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Abstract

An approach to accelerating a parallel domain decomposition (DD) solver
by GPUs is investigated. The solver is based on the Balancing Domain De-
composition Method by Constraints (BDDC), which is a nonoverlapping DD
technique. Two kinds of local matrices are required by BDDC. First, dense
matrices corresponding to local Schur complements of interior unknowns
are constructed by the sparse direct solver. These are further used as part
of the local saddle-point problems within BDDC. In the next step, the lo-
cal matrices are copied to GPUs. Repeated multiplications of local vectors
with the dense matrix of the Schur complement are performed for each sub-
domain. In addition, factorizations and backsubstitutions with the dense
saddle-point subdomain matrices are also performed on GPUs. Detailed
times of main components of the algorithm are measured on a benchmark
Poisson problem. The method is also applied to an unsteady problem of
incompressible flow, where the Krylov subspace iterations are performed re-
peatedly in each time step. The results demonstrate the potential of the
approach to speed up realistic simulations up to 5 times with a preference
towards large subdomains.

Keywords: domain decomposition, BDDC, GPUs, MAGMA, TNL

1. Introduction

A large number of scientific and engineering simulations are based on
solving of partial differential equations (PDEs). Consequently, many nu-
merical methods suitable for their discretization have been developed, such
as finite difference, finite volume, or finite element methods. Their effi-
cient implementations suitable for high-performance computing and their
updating hand-in-hand with changes in computer architectures enable mod-
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els with unprecedented resolution to be solved through efficient utilization
of the most advanced parallel supercomputers.

The Balancing Domain Decomposition by Constraints (BDDC) was in-
troduced by Dohrmann (2003). Together with the Finite Element Tearing
and Interconnecting - Dual/Primal (FETI-DP) method by Farhat et al.
(2000), these methods can be considered as the most advanced nonover-
lapping domain decomposition techniques. These methods aim at solving
discretized PDEs by dividing the computational domain into smaller parts
(subdomains) and combining local and global corrections in an iterative
manner. Due to the large amount of local work, they are very suitable for
parallel processing.

The underlying theory of BDDC was presented by Mandel and Dohrmann
(2003), while Mandel et al. (2005) showed that the BDDC method is spec-
trally equivalent to the FETI-DP method. While BDDC can be used as a
standalone solver, it is more common to use one step of the method as a
preconditioner within a Krylov subspace method, e.g., the preconditioned
conjugate gradient method (PCG) for symmetric positive definite (SPD)
problems. The monograph by Toselli and Widlund (2005) provides details
and analysis of many domain decomposition methods and iterative substruc-
turing.

If the number of subdomains reaches thousands, the coarse problem of
BDDC becomes a bottleneck of scalability, and it is beneficial to apply
another step of BDDC on the coarse problem, giving rise to the three-level
BDDC first introduced by Tu (2007). If the idea is repeated, we arrive at
the multilevel BDDC by Mandel et al. (2008).

The multilevel BDDC method was combined with the adaptive selec-
tion of coarse unknowns and implemented in an open source parallel solver
BDDCML by Soused́ık et al. (2013). Pechstein and Dohrmann (2017) pro-
vide a recent overview of adaptive BDDC. Multilevel BDDC is seen as a
method with the potential to scale to the largest supercomputers, as was
demonstrated by Badia et al. (2016) for up to 0.5 million cores.

For more than a decade, the use of graphics processing units (GPUs) for
scientific and engineering computations has become the main way to reach
high performance on modern parallel computers. In particular, a majority
of supercomputers, including those in the TOP500 list by Strohmaier et al.
(2022), are accelerated by GPUs nowadays. For many of these supercom-
puters, a large part of the installed performance is due to these accelerators.
Consequently, it is crucial for applications to utilize these accelerators for
achieving high performance on these machines.

The field of numerical linear algebra has pioneered the creation of li-
braries that can be called from various applications through a well-defined
interface. LINPACK by Dongarra et al. (1979) is a great example of an early
library promoting modularity and standardized interface, later followed by
BLAS by Dongarra et al. (1988b,a) and LAPACK by Anderson et al. (1999).
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An early adopter of GPUs has been the MAGMA numerical library by Ag-
ullo et al. (2009) which implements a lot of the functionality of BLAS and
LAPACK targeting GPUs. A modern numerical library targeting GPUs is
the Templated Numerical Library (TNL) by Oberhuber et al. (2020). While
offering a number of features for scientific computing, such as handling of
structured and unstructured computational meshes, it also implements a
subset of BLAS subroutines.

