Ω
E(%,u,v | %̃, ũ, ṽ)(t, ·) dx

]t=τ
t=0

+
1

λ

ˆ
Ω

d Tr[R](τ)

+

ˆ τ

0

ˆ
Ω
S
(
∇x(u− ũ)

)
: ∇x(u− ũ) dxdt

≤ −
ˆ τ

0

ˆ
Ω
%(u− ũ) ·

[
∂tũ +∇xũ · ũ +∇xP ′(%̃)− 1

%̃
divx S(∇xũ)− 1

%̃
divxK(%̃,∇xṽ)

]
dxdt

−
ˆ τ

0

ˆ
Ω
%(u− ũ) · ∇xũ · (u− ũ) dxdt

−
ˆ τ

0

ˆ
Ω

[p(%)− p′(%̃)(%− %̃)− p(%̃)] divx ũ dxdt,

−
ˆ τ

0

ˆ
Ω

(
%

%̃
− 1

)
(u− ũ) · divx S(∇xũ) dxdt

− ~
ˆ τ

0

ˆ
Ω
%(v− ṽ) ·

[
∂tṽ +∇xṽ · ũ +

1

2%̃
divx

(
%̃∇>x ũ

)]
dxdt

− ~
ˆ τ

0

ˆ
Ω
%(v− ṽ) · ∇xṽ · (u− ũ) dxdt

−
ˆ τ

0

ˆ
Ω
∇xũ : dR dt−

ˆ τ

0
F̃1(t) dt− ~

ˆ τ

0
F̃2(t) dt,

with

F̃1(t) = F1(t)−
ˆ

Ω

%

%̃
p′(%̃)

[
u · ∇x%̃− divx

(
%̃ũ
)]

(t, ·) dx−
ˆ

Ω
p′(%̃) divx

(
%̃ũ
)
(t, ·) dx

=

ˆ
Ω
p′(%̃)

(
%

%̃
− 1

)
[∂t%̃+ divx(%̃ũ)](t, ·) dx,

and

F̃2(t) = F2(t) +
1

~

ˆ
Ω

%

%̃
(u− ũ) · divxK(%̃,∇xṽ) dx− 1

2

ˆ
Ω

%

%̃
(v− ṽ) · divx

(
%̃∇>x ũ

)
dx

= −
ˆ

Ω
%(v− ṽ) · ∇xṽ · (u− ũ) dx+

ˆ
Ω
%(v− ṽ) · ∇xũ · (v− ṽ) dx

12



We have finally obtained the relative energy inequality :[ˆ
Ω
E(%,u,v | %̃, ũ, ṽ)(t, ·) dx

]t=τ
t=0

+
1

λ

ˆ
Ω

d Tr[R](τ)

+

ˆ τ

0

ˆ
Ω
S
(
∇x(u− ũ)

)
: ∇x(u− ũ) dxdt

≤ −
ˆ τ

0

ˆ
Ω
%(u− ũ) ·

[
∂tũ +∇xũ · ũ +∇xP ′(%̃)− 1

%̃
divx S(∇xũ)− 1

%̃
divxK(%̃,∇xṽ)

]
dxdt

−
ˆ τ

0

ˆ
Ω
%
[
(u− ũ)⊗ (u− ũ)

]
: ∇xũ dxdt

−
ˆ τ

0

ˆ
Ω

[p(%)− p′(%̃)(%− %̃)− p(%̃)] divx ũ dxdt

−
ˆ τ

0

ˆ
Ω
p′(%̃)

(
%

%̃
− 1

)
[∂t%̃+ divx(%̃ũ)] dxdt,

−
ˆ τ

0

ˆ
Ω

(
%

%̃
− 1

)
(u− ũ) · divx S(∇xũ) dxdt

− ~
ˆ τ

0

ˆ
Ω
%(v− ṽ) ·

[
∂tṽ +∇xṽ · ũ +

1

2%̃
divx

(
%̃∇>x ũ

)]
dxdt

− ~
ˆ τ

0

ˆ
Ω
%
[
(v − ṽ)⊗ (v − ṽ)

]
: ∇xũ dxdt

−
ˆ τ

0

ˆ
Ω
∇xũ : dR dt.

(3.20)

Step 3. The class of functions [%̃, ũ] satisfying the relative energy inequality (3.20) can be

extended by a density argument as long as integrals (3.12)–(3.19) remain well-defined. After a

careful analysis, we recover the regularity class given by (3.1)–(3.3). Notice that we have used

the Sobolev embedding

W
1, 2γ
γ+1 ↪→ Lγ

∗
(Ω) with γ∗ :=

2γd

(d− 2)γ + d
(3.21)

implying in particular that

% ∈ Cweak,loc([0,∞);Lp(Ω)), p := max {γ, γ∗} (3.22)

and the fact that γ∗ > γ as long as {d = 2} or {d = 3, d/2 < γ < d} to get the optimal

regularity for the density % and the momentum %u.

Step 4. Let us now suppose that the couple [%̃, ũ] is a strong solution of problem (1.2)–(1.3),

meaning that

∂t%̃+ divx(%̃ũ) = 0,

∂tũ +∇xũ · ũ +∇xP ′(%̃) =
1

%̃
divx

[
S(∇xũ) + K(%̃,∇xṽ)

]
,

∂tṽ +∇xṽ · ũ = − 1

2%̃
divx

(
%̃∇>x ũ

)
,
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where the last one was deduced taking the gradient in the continuity equation (1.2). Then, the

relative energy inequality (3.20) reduces to[ˆ
Ω
E(%,u,v | %̃, ũ, ṽ)(t, ·) dx

]t=τ
t=0

+
1

λ

ˆ
Ω

d Tr[R](τ) +

ˆ τ

0

ˆ
Ω
S
(
∇x(u− ũ)

)
: ∇x(u− ũ) dxdt

≤ −
ˆ τ

0

ˆ
Ω
% [(u− ũ)⊗ (u− ũ) + ~(v− ṽ)⊗ (v− ṽ)] : ∇xũ dxdt

−
ˆ τ

0

ˆ
Ω

[p(%)− p′(%̃)(%− %̃)− p(%̃)] divx ũ dxdt,

−
ˆ τ

0

ˆ
Ω

(
%

%̃
− 1

)
(u− ũ) · divx S(∇xũ) dxdt−

ˆ τ

0

ˆ
Ω
∇xũ : dR dt.

(3.23)

On the one hand, we have
ˆ τ

0

ˆ
Ω
S
(
∇x(u− ũ)

)
: ∇x(u− ũ) dxdt ≥ µ

ˆ τ

0

ˆ
Ω
|∇x(u− ũ)|2 dxdt;

on the other hand, we have

|%(u− ũ)⊗ (u− ũ)| ≤ c1
1

2
Tr[%(u− ũ)⊗ (u− ũ)] = c1

1

2
%|u− ũ|2,

~|%(v − ṽ)⊗ (v − ṽ)| ≤ c1
~
2

Tr[%(v − ṽ)⊗ (v − ṽ)] = c1
~
2
%|v− ṽ|2,

p(%)− p′(%̃)(%− %̃)− p(%̃) = (γ − 1)
[
P (%)− P ′(%̃)(%− %̃)− P (%̃)

]
,

|R| ≤ c2

λ
Tr[R].

