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Abstract

In numerical simulations a smooth domain occupied by a fluid has to be approximated by a
computational domain that typically does not coincide with a physical domain. Consequently, in
order to study convergence and error estimates of a numerical method domain-related discretization
errors, the so-called variational crimes, need to be taken into account.

In this paper we present an elegant alternative to a direct, but rather technical, analysis of varia-
tional crimes by means of the penalty approach. We embed the physical domain into a large enough
cubed domain and study the convergence of a finite volume method for the corresponding domain-
penalized problem. We show that numerical solutions of the penalized problem converge to a gen-
eralized, the so-called dissipative weak, solution of the original problem. If a strong solution exists,
the dissipative weak solution emanating from the same initial data coincides with the strong solution.
In this case, we apply a novel tool of the relative energy and derive the error estimates between the
numerical solution and the strong solution. Extensive numerical experiments that confirm theoretical
results are presented.
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1 Introduction

In this paper, we study compressible fluid flow in a smooth physical domain Qf modeled by Navier-Stokes
equations

Navier—Stokes problem on a smooth domain O/
Oro + divg(ou) =0, (1.1a)
O(ou) + divy(ou ® u) + Vup(o) = div,S(Vau), (1.1b)

2
S(Veu) = p (qu + Viu — ddivzu]I) + Mdiveul, p >0, A >0.
Dirichlet boundary condition

ulyor =0, QF cRY d=2,3. (1.1c)

Initial conditions
Q<07 ) = 0o, QU(O, ) = my. (lld)

Here, ¢ and u are the fluid density and velocity, respectively. Moreover, the constants p and A are the
viscosity coefficients. For the sake of simplicity, we consider the isentropic state equation:

a

p(0) = ap”, a >0, v > 1 with the associated pressure potential P(o) = 1 o’. (1.2)
fy J—
Throughout the paper we always assume that the initial data satisfy
00 >0>0, g€ LXQf), moeL®Q)RY). (1.3)

On the one hand, mathematical analysis of the Navier—Stokes system (1.1) is currently available
either for periodic boundary conditions or for no-slip boundary conditions applied in a smooth physical
domain occupied by a fluid. On the other hand, numerical methods, e.g., finite volume or finite element
methods, typically require a polygonal computational domain.

Hence, a smooth physical domain has to be approximated by a polygonal computational domain
and additional approximation errors arise. Let us note that in the case of complicated geometry the
generation of a suitable polygonal approximation may be computationally very costly.

To overcome these difficulties we apply a penalty method originally used in the context of incom-
pressible Navier-Stokes equations by Angot et al. [2]. Thus, the physical domain 2/ is embedded into a
large cube on which the periodic boundary conditions are imposed, see Figure 1. The original boundary
conditions are enforced through a penalty term, represented by a singular friction term in the momentum
equation. The resulting penalized problem (1.4a)—(1.4c) is solved on a flat torus T¢ by an upwind-type
finite volume (FV) method.

Penalized Navier—Stokes system on T¢

Oro + divy(pou) = 0, (1.4a)



Figure 1: A fluid domain ©f embed into a torus T¢.

1os
Or(ou) + divy(ou @ u) + Vyp(p) = divyS(Vau) — eiu, (1.4Db)
S
where
1, ifxeQs:=T9\Qf,
Lor(e) =4 '
0, ifxeq.
Boundary conditions: periodic boundary condition
Initial conditions
~ - some g5, ifxe Qs __ N 0, if x € Q°,
0(0,+) :== 20 = o ;o m(0,):=mg = . f
0o, if x € ooug, if x € /.
0o > 0 satisfying the periodic boundary condition, (1.4¢)

The idea to penalize a complicated physical domain and solve numerically the corresponding problem
on a simple domain is quite often used in the literature. We refer a reader to [18, 19] for the immersed
boundary method and to [I1, 12, 15] for the fictitious domain method developed in the context of
incompressible Navier-Stokes equations. In [1] a penalization method has been applied to approximate
a moving domain in the fluid-structure interaction problem. Further, in [13, 14] penalization of boundary
conditions for the compressible Navier—Stokes-Fourier system was applied for the spectral method. Error
estimates between exact and penalized numerical solutions were presented in [2] for the incompressible
Navier—Stokes equations and in [17, 20, 21, 22] for elliptic boundary problems. We mention also Basari¢
et al. [3] and Feireisl et al. [10], where the penalization method was used to prove the existence of weak
solutions. In [10] the penalization method has been used to show the existence of a weak solution to the
compressible Navier-Stokes equations on a moving domain and in [3] the existence of a weak solution
to the Navier—Stokes—Fourier system with the Dirichlet conditions on a rough (Lispchitz) domain was
proved.

The present paper is organized in the following way. We introduce the concept of generalized, the so-
called dissipative weak solution for the Dirichlet boundary problem (1.1) and the corresponding penalized
problem (1.4) in Section 2. Numerical method, the finite volume method (3.4) for the approximation of
the penalized problem (1.4) is introduced in Section 3. Section 4 and Section 5 are devoted to the main
results of the paper: convergence analysis of the finite volume method as well as error estimates between



the finite volume solutions of the penalized problem and the exact strong solution of the Navier—Stokes
system with the Dirichlet boundary conditions. Here we consider the errors with respect to the mesh
(discretization) parameter as well as the penalization parameter. The paper is closed with Section 6,
where several numerical experiments illustrate our theoretical results.

2 Dissipative weak solution

Following [%] we introduce the dissipative weak (DW) solutions to the Navier—Stokes system. We consider
both, the penalized problem on T¢ (1.4) and the original Dirichlet problem on Qf (1.1). We will show
in Section 4 that the DW solutions arise as a natural limit of numerical approximations and build a
suitable tool for the convergence analysis.

Definition 2.1 (DW solution of the penalized problem). We say that (o,w) is a DW solution of the
Navier—Stokes system (1.4) if the following hold:

e Integrability.
0>0, o€ L™(0,T;L7(T%), w e L*(0,T;W"*(T%RY),
2y
ou € L>([0,T]; L+ (T4 RY)), S e L2((0,T) x T4 RIXD). (2.1)

sYs

e Energy inequality.

Uw <;Q‘“|2+P(Q)> dl} (7:°) +/OT /TdS(qu) : Vo dedt

1 T T = |2
+/ |u]2dxdt+/ d@(7)+/ / d@(T)dt</ <‘m£"+7>(§0)) Az (2.2)
€s Jo Jos Td 0o J1d Td \ 200

for any T € [0,T] and the energy defect measures

¢ € L=(0,T; MH(TY), © e MT((0,T) x T9).
e Equation of continuity.
T
= [ ao0de= [ [ (o0 -+ ou- Va0) dod (23)
T4 0o Jr¢

for any test function ¢ € C*([0,T) x T%).

¢ Momentum equation.

T
_ y mg - ¢(0,-)dx = /0 /’]I‘d (ou - 0ip+ ou @ u : Vo + p(o)div, @) dadt
1 [T T T
_ E/0 / w- ¢dadt — /0 y S(Vau) : Ve dadt + /0 y Ve dR(t) dz (2.4)
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for any test function ¢ € C*([0,T) x T¢ R?) with Reynolds defect
N € L0, T; MH (T4 REH,))

satisfying
de€ < tr{R] < d€  for some constants 0 < d < d.

(2.5)

Definition 2.2 (DW solution of the Dirichlet problem). We say that (o,u) is a DW solution of the

Navier—Stokes system (1.1) if the following hold:
e Integrability.
0>0, 0 L=(0,T; L7 (), we L*(0,T;WH*(QF;RY)),
ou € L=([0,T]; L1 (QF;RY), S e L2((0,T) x QF;RIX4).

sys

e Energy inequality.

[/m <;Q\ul2 +7>(Q)) dx} (r,) +/OT /Qf S(Vouw) : Vyudadt

+ de(7)+/0 d@(T)dtg/Qf (;"’;O‘Qwv(go)) dz

Qf Qf 0

for any T € [0,T] with the energy defect measure

€ € L0, T; M (QF)), D e MT((0,T) x QF).
e Equation of continuity.
T
[ oo = [ 000+ ou- V.o) duat
Qf 0 Qf

for any test function ¢ € C([0,T) x QF).

¢ Momentum equation.
T
— my - ¢(0,-)dx = / / (ou -0+ pu@u : Vo + p(o)divy¢p) dadt
Qf 0 Jof
T T
—/ S(Vyu) : Vi dadt +/ | V¢ : dR(t)dt
0 Jaof 0o Jof
for any test function ¢ € C([0,T) x OF; RY) with Reynolds defect
R € L(0,T; MH (O RE))

satisfies B B
d€ < trfR] < d€  for some constants 0 < d < d.

(2.6)

(2.10)



3 Numerical scheme

In this section we generalize the finite volume method proposed in [7] to approximate the penalized
problem (1.4).

3.1 Space discretization

Mesh. Let 7;, be a uniform structured (square for d = 2 or cuboid for d = 3) mesh of T? with h being
the mesh parameter. We denote by £ the set of all faces of T, and by &;, i = 1,...,d, the set of all faces
that are orthogonal to e; — the basis vector of the canonical system. Moreover, we denote by £(K) the
set of all faces of a generic element K € T,. Then, we write 0 = K|L if o € £ is the common face of
neighbouring elements K and L. Further, we denote by zx and |K| = h? (resp. =, and |o| = h?1) the
center and the Lebesgue measure of an element K € Ty, (resp. a face o € &), respectively.

With the above notations, we further define Q£ as the set of all elements inside the physical domain
07 ie.

of ={K | Kc o/} ana 0;=T\0f,
cf. Figure 3. It yields Q£ c Qf and Q° C }j. Here and hereafter, we assume that
dist(9Q/, Q1) ~ h, (3.1)
which gives |Q7 \ Q£| ~ h and |Q; \ Q°| ~ h.
Dual mesh. For any 0 = K|L € &;, we define a dual cell D, := D, g U D, 1,, where Dy i (resp. Dy 1,)

is defined as
Do ={x € K|z; € co{(zk)i, (25)i}} forany c € &, i=1,....,d,

with co{A, B} = [min{A, B}, max{A, B}]. We refer to Figure 2 for a two-dimensional illustration of a
dual cell.