Despite the importance of employing GPUs for domain decomposition
computations, the topic is not well covered by the existing literature. An
exception aiming at the utilization of GPUs for a large portion of the FETI
domain decomposition method was presented by Papadrakakis et al. (2011).

In this work, a different approach is followed. Namely, we investigate the
potential of using GPUs via dense matrices of local Schur complements. Two
local subdomain problems of BDDC are considered. The first is related to
multiplication with local Schur complements, for which only a multiplication
of a vector with a dense matrix is needed in each iteration of PCG. The
second one requires a repeated solution with a saddle-point-type matrix in
which the local Schur complement is wrapped by the matrix of constraints.
In this operation, a backsubstitution is performed in each PCG iteration.
Since these problems present a dominant cost of the BDDC method, they are
good candidates for offloading their solution to GPUs in order to accelerate
the overall computation.

2. The algorithm of BDDC

2.1. Iterative substructuring

In this paper, we focus on the standard (two-level) BDDC method for
problems with a symmetric positive definite matrix. We stress the compo-
nents of the BDDC algorithm relevant for subsequent processing by GPUs.
In this scenario, a step of BDDC is used as a preconditioner for solving the
problem reduced to the interface between subdomains.

Let Ω ⊂ R2 or R3 be a bounded domain where we want to solve a linear
partial differential equation, and let ∂Ω denote its boundary. In this paper,
we will use the example of a Poisson problem,

−∆u = f in Ω, (1)

u = 0 on ∂Ω, (2)

where u is an unknown function and f is a prescribed right-hand side.
We aim at solving problem (1) by means of the finite element method

(FEM), see, e.g., the monograph by Elman et al. (2005).
Domain Ω is divided into N nonoverlapping subdomains Ωi for i =

1, . . . , N . In finite element computations, the division into subdomains is
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typically aligned with the elements of a computational mesh. Hence, sub-
domains can be seen as parts of the computational mesh.

In the i-th subdomain, a finite element function is determined by a sum
of basis functions multiplied with unknown coefficients. Let us define the
interface Γ as the set of unknown coefficients shared by more than one
subdomain. This allows us to define a local interface of the i-th subdomain
Γi = Ωi ∩ Γ. The remaining unknowns of the subdomain are called interior
unknowns.

Let Ai be the local subdomain matrix obtained by the assembly of the
local matrices of finite elements in Ωi. Similarly, the local vector on the
right-hand side fi is obtained for problem (1) by integrating and assembling
the contributions of finite elements in Ωi.

The unknown coefficients of the local solution vector ui can be divided
into those belonging to Γi, denoted as uΓi , and those in the interior of the
subdomain uIi . Assuming that the interior unknowns are ordered first, the

subdomain solution can be divided into blocks as ui =
[
uIi u

Γ
i

]T
. Accordingly,

the local matrix is blocked as

Ai =

[
AII

i AIΓ
i

AΓI
i AΓΓ

i

]
. (3)

Finally, the local right-hand side vector reads fi =
[
f I
i f

Γ
i

]T
. In the finite

element context, matrix Ai is sparse.
The first step in iterative substructuring methods is a reduction of the

problem to the interface Γi. Namely, we can construct the Schur complement
of the local interior unknowns as

Si = AΓΓ
i −AΓI

i

(
AII

i

)−1
AIΓ

i . (4)

The global Schur complement can be formally assembled as

S =
N∑
i=1

RT
i SiRi, (5)

where Ri is the 0–1 matrix that selects the unknowns of the local interface Γi

from the global interface vector on Γ. However, the global Schur complement
matrix is not assembled in implementations.

