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HOMOGENIZATION OF THE TWO-DIMENSIONAL EVOLUTIONARY
COMPRESSIBLE NAVIER-STOKES EQUATIONS

ŠÁRKA NEČASOVÁ AND FLORIAN OSCHMANN

Abstract. We consider the evolutionary compressible Navier-Stokes equations in a two-di-
mensional perforated domain, and show that in the subcritical case of very tiny holes, the
density and velocity converge to a solution of the evolutionary compressible Navier-Stokes
equations in the non-perforated domain.

1. Introduction

Homogenization of different types of fluid flow models have been extensively investigated
during the last decades and are still topic of research. For stationary incompressible Stokes
and Navier-Stokes equations, in his seminal PhD thesis [All90a, All90b] Allaire figured out
that for perforated domains in dimension d ≥ 2, there are essentially three regimes of particle
sizes: very tiny particles shall not influence the flow in a crucial way, meaning that the limiting
system is the same as the one in the perforated domain. Large holes put large friction onto
the fluid, leading in the limit to Darcy’s law. The “in-between case” of critically sized holes
leads to an additional Brinkman term, which was already discovered for the Poisson equation
in [CM82]. To make things more precise, for ε > 0 and dimension d = 2, Allaire considered
holes scaling like exp(−ε−α) for some α > 0. Here, α > 2 corresponds to the case of tiny holes,
α < 2 to the case of large holes, and α = 2 is the critical value. In this context, let us also
mention the related work [KP22], where the resolvent problem for the Robin-Laplace operator
was considered for all types of hole sizes.

Nowadays, a vast literature on fluid flow homogenization is available. Without claiming com-
pleteness, we cite here just a few, ordered to the fluid model they belong to, and refer to the ref-
erences therein for further reading. Stationary incompressible Stokes equations in two and three
spatial dimensions where investigated in [Lu20] for the case the particles are distributed accord-
ing to some hard-sphere condition. This condition occurred already in [All90a, All90b], and was
relaxed in [Hil18], where the author considered disjoint holes that may be “close” to each other
(in a sense to be specified). In [GH19, Giu21] the authors considered randomly placed holes
that are allowed to overlap for the critical and large-size case, respectively. Höfer considered
in [Höf22] the unsteady system, together with several sizes of holes and a vanishing viscosity
limit. For compressible fluids, both stationary and time-dependent Navier-Stokes equations in
three dimensions where considered in [Mas02, FL15, DFL17, LS18, HKS21, BO21, BO22] also
for different sizes and configurations of holes. We also emphasize the works regarding homog-
enization of three-dimensional Navier-Stokes-Fourier equations in [LP21, PS21, Osc22b].

Regarding homogenization of two-dimensional compressible Navier-Stokes equations, to the
best of the authors’ knowledge, the only available result is [NP22], which focusses on the steady
case. The aim of this paper is therefore to investigate the homogenization of the evolutionary
system. To show our result, we will make use of an idea of Bravin in [Bra22], where the author
introduced a refined concept of cut-off functions for a single hole in R2. We adopt this strategy
and generalize it to the case of many obstacles.
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Notation. We use the standard notations for Lebesgue and Sobolev spaces, and denote them
even for vector- or matrix-valued functions as in the scalar case, e.g., Lp(D) instead of Lp(D;R2).
The Frobenius inner product of two matrices A,B ∈ R2×2 is denoted by A : B =

∑2
i,j=1AijBij.

Moreover, we use the notation a ≲ b whenever there is a generic constant C > 0 which is
independent of a, b, and ε such that a ≤ Cb. Lastly, we denote for a function f with domain
of definition Df ⊂ R2 its zero prolongation by f̃ , that is,

f̃ = f in Df , f̃ = 0 in R2 \Df .

2. The model, weak solutions, and the main result

In this section, we introduce the perforated domain, the evolutionary compressible Navier-
Stokes equations, and state our main result. We start with the description of the perforated
domain and the equations governing the fluid’s motion.