Ds i T% Dg 1,

K [ © ® [ ] L

TK Lo xr

Figure 2: Dual mesh D, = D, gk U Dy 1,



Function space. The symbol @} stands for the set of piecewise constant functions on the grid 7.
Note that hereafter v;, € (Q)% means that every component of a vector-valued function vy belongs to
the set Q. The projection of any ¢ € L'(T¢) onto the space @y, is given by

tirot) = 35 M [ od.

KeTy

Further, we use the following notations for the average and jump operators for v € Qp

Um(z) —;UOU (SL’)’ [[U]] (LL’) — Uout(x) _ Uin(I)

lof (=) =

with

out(p) = i ) )= li -0
v () 6_1}1(1)1+v(x—l— n), v%(x) 6_1>I(I)1+U(LE n),

whenever © € o € £ and n is the outer normal vector to o. In addition, if o € &;, we write {v}} and [v]

as {{v}}(i) and [[v]](i), respectively. Moreover, we define an upwind quantity of v € @, associated to the
velocity field u € (Qp)? at a generic face o

2P — {Uinv if {ul}-n=>0,
vt if Jul}-n <.

Discrete operators. For piecewise constant functions r, € Qpn, v, € (Qn,)? we define the following
discrete gradient, divergence and Laplace operators as

1
Verp(z) = Z (Vern)p, 1p,(z), (Vern)p, = 7 [rlm, Vewvn = (Vevin,...,Vevan)',
oe&

divpop(e) = D (divion) g 1k (), (divh’vh)K:% > fw}p -,

KeTy, ce&(K)
1
Apra(z) = D (Aprn)g 1k (@), (Anrn) = 33 > Iral
KeTs oe€(K)

It is easy to verify the interpolation errors

6] = B Vadll ooy » IT70 = 6l o) ~ B IVabll oo(y > Vel oo(y ~ IVl o) (3:2)

for any ¢ € W1>°(Q), and the following discrete integration-by-parts formula

L e = =5 [l 151 as. (33

for any rp, fn € Qn.



Time discretization. Given a time step At > 0 we divide the time interval [0,7] into Ny = T'/At
uniform parts, and denote t* = kAt. Then v} ~ vp(t*) is the approximation of a function v, at time
tk.k=1,...,Np. By vp(t) € Lag(0,T;Qp,) we denote a piecewise constant in time function of discrete
values vﬁ € Qy

vp(t,-) =) for t < At, wp(t,-) = for te [kAt,(k+1)At), k=1,---,Np.
Further, we define the discrete time derivative by a backward difference formula

o (t) — vy,

Dtvh(t) = At

with vy = v, (t — At).

Hereafter, we work with the couple (g, (), un(t)) that represents the (piecewise constant in space
and time) discrete density and velocity, respectively. Moreover, we set my, = opup and pp, = p(on).

3.2 Finite volume method for the Navier—Stokes system on T¢
We are now ready to propose a finite volume method presented in the weak form.

Definition 3.1 (Finite volume method). Let the initial data (1.1d) be extended by 0y, mgy as in (1.4c)
and let (09, mY) = (700, Irmy). We say that (037, u5’) € Lai(0,T5Qp x (Qn)?) is a finite volume
approximation of the penalized problem (1.4) if the following system of algebraic equations hold

/T Digronda /5 Fi (o, usr) [on] dS, =0, for all én € Qn,  (3.4a)

€ € € € € € . 1 €
/]Td Dt(QhSUhS) “¢pdr — /gF‘,i(ghSuhs, uhs) “[pn] dSs — /]Td phsdlvhﬁbh dz + — u,’ - ¢ dx

6 o
SQZ

+ M/ Veu;® : Ve do + V/ divpu;® divyey, de = 0, for all ¢p, € (Qn)°. (3.4b)
Td Td

where v = X\ + dffu and the flux Fy,(ry,up) reads
Fy(rp,up) = Uplrp, up] — h° [rp],  with Uplry,up) =" {up} -n and e > —1. (3.5)

Remark 3.2. We shall write (0;°,w;*) as (on,un) for simplicity if there is no confussion.

4 Convergence

In this section we study the convergence of the finite volume method (3.4). To this goal we first discuss
the stability and consistency of the finite volume method (3.4).

4.1 Stability

We begin with the following lemma reported in Feireis] et al. [3, Lemmas 11.2 and 11.3].

Lemma 4.1 (Properties of scheme (3.4)). Let oo > 0. Then there exists at least one solution to the F'V
method (3.4). Moreover, any solution (on,ur) to (3.4) satisfies for all t € (0,T) that



e Positivity of density.
on(t) > 0;

/ Qh(t)dx:/ 0o d;
Td Td

o (onservation of mass.

e Internal energy balance.

/ D/P(or) da + / pon)divhu, dz
Td Td
_ At "0 *x 2 € 1 " 2
= /. — P (eh)|Deop|” dz — . e+ Ik - nl ) Po(ont) [on]” dSe, (41)

where o} € co{o}, on} and opt € co{ol", 08"} for any o € E.
It is easy to check the energy stability of the FV method.

Lemma 4.2 (Energy stability). Let (gn,up) be a numerical solution of the F'V method (3.4). Then it
holds

1 .
Dt/d <2Qh|uh|2 +P(Qh)> dx—i_/d (1l Veunl® + v|divius|?) dz
']I‘ 'Jr

1 1
= 7: 0 ‘uh‘zdx = Dpum = *: 0 |uh|2dx - DZZ%’ (42)
S i S s
where D] > Dy > 0 represent the numerical dissipations, which read
new 1 2
D, = Drum + — \uh\ dz,
€s QZ\QS

At 1 u
Do =1 [ Ao} lEwd*as, + 5 [ ailDanf dz+ 5 [ 6F - nllfwm]as,
o [ 2prgipiontar+ | (b + 2wy nl) P (ens) lenl 4
2 on )| Dion|” dx i 5 h Oh,t) 1Oh T

Proof. We start by recalling the kinetic energy balance, cf. [7, equation (3.4)],

1 ) 1 .
Dt/ —op|up|* dz + ,u/ |Veup|? dz + V/ |divyuy,|® de + — lup|* da — / prdivyuy, do
Td 2 Td Td €s QZ Td

At 1/,
[ o P as + 5 [ aiiDanl o+ 5 [ 67 - wllfw s, = o,

Recalling the internal energy balance (4.1) and combining it with the above kinetic energy balance we
finish the proof. O

Next, using the above energy balance (4.2) and recalling the Sobolev-Poincaré inequality [, Theorem
16] we obtain the following a priori bounds for the numerical solution of our FV method (3.4).



Lemma 4.3 (Uniform bounds). Let (on,un) be a numerical solution of the F'V method (3.4). Then the
following hold

llonll Lo (0,752 (Tay) + ||Qhuh||Loo(07T;L%(Td)) + el oo o1 (ray) +

+ llwnll 20,0000y + IVewnll 20,y xrey + 1divaunll 20,y xrey < C, (4.3a)

S 4 T € 1 !
v [ [P [ ] (1451w nl) Mo ol dswae s c @

1 2 1 2

. lwen 720,y x5y < . lwnllze 0,1y x05) < € (4.3¢)
where op+ € Co{gi,?, 09"}, The parameter p € [1,00) for d =2 and p = 6 for d = 3. The constant C
depends on the mass M = [, 0o dz > 0 and the initial energy Eo = [r4 <%§o|ﬁo\2 + P(§0)> dz >0, but

it is independent of the computational parameters (h, At) as well as the penalization parameter es.

4.2 Consistency formulation

Having shown the stability of our numerical method, we need to show its consistency. As the consistency
proof is quite technical and moreover the idea and structure are analogous to [9, Section 2.7] and [8,
Section 11.3], we postpone it into Appendix B. Note that our result is more general than in [%] since we
need here less regularity of the test function in the continuity equation (4.4). This will be required later
for the error estimates in Section 5.

Lemma 4.4 (Consistency formulation). Let (o, un) be a solution of the F'V scheme (3.4) with At,h €
(0,1), v > 1 and ¢ > —1. Then we have for any T € [0,T]

e For all $ € WH>°((0,T) x T?), 92¢ € L>=((0,T) x T9) it holds that

t=1 T
{/ ond dx} = / / (0n0rd + onup - Vi) dadt + ey(, At, h, §) (4.4a)
Td t=0 0 JTd

with consistency error bounded by

leo(T, At h, ¢)| < Cp(At + hIFE)/2 4 pUFBR)/2 4 plt+5D), (4.4D)
e For all ¢ € Wh((0,T) x T4 RY) N L>(0,T; W2®(T% RY)), 026 € L°°((0,T) x T4 RY) it holds
that
t=1 T
[/ onuy, - d)dx] = / / (onun - 0t + opup @ up 2 Vyp + ppdivy ) dadt (4.5a)
Td t=0 0 Td

€s

T 1 T
- / / (uVeup : Vo + vdivpuy, diveg) dedt — / / up - ¢dadt + e (7, At, h, P)
0 Td 0 s

with consistency errors bounded by

lem (T, At, hy @)| < Con (VAL + h+ W 4 WP 4 (/e )2+ (At/es) ). (4.5D)

10



Here the constant C, depends on

Eo, T, [[¢llwreoqorxte) > H8t2¢HLoo([o,T]x’er)’

and the constant Cy, depends on

By, T, |élli~@rweemyy, N6lwicqorxrs s 100/l Lo rpray
and Bp, Br, Br are defined by

min {M1}L—2 ifd=2,v¢(1,2),
pE[l,00) 2p v
Bp = min {2,1} - 232, ifd=3,v€(1,2),
0, if v > 2,
0, ifd=2,
Br={min{13=,1}- =2, ifd=3,v€ (L),
L& ifd=3,v>¢,
max _p(€+1)+4’p(%2)*2v}7 ifd=2~<2,
pE[L’YI oo>{ 2py rY f v
,Y77
0, ifd=2v>2,
BM_ max{_e—tfa%_ga_%}a Zfd:3a7§27
=2, if d=3,7 € (2,3),
0, ifd=3,v>3.