Let us denote the solution at the global interface uΓ. In iterative sub-
structuring, we first solve problem

SuΓ = g, (6)

where

g =

N∑
i=1

RT
i

(
fΓ
i −AΓI

i

(
AII

i

)−1
f I
i

)
(7)
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is the reduced vector on the right-hand side.
Once this problem is solved, the interior unknowns are recovered in each

subdomain by solving

AII
i uIi = f I

i −AIΓ
i Riu

Γ. (8)

Problem (6) is solved by PCG. In this algorithm, only multiplications
of the direction vectors by S are needed, which allows us to circumvent its
construction by applying operators from the right-hand side of (5). In a
standard implementation, even the construction of the local Si is avoided
and substituted by evaluating the right-hand side of (4). In this paper, we
denote this approach as implicit multiplication with Schur complement, and
compare it with an explicit construction of Si, which is more amenable for
acceleration by GPUs.

2.2. BDDC preconditioner

One step of the BDDC method is used as the preconditioner of problem
(6) within PCG. The idea of the method is to define the coarse degrees
of freedom at which we require the approximation of the solution to be
continuous, whereas it is discontinuous at most of the interface. These
coarse degrees of freedom can be solution values at selected nodes, called
corners, and/or averages (arithmetic or weighted) at parts of the interface
such as faces (interface unknowns shared by the same two subdomains) and
edges (interface unknowns shared by the same more than two subdomains)
of subdomains. In the presented computations, we use the values at corners
and the arithmetic averages on faces and edges of subdomains as coarse
degrees of freedom.

Let RCi be the 0–1 matrix that selects the coarse unknowns of subdomain
Ωi from the vector of global coarse unknowns. Locally, we define a matrix of
constraints Ci, where the coarse degrees of freedom are defined in its rows.
The number of columns corresponds to the number of unknowns on Γi.

The most demanding step in the BDDC setup is solving a saddle-point
problem [

Si C
T

i

Ci 0

] [
Ψi

Λi

]
=

[
0
I

]
. (9)

By its solution in each subdomain, we algebraically obtain the matrix of
coarse basis functions Ψi, in which every column corresponds to a local
coarse unknown.

As a side product, we also obtain a local subdomain matrix

SCi = ΨT
i SiΨi = −Λi, (10)

from which the coarse problem matrix can be assembled as

SC =
N∑
i=1

RT
CiSCiRCi. (11)
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Let us now describe the action of the BDDC preconditioner within the k-
th PCG iteration, namely, producing a vector of the preconditioned residual
uk from the residual rk. The first step is to obtain the local residual vector
by

ri = WiRir
k, (12)

where matrix Wi applies weights that satisfy the partition of unity, i.e.,∑N
i=1R

T
i WiRi = I. The efficiency of the BDDC preconditioner depends

largely on the choice of Wi, especially for problems with varying coefficients.
However, in this paper, we use weights by cardinality, which is simply the
inverse number of subdomains sharing the unknown.

The action of BDDC is generally split into a global coarse correction and
local corrections, which are naturally parallel. Let us start with the coarse
correction. The coarse residual is obtained as

rC =
N∑
i=1

RT
CiΨ

T
i ri. (13)

Then, we solve the coarse problem

SCuC = rC , (14)

we distribute the coarse solution to each subdomain, and we prolong it to
the whole interface as

uCi = ΨiRCiuC . (15)

The subdomain problems are solved next. In particular, a saddle-point
system [

Si CT
i

Ci 0

] [
ui
µ

]
=

[
ri
0

]
(16)

is solved in each subdomain. Here µ are Lagrange multipliers, and note that
the matrix is the same as in (9). By solving this problem on each subdomain,
we get the subdomain correction ui.

At the end of the action of the BDDC preconditioner, we obtain the
preconditioned residual uk, MBDDC : rk → uk, by combining the subdomain
corrections with the subdomain coarse solution as

uk =
N∑
i=1

RT
i Wi(ui + uCi). (17)

3. Implementation details

In this section, we describe the details of our implementation, which
is based on the open source Adaptive-Multilevel BDDC solver BDDCML
(version 2.6).
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In the standard version of BDDC (here called implicit) implemented
in the library, the local Schur complement matrix (4) is not constructed.
Instead, the sparse direct solver MUMPS (version 5.3.3) is used to compute
the Cholesky factorization of AII

i , and a backsubstitution is performed in
each Si application following the right-hand side of (4).