2.1. The perforated domain and the Navier-Stokes equations. For ε ∈ (0, 1), let D ⊂
R2 be a bounded domain with smooth boundary, {xεi}i∈N ⊂ R2 be a collection of distinct
points, and Kε ⊂ N be the set of indices such that

{xεi}i∈Kε ⊂ D, ∀i, j ∈ Kε, i ̸= j : |xεi − xεj| ≥ 2ε, dist(xεi , ∂D) > ε.(1)

We also assume that the holes become “denser” in D as ε→ 0, that is,

∃C ≥ c > 0 ∀ε > 0 : cε−2 ≤ |Kε| ≤ Cε−2.(2)

Moreover, let F ⊂ B1(0) be a compact, simply connected set with smooth boundary and 0 ∈ F ,
α > 2, and set

aε = e−ε−α

, Dε = D \
⋃
i∈Kε

(xεi + aεF ).(3)

For fixed T > 0, we consider in (0, T )×Dε the evolutionary compressible Navier-Stokes equa-
tions 

∂tϱε + div(ϱεuε) = 0 in (0, T )×Dε,

∂t(ϱεuε) + div(ϱεuε ⊗ uε) +∇p(ϱε) = div S(∇uε) + ϱεf in (0, T )×Dε,

uε = 0 on (0, T )× ∂Dε,

ϱε(0, ·) = ϱε0, (ϱεuε)(0, ·) = qε0 in Dε.

(4)

Here, ϱε and uε denote the fluid’s density and velocity, respectively, p(s) = sγ for some γ > 1,
S(∇u) is the Newtonian viscous stress tensor of the form

S(∇u) = µ(∇u+∇uT − div(u)I) + η div(u)I, µ > 0, η ≥ 0,

and f ∈ L∞((0, T )×D) is given.

2.2. Weak solutions and main result. For further use, we introduce the concept of finite
energy weak solutions.

Definition 2.1. Let T > 0 be fixed, γ > 1, and let the initial data satisfy

ϱ(0, ·) = ϱ0, (ϱu)(0, ·) = q0,

together with the compatibility conditions

ϱ0 ≥ 0 a.e. in Dε, ϱ0 ∈ Lγ(Dε), q0 = 0 on {ϱ0 = 0}, q0 ∈ L
2γ
γ+1 (Dε),

|q0|2

ϱ0
∈ L1(Dε).

(5)

We call a duplet (ϱ,u) a finite energy weak solution to system (4) if:
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• The solution belongs to the regularity class

ϱ ≥ 0 a.e. in Dε, ϱ ∈ L∞(0, T ;Lγ(Dε)),

∫
Dε

ϱ dx =

∫
Dε

ϱ0 dx,

u ∈ L2(0, T ;W 1,2
0 (Dε)), ϱu ∈ L∞(0, T ;L

2γ
γ+1 (Dε));

• We have

∂tb(ϱ̃) + div(b(ϱ̃)ũ) + (ϱ̃b′(ϱ̃)− b(ϱ̃)) div ũ = 0 in D′((0, T )× R2)(6)

for any b ∈ C1([0,∞));
• For any φ ∈ C∞

c ([0, T )×Dε;R2),∫ T

0

∫
Dε

ϱu · ∂tφ dx dt+

∫ T

0

∫
Dε

ϱu⊗ u : ∇φ dx dt+

∫ T

0

∫
Dε

ϱγ divφ dx dt(7)

−
∫ T

0

∫
Dε

S(∇u) : ∇φ dx dt+

∫ T

0

∫
Dε

ϱf · φ dx dt = −
∫
Dε

q0 · φ(0, ·) dx;(8)

• For almost any τ ∈ [0, T ], the energy inequality holds:∫
Dε

1

2
ϱ|u|2(τ, ·) + ϱγ(τ, ·)

γ − 1
dx+

∫ τ

0

∫
Dε

S(∇u) : ∇u dx dt(9)

≤
∫
Dε

|q0|2

2ϱ0
+

ϱγ0
γ − 1

dx+

∫ τ

0

∫
Dε

ϱf · u dx dt.(10)

Regarding existence of weak solutions, we have the following

Theorem 2.2 ([FNP01, Theorem 1.1 and Section 5]). Let Dε ⊂ R2 be a bounded domain with
smooth boundary, γ > 1, T > 0 be given. Let the initial data satisfy (5). Then, there exists a
finite energy weak solution (ϱ,u) to system (4) in the sense of Definition 2.1.

We are now in the position to state our main result in this paper.