Remark 4.5 (Observations on the parameters g, Sp, Sy and €).
e [t is easy to verify that
0> pBr > PBp > Bm and Bp > —1.
Moreover, Bar > —1 if one of the following conditions holds
—d=2,
—d=3 and vy > %,
—d=3andy < 3 withe <2(y—1).

o We point out that the parameters Bp, Br, By are independent of € if € > 1. Indeed, for e > 1 we
have simpler forms of Bp, Br, Bum, i-e.

dv—2) - (5y=6) .y 6
/BD: g»y ) Zf'7<27 IBR: 'é,y ) Zfd—3,7<g,
0, otherwise, 0, otherwise,
max W, ifd=2,v7<2,
e )
Bar = 40 ifd=27>2,
maX{WT_S,—%}, ifd=3,v<3,
L0, ifd=3,v>3.

11



e Our consistency errors (involving the terms Bp, Br, Bu) are better than the results in [5] due to
sharper interpolation inequalities proved in Appendix B.1.

4.3 Convergence of the FV method (3.4) to the DW solution on T?

We take ¢ fixed and pass to the limit with A~ — 0. First, we deduce from a priori estimate (4.3) that up
to a subsequence

on — 0, weakly-(*) in L>°(0,T; L'Y(']I‘d)), 0>0,
up, — u,, weakly in L?(0,T; L5(T¢; RY)),
Veuy, — Veu,, weakly in L2((0,T) x T4 RY?),  where u,, € L*(0,T; W1?(T% R%))
and
opup, — m., weakly-(*) in L>°(0, T} L%(Td;Rd)).

Realizing that (o, up) satisfies the consistency formulation (4.4) for the mass conservation equation,
applying [1, Lemma 3.7] (see similar result in [16, Lemma 7.1]) we obtain

Me, = Oc, Ue, -

Further, due to the fact that the total energy E = o|u|*> + P(p) is a convex function of (o, m) and
\Veul? + |diveul® = |Veul? + [tr(Vew)]? is a convex function of V,u, we deduce from [5, Lemma 2.7]
that

1 2 [m|?
- _) [ —
5 onlunl” +P(en) %0
mem

+ P(o) weakly-(*) in L>(0,T; MT(T9)),

onwn ® wp, + plop)l — + p(0)I weakly-(*) in L(0, T; M T (T4 RE)),

p|Veup|? + vidivaun)? — p|Veul? + v|diveu|? weakly-(*) in MT((0,T) x T9).
Note that the defects

1
+P(0) - ( joulual +Plec)) 20,

= +p(g)]1 - (Q€5u€5 ® ’u'fs +p(Q€5)H) 2 07

D = pu|Veul? + v|diveul? — (u|Veue, |* + vidiveue, [*) >0
satisfy B B
d€ < tr[R] <d¢, d=min(2,d(y—1)), d=max(2,d(y—1)).
Together with
E(Q?Lam?z) doz — E(?Ovmﬂ) dx?
Td Td
the consistency formulations (4.4) and (4.5), and the energy balance (4.2), the limit (g, u.,) is a DW

solution of the penalized problem (1.4) in the sense of Definition 2.1. We summarize the obtained result
on the weak convergence of FV solutions in the following theorem.

12



Theorem 4.6. (Weak convergence for the penalized problem (1.4)) Let p satisfy (1.2) with v > 1
and €, > 0 is a fixed penalization parameter. Let {on, ws}n 0 be a family of numerical solutions obtained
by the FV method (3.4) with initial data satisfying (1.3). Let ¢ > —1. If d = 3 and v < 3 we assume
e <2(y—1).
Then, up to a subsequence, the FV solution {gp,us} converges for At, h — 0 in the following sense
on — 0, weakly-(*) in L>((0,7); L"(T%)),
up, — u., weakly in L2((0,7) x T%R%),
Veup, — Vg, weakly in L2((0,T) x T¢; R¥*9),
divyu, — divgyu,, weakly in L?((0,7) x T%), (4.6)

where (e, , ue,) is a DW solution of the penalized problem (1.4) in the sense of Definition 2.1.

4.4 Convergence of the FV method (3.4) to the DW solution on )/

Our aim now is to consider the limit process for ¢, — 0 and h — 0. According to a priori bound (4.3c)
we obtain that up to a subsequences,

up — 0 weakly in L2((0,T) x Q%;R%)

yielding
we L0,T;Wy2(Qf;RY).

Moreover, together with the fact that o satisfies the equation of continuity (2.3), see Theorem 4.6, we
have
dy0=01in D'((0,T) x Q°),

which means

0=100in Q° forallte (0,7). (4.7)
Consequently, we have
1 |m?|? 1 |mg|? .
/d <28 + P(Qg) dz — / 2’ + P(0o) | dz + P(00) dz (4.8)
T Op, Of ©0 Qs
and

1 9 1 9 ~

sonlun|®+Plon) | dz— [ d&(r) + Solul”+P(e) ) dz+ [ P(oo) du, (4.9)
Td 2 Of Of 2 Os

which yields the energy inequality (2.7) as the last terms in (4.8) and (4.9) cancel with each other after
passing to the limit in (4.2).

Together with the consistency formulations (4.4), (4.5) and the energy balance (4.2), the limit (o, u)
is a DW solution of the Navier-Stokes system (1.1) with the Dirichlet boundary conditions in the sense
of Definition 2.2.
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Theorem 4.7. (Weak convergence for the Dirichlet problem (1.1)) In addition to the assumption
of Theorem 4.6, Then, up to a subsequence, the FV solution {gp, u;} converges for At, h,e; — 0 together
with h?At/es — 0, h3/es — 0 in the following sense
on — o weakly-(*) in L®((0,T); L7(Q)),
uj, — u weakly in L?(0,T; L3(Q/; RY)),
Veuy, — Vyu weakly in L2((0,T) x Qf; R>?),
divy,uy, — divyu weakly in L2((0,T) x Qf), (4.10)

where (p,u) is a DW solution of the Dirichlet problem of Navier-Stokes system (1.1) in the sense of
Definition 2.2.

Proof. With the test function ¢ € C1([0,T] x QF), we can improve the consistency error E,, in (B.17)
by h(At)1/26;1/2 + h3/26;1/2, resulting ey, — 0. This finishes the proof. O

4.5 Convergence of the FV method (3.4) to the strong solution

As a consequence of the dissipative weak—strong uniqueness result stated in [1], we have the following
convergence result. For the local existence of the strong solution of Navier—Stokes system (1.1), we refer
the reader to Feireisl et al. [8, Theorem 3.1].

Definition 4.8. (Strong solution) Let Qf € R? d = 2,3, be a bounded domain with a smooth boundary
o0 . We say that (o,u) is the strong solution of the Navier—Stokes problem (1.1) if

o€ CH[0,T] x QYN C(0, T; Wr2(QF)),

_ (4.11
uwe CY[0,T] x QF;RY N C(0, T; WrH2(QF;RY)), k>4 )

and equations (1.1) are satisfied pointwise.

Theorem 4.9. (Strong convergence) Let v > 1. Suppose that the Navier—Stokes system (1.1) admits
a classical solution (p,u) belonging to the class (4.11) with the initial data (oo, uo) satisfying g > 0.
Let {on,up}nio be a family of numerical solutions obtained by the FV method (3.4) with a smoothly
extended initial data (go,wg) € Wh*°(T9). Further, we assume that the parameters e, At, h, € satisfy
the same conditions as in Theorem 4.7.

Then the FV solutions (gp, up) converge strongly to the strong solution (g, ) in the following sense

on — o (strongly) in LY((0,T) x Qf),
wy, — w (strongly) in L2((0,7) x Qf;RY).
5 Error estimates

In this section our goal is to study the error between the F'V approximation of penalized problem (1.4)
and the exact strong solution to the Navier-Stokes equations (1.1) with Dirichlet boundary conditions,
cf. Definition 4.8.
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For simplicity of the presentation of main ideas, here and hereafter we consider a semi-discrete version
of the FV method. In other words, we only study the error with respect to the spatial discretization.

In order to measure a distance between FV solutions of the penalized problem (1.4) and the strong
solution to the Navier—Stokes problem (1.1) we introduce the relative energy functional

RE(on, up|o,u) = /Td <;Qh|uh —al’ + E(Qh@) dz, E(on|0) = P(on) — P'(0)(on — 0) = P(2). (5.1)

Here, (g, ) represents a suitable extension of the a strong solution (g, u) from Qf to T¢. Thanks to
(4.7), in what follows we work with the following extension.

Definition 5.1 (Extension of the strong solution). Let (o,u) be the strong solution in the sense of
Definition 4.8. We say that g, u is the extension of the strong solution (o, u) if

(05, 0), if x e Q?,

Here 03 is defined in the initial extension (1.4c) which satisfies oo € W (T¢9).

(0,u)(x) = { for any t € [0,T]. (5.2)

Remark 5.2. In view of the Lipschitz continuity of V,u we obtain the reqularity of o, u
o e WH(TY), @ e Whe (T4 RY) (5.3)
and
18w (rey = llellonary + lGbllwroeanasy s N lwroegray = 1l or g, - (5.4)

Definition 5.3 (Splitting of the mesh). We split the mesh Ty, into three pieces, see Figure 3. Qg denotes
the area containing the neighbourhood of the fluid boundary 00

0 = {K | UpnizoL MO # @}.

The inner domain Q,IL and the outer domain Qg are given as

Qb =\ QY and QF: =%\ Qf.