Moreover, it is easy to see that

P (%)− P ′(%̃)(%− %̃)− P (%̃) ≥ c(%̃)

(%− %̃)2 if % ∈
[
%̃
2 , 2%̃

]
(1 + %γ) otherwise,

and therefore, it is possible to show that
ˆ τ

0

ˆ
Ω

∣∣∣∣%%̃ − 1

∣∣∣∣ |u− ũ| dxdt ≤ c(δ)
ˆ τ

0

ˆ
Ω
E(%,u | %̃, ũ) dxdt+ δ

ˆ τ

0

ˆ
Ω
|u− ũ|2 dxdt

for any δ > 0 (see for instance [23], Section 4.1.1). Therefore, from the Poincaré inequality and

hypothesis (3.4), we can rewrite (3.23) as
ˆ

Ω
E(%,u,v | %̃, ũ, ṽ)(τ, ·) dx+

1

λ

ˆ
Ω

d Tr[R](τ) + (1− δ)
ˆ τ

0

ˆ
Ω
|u− ũ|2 dxdt

≤ c(δ, %̃,∇xũ,divx S(∇xũ))

ˆ τ

0

(ˆ
Ω
E(%,u,v | %̃, ũ, ṽ)(t, ·) dx+

1

λ

ˆ
Ω

d Tr[R](t)

)
dt.

Applying Gronwall’s lemma, we can recover that
ˆ

Ω
E(%,u,v | %̃, ũ, ṽ)(τ, ·) dx+

1

λ

ˆ
Ω

d Tr[R](τ) ≤ 0,

but since the quantity on the left-hand side is non-negative, this is possible if and only if (3.9)

holds.
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3.2 Proof of Theorem 3.2

We repeat the same passages performed before. Notice that in this case the relative energy

functional is

E(%,J,v | %̃, ũ, ṽ) =
1

2%
|J− %ũ|2 + P (%)− P ′(%̃)(%− %̃)− P (%̃) +

~
2
% |v− ṽ|2 ,

and therefore the relative energy associated to the Euelr-Korteweg system (1.4)–(1.5) reads[ˆ
Ω
E(%,J,v | %̃, ũ, ṽ)(t, ·) dx

]t=τ
t=0

+
1

λ

ˆ
Ω

d Tr[R](τ)

≤ −
ˆ τ

0

ˆ
Ω

(J− %ũ) ·
[
∂tũ +∇xũ · ũ +∇xP ′(%̃)− 1

%̃
divxK(%̃,∇xṽ)

]
dxdt

−
ˆ τ

0

ˆ
Ω

1

%

[
(J− %ũ)⊗ (J− %ũ)

]
: ∇xũ dxdt

−
ˆ τ

0

ˆ
Ω

[p(%)− p′(%̃)(%− %̃)− p(%̃)] divx ũ dxdt

−
ˆ τ

0

ˆ
Ω
p′(%̃)

(
%

%̃
− 1

)
[∂t%̃+ divx(%̃ũ)] dxdt

− ~
ˆ τ

0

ˆ
Ω
%(v− ṽ) ·

[
∂tṽ +∇xṽ · ũ +

1

%̃
divx

(
%̃∇>x ũ

)]
dxdt

− ~
ˆ τ

0

ˆ
Ω
%
[
(v − ṽ)⊗ (v − ṽ)

]
: ∇xũ dxdt

−
ˆ τ

0

ˆ
Ω
∇xũ : dR dt.

If we suppose that the couple [%̃, ũ] is a strong solution then the previous inequality simplifies

as [ˆ
Ω
E(%,J,v | %̃, ũ, ṽ)(t, ·) dx

]t=τ
t=0

+
1

λ

ˆ
Ω

d Tr[R](τ)

−
ˆ τ

0

ˆ
Ω

1

%

[
(J− %ũ)⊗ (J− %ũ)

]
: ∇xũ dxdt

−
ˆ τ

0

ˆ
Ω

[p(%)− p′(%̃)(%− %̃)− p(%̃)] divx ũ dxdt,

− ~
ˆ τ

0

ˆ
Ω
%
[
(v − ṽ)⊗ (v − ṽ)

]
: ∇xũ dxdt

−
ˆ τ

0

ˆ
Ω
∇xũ : dR dt,

and therefore it is enough to proceed as before.

4 Existence

In this section, we aim to prove the existence of dissipative solutions for both the quantum

Navier–Stokes and quantum Euler systems. More precisely, we will focus on the following two

results.
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Theorem 4.1 (Existence of dissipative solutions for the quatum Navier–Stokes system). For

any arbitrarily large T > 0 and any fixed initial data

[%0,J0, E0] ∈ Lγ(Ω)× L
2γ
γ+1 (Ω;Rd)× [0,∞)

such that

%0 > 0,

ˆ
Ω

[
1

2

|J0|2

%0
+ P (%0) +

~
2
|∇x
√
%0|2

]
dx ≤ E0,

the quantum Navier–Stokes system (1.2)–(1.3) with constitutive relations (1.6)–(1.7) and bound-

ary conditions (1.8) admits a dissipative solution in the sense of Definition 2.1.

Theorem 4.2 (Existence of dissipative solutions for the quantum Euler system). For any

arbitrarily large T > 0 and any fixed initial data

[%0,J0, E0] ∈ Lγ(Ω)× L
2γ
γ+1 (Ω;Rd)× [0,∞)

such that

%0 > 0,

ˆ
Ω

[
1

2

|J0|2

%0
+ P (%0) +

~
2
|∇x
√
%0|2

]
dx ≤ E0,

the quantum Euler system (1.4)–(1.5) with the isentropic pressure (1.6) and boundary conditions

(1.9) admits a dissipative solution in the sense of Definition 2.2.

The first theorem will be proved by employing a two-level approximation scheme based on

addition of artificial viscosity terms, in order to convert the hyperbolic system into a parabolic

one, and approximation via the Faedo-Galerkin technique. The second theorem will be obtained

by letting the viscosity to go to zero in the quantum Navier–Stokes equations.

4.1 Proof of Theorem 4.1

From now one, let the time T > 0 be fixed arbitrarily large. We start by choosing a family

{Xn}n∈N of finite-dimensional spaces Xn ⊂ L2(Ω;Rd), such that

Xn := span{wi| wi ∈ C∞c (Ω;Rd), i = 1, . . . , n},

where wi are orthonormal with respect to the standard scalar product in L2(Ω;Rd). Now, for

each ε > 0 and n ∈ N fixed, we consider the following system

∂t%ε,n + divx(%ε,nuε,n) = ε∆x%ε,n, (4.1)

∂t(%ε,nuε,n) + divx(%ε,nuε,n ⊗ uε,n) +∇xp(%ε,n) + ε∇xuε,n · ∇x%ε,n (4.2)

= divx
(
S(∇xuε,n) + K(%ε,n,∇x%ε,n,∇2

x%ε,n)
)

on (0, T )× Ω, where we look for approximated velocities

uε,n ∈ C([0, T ];Xn).

Moreover, we impose the homogeneous Neumann and no-slip boundary conditions for the den-

sity and velocity, respectively

∇x%ε,n · n|∂Ω = 0, uε,n|∂Ω = 0, (4.3)
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and we fix the initial conditions

%ε,n(0, ·) = %0,n, (%ε,nuε,n)(0, ·) = J0 on Ω,

where the initial densities {%0,n}n∈N ⊂ W 1,2(Ω), 0 < %
n
≤ %0,n ≤ %n <∞, are chosen in such a

way that

%0,n → %0 in L1(Ω) as n→∞,

with the couple (%0,J0) as in the hypotheses of Theorem 4.1. Solvability of the approximated

problem will be discussed in the following sections.