Theorem 2.3. Let D ⊂ R2 be a bounded domain with smooth boundary, {xεi}i∈N ⊂ R2 be a
collection of points satisfying (1) and (2), α > 2, and Dε be defined as in (3). Let γ > 2,
(ϱε,uε) be a sequence of finite energy weak solutions to system (4) emanating from the initial
data (ϱε0,qε0), and assume

ϱ̃ε0 → ϱ0 in Lγ(D),
|q̃ε0|2

ϱ̃ε0
→ |q0|2

ϱ0
in L1(D).(11)

Then, there exists a subsequence (not relabelled) such that

ϱ̃ε ⇀
∗ ϱ weakly∗ in L∞(0, T ;Lγ(D)), ũε ⇀ u weakly in L2(0, T ;W 1,2

0 (D)),

where (ϱ,u) is a solution to system (4) in the domain (0, T )×D with initial conditions ϱ(0) = ϱ0
and ϱu(0) = q0.

The restriction γ > 2 is necessary to ensure that the convective term converges in the right
way, see Remark 5.2.

3. Uniform bounds

Lemma 3.1. Under the assumptions of Theorem 2.3, we have

∥ϱε∥L∞(0,T ;Lγ(Dε)) + ∥√ϱεuε∥L∞(0,T ;L2(Dε)) + ∥uε∥L2(0,T ;W 1,2
0 (Dε))

≤ C

for some constant C > 0 independent of ε.
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Proof. By the energy inequality (9) and the assumptions on the initial data (11), we obtain∫
Dε

1

2
ϱε|uε|2(τ, ·) +

ϱγε (τ, ·)
γ − 1

dx+

∫ τ

0

∫
Dε

S(∇uε) : ∇uε dx dt ≤ C +

∫ τ

0

∫
Dε

ϱεf · uε dx dt.

Note further that the conservation of mass and the convergence of the initial data ϱε0 yields

∥ϱε∥L∞(0,T ;L1(Dε)) = ∥ϱε0∥L1(Dε) ≤ |Dε|1−
1
γ ∥ϱ̃ε0∥Lγ(D) ≤ C

since |D \Dε| ≤ Cε−2a2ε → 0, hence |Dε| ≤ C. Using now Hölder’s and Young’s inequality, we
get for almost any τ ∈ [0, T ]∫

Dε

ϱεf · uε(τ) dx dt ≤ C∥ϱε(τ)∥
1
2

L1(Dε)
∥ϱε|uε|2(τ)∥

1
2

L1(Dε)
≤ C +

1

2
∥ϱε|uε|2(τ)∥L1(Dε).

Thus, we end up with the inequality∫
Dε

1

2
ϱε|uε|2(τ, ·) +

ϱγε (τ, ·)
γ − 1

dx+

∫ τ

0

∫
Dε

S(∇uε) : ∇uε dx dt ≤ C +

∫ τ

0

∫
Dε

1

2
ϱε|uε|2 dx dt.

Using finally Grönwall’s, Korn’s, and Poincaré’s inequality, we conclude easily. □

Moreover, we can improve the pressure regularity, the proof of which follows the same lines
as [Bra22, Appendix B] (see also Appendix A).

Lemma 3.2. For any θ < γ − 1, ∫ T

0

∫
Dε

ϱγ+θ
ε dx dt ≤ C.

4. Suitable test functions

In order to pass to the limit in the momentum equation, we need an appropriate test function
obtained from an arbitrary function φ ∈ C∞

c ([0, T )×D). To this end, we have to modify φ such
that it vanishes on the holes. As a consequence of our construction, we will make φ vanish on a
slightly larger set, keeping fixed the scaling and number of the holes. First, by the definition of
Dε in (3) and the holes as aεF for some compact set F ⊂ B1(0), we have xεi + aεF ⊂ Baε(x

ε
i ).

Now, we define a “single hole” cut-off function via

η0ε(r) =


1 if 0 ≤ r < aε,
log(αεaε)−log(r)
log(αεaε)−log(aε)

aε ≤ r < αεaε,

0 else,

(12)

where 1 < αε → ∞ such that αεaε ≤ ε will be chosen later. After passing to radial coordinates,
it is easy to see that for any 1 ≤ q <∞, we have

∥η0ε∥L∞(R2) + ∥∇η0εxi∥L∞(R2) ≲ 1,

∥∇η0ε∥
q

Lq(R2)
+ ∥∇2η0εxi∥

q

Lq(R2)
≲

{
a2−q
ε

| logαε|q |α
2−q
ε − 1| if q ̸= 2,

| logαε|−1 if q = 2.