Remark 5.4. With the above definitions we know that for any cell K € Qg, either K or one of its
neighbours intersects with the fluid boundary 0Q . Moreover, we have

Ol col cof, af cofca;, (5.5a)
9| S By (@] X @ s ray b if 7 € QF, (5.5b)
~ . ~ ~ < HﬁH Loo(rdys 4 T € QL UQC,
[Vn ()| + |divi (T7) | + Ve (7| ~ {O T a0 (5.5¢)
[ lypr2,00 (7 if © €,
|Apll7ul S l[wlyyr.00 (7a) Tt ifz ey (5.5d)
0, ifx € Qg

In the following we analyze the error of the penalized FV solution via the relative energy. It shall be
done in three steps.
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Figure 3: Zoom-in of domain splitting.

Step 1. In this step we derive the equation satisfied by the relative energy. Analogously as in [9],
by collecting the energy estimate (4.2), the consistency formulation (4.4a) with the test function ¢ =
%|ﬁ|2 — P'(p), and the momentum consistency formulation (4.5a) with the test function ¢ = —u, we
obtain

[RE(on, uplo, ﬂ)]ig + / Ad (,u\Vguh — Vgcﬂ|2 + v|divyuy — divxﬂ|2> dzdt
0

7
17 g
+ —/ / |uh|2 dzdt = —/ Dypum dt +eg + Z R; (5.6)
€ Jo Jop 0 i=1
with
es = e (7.1 [@*/2 = P'(@)) + em(r, b, ~10), (5.7)
4 4
€p = — ZEi(.Qh)7 em = — ZEi(Qhuh) —+ vau — Ep + E557
i—1 i—1

16



where E;,i =1,...,4, By, u, Ep, E, are given in (B.11), (B.12), (B.14) and (B.16), respectively. Further,
the R; terms read

Ry = / (on— D)@~ un) (atam-vme) dadt,

Ry = / on(up — ) ® (up, —u) : Veu dodt,

0 JTd
R3 = M/ Vguh V.u + uyp, - Axﬁlgf) dzdt,
0 JTd
R, = V/ / lehuhlexu—i-U;h \Y% lex’lI,le) dxdt,
0o Jrd
Rs=- / L, (=7 @en =2~ 5(@)) v daat. 58)
0

Rs = U —up) - ( 50yt + U - Vo) + Vap(3) — phpiilys — yVIdivxﬁlm) dadt

/ / p'(0) (atg + dlvx(gu)> dadt
0 Jrd
= _/ / uyp, - Vep(0) dadt,
0 s
1 /7 ~
://uh-udxdtzo,
€s Jo s

where we have used the fact that

c\
i\

0o=0 and u=0 onQ°
and the following identity as (9, %) = (o, ) is the classical solution on Qf
9,0 + div,(gu) = 0 and g(d + @ - V1) + Vup(2) — st — vVdives = 0 on Q7.
We should point out that in (5.6) we only consider the consistency errors arising due to spatial

discretization since we have a semi-discrete problem. Consequently, we have t, 1 = 7 in the consistency
estimates derived in Appendix B.3.

Step 2. In this step, we estimate the terms on the right hand side of (5.6) to obtain a relative energy
inequality. We start with the estimate of R; terms. Firstly, by using (C.4) we have

IR1|§/ RE(gh,uh|§,a)dt+5u/ /d Veup — Vil dadt + h.
0 0 T

Next, it is obvious that

R + Rs| < / Ris(on, |7, @)dt
0

17



Further, using (C.5) and (C.6) we get

2
lwnllZ2 (0.7 x0s)

€s ~
|Rs + Ra| ~h+ -+ + 61 (| Veun = Vol 720 1) xre)

S

+ ov Hdth’U,h - divxﬂﬂiz((oﬁ)xw) .

For the estimate of Rg we apply (C.1h) and obtain

T lenll 720,y w0z
| Re| ~ / / up| dadt < %5 4 g O (5.9)
o Jos €s

Next, we re-estimate the consistency error eg. In view of (4.4) the consistency error of the continuity
equation is controlled by

eo (rohu [P 2= P'(@))| S KO 4 p 04502 g e,
Now we are left with ey, (7, h, —u). In what follows we analyze e, (7, h, —u) term by term.

e Penalty term E. : With (5.5b) we have

1 /7 ~

/ / uy, - udxdt)

€s Jo Z\Qs

1 [7 1.

- / / <5u2 - u2> dzdt
€s Jo Z\Qa )

Viscosity terms Evy,,: Recalling (C.2e) and (C.2f) we have

|E€s| =

2
HuhHL2(0,T)xQ;)

€s

A

<6

+ e, thd. (5.10)

h T . T ~
|Eg,ul < <+ h+ 5#/ / Veu, — Vou|> dedt + 51// / |divhuy, — diveul* dzdt
0 o Jaog o Jaof
St op[Veun = Vol | T,y xre) + 0v ldivaun — divel|7ao ) e -

e Pressure term E,: Recalling (C.2d) and (C.1b) we have
B S h+ [ Relon g, (5.11)
0
o E4(onup): Recalling (C.2¢) and (C.1d) we have

|Ea(onun)| S h? + / Ris(on, un|3, @) dt.
0

Es(onun) = h* [ [o [onus] [I7a] dSydt: Recalling (3.3), (5.5d), and (C.1c)

|Bs(opup)| = A5

//QhuhAhHTﬂ dxdtdxdt‘
0 Td
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< h6+1 4 h5+1

// opunp Apllru dzdt // opuwp Apllru dxdt
0 Jal o Jaof

.

<

S lonunll g oy seray 19 oo (o, 2o (o)) + ha/() /QC lonun| dzdt
h

< h® <h—|—/ RE(Qh,uh|§,ﬂ)dt> .
0

e Fs(opup): This term can be analyzed exactly as in [3], i.e.

T 1/2 T 1/2
Baton] & Wl ([ [P asiar) ([ [ loudPas.ar)
0 0
< / 7 2 1/2<
Nh-h”-( / / ohup dedt> R ptHBM
) el

o Fi(onup): Recalling the integration by parts formula (3.3), the estimates (C.1j) and (C.1k) we get

By (onun)| = \ | [oun iy - ninra dsxdt\

d . | |
h2 / /Td onu, -0 <|{{Ui,h}}|5f§ )HTﬁ) dzdt
i=1"0

d r ' | |
=1

-
S pitAu +/ Rg(on, unlo, u)dt.
0
In summary, choosing any 0 € (0,1) and collecting all terms we obtain the relative energy inequality:

[Re(on, un|o,@))=] —I—/ / <M|Vguh — V| + vldivauy, — divxﬂ|2) dzdt
o Jrd
1T ) . B3 . (5.12)
+€/ / |uh|2 dxdt ~ (1+h€)/ RE(gh,uh|§,ﬁ)dt+h'BRE+6——i—es+f
s JO i 0 S
with

Bre = min((1+¢)/2, (14 Br)/2, 1 + Bp, 1 + Bu). (5.13)
Let us focus on the case: € > 0. From the study of convergence, cf. Theorem 4.6, we always take

e € [0,2(y — 1)) for the case of d = 3,7 < % Under this condition, after straightforward case-by-case
calculations we obtain

1+ B, ifd:277§min(%,l+6),

1 if d=2,7>min (3,1+¢)
= min((1 + 2,1+ _ )2 ’ 3 ’ 5.14
BrE (( Br)/ Pur) 14 By, ifd=3,v<2, ( )
%’ ifd=23,v>2.
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Step 3. Applying Gronwall’s lemma, together with the continuity of the initial data, we obtain

o T _ _ 1 T
Rp(on,uplo,u) + / / <u|Vguh — qu]2 + v|divpup — divxu|2) dxdt + 6/ / lup|* dzdt
0o Jrd sJo Jas

< h3 €s 8 0 0 ~ ~ < h3 €s 8
~ o TR + Re(op, wp|700, Hyuo) ~ i wi
S S

Summarizing the above calculations we have obtained the following error estimates.
Theorem 5.5. (Error estimates) Let v > 1. Suppose that the Navier—Stokes system (1.1) admits
a classical solution (p,u) belonging to the class (4.11) with initial data (0o, uo) satisfying oo > 0. Let
{on, un}tnio be a family of numerical solutions obtained by the F'V method (3.4) with a smoothly extended
initial data (8o, wp) € W12 (T9).

Lete > 0,h € (0,1). Ifd=3 and v < % we additionally assume € < 2(y — 1). Then the following
error estimate holds

. T _ _ 1 T
Rg(on,unlo, u) +/ / (,u|Vguh — Vzu|2 + v|divyuy — divxu|2> dxdt + 6/ / lup|> dzdt
Td s J0 s

h3
S opPre L 5 (5.15)
€s h

where BrE is defined in (5.14).

Remark 5.6. The error estimates in Theorem 5.5 confirm convergence of the penalty method (3.4). By
a closer inspection we see that the first error term hPRE in (5.15) is less than V'h and choosing, e.g.,
s = h?%, the second and third error terms are O(h).

6 Numerical experiments

In this section, we aim to validate our theoretical convergence results. To this end, we compute the
following errors with respect to the reference solution with a fixed €, and a small parameter h;.:

€s
? uhr&f )

EZS — HQ;LS _ Q;Ls

vy B =l =g e,

ES, = |Veuy — Veusy |22, Rf = Rp (g;s,

and with a reference parameter pair (Aref, €sref):
Eo = oy - th:efHLv(?l‘?) Ey = [Juy — uhs TefHL2 T2)>

Eva vauh - Vgues Tef”L2 T2), Rrp =Rg (tha

€s,ref €s,ref
? h'ref :

In the simulation we take the following parameters
e=06,T=01 =01 v=0,a=1, y=14.