In the approaches with explicit Schur complements, MUMPS is asked to
construct the dense matrix of the Schur complement during this procedure,
which makes the factorization more time and memory consuming but allows
us to work with Si further.

Hence, a dense matrix-vector product is performed in each iteration in
each subdomain by multiplying a vector with S according to (5). This
corresponds to the dsymv operation of BLAS Level 2, or the dgemv operation
if we do not utilize the symmetry.

This operation can be accelerated by GPUs by transferring the matrix to
the device memory. Then, only the vector to be multiplied and the resulting
vector are transferred between the host memory and the device memory in
each PCG iteration.

The explicit Si is used further in (9). However, within the implicit ver-
sion, a slightly modified matrix (with Ai in place of Si and the matrices
Ci extended by zeroes in the interiors) is factorized by the MUMPS solver
using its LDLT factorization. Nevertheless, with an explicit Si, the whole
matrix of (9) is considered and factorized as dense. In particular, the dsytrf
function is used, and it is also compared with dgetrf, both from the LA-
PACK library. Problem (9) is then solved once as part of the preconditioner
setup, while problem (16) is solved in each action of the preconditioner.
These operations are performed using the dsytrs or the dgetrs LAPACK
routines.

On CPUs, we perform the operations with the dense matrices using the
Intel Math Kernel Library (MKL, version 2019, update 2).

On GPUs, we use the analogues of the BLAS and LAPACK functions
in the MAGMA library (version 2.6.1). Namely, we use the magma dsymv

and magma dgemv functions for multiplication with the Schur complement
and the magma dgetrf gpu and magma dgetrs gpu functions for factoriza-
tion and backsubstitution within the BDDC preconditioner.

Finally, we have also prepared an interface to the Templated Numerical
Library (TNL), version from the develop branch from July 2021. It is used
just for the matrix-vector multiplication, namely the gemv function.

4. Results

In this section, we evaluate the effect of the GPU acceleration on the
overall performance of the BDDC solver. We aim at accelerating two op-
erations, which present the main cost of a typical BDDC run, namely (i)
the multiplication of a vector with the local Schur complement Si, and (ii)
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the solution of the subdomain problem (16). The considered versions of
the solver are described in detail in the previous section and summarised in
Table 1.

version
Solver setup PCG iterations

Schur compls. (4) Augmented probls. (9) Schur compls. (5) Augmented probls. (16)

Implicit MUMPS LLT MUMPS LDLT MUMPS solve MUMPS solve

MKL MUMPS LLT + dense Schur dsytrf dsymv dsytrs

MKL getrf MUMPS LLT + dense Schur dgetrf dsymv dgetrs

MAGMA MUMPS LLT + dense Schur magma dgetrf gpu magma dsymv magma dgetrs gpu

TNL MUMPS LLT + dense Schur magma dgetrf gpu TNL dgemv magma dgetrs gpu

Table 1: Summary of solver configurations.

The multiplication of a vector by the local Schur complement Sipi. is a part
of the application of the global Schur complement matrix in (5). In the
version denoted as implicit, this is performed by evaluating the right-hand
side of (4), that is, by evaluating three sparse matrix-vector products with

matrices AΓΓ
i , AΓI

i , and AIΓ
i . The application of

(
AII

i

)−1
is performed by

backsubstitution in the MUMPS direct solver.
If we let MUMPS construct the dense matrix Si, we can use several

numerical libraries to multiply a dense matrix with a vector. In particular,
we consider the CPU implementation from MKL (dsymv) and two imple-
mentations for GPUs. Namely, we use MAGMA (magma dsymv) and the
implementation from TNL.

Solution of the subdomain problems (16).. First, the factorization of the
(dense) matrix of problem (9) is created. It is natural to exploit the sym-
metry of the matrix by performing the LDLT factorization, which corre-
sponds to the dsytrf function of MKL. However, we also compare it with
the LU factorization with partial pivoting in the dgetrf implementation.
The backsubstitution is performed by the dsytrs and the dgetrs routines,
respectively.

For GPUs, we use the LU version in theMAGMA library (magma dgetrf gpu),
with the backsubstitutions performed by magma dgetrs gpu.

The aim of our numerical tests is two-fold. First, we compare the be-
haviour of the BDDC algorithm with the implicit and explicit local Schur
complements on CPUs. In the second step, we can evaluate the benefits of
employing GPUs for performing the operations with dense matrices in the
explicit version.