4.1.1 On the approximated continuity equation

For any fixed ε > 0, n ∈ N and given uε,n ∈ C([0, T ];Xn), let us focus on finding that unique

weak solution %ε,n = %[uε,n] of equation (4.1). Before stating the existence result for the

approximated continuity equation, notice that since Xn is finite-dimensional, all the norms on

Xn induced by W k,p-norms, with k ∈ N and 1 ≤ p ≤ ∞, are equivalent; thus, we deduce that

uε,n ∈ L∞(0, T ;W 1,∞(Ω;Rd)),

and there exist two constants 0 < n < n <∞, depending solely on the dimension n of Xn, such

that for any t ∈ [0, T ]

n‖uε,n(t, ·)‖W 1,∞(Ω) ≤ ‖uε,n(t, ·)‖Xn ≤ n‖uε,n(t, ·)‖W 1,∞(Ω). (4.4)

Lemma 4.3. Let Ω ⊂ Rd be a bounded domain of class C2 and let ε > 0, n ∈ N be fixed. For

any given uε,n ∈ C([0, T ];Xn), there exists a unique solution

%ε,n ∈ L2((0, T );W 2,2(Ω)) ∩W 1,2(0, T ;L2(Ω))

of equation (4.1) with %ε,n(0, ·) = %0,n. Moreover,

(i) (bound from above - maximum principle) the weak solution %ε,n satisfies

‖%ε,n‖L∞((0,τ)×Ω) ≤ %n exp
(
τ‖ divx uε,n‖L∞((0,T )×Ω)

)
, (4.5)

for any τ ∈ [0, T ], with

%n := max
Ω

%0,n; (4.6)

(ii) (bound from below) the weak solution %ε,n satisfies

ess inf
(0,τ)×Ω

%ε,n(t, x) ≥ %
n

exp
(
−τ‖ divx uε,n‖L∞((0,T )×Ω)

)
, (4.7)

for any τ ∈ [0, T ], with

%
n

:= min
Ω
%0,n; (4.8)
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(iii) let u1,u2 ∈ C([0, T ];Xn) be such that

max
i=1,2

‖ui‖L∞(0,T ;W 1,∞(Ω;Rd)) ≤ K

with K ∈ (0,∞), and let %i = %[ui], i = 1, 2 be the weak solutions of the approximated

continuity equation (4.1)sharing the same initial data %0,n. Then, for any τ ∈ [0, T ],

‖(%1 − %2)(τ, ·)‖L2(Ω) ≤ c1‖u1 − u2‖L∞(0,τ ;W 1,∞(Ω;Rd)) (4.9)

with c1 = c1(ε, %0, T,K).

Proof. The proof is a straightforward consequence of Lemma 4.3 in [14].

4.1.2 On the approximated balance of momentum

Let us now turn our attention to the approximated balance of momentum (4.2). The approxi-

mate velocities uε,n ∈ C([0, T ];Xn) are looked for to satisfy the integral identity[ˆ
Ω
%ε,nuε,n(t, ·) ·ψ dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[(%ε,nuε,n ⊗ uε,n) : ∇xψ + p(%ε,n) divxψ] dxdt

+
~
4

ˆ τ

0

ˆ
Ω

[
∇x%ε,n · divx∇>xψ + 4(∇x

√
%ε,n ⊗∇x

√
%ε,n) : ∇xψ

]
dxdt

−
ˆ τ

0

ˆ
Ω
S(∇xuε,n) : ∇xψ dxdt− ε

ˆ τ

0

ˆ
Ω
∇x%ε,n · ∇xuε,n ·ψ dxdt

(4.10)

for any test function ψ ∈ Xn and all τ ∈ [0, T ], with (%ε,nuε,n)(0, ·) = J0. Now, the integral

identity (4.10) can be rephrased for any τ ∈ [0, T ] as

〈M[%ε,n(τ, ·)](uε,n(τ, ·)),ψ〉 = 〈J∗0,ψ〉+ 〈
ˆ τ

0
N[%ε,n(s, ·),uε,n(s, ·)] ds,ψ〉

with

M[%] : Xn → X∗n, 〈M[%]v,w〉 :=

ˆ
Ω
%v ·w dx,

J∗0 ∈ X∗n, 〈J∗0,ψ〉 :=

ˆ
Ω

J0 ·ψ dx,

N[%,u] ∈ X∗n, 〈N[%,u],ψ〉 :=

ˆ
Ω

[(%u⊗ u) : ∇xψ + p(%) divxψ] dx

+
~
4

ˆ
Ω

[
∇x% · divx∇>xψ + 4(∇x

√
%⊗∇x

√
%) : ∇xψ

]
dx

−
ˆ

Ω
S(∇xu) : ∇xψ dx− ε

ˆ
Ω
∇x% · ∇xu ·ψ dx.

We are now ready to apply the following lemma.

Lemma 4.4. Let

B(0, nK) :=

{
v ∈ C([0, T (n)];Xn)

∣∣ sup
t∈[0,T (n)]

‖v(t, ·)‖Xn ≤ nK

}
,
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with n defined as in (4.4). For K > 0 sufficiently large and T (n) sufficiently small, the map

F : B(0, nK)→ C([0, T (n)];Xn)

such that

F[uε,n](τ, ·) := M−1[%ε,n(τ, ·)]
(

J∗0 +

ˆ τ

0
N[%ε,n(s, ·),uε,n(s, ·)] ds

)
,

is a contraction mapping from the closed ball B(0, nK) onto itself and therefore it admits a

unique fixed point uε,n ∈ C([0, T (n)];Xn).

Proof. The lemma is a straightforward consequence of the Banach-Cacciopoli fixed point the-

orem. Notice in particular that %ε,n = %[uε,n] is the weak solution of equation (4.1) uniquely

determined by uε,n and thus by Lemma 4.3 we can deduce that 0 < %
n
e−Kt ≤ %ε,n(t, x) ≤ %neKt

for any t ∈ [0, T (n)] whenever uε,n ∈ B(0, nK), where %n, %
n

are defined as in (4.6), (4.8) re-

spectively. Therefore, the operator M is invertible and from (4.9) it is also easy to show that F

is a contraction mapping, see e.g. [14], Section 4.3.2 for more details.

So far, we have found the velocity uε,n solving the integral identity (4.10) on the time interval

[0, T (n)]. However, the previous procedure can be repeated a finite number of times until we

reach T = T (n), as long as we have a bound on uε,n independent of T (n); in other words, we

need some energy estimates. We have that
ˆ

Ω
∂t(%ε,nuε,n) ·ψ dx =

ˆ
Ω

[(%ε,nuε,n ⊗ uε,n) : ∇xψ + p(%ε,n) divxψ] dx

−
ˆ

Ω

[
K(%ε,n,∇x%ε,n,∇2

x%ε,n) + S(∇xuε,n)
]

: ∇xψ dx

− ε
ˆ

Ω
∇x%ε,n · ∇xuε,n ·ψ dx

(4.11)

holds on (0, T (n)) for any ψ ∈ Xn, with %ε,n = %[uε,n]. We can then take ψ = uε,n(t, ·)

d

dt

ˆ
Ω

1

2
%ε,n|uε,n|2 dx =−

ˆ
Ω
S(∇xuε,n) : ∇xuε,n dx+

ˆ
Ω
p(%ε,n) divx uε,n dx

−
ˆ

Ω
K(%ε,n,∇x%ε,n,∇2

x%ε,n) : ∇xuε,n dx

−
ˆ

Ω

1

2
|uε,n|2

(
∂t%ε,n + divx(%ε,nuε,n)− ε∆x%ε,n

)
dx,

where the last line vanishes due to (4.1). Multiplying (4.1) by P ′(%) we recover that in this

context the pressure potential P = P (%) satisfies the following identity

p(%ε,n) divx uε,n = −∂tP (%ε,n)− divx(P (%ε,n)uε,n) + εP ′(%ε,n)∆x%ε,n.