We point out that Eg, Ey EEVS o B are used to verify the convergence rate only with respect to
mesh parameter h, cf. Theorem 4.6. Errors E,, Ey, Ev,u, Rp (with respect to the parameter pair
(h,es(h))) are used to illustrate our convergence results in Theorem 4.7, Theorem 4.9 and Theorem 5.5.
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6.1 Experiment 1: Ring domain - continuous extension

In this experiment we take the physical fluid domain to be a ring, i.e. O = By~ \ By, where B, =
{z ‘ |z| < 7}. The initial data (including the smooth extension) are given by

(17 07 0)7 T < BO.Q,
(Q, u) (07 x) _ (17 sm(47r(|:fa\c|70.2))x2’ _51n(47r(‘9|01|:|*0.2))551) , T € Of = By 7 \ By o,
(1,0, 0), € T2\ By

Figure 4 shows the numerical solutions g5, and uy at time 7' = 0.1 with fixed mesh size h = 0.2 - 274
but different penalization parameter e, = 473, ...,475. We can observe that the velocity vanishes in the
penalized region with decreasing €s. Further, in Figure 5 we present the errors E®, Eps, EGVSI w B with
respect to h = 0.2-27" m =0,...,4 for fixed e; € {472,473,474,475 476}, Figure 6 depicts the errors
E,, By, Ev,, Rp with respect to the parameter pair (h, e5(h)) with (h, e5(h)) = (h, O(h'/?)), (h, es(h)) =
(h, O(h?)) and (h, es(h)) = (h, O(h)).

Our numerical results indicate first order convergence rate for g, u, V,u and second order convergence
rate for Rg. We would like to point out that these experimental convergence rates are better than
our theoretical result. This implies suboptimality of theoretical error estimates. Deviation of optimal

theoretical error estimates is a challenging task for future study.

6.2 Experiment 2: Ring domain - discontinuous extension

In the second experiment we consider the same physical fluid domain, but different initial extension of
density, i.e.

(0017 07 0)7 S BO.27
(Qu U)(O,x) — (1’ Sin(47r(|:‘zll—0_2)):v27 _sin(47r(\ﬂ|13:l|ﬂ|—0.2))ac1> e Of = Bo. \ Bo.,
(2, 0, 0), T € T2 \ By r.
The effect of different penalization parameters e, = 473,...,47% is present in Figure 7. The errors

EZS,EEG,EGVSIU,RE with respect to h for fixed penalization parameters are shown in Figure 8, and
Figure 9 gives the errors E,, By, Ey,u, Re with respect to the pair (h, es(h)) = (h, O(h'/?)), (h, O(h?))
and (h, O(h*)). Figures 8 and 9 indicate a similar convergence behaviour as in Experiment 1.

6.3 Experiment 3: Complex domain - discontinuous extension

In the last experiment, we consider a more complicated geometry of the fluid domain, i.e.

Qf = By7\ Boa, Bor:= {JC

|z| < (0.7 4 0) 4 d cos(8¢), tan(¢p) = ayv} .
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Figure 4: Experiment 1: Numerical solutions g (left) and wy (right) obtained with h = 0.2 - 27* for
different e, = 4"™"2,m =1,...,4 from top to bottom.
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Figure 5: Experiment 1: The errors By, By, B, B33 with respect to h for different but fixed €;. The
black and red solid lines without any marker denote the reference slope of h and h?, respectively.
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Figure 6: Experiment 1: Errors E,, E,, Ev,,, and relative energy Ry with respect to the pair (h, e5(h))
for h € hg, (h,es(h)) = (h, O(h'/?)) (left), (h,es(h)) = (h, O(h?)) (middle) and (h, es(h)) = (h, O(h*))
(right). The black and red solid lines without any marker denote the reference slope of h and h?,
respectively.
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Figure 7: Experiment 2: Numerical solutions g, (left) and wy, (right) obtained with h = 0.2 - 274 for
different e, =472, m =1,...,4 from top to bottom.
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Figure 8: Experiment 2: The errors By, By, EG_, R3S with respect to h for different but fixed €;. The

black and red solid lines without any marker denote the reference slope of h and h?, respectively.
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Figure 9: Experiment 2: Errors E,, Ey, Ev,,, and relative energy Rp with respect to the pair (h, e5(h))
for h € hg, (h,es(h)) = (h, O(h'/?)) (left), (h,es(h)) = (h, O(h?)) (middle) and (h,es(h)) = (h, O(h*))
(right). The black and red solid lines without any marker denote the reference slope of h and h?,
respectively.
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The initial data (including a discontinuous extension) are given by

((0.01, 0, 0), x € B,
(17 [1—005(87r(|;|:‘\—0.2))] = _ [1—cos(87rTLa;|—o.2))}x1 7 v € Boss \ Boa,
(o,u)(0,2) = <17 [—1+cos(87r‘g(cl|:c|—0.2))}mz’ B [—1+cos(87‘rg(cllsc|—0.2)) ﬂc1> . 2 € Bos\ Bos,
(1, 0, 0), x € By \ Bor,
(0.01, 0, 0), x e T2\ Byr.

In the simulation we take 6 = 0.05 and compute till 7= 0.1. The numerical solutions p; and u at time
T = 0.1 with fixed mesh size h = 0.2-27* but different penalization parameter e, =42 m=1,...,4
are presented in Figure 10. Figure 11 shows the errors with respect to h for fixed €s. The errors
with respect to the pair (h,es(h)) are displayed in Figure 12. Analogously as above, the numerical
results indicate a first order convergence rate for the numerical solutions o, u, V,u and a second order
convergence rate for the relative energy Rp.

Let us point out that the initial data (including the extension) in Experiments 2 and 3 only belong
to the class L>(T¢), which is weaker than the assumption in Theorem 5.5. Nevertheless, the numerical
results still indicate the strong convergence with first order convergence rate for numerical solutions.

In addition, our analysis of error estimates, cf. Theorem 5.5, holds for e, € (O(h3), O(h)). Again,
the numerical results indicate that the convergence rates with (h, es(h)) = (h, O(h'/?)), (h, O(h*)) are
similar as those with (h, O(h?)), cf. Figures 6, 9, 12. Extension of our theoretical error estimates to a
more general setting as indicated in Experiments 2 and 3 is an interesting task for future work.

A Preliminaries

First, we recall a generalized Sobolev-Poincaré inequality, see [8, Theorem 17].

Lemma A.1 ([8]). Let v > 1 and o, > 0 satisfy

0<cM§/ op, dx cmd/ 0, dz < ¢,
Td Td

where v > 1, cpr and cg are positive constants. Then there exists ¢ = c(cyr, cg,7y) independent of h such
that

£l Faray < ¢ (HVthH%?(']Id) +/ Qh|fh\2dx> ;
Td
where g =6 if d =3, and q € [1,00) if d = 2.
Next, we recall the following essential-residual splitting from [8, Lemma 14.3].

Lemma A.2 ([8]). Let v > 1, o > 0, r = % min ¢ > 0 and T = 2 max p. Then there exists
(t’m)EQT (tvw)eQT
C = C(r,7) > 0 such that

(0— 5)2]1%3(9) + 011es(0) ~ (0— @2]1ess(0) + (14 0")1es(0) < CE(0] 0), (A1)
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Figure 10: Experiment 3: Numerical solutions g5, (left) and uy, (right) obtained with h = 0.2 - 274 for
different e, =472, m =1,...,4 from top to bottom.
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Figure 11: Experiment 3: The errors Eg, By, EG ., Ry with respect to h for different but fixed €;. The
black and red solid lines without any marker denote the reference slope of h and h?, respectively.
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Figure 12: Experiment 3: Errors E,, £, Ey, ., and relative energy Ry with respect to the pair (h, e5(h))
for h € hs, (h,es(h)) = (h, O(h'/?)) (left), (h,es(h)) = (h, O(h?)) (middle) and (h,es(h)) = (h, O(h%))
(right). The black and red solid lines without any marker denote the reference slope of h and h?
respectively.
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where E(o| o) is defined in (5.1) and

(1,0) ifo€[r,7],
1 Nl = 1pm(0),1 7 = A2
( ess(@) res(@)) ( [ﬁ,r](@) R+\[§,r}(9)) {<07 1) ifoe R+ \ [f, ?]. ( )
Further, we recall [9] for the following estimates that are useful in our error analysis.
Lemma A.3. Let~v>1, op, >0 and
c€led, lul<u, ou>0.
Then the following estimates hold
~ 2 12 < ~ ~ .
1o = onll7y(ray + [lonun — QUHL%(W) ~ Rg(on,unlo,u), if vy <2, (A3)
||§_ Qh”z-y(']rd) + Ha_ QhH%Q('ﬂ'd) s RE(Qhauh’57 ﬁ)a Zf’Y > 27 (A4)
loveun =08l = (Ro(on,wnl0, @) + (Rponwila. @), iy >2. (A5)

B Proof of consistency formulation

In this section we are devoted to showing the consistency formulation stated in Lemma 4.4. For simplicity,
hereafter we frequently write LP(0,T; LI(T%)) as LPLY.
B.1 Negative estimates of density and momentum

To begin, we introduce two negative density estimates.

Lemma B.1. Let ¢ > —1, h € (0,1), (on,un) be a solution of the F'V scheme (3.4), s € (0,7]. If d =2
then p > 1, if d = 3 then p = 6. Then for v € (1,2] it holds that

T 2
_ /2 2 _ /2 < g e—1
el gonie = 8]y, = [ ], a0 07 (B.1)
T
X /0 lon 50 dt S BP0, (B.2)

Proof. First, it it easy to check the equivalence of the norms in (B.1), i.e.,

T 2 xy T 12 T 9
_ /2 P _ /2 P _ /2 _ /2
loufo e = [ ([ 7)™ = [T [ geipar)” ar= [ =i

Further, recalling the proof of [3, Lemma 11.4], we deduce from the estimate (4.3b) that

2

L2Lp

2

T
|vear?|, , S0 /0 /g P" (o) lon]® dSedt = =" for v € (1,2]
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Next, applying the Sobolev-Poincaré inequality, cf. Lemma A.1, and the density estimate in (4.3a) to

get
f 2, o= [ (e

where p > 1 in the case of d = 2 and p = 6 for the case of d = 3. Together with the inverse estimates we

obtain
is: dti/OT (h_d/pHQz/zHLP)QS/V dt:h—Qsd/(P’Y/ (HQv/z} p)sh dt

T T /2
| el dt= [ e
0 0
< ;-2 2|28/ 2||28/7 —2s 2|2/ s
< p=2sd/ () / (HV P I P ) dt = b2/ <Hv o/ \L%MLﬁughnm)

—2s 2|2 /'Y s —2s —e—1\s
< p-2sd/ (o) (vaz/ ‘L2L2 i HQhHme) < -25d/(0v) <(h e=1ys/7 4 1)
S ps@dp(e+D) /()

< 5 —e—
+ HQh”zwLW ~h™¢ la

) ae=wea],

L2L2

which completes the proof. ]
Further, we obtain the following negative estimates of density and momentum.