The experiments have been performed on the computational cluster of
the Research Center of Informatics in Prague. The cluster has 12 accelerated
nodes, each equipped with 36 cores (2 x Intel Xeon Scalable Gold 6150) with
the frequency 2.7GHz, 4 nVidia Tesla V100 GPUs, and 384 GB RAM.
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4.1. Benchmark problem
We start with the widely used benchmark of the Poisson problem on a

unit cube. More specifically, Ω is a unit cube and f = 1 in (1). The domain
is divided into NE×NE×NE cubic subdomains, with a characteristic size of
an edge denoted H. Each subdomain is composed of nE×nE×nE elements
with cubic shape and tri-linear shape functions. The size of the edge of an
element is h = 1/(NEnE).

An important parameter of the problem for the performance of the
BDDC method is nE = H/h. It is known from the BDDC theory by Mandel
and Dohrmann (2003) that the condition number of the operator precon-
ditioned by BDDC is proportional to (1 + log2(H/h)). This means that
convergence of BDDC is independent of the global size of the problem while
it depends on the local subdomain size H/h.

We perform computations with a fixed number of subdomains, 4×4×4 =
64, and for growing subdomain sizes, H/h ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45}.
This corresponds to global problem sizes from 9.3 thousand to 5.9 million
degrees of freedom, with subdomain local sizes from 216 to 97 thousand
degrees of freedom in volume and from 152 to 12 thousand unknowns on local
subdomain interfaces. The latter corresponds to the size of the subdomain
Schur complement. The problems are computed on 1 and 2 computational
nodes, with 16 and 32 MPI processes, respectively. For one node, there are
4 processes and 16 subdomains per GPU, whereas in the second scenario,
there are 4 processes with 8 subdomains per GPU.

In Fig. 1, we present the number of PCG iterations with respect to the
H/h ratio. It can be seen that it behaves as expected from the BDDC
literature.

The whole solution process is broken down into several important parts,
for which the time is measured separately. A hierarchical scheme of the
solver is presented in Fig. 2, while the detailed time measurements are pre-
sented in Figs. 3–10. Note that the higher-level components also include
the times of the lower-level ones to evaluate the overall benefits. The plots
are ordered according to the scheme in Fig. 2. We also include the relative
amount of time spent in the block for the implicit version with H/h = 45
and one computational node.

In Fig. 3, we present the whole computational time required to solve one
problem. We can see that for small subdomains (small H/h), the fastest
solution is delivered by using the dense matrices processed on CPUs by
MKL, while the overhead of the GPU processing penalizes these versions.
Nevertheless, for large subdomain sizes, the implicit Schur complement han-
dling starts to be the most efficient, followed by GPU-accelerated versions.
We can also see that all versions scale well when moving from one to two
computational nodes.

Having a look at Fig. 4, we can see that the setup of the solver is re-
sponsible for most of the overall time. With the only difference for small
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subdomain sizes where the implicit version is equally fast as the CPU version
with dense matrices, the implicit version is the fastest.

In Fig. 5, we plot the times for preparing the Schur complement matrix.
From this plot, we can evaluate the cost of running the Cholesky factoriza-
tion by the MUMPS solver on matrices AII

i of problem (4). For the implicit
variant, this is just the factorization of AII

i . For the other versions, this
includes the overhead of constructing the dense Schur complement Si by
MUMPS, which seems to be about 3–4 times more expensive. In addition,
the GPU versions also include the transfer of the matrix Si to the device
memory of GPUs, which seems to be slightly more efficient in TNL than in
MAGMA.

Let us now look at the times for the other significant part of the solver
setup, namely, the BDDC preconditioner setup, which is dominated by the
factorization of the matrix of the augmented problem (9) presented in Fig. 6.
In the implicit version, this corresponds to an independent instance of the
MUMPS solver performing a sparse LDLT factorization, whereas it is an
LDLT or LU factorization of a dense matrix for the other versions. Without
GPU acceleration, it is faster to do this by the implicit version. However,
here we can see a benefit of using the GPU version from the MAGMA
library, which provides factorization about 5 times faster than MKL. Note
that also the TNL version relies on the MAGMA library for this operation,
since matrix factorizations are not implemented in TNL.