Therefore, the previous integral identity can be rewritten as

d

dt

ˆ
Ω

(
1

2
%ε,n|uε,n|2 + P (%ε,n)

)
dx =−

ˆ
Ω
S(∇xuε,n) : ∇xuε,n dx− ε

ˆ
Ω
P ′′(%ε,n)|∇x%ε,n|2 dx

−
ˆ

Ω
K(%ε,n,∇x%ε,n,∇2

x%ε,n) : ∇xuε,n dx.

(4.12)
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Moreover, we have

−
ˆ

Ω
K(%ε,n,∇x%ε,n,∇2

x%ε,n) : ∇xuε,n dx =

ˆ
Ω

divx
[
K(%ε,n,∇x%ε,n,∇2

x%ε,n)
]
· uε,n dx

=
~
2

ˆ
Ω
%ε,n∇x

(
∆x
√
%ε,n

√
%ε,n

)
· uε,n dx =

~
2

ˆ
Ω

∆x
√
%ε,n

√
%ε,n

divx(%ε,nuε,n) dx

=
~
4

ˆ
Ω

(
1

%ε,n
∆x%ε,n −

1

2%2
ε,n

|∇x%ε,n|2
)

(∂t%ε,n − ε∆x%ε,n) dx

= − d

dt

ˆ
Ω

~
2
|∇x
√
%ε,n|2 dx− ε~

4

ˆ
Ω
%ε,n |∇2

x(log %ε,n)|2 dx,

where we used formulas

∆xf(%) = f ′(%)∆x%+ f ′′(%)|∇x%|2,

|∇2
xf(%)|2 =

1

2
∆x|∇xf(%)|2 −∇xf(%) · ∇x∆xf(%),

to write
ˆ

Ω

(
1

%
∆x%−

1

2%2
|∇x%|2

)
∆x% dx =

ˆ
Ω

∆x(log %) ∆x% dx+
1

2

ˆ
Ω
|∇x(log %)|2 ∆x% dx

=

ˆ
Ω
%

(
−∇x∆x(log %) · ∇x(log %) +

1

2
∆x|∇x(log %)|2

)
dx

=

ˆ
Ω
% |∇2

x(log %)|2 dx.

We have finally obtained

d

dt

ˆ
Ω

(
1

2
%ε,n|uε,n|2 + P (%ε,n) +

~
2
|∇x
√
%ε,n|2

)
dx

+

ˆ
Ω
S(∇xuε,n) : ∇xuε,n dx

+ ε

ˆ
Ω

(
P ′′(%ε,n)|%ε,nvε,n|2 +

~
4
%ε,n|∇2

x(log %ε,n)|2
)

dx = 0.

Integrating the previous expression over (0, τ), we get the following energy inequality

ˆ
Ω

[
1

2
%ε,n|uε,n|2 + P (%ε,n) +

~
2
|∇x
√
%ε,n|2

]
(τ, ·) dx

+

ˆ τ

0

ˆ
Ω
S(∇xuε,n) : ∇xuε,n dxdt

+ ε

ˆ τ

0

ˆ
Ω

(
P ′′(%ε,n)|∇x%ε,n|2 +

~
4
%ε,n |∇2

x(log %ε,n)|2
)

dxdt

≤
ˆ

Ω

[
1

2

|J0|2

%0,n
+ P (%0,n) +

~
2
|∇x
√
%0,n|2

]
dx,

(4.13)

for any time τ ∈ [0, T (n)]. In particular, if we suppose that

ˆ
Ω

[
1

2

|J0|2

%0,n
+ P (%0,n) +

~
2
|∇x
√
%0,n|2

]
dx ≤ E0 (4.14)
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where the constant E0 is independent of n > 0, the term on the left-hand side of (4.13) is

bounded. Consequently, it is not difficult to show that the functions uε,n(t, ·) remain bounded

in Xn for any t independently of T (n) ≤ T . Thus we are allowed to iterate the previous local

existence result to construct a solution defined on the whole time interval [0, T ], see e.g. the

last part of Section 7.3.4 in [20] for more details.

Summarizing, so far we proved the following result.

Lemma 4.5. For every fixed ε > 0, n ∈ N, and any %0,n ∈W 1,2(Ω) such that

ˆ
Ω

[
1

2

|J0|2

%0,n
+ P (%0,n) +

~
2
|∇x
√
%0,n|2

]
dx ≤ E0,

where the constant E0 is independent of n, there exist

%ε,n ∈ L2((0, T );W 2,2(Ω)) ∩W 1,2(0, T ;L2(Ω)),

uε,n ∈ C([0, T ];Xn),

such that

(i) the integral identity[ˆ
Ω
%ε,nϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

(%ε,n∂tϕ+ %ε,nuε,n · ∇xϕ− ε∇x%ε,n · ∇xϕ) dxdt (4.15)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ]× Ω), with %ε,n(0, ·) = %0,n;

(ii) the integral identity[ˆ
Ω
%ε,nuε,n ·ϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[%ε,nuε,n · ∂tϕ+ (%ε,nuε,n ⊗ uε,n) : ∇xϕ+ p(%ε,n) divxϕ] dxdt

+
~
4

ˆ τ

0

ˆ
Ω

[
∇x%ε,n · divx∇>xϕ+ 4(∇x

√
%ε,n ⊗∇x

√
%ε,n) : ∇xϕ

]
dxdt

−
ˆ τ

0

ˆ
Ω
S(∇xuε,n) : ∇xϕ dxdt− ε

ˆ τ

0

ˆ
Ω
∇x%ε,n · ∇xuε,n ·ϕ dxdt

(4.16)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ];Xn), with (%ε,nuε,n)(0, ·) = J0;

(iii) the integral inequality
ˆ

Ω

[
1

2
%ε,n|uε,n|2 + P (%ε,n) +

~
2
|∇x
√
%ε,n|2

]
(τ, ·) dx

+

ˆ τ

0

ˆ
Ω
S(∇xuε,n) : ∇xuε,n dxdt

+ ε

ˆ τ

0

ˆ
Ω

(
P ′′(%ε,n)|∇x%ε,n|2 +

~
4
%ε,n |∇2

x(log %ε,n)|2
)

dxdt

≤
ˆ

Ω

[
1

2

|J0|2

%0,n
+ P (%0,n) +

~
2
|∇x
√
%0,n|2

]
dx,

(4.17)

holds for any time τ ∈ [0, T ].
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4.1.3 Limit ε→ 0

In order to perform the limit ε→ 0, we need the following result.

Lemma 4.6. Let n ∈ N be fixed and let {%ε,n,uε,n}ε>0 be as in Lemma 4.5. Then, passing to

suitable subsequences as the case may be, the following convergences hold as ε→ 0.