Lemma B.2 (Negative estimates of density and momentum). Let (gpn,up) be a solution of the FV
scheme (3.4) with h € (0,1),e > —1 and v > 1. Then the following hold:

min {M@ 22 =2, € (1,2),

2p v
< pE[l,00)
lonll 2 0.0y wmay ~ AP, Bp = { min {221} 30 2), if d=3,v € (1,2), (B.3)
0, ify > 2,

min {1 TS fd=2,9€(1,9),

12
< )EEe)
lonll 2o zizormeay ~ W% PR = i {142 1) 518 fd=3ye(Lf). (B4)
0, if v > ¢,
max {—p(agplg_‘_zl, p(v—pZV)—QV} , aifd=2,v<2,
pe21.0)
0, ifd=2,v>2,
NN —
lentwnllzzqoyary ~H00 B0 =3 {_gg2 a8 _ 81, fd=3~<2 B9
=, ifd=3,7€(23),
0, if d=3,v > 3.

Proof. We start with estimating the density in the L?L2-norm, i.e. (B.3). For v > 2 we easily check
< < .
lenll 22 ~ lonll ooy ~ 1, meaning Bp = 0.
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Now, let us focus on the case v < 2. On the one hand, thanks to the inverse estimate we have

=24
lonllore = B @ onll ooy S B
On the other hand, in view of Lemma B.1 we have

lonll 327, oo ~ B™GmDCARED/ ()

which yields

T ) 1/2 T )
_ y o 2—y < —y y
lowls= ([ [ anat) < ([t [ chasar)
(e+1)+2dry2

1/2
2 2 2 < A i ehcd
=( / lenl2 ey ln dt) < lleall2 1 lenl &2 S b2

1/2

This complets the proof of (B.3).
Next, we prove (B.4) for the estimates of the L?L5/5-norm of the density. Considering v > 6/5 it is
obvious that
< <
llenllp2rers ~ llonllpeopr ~ 1.
For v < g the proof can be done in the following two ways. In the first approach we apply the inverse
estimates to get

<
HQhHL2L6/’ ~ h & HQh”me

In the second approach, recalling estimate (B.1) and applying the interpolation inequality we obtain

< _ < ey (1 12
lonllarers = lonllSoe 1o llonll 7 5mse = B~ U7 for p > 5 2.

Here o satisfies

1 a l-« 6 o l-« 2—x oyp — 12

s>+ and - > — + — <a< —.

27 o0 ~ 57y  4p/2 2 6p — 12
Hence, the optimal bound is achieved by choosing o = %Zg :;)2 , 1.e.

1+e (6—=57)
(1=a) _ =5 559 .

1+
HQh||L2L6/5 Sh v

Collecting the above estimates we obtain (B.4).
Finally, we are left with the estimate of ||opup||;272. It is easy to check

1/2 1/2
thuhHLQL2 = HQ}ZLU%HLlLI (thuhHLooLm/(m 2) HQhHL"YLP’Y/Q) (B 6)
£ 1/2 (e+1) ’
(h‘%h‘ ) Pt e (19
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and , .,
< g —5= < 4 —a
lonunllp2rz ~ h™ 27 [lonunl| poo o/ ~ B 27 (B.7)

Moreover, by Holder’s inequality we have

<
HQhuhHLQLw/(“ﬁp) ~ HQhHLOOL’Y ”uh”L2LP for any p > 1,

from which we obtain

. . 4
for d =2 :if v > 2, HQhuhHLQL2 S thuh‘|L2Lm/(w+p) Sl with p > 2 + ﬁ,

: < (394 < PO==2
if v <2, |lopunl|| 22 ~h\2 2 7 opun| p2porsvem ~ b Pv for any p > 1,

for d=3:if v >3, |lonunl zze ~ llonunll o porscre ~ 1,

=3)4 (v=3)
3y = ¥

. < (;,(w+6))d
if v <3, llonwnllp22 ~ R\ lonunllr2p6v/¢+0)
Consequently, collecting (B.6), (B.7) and the above estimates, we obtain

ford=2:if v > 2, By =0,

)

D44 p(y—2)—2y 1
£y <2 By = max {_p(6+)+ p(y—2) 7_}

pe[l,00) 2py ’ oy 5
1)+4 -2)-2
= max {p(5+ )+ 7p(’y ) 7}’
pE[%,oo) 2py py
for d=3:ify >3, By =0,
-3 3 -3
if v € (2,3), 5M=max{77_} :L7

if v <2, Bu :max{—
which concludes the proof. ]

B.2 Negative variational estimates

Having the negative estimates of density and momentum we can present some useful negative variational
estimates that shall be used later for the consistency formulation. These proofs are analogous to Lemma
11.5 and Lemma 11.6 of [3].

Lemma B.3. Let (on,up) be a solution of the FV method (3.4) with h € (0,1) and v > 1. Then the
following hold:

/ / max[[ghﬂ (0 + ) st 0%, (B.8a)
h’ h

/ / o]l dSedt € H=CHD/2, (B.8b)

0 E
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[ terdl- s -l dsue om0, (B.80)

| [t + o) - masear < e, (B.5d)
/0 /g \lonun] - n| dSpdt S hPr=D/2 4 pfp, (B.8e)
where Bp is giwven in (B.3) and
0, ifd=2,
B = / (B.5f)
BR7 Zfd =3.

Proof. We start by showing (B.8a). For any g > 0, taking B(p) and ¢}, in the renormalized continuity
equation [3, Lemma 8.2] as pln p — p and 1, respectively, we obtain

B'(0) =In(0), B"(0) = - > 0,
/ Dy(op In op) da:—i—/ opdivyup, dx
Td Td

< 3K Y 7 - o m) ) (1B(e0] - Blon Tand). (B.9)

KeTy ge&(K) K]

Due to the convexity of B(p), i.e

out

lon]”
~ 2max{plf, g3}’ € € colpils "),

[B(o)] - B(ox) [on] = 3B"(6) []* >

we obtain

2
DS “;,([[B@h)ﬂ— (ool ) = 0 [ A0 g,

max
KeT;, oeE(K £ {,Oh » Pp,
Moreover, we have

PO ’, (fund-m)™ ([Blew)] = B'en) lon] ) = 3 lol5 \{{uh}}-n' B"(€) [on]®

KeTh oe€(K) oe€

out

with £ € co{p", p9"*}, which implies

-k Y lo] ((fu} -n)7) ( [B(en)] — B'(on [[ah]] \{{u}} Lor] suey 45
|K]

KeT, oeE(K) 2max{ph ' Ph

Collecting the above estimates we derive from (B.9) that

[t [[g:u7 . (1 01 o5
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<[ S o - ) (18001 - Bon T Jar

KeTy UGS(K)|K|

S/ Q%ln(gg)dx—/ thn(Qh)dl“—/ / (opdivpuy) dz
Td Td 0 Td

<1 + (opdivpuy) do| <1+ HQh||L2L2 HdivhuhHL2L2 .

Td

Note that we have used here the inequality |oIn(o)| ~ 1+ 7. Consequently, applying Lemma B.2
concludes the proof of (B.8a).

Secondly, thanks to Holder’s inequality and trace inequality, together with the density dissipation
(B.8a) and uniform bounds (4.3) we obtain (B.8b) in the following way:

/ / [on]| dS.dt < ( / / max[[gzﬂ,p;;ut a5, dt) < / /maX{Ph,PZUt}dedt>l/2

N h™ 8/2h 1/2 _ - h- (1+€)/2 for v > 2,

/OT [ eillas,ae = / [ el P (o + 1 dsear
: </0T/g [on]? P"(on.1) dedt> v </0T/g (ons +1) dedt> 1/2

ShoelPp 12 = pm149/2 g1 4 € (1,2),

where we have used the inequality

1(0.00)(0) P"(0) (0 + 1) < 1 for v € (1,2)

and g, 1 is given in (4.3b).
Thirdly, we can derive (B.8c) in an analogous way. On the one hand, we have that for v > 2

/OT /g Ton] un} - ml dS,dt

</ / maxﬂgz]],pzut '{{“h}}'”’dsxdt) ([ max{ﬂhapzutH{{uh}}'”!dedt>l/2

1/2 /2 < p-1/2 1/2

1/2 HQhHLZLp’ ”uh||L2LP ~ ||Q HLQLp’ ’

where p/ = %, for any p > 1 in the case of d = 2 and p = 6 for the case of d = 3. On the other hand,
for v < 2 we have

| [t ey - miasiae = [ [ ol -l /(o) - (ong + 1 asia

) </OT/5 (P en el dedt) h </oT /g (ont + D[{unlt - n| dSmdt> N
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< 45— 1/2 1/2 < 45— 1/2
S (|gnllM2 1) funllar, S 2 enll Y

In view of the above two estimates, the proof of (B.8c) reduces to show ||op| ;27 S hPrR.Ifd =2, we

take p' € (1,7] (i.e. p = -23) and obtain |lon| 21 S 1. If d = 3, we choose p = 6 and p/ = 8. Then we
apply (B.4) to get

.
lonll 20 = llonllp2pers ~ hoR,

which completes the proof of (B.8c).
The fourth estimate (B.8d) is straightforward:

[ [t + Genitund -l asaae < ( | [ty dsxdt) v ( I L dedt> -

S lonll gz | Vewnllpope < 1P

Finally, recalling the product rule for the equality

[onun] = Ton] {un} + {onl} [unl
we may employ (B.8b) and (B.8d) to derive (B.8e)

/ /g lonun] - n| dSyd < / /g on] {un} - nl dSydt + / /g {on ) [[un] - o] dS,dt
0 0 0
N h(ﬁR*l)/2 + hﬁD’
which completes the proof. O

B.3 Consistency proof

Equipped with Lemma B.2 and B.3, we are now ready to prove the consistency formulation, which is
quite analogous to [8, Section 11.3], [7, Theorem 4.1] and [9, Section 2.7]. Hence, in the following we
only give the idea and framework of the proof.