The factorization is followed by backsubstitution with several right-hand
sides to solve problem (9). Although this is a fast operation, we can see from
Fig. 7 that using the LU factorization is faster than the LDLT factorization
of MKL, as it gets comparable to the implicit version, and the MAGMA
version is the fastest for this operation.

Let us now turn to the second part of the solution process, that is, the
time spent in the PCG iterations shown in Fig. 8. Note that this time also
includes the effect of slightly increasing number of iterations, see Fig. 1. In
these times, we can appreciate the effect of GPU acceleration, the trends of
which are very different from the CPU versions. For small subdomains, the
CPU versions are faster, whereas from H/h around 30, the GPU versions
become beneficial, and for subdomain size H/h = 45, the MAGMA version
becomes about 4 times faster than the CPU versions, whereas the TNL
version is slightly slower.

These effects can be seen in more detail on time for one application of the
Schur complement in Fig. 9, where we can see that the time for MAGMA
is essentially independent of the subdomain size, with MKL being about
30% faster than the implicit version. The TNL version is slightly slower
than MAGMA for large subdomains. Finally, we have a look at the time
for backsubstitution in problem (16) in Fig. 10. Here, the MAGMA version
is faster than the CPU versions for subdomains with H/h larger than 35
for one node and 30 for two nodes, while the CPU versions are comparable.
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Figure 1: Dependence of the number of PCG iterations on H/h.

Due to the speed of this operation, we do not see scaling when going from
1 to 2 nodes, which is likely caused by the communication overhead.

To summarize this experiment, we can see that the implicit version is
faster in the setup of the solver, whereas explicit Schur complements and
especially their acceleration by GPUs become beneficial for the Krylov iter-
ations with large subdomains.

In order to appreciate the domain decomposition strategy, we also in-
clude the time required for the solution by the distributed sparse direct
solver MUMPS. In this case, this direct solver is run on the global dis-
tributed problem rather than on the subdomain blocks. It is compared with
the implicit variant on two nodes and 64 processes in Fig. 11. In this case,
we can clearly observe the benefits of the iterative strategy in the domain
decomposition approach, which provides more than 10x speed-up compared
to the direct approach for the largest problem with H/h = 45.

4.2. Application to computational fluid dynamics

The goal of this section is to explore whether the results of the benchmark
problem can be used to accelerate the solution of real-life problems. We have
chosen the problem of unsteady incompressible flow around rigid bodies, in
which a Poisson problem for pressure is repeatedly solved in each time step.
Here, we apply the solver to the benchmark problem of flow around a unit
sphere with Reynolds number 300 inspired by Emblemsv̊ag et al. (2005). In
this regime, the flow develops into a periodic vortex shedding, see Fig. 12.
The problem has been solved by the pressure correction approach and paral-
lel one-level domain decomposition solvers from the PETSc library by Š́ıstek
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Problem solution

Solver setup (70%)

Preparing Schur complements (4) (34%/24%)

Construction of reduced right-hand side (7) (1%/0.7%)

BDDC preconditioner setup (46%/32%)

Factorization of the augmented problem matrix in (9)
(93%/30%)

Solution of the coarse basis functions (9) (6%/2%)

PCG iterations (17%)

Multiplication by Schur complement (5) (47%/8%)

Application of the BDDC preconditioner (52%/9%)

Augmented problem backsubstitution (16) (97%/9%)

Figure 2: Scheme of the BDDC algorithm with a percentage of computational time of
each block relative to the higher block and to the whole problem solution.
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Figure 3: Problem solution time on 1 node (left) and 2 nodes (right).
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Figure 4: Solver setup on 1 node (left) and 2 nodes (right).
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Figure 5: Preparing Schur complements on 1 node (left) and 2 nodes (right).
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Figure 6: Factorization of the augmented problem on 1 node (left) and 2 nodes (right).
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Figure 7: Solution of the coarse basis functions on 1 node (left) and 2 nodes (right).
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Figure 8: PCG iterations on 1 node (left) and 2 nodes (right).
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Figure 9: Schur complements multiplication with a vector on 1 node (left) and 2 nodes
(right).
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Figure 10: Augmented problem backsubstitution on 1 node (left) and 2 nodes (right).
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Figure 11: Comparison of the problem solution time of the distributed sparse direct solver
(MUMPS) with the BDDC approach on two computational nodes and 64 MPI processes.