%ε,n
∗
⇀ %n in L∞((0, T )× Ω) (4.18)

uε,n
∗
⇀ un in L∞(0, T ;W 1,∞(Ω;Rd)), (4.19)

%ε,nuε,n
∗
⇀ %nun in L∞((0, T )× Ω;Rd), (4.20)

%ε,nuε,n ⊗ uε,n
∗
⇀ %nun ⊗ un in L∞((0, T )× Ω;Rd×d), (4.21)

∇x%ε,n
∗
⇀ ∇x%n in L∞(0, T ;L2(Ω)), (4.22)

p(%ε,n)
∗
⇀ p(%n) in L∞(0, T ;M(Ω)), (4.23)

∇x
√
%ε,n ⊗∇x

√
%ε,n

∗
⇀ ∇x

√
%n ⊗∇x

√
%n in L∞(0, T ;M(Ω;Rd×d)), (4.24)

√
ε ∇x%ε,n ⇀

√
ε ∇x%n in L2((0, T )× Ω;Rd), (4.25)

√
ε ∇x%ε,n · ∇xuε,n ⇀

√
ε ∇x%n · ∇xun in L2((0, T )× Ω;Rd). (4.26)

Proof. From (4.17) it is easy to deduce the following uniform bounds

‖P (%ε,n)‖L∞(0,T ;L1(Ω)) ≤ c(E) (4.27)

‖∇x
√
%ε,n‖L∞(0,T ;L2(Ω;Rd)) ≤ c(E) (4.28)

‖∇xuε,n‖L2((0,T )×Ω;Rd×d) ≤ c(E). (4.29)

Estimate (4.29) combined with the Poincaré inequality provides

‖uε,n‖L2(0,T ;W 1,2(Ω;Rd)) ≤ c1

for some positive constant c1 independent of ε > 0. Applying Lemma 4.3, we get

e−c1T%
n
≤ %ε,n(t, x) ≤ ec1T%n, for all (t, x) ∈ [0, T ]× Ω. (4.30)

which yields to convergence (4.18). From the fact that uε,n belongs to C([0, T ];Xn), it is easy

to deduce

sup
t∈[0,T ]

‖uε,n(t, ·)‖W 1,∞(Ω;Rd) ≤ c2, (4.31)

from which convergence (4.19) follows. Combining (4.30) and (4.31), we can recover

%ε,nuε,n
∗
⇀ %nun in L∞((0, T )× Ω;Rd).

Now, notice that (4.18) can be strengthened to

%ε,n → %n in Cweak([0, T ];Lp(Ω)) for all 1 < p <∞
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as ε→ 0, so that, relaying on the compact Sobolev embedding

Lp(Ω) ↪→↪→W−1,1(Ω) for all p ≥ 1,

we obtain

%ε,n → %n in C([0, T ];W−1,1(Ω))

as ε→ 0. The last convergence combined with (4.19), implies

%nun = %nun a.e. in (0, T )× Ω,

and thus, we get (4.20). Similarly, from (4.19) and (4.20) we can deduce (4.21). Noticing that

∇x%ε,n = 2
√
%ε,n ∇x

√
%ε,n, (4.32)

convergence (4.22) can be deduced combining (4.28) and (4.30). From (4.27) and (4.28), we

can deduce that the sequences {p(%ε,n)}ε>0, {∇x
√
%ε,n ⊗ ∇x

√
%ε,n}ε>0 are uniformly bounded

in L∞(0, T ;L1(Ω)). However, since the L1-space cannot be identified as the dual space of any

separable space and therefore it is not possible to apply the Banach-Alaoglu theorem, a suitable

idea consists in the embedding of L1(Ω) in the space of measuresM(Ω), which, on the contrary,

is the dual space of C(Ω); we get convergences (4.23), (4.24). Finally, from (4.30) and the energy

inequality (4.17), we have

ε

ˆ τ

0

ˆ
Ω
|∇x%ε,n|2 dxdt ≤ ε c(%

n
)

ˆ τ

0

ˆ
Ω
P ′′(%ε,n)|∇x%ε,n|2 dxdt ≤ c(%

n
, T ).

In this way we get (4.25) and, in view of (4.31), (4.26).

We are now ready to let ε→ 0 in the weak formulations (4.15), (4.16); notice in particular

that, in view of (4.25) and (4.26), for any τ ∈ [0, T ], any ϕ ∈ C1([0, T ] × Ω) and any ϕ ∈
C1([0, T ];Xn)

ε

ˆ τ

0

ˆ
Ω
∇x%ε,n · ∇xϕ dxdt =

√
ε

ˆ τ

0

ˆ
Ω

√
ε ∇x%ε,n · ∇xϕ dxdt→ 0,

ε

ˆ τ

0

ˆ
Ω
∇x%ε,n · ∇xuε,n ·ϕ dxdt =

√
ε

ˆ τ

0

ˆ
Ω

√
ε ∇x%ε,n · ∇xuε,n ·ϕ dxdt→ 0

as ε → 0. We therefore obtain that the weak formulations of the continuity equation (2.5)

and balance of momentum (1.3) hold for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ] × Ω), ϕ ∈
C1([0, T ];Xn), respectively, with the Reynolds stresses

Rn ∈ L∞(0, T ;M(Ω;Rd×dsym))

such that

dRn := (p(%n)− p(%n))I dx+ ~ (∇x
√
%n ⊗∇x

√
%n −∇x

√
%n ⊗∇x

√
%n) dx.

We claim that Rn are positive measure, meaning that

Rn ∈ L∞(0, T ;M+(Ω;Rd×dsym)); (4.33)
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more precisely, we have to show that for any ξ ∈ Rd and any bounded open set B ⊂ Ω

Rn : (ξ ⊗ ξ) ≥ 0 in D′((0, T )× B).

We have

Rn : (ξ ⊗ ξ) = (p(%n)− p(%n))|ξ|2 + ~ (∇x
√
%n ⊗∇x

√
%n −∇x

√
%n ⊗∇x

√
%n) : (ξ ⊗ ξ);

on the one hand, the first term on the right-hand side is non-negative due to the convexity of

the function % 7→ p(%) and therefore p(%n) ≤ p(%n) (see e.g. [21], Theorem 2.1.1); on the other

hand, we have

(∇x
√
%n ⊗∇x

√
%n −∇x

√
%n ⊗∇x

√
%n) : (ξ ⊗ ξ)

= lim
ε→0

[
(∇x
√
%ε,n ⊗∇x

√
%ε,n) : (ξ ⊗ ξ)

]
− (∇x

√
%n ⊗∇x

√
%n) : (ξ ⊗ ξ)

= lim
ε→0
|∇x
√
%ε,n · ξ|2 − |∇x

√
%n · ξ|2 = |∇x

√
%n · ξ|2 − |∇x

√
%n · ξ|2

in D′((0, T ) × B), where it is interesting to notice that the derivatives of the function % 7→
fξ(%) = |∇x

√
% · ξ|2 are such that

f
(k)
ξ (%) = (−1)k

k!

%k
fξ(%) for any k ∈ N;

in particular, fξ is convex for any fixed ξ ∈ Rd and therefore fξ(%n) ≤ fξ(%n). We get (4.33).

Similarly, we can pass to the limit in (4.17) to get

ˆ
Ω

[
1

2
%n|un|2 + P (%n) +

~
2
|∇x
√
%n|2

]
(τ, ·) dx

+

ˆ
Ω

dEn(τ) +

ˆ τ

0

ˆ
Ω
S(∇xun) : ∇xun dxdt

≤
ˆ

Ω

[
1

2

|J0|2

%0,n
+ P (%0,n) +

~
2
|∇x
√
%0,n|2

]
dx,

(4.34)

with

En ∈ L∞(0, T ;M+(Ω))

such that

dEn =
(
P (%n)− P (%n)

)
dx+

~
2

(
|∇x
√
%n|2 − |∇x

√
%n|2

)
dx.