(13)

To define an appropriate cut-off function for multiple holes in the whole of D, we follow an
idea of Bravin in [Bra22] for a single hole in R2. Recall the definitions of xεi and Kε in (1). We
set ηiε(x) = η0ε(|x− xεi |) for x ∈ D, and define the matrix-valued cut-off function

Φε = I−
∑
i∈Kε

ηiεI+∇⊥ηiε ⊗ (x− xεi )
⊥,

where x⊥ = (−x2, x1) and ∇⊥ = (−∂2, ∂1). Note especially that

div Φε = −
∑
i∈Kε

div
(
∇⊥[ηiε(x− xεi )

⊥]
)
= 0,
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where the divergence is taken row-wise as div Φε = div(ΦT
ε e1)e1+div(ΦT

ε e2)e2. We summarize
the properties of Φε in the following

Lemma 4.1. The function Φε fulfils

Φε ∈ W 1,q(D) ∩ L∞(D) for any q ≥ 1,

Φε = 0 on D \Dε,

Φε = I on D \
⋃
i∈Kε

Bαεaε(x
ε
i ).

Moreover, for any 1 ≤ q ≤ ∞,

∥Φε − I∥Lq(D) ≲ ε−
2
q (αεaε)

2
q ,

∥∇Φε∥L2(D) ≲ ε−1| logαε|−
1
2 ,

(14)

with the convention 1/∞ = 0. In turn, for any φ ∈ C∞
c (D) and any q ≤ 2,

∥∇(Φεφ)− Φε∇φ∥Lq(D) ≲ ε−1| logαε|−
1
2∥φ∥

L
2q
2−q (D)

,(15)

with the convention 1/0 = ∞.

Proof. By the definition of Φε, we immediately see that Φε = 0 on the holes as well as Φε = I
outside every Bαεaε(x

ε
i ). Further, noticing that the holes are disjoint and their number in

D grows like ε−2 by (2), we easily conclude (14) by using (13). Inequality (15) is a direct
consequence of Hölder’s inequality

∥∇(Φεφ)− Φε∇φ∥Lq(D) = ∥(∇(Φεe1)φ,∇(Φεe2)φ)∥Lq(D)

≤ ∥∇Φε∥L2(D)∥φ∥
L

2q
2−q (D)

≲ ε−1| logαε|−
1
2∥φ∥

L
2q
2−q (D)

.

□

5. Convergences and equations in homogeneous domain

In this section, we show that the functions ϱε and uε converge to functions ϱ and u in a
proper way, respectively, and figure out the limiting system they solve. First, note that the
extended functions ϱ̃ε and ũε share the same regularity in the whole of R2 as their originating
functions ϱε and uε in Dε. Hence, from the uniform bounds derived in Section 3, we have

ϱ̃ε ⇀ ϱ weakly in L(2γ−1)−([0, T )×D),

ϱ̃ε ⇀
∗ ϱ weakly∗ in L∞(0, T ;Lγ(D)),

ũε ⇀ u weakly in L2(0, T ;W 1,2
0 (D)),

(16)

where we denoted by (2γ − 1)− any number less than but arbitrarily close to 2γ − 1. Our
first result concerns the extended continuity equation, which can be proven similarly to [LS18,
Proposition 3.3].

Lemma 5.1. The extended functions ϱ̃ε and ũε fulfil

∂tϱ̃ε + div(ϱ̃εũε) = 0 in D′((0, T )× R2).

Let us moreover show that

ΦT
ε ϱ̃εũε → ϱu in C(0, T ;L

2γ
γ+1

weak(D)),

ΦT
ε ϱ̃εũε ⊗ ũε → ϱu⊗ u in D′((0, T )×D).

(17)

Indeed, from the uniform bounds on ϱ̃ε and ũε derived in Section 3, we have

∥ϱ̃εũε∥
L∞(0,T ;L

2γ
γ+1 (D))

≤ ∥
√
ϱ̃ε∥L∞(0,T ;L2γ(D))∥

√
ϱ̃εũε∥L∞(0,T ;L2(D)) ≤ C.
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Moreover, by Lemma 5.1, we have

∂tϱ̃ε bounded in L2(0, T ;W−1,p(D)) for any p < γ.

Applying [Lio98, Lemma 5.1] now shows

ϱ̃εũε → ϱu in D′((0, T )×D).

Furthermore, an Aubin-Lions type argument shows

ϱ̃ε → ϱ in C(0, T ;Lγ
weak(D)), ϱ̃εũε → ϱu in C(0, T ;L

2γ
γ+1

weak(D)).(18)

A similar argument applies to ϱ̃εũε ⊗ ũε. Since Φε is bounded in L∞(D), we conclude (17).