(2015). Recently, we have solved the Poisson problem of pressure by the mul-
tilevel BDDC method (Hanek and Š́ıstek (2021)). In that reference, we have
also studied the benefits of using various variants of BDDC for the arising
sequence of problems. The goal of this paper is to evaluate the effect of
GPU acceleration.

When the problem is solved by the finite element method, the matrix of
the Poisson problem is fixed for all time steps, and only the right-hand side
vector changes with time. Hence, most of the solver setup is performed just
once for the whole sequence of time steps, and only the reduced right-hand
side vector (7) needs to be constructed repeatedly. Then, of course, the
PCG iterations are rerun in every time step.

This is a plausible use case for the GPU acceleration of the solver, since
the greatest potential for acceleration has been observed for the Krylov
iterations part in the previous section.

In this example, we no longer distinguish between the time of setup and
the time of PCG solution, and we measure only the problem solution time.
Nevertheless, we do differentiate between the time for the first time step,
in which the complete solver setup is included, and the times of other time
steps, which is an average time over 30 time steps. It has been shown by
Hanek and Š́ıstek (2021) that the number of iterations is almost constant
throughout the time steps, which justifies the analysis of the initial 30 time
steps rather than the 4000 time steps needed for the whole simulation.

The Poisson problem for pressure has 220 thousand finite elements with
225 thousand unknowns. We again perform the experiment for a variable
subdomain size. This is in this case controlled by the number of subdomains,
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Figure 12: Incompressible flow around a unit sphere with Reynolds number 300. Vortices
in the wake of the sphere are visualized by the magnitude of the vector of average corotation
by Kolář et al. (2013) (isovalue 0.1) and coloured by the magnitude of vorticity. Flow after
time in seconds: 0, 50, 70, 75, 80 (top line), 90, 100, 110, 150, and 200 (bottom line).

which is the same as the number of MPI processes in this case.
For this comparison, we select only the implicit version of the solver

and the version accelerated by the MAGMA library. These versions are
compared on one and two computational nodes, hence using 4 and 8 GPUs.

Figure 13 presents the resulting times. Let us first look at the left part
of the figure with times for the first time step. We can clearly observe
very different behaviour for both versions. While the implicit version enjoys
a reasonable strong scalability for up to 16 subdomains, after which the
subdomains become too small to scale further, the scalability of the setup
of the MAGMA version worsens for more (and smaller) subdomains. This
could be partly caused by the fact that the node has only 4 GPUs, and for
smaller subdomains, more of them are assigned to each GPU. It is worth
mentioning though that for four subdomains, which is the case of the largest
subdomains, the MAGMA version gets even a bit faster than the implicit
one. The scalability improves with employing two computational nodes with
8 GPUs. It can be seen that the cost of the first time step drops significantly,
although it does not halve the time, as only a part of the solver setup is
offloaded to GPUs. We can also observe that the accelerated version reduces
time with the number of subdomains. However, its scalability stops much
earlier than for the implicit version.

The right part of Fig. 13 presents the average times for the other time
steps. Note that the time axis is 10 times finer than for the left plot. Also in
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Figure 13: Solution times for the sequence of pressure Poisson problems. Time for the
first time step (left) and the mean time for the next 30 time steps (right) on one and two
computational nodes.

this figure, we can observe the largely different behaviour of the implicit and
the MAGMA versions. While the implicit version provides a better strong
scalability, theMAGMA-accelerated version is very attractive for larger sub-
domains (the case with a small number of subdomains). In particular, it is
about 5 times faster than the implicit version for 4 subdomains and about 3
times faster on 8 subdomains. When moving from one to two computational
nodes, we can also see a difference in time of the implicit (CPU) version.
This is probably related to a faster access to memory when only half of the
processes are placed at each node. For the accelerated version, we can see
a significant drop of the time with increasing the number of subdomains,
which indicates that the overhead of the GPU computation reduces with
assigning less subdomain problems to each GPU. Naturally, this effect can
be seen from eight subdomains, which corresponds to employing all GPUs
available on the two nodes.