Furthermore, introducing λ = λ(d, γ) = max{d(γ − 1), 2}, we obtain

Tr[Rn] = d
(
p(%n)− p(%n)

)
+ ~

(
lim
ε→0

Tr[∇x
√
%ε,n ⊗∇x

√
%ε,n]− Tr[∇x

√
%n ⊗∇x

√
%n]
)

= d(γ − 1)
(
P (%n)− P (%n)

)
+ ~

(
|∇x
√
%n|2 − |∇x

√
%n|2

)
≤ λEn

and therefore, the energy inequality (4.34) will still hold replacing En with λ−1 Tr[Rn].
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Lemma 4.7. For every fixed n ∈ N, and any %0,n ∈ C(Ω) such that

ˆ
Ω

[
1

2

|J0|2

%0,n
+ P (%0,n) +

~
2
|∇x
√
%0,n|2

]
dx ≤ E0,

where the constant E0 is independent of n, there exist

%n ∈ L∞(0, T ;L∞(Ω)),

un ∈ C([0, T ];Xn),

with

e−cT%
n
≤ %n(t, x) ≤ ecT%n, for all (t, x) ∈ [0, T ]× Ω,

for a positive constant c, such that

(i) the integral identity[ˆ
Ω
%nϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

(%n∂tϕ+ %nun · ∇xϕ) dx (4.35)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ]× Ω), with %n(0, ·) = %0,n;

(ii) there exists

Rn ∈ L∞(0, T ;M+(Ω;Rd×dsym))

such that the integral identity[ˆ
Ω
%nun ·ϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[%nun · ∂tϕ+ (%nun ⊗ un) : ∇xϕ+ p(%n) divxϕ] dxdt

+
~
4

ˆ τ

0

ˆ
Ω

[
∇x%n · divx∇>xϕ+ 4(∇x

√
%n ⊗∇x

√
%n) : ∇xϕ

]
dxdt

−
ˆ τ

0

ˆ
Ω
S(∇xun) : ∇xϕ dxdt+

ˆ τ

0

ˆ
Ω
∇xϕ : dRn dt

(4.36)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1([0, T ];Xn), with (%nun)(0, ·) = J0;

(iii) there exists a positive constant λ = λ(d, γ) such that the integral inequality

ˆ
Ω

[
1

2
%n|un|2 + P (%n) +

~
2
|∇x
√
%n|2

]
(τ, ·) dx

+
1

λ

ˆ
Ω

d Tr[Rn](τ) +

ˆ τ

0

ˆ
Ω
S(∇xun) : ∇xun dxdt

≤
ˆ

Ω

[
1

2

|J0|2

%0,n
+ P (%0,n) +

~
2
|∇x
√
%0,n|2

]
dx,

(4.37)

holds for a.e. τ ∈ (0, T ).
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4.1.4 Limit n→∞

In order to perform the last limit, we need the following result.

Lemma 4.8. Let {%n,un,Rn}n∈N be as in Lemma 4.7. Then, passing to suitable subsequences

as the case may be, the following convergences hold as n→∞.

%n → % in Cweak([0, T ];Lγ(Ω)) (4.38)

%nun → %u in Cweak([0, T ];Lq(Ω;Rd)), (4.39)

un ⇀ u in L2(0, T ;W 1,2(Ω;Rd)), (4.40)

%nun ⊗ un ⇀ %u⊗ u in L2(0, T ;Lr(Ω;Rd×d)), r > 1, (4.41)

%n
∗
⇀ % in L∞(0,∞;W

1, 2γ
γ+1 (Ω)), (4.42)

p(%n)
∗
⇀ p(%) in L∞(0, T ;M(Ω)), (4.43)

∇x
√
%n ⊗∇x

√
%n

∗
⇀ ∇x

√
%⊗∇x

√
% in L∞(0, T ;M(Ω)), (4.44)

Rn
∗
⇀ R̃ in L∞(0, T ;M(Ω;Rd×dsym)), (4.45)

where the exponent q is defined as in (2.2).

Proof. From the energy inequality (4.37) we can recover the following uniform bounds:

‖√%nu‖L∞(0,T ;L2(Ω;Rd)) ≤ c(E), (4.46)

‖∇x
√
%n‖L∞(0,T ;L2(Ω;Rd)) ≤ c(E) (4.47)

‖P (%n)‖L∞(0,T ;L1(Ω)) ≤ c(E), (4.48)

‖Tr[Rn]‖L∞(0,T ;L1(Ω)) ≤ c(E), (4.49)

‖∇xun‖L2((0,T )×Ω;Rd×d) ≤ c(E). (4.50)

From (4.48), it is easy to deduce that, passing to a suitable subsequence,

%n
∗
⇀ % in L∞(0, T ;Lγ(Ω)); (4.51)

this convergence can be strengthened to (4.38) as a consequence of the Arzelà-Ascoli theorem.

Convergence (4.38) combined with identity (4.32), the uniform bound (4.47) and the fact that

γ > 2γ
γ+1 imply (4.42). Convergence (4.40) can be recovered from (4.50), while from (4.46),

(4.51), (4.42), the Sobolev embedding (3.21) and the fact that for a.e. t ∈ [0, T ], as a consequence

of Hölder inequality,

‖(%nun)(t, ·)‖Lq(Ω;Rd) ≤ ‖(
√
%nu)(t, ·)‖L2(Ω;Rd)‖

√
%n(t, ·)‖L2p(Ω),

with q and p defined as in (2.2) and (3.22), respectively, we get

%nun
∗
⇀ %u in L∞(0, T ;Lq(Ω;Rd)). (4.52)
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Now, from the compact Sobolev embedding Lγ(Ω) ↪→↪→ W−1,2(Ω), we get the strong conver-

gence of the densities in C([0, T ];W−1,2(Ω)) and therefore

%u = %u a.e. on (0, T )× Ω.

Once again, convergence (4.52) can be strengthened to (4.39). Next, convergences (4.39), (4.40)

combined with the Sobolev embedding Lq(Ω) ↪→↪→W−1,2(Ω) imply (4.41), where the exponent

r must satisfy
1

r
=

1

q
+
d− 2

2d
.

Finally, convergences (4.43) and (4.44) can be deduced from (4.47) and (4.48) respectively,

repeating the same passages performed in the proof of Lemma 4.6, while convergence (4.45)

follows from (4.49).

We are now ready to let n → ∞. Once again, we get that the weak formulations of the

continuity equation (2.5) and balance of momentum (1.3) hold for any τ ∈ [0, T ] and any

ϕ ∈ C1([0, T ]× Ω), ϕ ∈ C1([0, T ];Xn), respectively, with the Reynolds stress

R ∈ L∞(0, T ;M+(Ω;Rd×dsym))

such that

dR = dR̃ +
(
p(%)− p(%)

)
I dx+ ~

(
∇x
√
%⊗∇x

√
%−∇x

√
%⊗∇x

√
%
)

dx.

Choosing a càglàd function E = E(τ) such that

E(τ) =

ˆ
Ω

[
1

2
%|u|2 + P (%) +

~
2
|∇x
√
%|2
]

(τ, ·) dx+
1

λ

ˆ
Ω

d Tr[R](τ)

for a.e. τ ∈ (0, T ), the integral inequality

E(τ) +

ˆ τ

0

ˆ
Ω
S(∇xu) : ∇xu dxdt ≤

ˆ
Ω

[
1

2

|J0|2

%0
+ P (%0) +

~
2
|∇x
√
%0|2

]
dx,

holds for a.e. τ ∈ (0, T ). Finally, notice that the spaces Xn can be chosen in such a way that

the validity of (2.6) can be extended to any ϕ ∈ C1([0, T ];C2
c (Ω;Rd)) by a density argument.

Given

ϕ ∈ C1([0, T ];C2(Ω;Rd)), ϕ|∂Ω = 0,

we can construct a sequence {ϕn}n∈N ⊂ C1([0, T ];C2
c (Ω;Rd)) such that

{ϕn}n∈N is uniformly bounded in W 1,∞(0, T ;W 2,∞(Ω;Rd))

and, for any (t, x) ∈ (0, T )× Ω

ϕn(t, x)→ ϕ(t, x), ∂tϕn(t, x)→ ∂tϕ(t, x),

∇xϕn(t, x)→ ∇xϕ(t, x), ∇2
xϕn(t, x)→ ∇2

xϕ(t, x).