Proof of Lemma 4.4. Let T € [ty, tny1).

Step 1 — time derivative terms: Let rj, stand for g;, or gpup. Recalling [9, equation(2.17)] we know

that
[/Jl‘d o d$] :0 - /0

S ([[020]) e oo + 1040l oo poe) A = At (B.10)

tn+1

/Td (Derp (Il (1) + ra(t)0ed(t)) dadt
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Step 2 — convective terms: To deal with the convective terms, it is convenient to recall [7, Lemma

2.5]
/ / rh-quﬁdwdt—/
0 Td 0
where

Er(rp) = /tn+1
Bari) = 1 |
Es(rp) = ha/o

tn+1
E4(7“h) = /
0

Applying Holder’s inequality with (3.2) and (B.8) we obtain for r, = g, that

tn+1 tn+1

/ Plry, up) [Tr¢] dS. dt—ZE (rh),

=1

[ 1l -l T 0701 S,
/ [un] - m [rn] [TI7¢] dS.dt,
* [ el as.a

tn+1

/ rattn - (Vo — Vi(Tlro)) dadt = / / [rnun] - (6 — LTI }) dS,dt.
Td

,S h(H‘ﬁR)/z + h(l‘i‘f)/z + hl-‘rﬁD for ¢ e [ (O, T; Wl,oo(r]rd; R))

- ZEi(Qh)

‘ 4
i=1

Directly following [7, Theorem 4.1] we obtain for r;, = gpuy, that

— Z Ei(opup)| S h+ W' 4 RO for ¢ € L°(0, T; W2 (T4 R?)).

| 4
=1

Moreover, it is obvious that

y/

Consequently, we obtain

tn+1

/d T Vmgbdajdt’ < At||Vd|| Loo oo ||7a |l oo 1 ~ At, T = op Or opuy,.
T

T tn+1 4
‘ / /Td rp - Vg dadt — / /EF;:p[Th, up| [IIr¢] dedt‘ N ‘ ZEZ(T}L)‘ + At. (B.11)
" 0 =1

Step 3 — viscosity terms: Recalling [9, Section 2.7] we have the consistency errors contributed by
viscosity terms in the momentum equation

Ev, .= / / (uVeup : Vyu + vdivyupdivew) dedt
0 Td
tn+1
a /Ov

/Ed (uVeup : Ve(Ilru) + vdivyugdivy, (Il7a)) de, (B.12)

36



which can be controlled by

1Bl ~h(|Veupllp2p2 + |diviwll22) V20| oo o
HAOY2 (|Veunl p2re + ldivawnl| 2 p2) | Vool Lo oo (B.13)

Step 4 — pressure term: Recalling [9, Section 2.7] we have the consistency errors contributed by the
pressure term in the momentum equation

tn+l

E, = / / prdivyu dzdt — / / ppdivy, (Il7u) dzdt, (B.14)
0 JTd 0 Td
which can be controlled by
<
Bl < hllpnll oo 1 || Va@ || e poo + AL PRI oo p1 Vil oo poe. (B.15)

Step 5 — penalization term: The consistency error contributed by the penalty term can be written

as
1 T
:/ / up, - ¢dmdt——
€s s

tn+1

tn+1

/ uyp, - lly¢ dadt

tn+1

/ up, - ¢ dzdt, (B.16)
S\QS
where we have used

/Suh ¢da:—/9uh Or¢dr = Y ug- / (¢ —r¢)da

KeQs
With
Np—1
<
At lun(tn) 72 g0sy < A llun(t)Z2is) = lwnlZeoryxos ~ €
=0

the first term in (B.16) can be controlled by

)ty At
L e pana 5 ) A an ) g ey 2 an (o) gy S (Bt /)1,

S S

resulting the following estimate of E,

Huh”L2((O,T)><QfL)

|Be,| % (At/es)? + Il o poe (19 \ QN2 S (Atfes) V% + (Bfe) V2 (B.1T)

s

In summary, combining (B.10), (B.11), (B.13), (B.15), and (B.17) we have
leo] © At + RIF)/2 4 p(1+8R)/2 4 pltBD,
el S (A2 4 b4 W4 R 4 (At /e)V? 4 (hfe)' 2

which concludes the proof.
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C Some useful estimates for the error analysis

Lemma C.1. Let 6 > 0 be an arbitrary constant, h € (0,1), pressure p satisfy (1.2) with v > 1, (op, up)
be a solution of the FV method (3.4), (0,u) be the strong solution in the sense of Definition 4.8, and

(0,u) be given by Definition 5.1. Then

/ / On dzdt < h + / RE(Qhauh’@ ﬁ)dt,
0 Jaof 0
/ / Ph dzdt ’g h + / RE(Q]'w Uh|§, ﬂ)dta
0 Jag¢ 0
/ / gh\uh\ dxdt fs h + / RE(Qha ’U;h’E, a)dta
0 Jaog 0

/ / Qh‘uh‘Q dxdtrih2+/ RE(Qh,uh’@ﬁ)dt,
o Jaof 0

/ / |Vg’uh’ dxdt N h+ (5/ / ]Vguh — Vxﬁ\Q dzdt.
0 Jaf 0 Jag¢
/ / |divauy| dedt < h+6 / / |divyuy, — divea|? dzdt.
0 Ja¢ 0 Ja¢
/T/ | < 5hHUhHL2((o,T)xQ;) + €s
h| ~ -~
o Jane! €s )

’ 7 leenl 72 ((0r) <
/ lup| dzdt g/ / lwy| dadt < & 15 L2(0m)x95)
0 Qs 0 Q3 )

€s

2
lwnllzz(0,m)x0)

€s

//Qh|uh| dﬂCdth/ RE(Qh,Uh|§,ﬂ)dt+is+5
o Jas 0 d

‘h / / ont - (AS)HTﬁ) HT’{{ui,h}}@ dadtdt
0 Td

S B

d T . .
w0 [ e o @0 ua ) dods
=170 JT

-
< h1+’8M +/ RE(gh,uh\E, ﬁ)dt.
0

(C.1a)

(C.1h)

(C.1i)

(C.1j)

(C.1k)

Proof. First, we use Lemma A.2 for the essential-residual splitting and the inequality |Qﬂ S hto get

(C.1a)

// On dxdt:// Lres(on)on drcdt+// Less(on)on dxdt

o Jaf o Jaf o Jaof

5/ / E(or|0) dmdt—i—/ / 1 dxdtfg/ Rg(on, uplo, u)dt + h.
0 Jof 0 Jaf 0
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Second, the same process applies to pp and gives (C.1b). Third, by triangular inequality, Young’s
inequality and (5.5b) we get (C.1c)

T T T
/ / on|un| dmdtﬁ/ / onlup — ul dxdt—i—/ / op|u| dzdt
0 Jaf 0 Jaf 0 Jaf

S edw- @l st @en) [ o dsdt S [ Re(on wilg @ae+ n
o Jaf o Jaf 0

Fourth, we apply an analogous analysis to get (C.1d)

T T T
/ / Qh\uh\2 da:dtrg/ / Qh|uh—'ﬁ|2 dxdt—l—/ / Qh\ﬁ|2 dxdt
0 Jaf 0 Jag¢ 0 Jaf

5// on|up, — al? dxdt+h2// on dxdti/ R (on, up|o, w)dt + h2.
o Jaof o Jaof 0

Fifth, we use triangular inequality, Young’s inequality, and (5.5b) to get (C.1le)

/ / IVg’u,h| dzdt < / / |V5’u,h - Vxﬂ\ dzdt + / / |Vxﬁ\ dxdt

o Jaf o Jaof o Jag¢
T _ 1 _ T _

N / / <5|Vguh —V,ul? + ) dadt + || Vou| 00 pagaxay b Sh+ 5/ / |Veuy — Veul? dzdt.
0o Ja¢ 0 7 0 JOf

The same process applies to divyuy, and yields (C.1f). Sixth, by Young’s inequality we get (C.1g)

T T Sh ] lunllL2(0,mxas) e
/ / |up|dt g/ / <|uh|2+ € >dtr<v(5h L2((0,7)x€27) _I_i'
0 Qf\Q£ 0 Qf\g£ 2€g4 20h €s )

and (C.1h)

2
/T |up| dzdt < /T/ lup| dedt < €l/? Fenll 2oy < e +5”uh””<<ovf>xﬂz>
0 s o Jo; ’ el/? 0 €s

Seventh, the proof of (C.1i) relies on Lemma A.2 for the essential-residual splitting. On the one hand,
for the essential part it is obvious that

T T el Z2 (0.7 x2s
/ / Tess(on)onlup| dazdt 5/ / |up| dadt <& +4 L0, )XQh).
0 Jos 0 Jos 4

€s

On the other hand, for the residual part we have

/ / ]lres(Qh)Qh|uh| dzdt :/ / ]lres(Qh)Qh|uh - ﬁ‘ dzdt
0 JQs 0 JQs

- 1/2 T 1/2 T
5( |7 tetonyanfun — dxdt> < [ testanen dxdt) < [ Reton wila e,
0 s 0 s 0
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which completes the proof of (C.1li). Eighth, we show the proof via mesh splitting. By using the
triangular inequality together with the estimates (4.3a), (B.5), (5.5b), (5.5d), and (C.1d) on Qg we
derive

n [ v (AM) s dde
0 Jaf

1 T T
== lonup| 7 |[w;p]| dedt + lonun| |uip| dedt
2
0o Jaof o Jaof

h
S hlonunl|pore | Veun|| p2pe + h? +/ Rg(on, up|o, w)dt
0

- / /QC lonun T (| winlt — wip] + uip|) dadt
0 h

-
S pin / Ris(on, up|3, @)dt.
0

Combining the triangular inequality with the estimates (4.3a), (B.5), and (5.5d) on Q! | we derive