5. Conclusions

We have presented a minimalistic approach to accelerating a BDDC
solver by GPUs. It is based on the explicit construction of the dense Schur
complement matrix by the sparse direct solver, followed by its offloading
to the GPU memory and using it for multiplying with a vector in the PCG
method. The dense Schur complement is also used for constructing the dense
saddle-point matrix of the subdomain problems, which is also offloaded to
GPUs, where its factorizations and backsubstitutions are performed. Al-
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though most of the BDDC algorithm still resides on the CPUs, the two
offloaded operations are responsible for the majority of the solution time of
a BDDC solver.

As a baseline for comparisons, we use the implicit version of the BDDC
solver without forming an explicit Schur complement and relying on sparse
direct solvers. For the version with explicit Schur complements, we first
compare the implicit version with processing the dense matrices on CPUs
by MKL. This includes multiplying a vector by the dense matrix on each
subdomain and a factorization with repeated backsubstitution (either LU or
LDLT ). The dense matrix operations were further assigned to the MAGMA
library, whereas the TNL has also been evaluated for multiplying with the
local Schur complements. Both libraries have used CUDA for nVidia GPUs.

The experiments have been performed on one and two cluster nodes with
Intel CPUs and 4 nVidia Volta GPUs on each node.

The approaches have been first evaluated on a benchmark problem of a
Poisson problem on a unit cube with varying subdomain size. A detailed
time measurement has shown that while the setup phase of the precon-
ditioner does not benefit from this GPU acceleration, the part with PCG
iterations can benefit significantly from this approach, with benefits increas-
ing with the subdomain size. We have also shown the benefits of using the
DD strategy compared to a distributed sparse direct solver MUMPS used
on the global problem.

Our observations were applied to a real-life Poisson problem of pressure
within a numerical simulation of an unsteady incompressible flow around a
sphere. In these simulations, the setup of the solver is performed just once,
while the PCG iterations are repeatedly run in each time step. These results
also confirm that this approach to GPU acceleration is beneficial for large
subdomains, with up to 5-fold speedup for the largest subdomains. However,
it should be emphasized that these are still realistic subdomain sizes that are
often used in the applications of domain decomposition methods. We have
also observed the benefit of employing more accelerated nodes, although the
positive effect is stronger for smaller subdomains.

To summarize our findings, the potential of accelerating the subdomain
operations through dense linear algebra and numerical libraries for GPUs
has been evaluated. While it is not beneficial for small subdomains, where
the overhead outweighs the larger performance of GPUs, it provides an
interesting option for medium and larger subdomains, for which the com-
putational times can be reduced up to 5 times. This applies to a repeated
application of the Krylov subspace method with a fixed matrix and the pre-
conditioner already residing on GPUs. Nevertheless, as all the approaches
with an explicit construction of the dense Schur complement make the setup
of the solver significantly more expensive, it does not seem beneficial to use
this approach to GPU acceleration for problems in which the solution is
performed just once.
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Nevertheless, our study has provided an insight into what kind of prob-
lems may benefit from the presented approach. Performing a similar study
with GPU accelerators from the latest generation by nVidia and AMD and
studying the behaviour on a large cluster with GPU-accelerated nodes will
be the subject of a future study.
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Soused́ık B, Š́ıstek J and Mandel J (2013) Adaptive-Multilevel BDDC and
its parallel implementation. Computing 95(12): 1087–1119.

Strohmaier E, Dongarra J, Simon H and Meuer M (2022) Top500 list. URL
https://www.top500.org.

22

https://www.top500.org


Toselli A and Widlund OB (2005) Domain Decomposition Methods—
Algorithms and Theory, Springer Series in Computational Mathematics,
volume 34. Berlin: Springer-Verlag.

Tu X (2007) Three-level BDDC in three dimensions. SIAM J. Sci. Comput.
29(4): 1759–1780.

23


	IM_20221004101508_86.pdf
	1 Introduction
	2 The algorithm of BDDC
	2.1 Iterative substructuring
	2.2 BDDC preconditioner

	3 Implementation details
	4 Results
	4.1 Benchmark problem


	IM_20221004101508_86a.pdf