This concludes the proof of Theorem 4.1.
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4.2 Proof of Theorem 4.2

Let {[%δ,uδ]}δ>0 be a family of dissipative solutions of the quantum Navier–Stokes system

∂t%δ + divx(%δuδ) = 0, (4.53)

∂t(%δuδ) + divx (%δuδ ⊗ uδ) +∇xp(%δ) = δ divx S(∇xuδ) + divxK(%δ,∇x%δ,∇2
x%δ), (4.54)

with correspondent Reynolds stress Rδ, pressure (1.6), viscous stress tensor (1.7), boundary

conditions (1.8) and initial conditions [%0,J0] as in the hypotheses of Theorem (4.2). For

each fixed δ > 0, the existence of a dissipative solution [%δ,uδ] in the sense of Definition 2.1

was proven in Theorem (4.1). Similarly to what was done in the previous section, passing to

suitable subsequences as the case may be, we have the following convergences as δ → 0.

%δ → % in Cweak([0, T ];Lγ(Ω)) (4.55)

%δuδ → J in Cweak([0, T ];Lq(Ω;Rd)), (4.56)

%δ
∗
⇀ % in L∞(0, T ;W

1, 2γ
γ+1 (Ω)), (4.57)

p(%δ)
∗
⇀ p(%) in L∞(0, T ;M(Ω)), (4.58)

%δuδ ⊗ uδ
∗
⇀

J⊗ J

%
in L∞(0, T ;M(Ω;Rd×dsym)), (4.59)

∇x
√
%δ ⊗∇x

√
%δ
∗
⇀ ∇x

√
%⊗∇x

√
% in L∞(0, T ;M(Ω;Rd×dsym)), (4.60)

Rδ
∗
⇀ R̃ in L∞(0, T ;M(Ω;Rd×dsym)), (4.61)

√
δ S(∇xuδ) ⇀

√
δ S̃ in L2((0, T )× Ω;Rd×d), (4.62)

with q defined as in (2.2).

We are now ready to let δ → 0 in (2.5)–(2.7). Notice that the term with the δ-dependent

viscous stress tensor vanishes due to convergence (4.62); indeed,

δ

ˆ τ

0

ˆ
Ω
S(∇xuδ) : ∇xϕ dxdt =

√
δ

ˆ τ

0

ˆ
Ω

√
δ S(∇xuδ) : ∇xϕ dxdt→ 0.

We get the weak formulations of the continuity equation (2.8), of the balance of momentum

(2.9) and of the energy inequality (2.10) for the quantum Euler system, with

R ∈ L∞(0, T ;M+(Ω;Rd×dsym))

such that

dR = dR̃ +
(
p(%)− p(%)

)
I dx+

(
J⊗ J

%
− J⊗ J

%

)
dx

+ ~
(
∇x
√
%⊗∇x

√
%−∇x

√
%⊗∇x

√
%
)

dx.

Indeed, proceeding as in the previous section, we can write for any ξ ∈ Rd and any bounded

open set B ⊂ Ω(
J⊗ J

%
− J⊗ J

%

)
: (ξ ⊗ ξ) =

∣∣∣∣J · ξ%
∣∣∣∣2 − ∣∣∣∣J · ξ%

∣∣∣∣2 in D′((0, T )× B),
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where the non-negativity of the right-hand side quantity will follow from the convexity of the

lower semi-continuous function [%,J] 7→
∣∣∣J·ξ% ∣∣∣2. This concludes the proof of Theorem 4.2.

5 Semiflow selection

We start by fixing a proper setting. We let

• H := W−k,2(Ω)×W−k,2(Ω;Rd)×R with k > d
2 + 1 fixed; notice that with this particular

choice of the constant k we can guarantee

Lp(Ω) ↪→↪→W−k,2(Ω) for any p ≥ 1; (5.1)

• D denote the space of initial data associated to the quantum Navier–Stokes or quantum

Euler systems; in both cases, it can be chosen as

D :=
{

[%0,J0, E0] ∈ H : %0 ∈ L1(Ω), %0 ≥ 0, J0 ∈ L1(Ω;Rd) satisfying (5.2)
}

where ˆ
Ω

[
1

2

|J0|2

%0
+ P (%0) +

~
2
|∇x
√
%0|2

]
dx ≤ E0; (5.2)

• T = D([0,∞);H) represents the trajectory space;

• U : D → 2T represents the set–valued mapping that associate to every [%0,J0, E0] ∈ D the

family of dissipative solutions in the sense of Definition 2.1 or 2.2 if we are considering the

quantum Navier–Stokes or quantum Euler system, respectively, arising from the initial

data [%0,J0, E0]. More precisely, for every [%0,J0, E0] ∈ D

U [%0,J0, E0] =

{[%,J, E] ∈ T : [%,J, E] is a dissipative solution with initial data [%0,J0, E0]}.

Notice that also in the context of the quantum Navier–Stokes system, we consider the

momentum J = %u as a state variable along with the density % instead of the velocity u

because it is at least weakly continuous in time.

We are now ready to give the following definition.

Definition 5.1 (Semiflow selection). A semiflow selection in the class of dissipative solutions

is a Borel measurable map U : D → T such that

U [%0,J0, E0] ∈ U [%0,J0, E0] for every [%0,J0, E0] ∈ D

satisfying the semigroup property: for any [%0,J0, E0] ∈ D and any t1, t2 ≥ 0

U [%0,J0, E0](t1 + t2) = U [%(t1),J(t1), E(t1)](t2)

where [%,J, E] = U [%0,J0, E0].
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The goal of this section is to prove the following two results.

Theorem 5.2 (Semiflow selection for the quantum Navier–Stokes system). The quantum Navier–

Stokes system (1.2)–(1.3) with constitutive relations (1.6)–(1.7) and boundary conditions (1.8)

admits a semiflow selection in the sense of Definition 5.1.

Theorem 5.3 (Semiflow selection for the quantum Euler system). The quantum Euler system

(1.4)–(1.5) with the isentropic pressure (1.6) and boundary conditions (1.9) admits a semiflow

selection in the sense of Definition 5.1.

Both Theorems 5.2 and (5.3) are a direct consequence of Theorem 3.2 in [7] once we have

verified that the set–valued map U verifies the following five properties.

(P1) Non-emptiness: U [%0,J0, E0] is a non-empty subset of T for any [%0,J0, E0] ∈ D.

(P2) Compactness: U [%0,J0, E0] is a compact subset of T for every [%0,J0, E0] ∈ D.

(P3) Measurability : U : D → 2T is Borel measurable.

(P4) Shift invariance: introducing the positive shift operator ST ◦Φ for every T > 0 and Φ ∈ T
as

ST ◦ Φ(t) = Φ(T + t), for all t ≥ 0,

then, for any T > 0, [%0,J0, E0] ∈ D and [%,J, E] ∈ U [%0,J0, E0], we have

ST ◦ [%,J, E] ∈ U([%(T ),J(T ), E(T−)]).

(P5) Continuation: introducing the continuation operator Φ1 ∪T Φ2 for every T > 0 and

Φ1,Φ2 ∈ T as

Φ1 ∪T Φ2(t) =

Φ1(t) for 0 ≤ t ≤ T,

Φ2(t− T ) for t > T,
for all t ≥ 0,

then, for any T > 0, [%0,J0, E0] ∈ D,

[%1,J1, E1] ∈ U [%0,J0, E0],

[%2,J2, E2] ∈ U [%1(T ),J1(T ), E1(T−)],

we have

[%1,J1, E1] ∪T [%2,J2, E2] ∈ U [%0,J0, E0].

To this end, we have the following facts.