< <
~ hlonun|l 22 unll 22 ~ P

n [ onun (A1) Ty s B dod
0o Jaol

Consequently, combing the above two estimates and recalling that « = 0 on Qg we get (C.1j)

i [ o (A1) T dnct
0 Td

< pitBu + K2 —|-/ REg(on, un|o, u)dt.
0

Finally, recalling Holder’s inequality, the estimates (4.3a), (B.5)we derive the last estimate (C.1k)

d T . . .
pS0 [ v oM b dode] S hllgvunlegs il [0 b
=1

lQlZ
= Qhuh 1212 ~l‘l’ [/]/1700 'hu’h 2712 r'g Qhuh Z212 u ‘/[/1100 ;guh 1212 SJ .
D

Lemma C.2. Let h € (0,1), v € L'(T%), u € W2>(Qf;RY), @ be given by Definition 5.1. Let (op,up)
be a solution of the F'V method (3.4). Then

IVt — Vellzt|| 7o pay + | Vot — e Voitl|72(pay + | divett — Mediva || s paga) ~ b, (C.2a)
/ v(Vott — Vellra) dz| < h + / |v| dez, (C.2b)

Td Qg
/ 0(Vott — Villra) dz| S h+ / o] daz, (C.2¢)

Td Qg

/ v(divyu — divyIlru) dz
Td

Sh+ / 0| da, (C.2d)
Qy
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_ _ h _
Veup : (Voo — Vellra) dz| S h+ = + 5/ |Veuy, — Vyul|? dz, (C.2¢)
Td 5 Qg
_ _ h ~
/ divyuy (dives — divyIlra) do| < h+ 5 + 5/ |divyuy, — divea|? dz (C.2f)
Td Q¢

for any constant § > 0, where

i 1p,
Meg = (01, T00) and P = > L= [ gds,.

Proof. Recalling Definition 5.1 we consider separately three regions Qi, Qg, Qg and get
~ ~ ~ ~ ~ ~ ~ ~112
IVzu — VgHTuH%Q(Td) = [|V,u — VgHTuH%g(Q{L) + ||Veu — VSHTuHiQ(Qg) + [|Vau — VSHT'UHI}(QQ)

< ~ <
Sl + [ 10 IV ) +0

h

Analogously,we have
IVath = MeVati| o pagay ~ by [[divets — Tedivet| 72 pagay ~ h,

which proves (C.2a)
Similarly, we get (C.2b)

/ v(Vgu — Vellru) de
Td

< + +

/ v(Vzu — Vellru) dz
Q

I
h

/ v(Vyu — Vellru) de
3

/ v(Vzu — Vellru) dz
ap

< ~ ~ ~ ~

~ollrany Vet = Vellr|| oo 1 maxay + [0l 1 o0y [[Vat = VellTu| oo (oo gaxay + 0
< ~ <

~ hllullycorgray [0l 1 ry + Vel poo paggaxay [0l ey ~ b+ ol pyagy -

The proofs of (C.2¢) and (C.2d) are omitted as they can be done exactly in the same way.
Next, as a consequence of (C.2b) and (C.1e), we derive (C.2¢)

Veup : (Vyu — Vellru) do
'ﬂ*d

Sh+ IVeunl i gy S h+ 5/90 |Veuy — Vu|? de
h

Thanks to (C.2d) and (C.1f), we have

/ divyuy, (divyw — divpllyu) de
Td

S h4 HdivhuhHLl(Qg) S h+ 5/90 |divy,uy, — diveu|® de.
h

Next, we report the following lemma, see similar result in [9, Lemmas B.2 and B.4].
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Lemma C.3. Lety > 1, h € (0,1) and (on, un) be a solution obtained by the F'V method (3.4). Further,
let u € W2>°(QF;RY) and w be given by Definition 5.1. Then there exist Cy = Co(r,7, M, Eg,7) > 0,
C1 = C1(M, Ey,7) > 0 and Cy = Co(M, Eo, 7, [|ully2.00 (qf gay) > 0 such that

lu, — @l 72 (o gy ~ Co (||V£Uh — V|| 72 (pay + /Td onlup, — af? d$> + Csh, (C.3)
. C ~ - _
[ o= 0w - @l ae = (54 €10 ) Relonwnl.@ + Cod [Vewn — ol + Cah - (C1)

’/ /d (Vguh :Veu +uy, - A;Bﬂlgf) dxdt’
o JT

h €s

2
< €5 P HuhHm((o,T)xQ;)

~h+ + 6 [IVerwn — Vol 2201yt » (C.5)

| / / (divnundivy i + wy, - Vadivaiilgs) dedt
0 Td

2
<ha €s +5||uhHL2((O,T)><Q;

) ~ . .~
. .. + 68| Veun = Vot 720 ryxray + 8 |divaun — diva@|[ 2o ryxray s (C.6)

where M and Ey are the total fluid mass and initial energy, respectively. The constants r,T are given in
Lemma A.2.

Proof. Firstly, by setting f, = uj, — II7u in Lemma A.1 we know that

|wn — HTﬁH%Q(’H‘d;Rd) <y (‘Vs(uh - HTa)H%?(’Ed;Rd) + /d onlup — ral? dﬂﬁ) )
T

where the constant C7 depends on the total mass M, initial energy Fy and 7.
Then by the triangular inequality and projection error we derive

~ 12 ~12 ~  ~2
[|un — U”L2(Td;Rd) < un — HT“”L2(Td;Rd) + [[H7u — uHL?('H‘d;Rd)

<0 (HVg(uh e /T onlun nTanx) S (A P—"
< 1 (Iewn = Vailaocs + [ onlun — o)
e <|yvxﬁ VTl gy + /Td on| Tyt — @2 dx) B V0 2o
< (HVSUh - vﬂ:aH%Q(’ﬂ‘d;RdXd) + /Td on|un — ul? dw)
+Ch <h2 HUH%/V?@O(Qf;]Rd) + h|ellyrcorray + h? Hvxﬁniw(wd;ﬂ@dxd) /1rd Oh dﬂ?) + h? ||Vxﬁ\|%oo(1rd;Rdxd)
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= Cl (HVS'U:h - Vxﬁ||%2(Td;Rd><d) + /d Qh|uh — ﬁ|2dl‘> + 02(h2 + h),
T

where C depends on Cy, [[ully22(qr ey [ @]ly1.00r,gey and the total mass, which proves (C.3). We
omit the proof of (C.4) as it can be done exactly in the same way as [9, Lemma B.4]. Next, by Gauss
theorem we know that

/ div, U dx = / divyIlgU for any K € Tp.
K

K
I8

h

Thus we have

up, - Ayzudr = /f up, - divyIleVou da.

2,

Using this identity we observe

/ / up - Azulgr dadt = / / uyp, - divrIle Vyou dodt + / / up, - Azu drdt
0 Jrd 0 Jof 0 Jane!

= / / uy, - divyIleVeu dodt — / / up, - divyIleVeu dzdt + / / up, - Azudodt
0 Jrd 0o Jane/ 0o Jane/

= —/ Veuy, : eVeu dzdt + I
0 Td

where

Iy = — / / wy, - divy e Vou dadt + / / up - Ayudrdt
0 Jona] 0 Jang]

= —/ / uh-divTHszudxdt—i—/ / uy, - Azu dzdt
0o Jane! o Jana!

can be controlled via Holder’s inequality and (C.1g)

T HuhH%%(oT)xQS) €
LIS (1+hnt / / dzdt < 6§ )
‘ 0’ ( + )||uHLOO((LT;WZOO(Qf\Qz;Rd) ) Qf\Q£ |uh| x . —+ N

Further, recalling the estimate (C.le) we obtain

/ / (Vguh :Veu +uy, - Amﬁlﬂf) dzdt = / Veup : (Vou —UeVou) dedt + I
0o Jrd 0 Jrd

, . Juanl 22 0y
< h+/ / Vpup| dedt +Ip < h+ 5/ / Ve, — Vo) dadt + e, + 6 WODXA) €5
0 Jaof o Jaof h

€s

which proves (C.6). Again we use the Gauss theorem to get

/ O;div, i da = / 0V div,ude Vo €&,
Dy D,
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where [I.¢|x = ﬁ fe ¢ for € being the face of D, that crosses the center of element K € 7. Using the
above identity we have

/ up - deivxﬁlm dx = /
Td f

2,

- / s} Vadivyiida + / [~ {un}) - Vodiv,dide + / w, - Vaydivadi do
Qh Qh

Q]

uy, - Vydivyudr + / uy, - Vydivepu
Qnel

d d
-y / fuin D 0 Medivotide + I = =y / divyupd9 div,a dz + Iy
i=1 7T — Jra

where

Z / o W3O 80 div,a da + / (wn — fun}) - Vadivedde + / wh - Vodivadi de
Qf N\l
satisfies the following estimate

T d T 3 .
/ Ildt fff ‘ Z/ / {{uz,h}}(l) 6g)H€dlvxﬁ dxdt‘ + ‘Uh - {Uh}}HLQLQ +/ / ‘Uh‘ ’uHLOOW2v°°
0 — Jo Janal
d T ) T
Sh Z/ / ‘{{ui,h}}(z) + wip| dedt + b ||Veup 22 +/ / |y, |dt
=170 Jona] o Janof
5/ / |Vguh|dt—|—h_1/ / |uh|dt—|—h~l—/ / |y, |dt
0o Jane! 0o Janel onel

|| wll72((0.0)x e
<€S—|—5// \Veup, — Vou|* dadt + LA, )XQ)

€s

where we have used the estimates (C.1g) and (C.le). Finally, with (C.1f) we finish the proof of (C.6)

| / / (divundivy i + wy, - Vadivyiilgs) dedt| = | / / (divyu (dived — Hodiv,a) dadt + / n
0 Td 0 Td 0

§h+// divyuy| dazdt + / Ildt‘
0 Jag 0

i . I
Sho 5/ / \diviuy, — divea|? dedt + <+ 5/ / Ve, — Voar? dedt + 6o ODX%)
0 Jag h 0 Jag

€s
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