• Property (P1) is equivalent in showing the existence of a dissipative solution in the sense

of Definitions 2.1 and 2.2 for any fixed initial data [%0,J0, E0] ∈ D. This has already been

achieved in Theorems 4.1 and 4.2.
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• Properties (P2) and (P3) hold true if we manage to prove the weak sequential stability

of the solution set U [%0,J0, E0] for every [%0,J0, E0] ∈ D fixed, since it will in particular

imply compactness and the closed-graph property of the mapping

D 3 [%0,J0, E0]→ U [%0,J0, E0] ∈ 2T ,

and thus the Borel–measurality of U , cf. Lemma 12.1.8 in [42].

• Properties (P4) and (P5) can be easily checked for both systems following the same

arguments done in [9], Lemma 4.2 and 4.3.

Therefore, the proofs of Theorems 5.2 and 5.3 reduce to the proof of the weak sequential

stability results.

Proposition 5.4 (Weak sequential stability for the quantum Navier–Stokes system). Let

{[%n,un]}n∈N be a family of dissipative solutions of the quantum Navier–Stokes system (1.2),

(1.3) with the corresponding total energies {En}n∈N and initial data {[%0,n,J0,n, E0,n]}n∈N in

the sense of Definition 2.1. If

[%0,n,J0,n, E0,n]→ [%0,J0, E0] in H,

then, at least for suitable subsequences,

[%n,Jn = %nun, En]→ [%,J = %u, E] in D([0,∞);H), (5.3)

where [%,u] is another dissipative solution of the same problem with total energy E.

Proposition 5.5 (Weak sequential stability for the quantum system). Let {[%n,Jn]}n∈N be a

family of dissipative solutions of the quantum Euler system (1.4), (1.5) with the corresponding

total energies {En}n∈N and initial data {[%0,n,J0,n, E0,n]}n∈N in the sense of Definition 2.2. If

[%0,n,J0,n, E0,n]→ [%0,J0, E0] in H,

then, at least for suitable subsequences,

[%n,Jn, En]→ [%,J, E] in D([0,∞);H), (5.4)

where [%,J] is another dissipative solution of the same problem with total energy E.

We are not going to show the two aforementioned propositions in details since the proofs

would be essentially a repetition of what was done in Sections 4.1.4 and 4.2. We just point out

that the convergences

[%n,Jn]→ [%,J] in Cweak,loc([0,∞);Lp(Ω)× Lq(Ω;Rd))

can be strengthened to

[%n,Jn]→ [%,J] in Cloc([0,∞);W−k,2(Ω)×W−k,2(Ω;Rd))
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thanks to the compact embedding (5.1), implying in particular that,

[%n,Jn]→ [%,J] in D([0,∞);W−k,2(Ω)×W−k,2(Ω;Rd)),

as for continuous functions, the convergence in the Skorokhod space coincides with the uniform

one, cf. condition (ii) of Proposition 2.1 in [7]. Moreover, the energies {En}n∈N are non-

increasing functions, locally of bounded variation; therefore, from Helly’s selection theorem,

there exists a subsequence converging pointwise

En(t)→ E(t) for all t ∈ [0,∞),

implying in particular that

En → E in D([0,∞)),

as for monotone functions, the convergence in the Skorokhod space coincides with the almost

everywhere one, cf. condition (i) of Proposition 2.1 in [7].

A Appendix

A.1 Function spaces

Let Q ⊆ RN , N ≥ 1, be an open set, X a Banach space and M ≥ 1. We denote with

• Cweak(Q;X) the space of functions defined on Q and ranging in X which are continuous

with respect to the weak topology. If Q is bounded, we say that fn → f in Cweak(Q;X)

as n→∞ if for all g ∈ X∗

sup
y∈Q
|〈g; fn(y)− f(y)〉X∗,X | → 0 as n→∞;

• Ck(Q;X), with k a non-negative integer, the space of k-times continuously differentiable

functions on Q and C∞(Q;X) =
⋂∞
k=0C

k(Q;X);

• D(Q;X) = C∞c (Q;X) the space of functions belonging to C∞(Q;X) and having compact

support in Q;

• D′(Q;RM ) = [C∞c (Q;RM )]∗ the space of distributions;

• M(Q;RM ) =
[
Cc(Q;RM )

‖·‖∞]∗
the space of vector-valued Radon measures. If Ω ⊂ RN

is a bounded domain, then M(Ω) = [C(Ω)]∗.

• M+(Q) the space of positive Radon measures;

• M+(Q;RN×Nsym ) the space of tensor–valued Radon measures R such that R : (ξ ⊗ ξ) ∈
M+(Q) for all ξ ∈ Rd, and with components Ri,j = Rj,i;

• Lp(Q;X), with 1 ≤ p ≤ ∞, the Lebesgue space defined on Q and ranging in X;

• W k,p(Q;RM ), with 1 ≤ p ≤ ∞ and k a positive integer, the Sobolev space defined on Q;
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• W−k,p′(Q;Rm), with p′ the conjugate exponent of 1 ≤ p < ∞ and k a positive integer,

the dual space of W k,p
0 (Q;Rm) =

[
Cc(Q;RM )

‖·‖
Wk,p(Q;RM )

]∗
;

• D([0,∞);H) the Skorokhod space of càglàd functions defined on [0,∞) taking values in a

Hilbert spaceH. More precisely, Φ belongs to the space D([0,∞);H) if it is left–continuous

and has right–hand limits:

(i) for t > 0, Φ(t−) = lims↑t Φ(s) exists and Φ(t−) = Φ(t);

(ii) for t ≥ 0, Φ(t+) = lims↓t Φ(s) exists.

A.2 Energy

In this section, we will show how to deduce the total energy balances (1.11) and (1.12). First

of all, introducing the drift velocity v = v(%,∇x%) such that

v =
∇x
√
%

√
%
, (A.1)

and taking the gradient in the continuity equations (1.2), (1.4), we get extra equations for v:

∂t(%v) + divx(%v⊗ u) +
1

2
divx

(
%∇>x u

)
= 0, (A.2)

when considering system (1.2)–(1.3), and

∂t(%v) +
1

2
divx∇>x J = 0, (A.3)

when considering system (1.4)–(1.5). Furthermore, notice that we can write

K(%,∇xv) =
~
2
%∇xv.

Supposing that all the quantities in question are smooth, we can multiply the balance of

momentum (1.3) of the quantum Navier–Stokes system by u and, using the continuity equation

(1.2), we can deduce

∂t

(
1

2
%|u|2

)
+ divx

([
1

2
%|u|2 + p(%)

]
u

)
− p(%) divx u + S(∇xu) : ∇xu +

~
2
%∇xv : ∇xu

= divx (S(∇xu) · u + K(%,∇xv) · u) .

(A.4)

Similarly, we multiply (A.2) by v to get

∂t

(
1

2
%|v|2

)
+ divx

(
1

2
%|v|2u

)
− 1

2
%∇xu : ∇xv = −1

2
divx

(
%∇>x u · v

)
, (A.5)

where we used the fact that

∇>x u : ∇xv = ∇xu : ∇>x v = ∇xu : ∇xv (A.6)
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since ∇xv is symmetric. Multiplying (A.5) by ~ and summing the obtained identity to (A.4)

we get

∂t

(
1

2
%|u|2 +

~
2
%|v|2

)
+ divx

([
1

2
%|u|2 + p(%) +

~
2
|v|2

]
u

)
− p(%) divx u + S(∇xu) : ∇xu

= divx

(
S(∇xu) · u + K(%,∇xv) · u− ~

2
%∇>x u · v

)
.

Recalling that the pressure potential P = P (%) is characterized by (1.10), from the continuity

equation (1.2) we obtain the following identity

−p(%) divx u = ∂tP (%) + divx[P (%)u].

Now, it is enough to integrate over Ω and use the boundary conditions to get the desired

expressions.

References
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