5.1. Limit in the continuity equation. From Lemma 5.1, we obtain for any ψ ∈ C∞
c ([0, T )×

R2) ∫ T

0

∫
R2

ϱ̃ε∂tψ dx dt+

∫ T

0

∫
R2

ϱ̃εũε · ∇ψ dx dt = −
∫
R2

ϱ̃ε0ψ(0, ·) dx.

Together with the assumptions on the initial data (11), and the convergences (16) and (18),
we pass with ε→ 0 in the above equation to obtain

∂tϱ+ div(ϱu) = 0 in D′((0, T )× R2).

According to [NS04, Lemma 6.9], this shows that the couple (ϱ,u) also fulfils the renormalized
continuity equation (6).

5.2. Limit in the momentum equation. To pass to the limit in the weak formulation of the
momentum equation (7), we use Φεφ ∈ C∞

c ([0, T ) × Dε) as a proper test function. Recalling
that Φε = 0 on the holes, we can extend qε0, ϱε, and uε by zero to the whole of D, leading to

0 =

∫
D

q̃ε0 · Φεφ(0, ·) dx+
∫ T

0

∫
D

ϱ̃εũε · Φε∂tφ dx dt+

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : ∇(Φεφ) dx dt

+

∫ T

0

∫
D

ϱ̃γε div(Φεφ) dx dt−
∫ T

0

∫
D

S(∇ũε) : ∇(Φεφ) dx dt+

∫ T

0

∫
D

ϱ̃εf · Φεφ dx dt

=
6∑

j=1

Ij.

We will pass with ε→ 0 in each integral separately. To this end, we need to choose αε from
(12) in a proper way. We want that Φε → I strongly in Lq(D) for any 1 ≤ q < ∞. According
to (14) in Lemma 4.1, we may choose αε such that

ε−1αεaε = ε, that is, αε = ε2a−1
ε .(19)

We remark that this choice is much faster growing than the requirement made in [Bra22,
Proposition 1]. Note also that this yields

∥∇Φε∥2L2(D) ≲ ε−2| logαε|−1 ≲ εα−2,

which is the critical scaling in our setting α > 2.

Now, for I1, we obtain∫
D

q̃ε0 · Φεφ(0, ·) dx =

∫
D

q̃ε0√
ϱ̃ε0

√
ϱ̃ε0 · Φεφ(0, ·) dx

→
∫
D

q0√
ϱ0

√
ϱ0 · φ(0, ·) dx =

∫
D

q0 · φ(0, ·) dx,

where we used that q̃ε0/
√
ϱ̃ε0 → q0/

√
ϱ0 strongly in L

2(D) and
√
ϱ̃ε0 →

√
ϱ0 strongly in L

2γ(D).
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For I2, we get with (17) the convergence∫ T

0

∫
D

ϱ̃εũε · Φε∂tφ dx dt =

∫ T

0

∫
D

ΦT
ε ϱ̃εũε · ∂tφ dx dt→

∫ T

0

∫
D

ϱu · ∂tφ dx dt.

For the pressure term I4, recall that the function Φε is divergence-free. Thus,∫ T

0

∫
D

ϱ̃γε div(Φεφ) dx dt =

∫ T

0

∫
D

ϱ̃γεΦε : ∇φ dx dt

→
∫ T

0

∫
D

ϱγI : ∇φ dx dt =

∫ T

0

∫
D

ϱγ divφ dx dt,

where we denoted by ϱγ the weak limit of ϱ̃ε in L
(2γ−1)−

γ ((0, T )×D).

To pass to the limit in the diffusive term I5, we rewrite∫ T

0

∫
D

S(∇ũε) : ∇(Φεφ) dx dt =

∫ T

0

∫
D

S(∇ũε) : (Φε∇φ) dx dt

+

∫ T

0

∫
D

S(∇ũε) : (∇(Φεφ)− Φε∇φ) dx dt.

The latter term converges to zero due to∣∣∣∣ ∫ T

0

∫
D

S(∇ũε) : (∇(Φεφ)− Φε∇φ) dx dt
∣∣∣∣ ≲ ∥∇ũε∥L2(0,T ;L2(D))∥∇(Φεφ)− Φε∇φ∥L∞(0,T ;L2(D))

≲ ∥∇Φε∥L2(D)∥φ∥L∞((0,T )×D) ≲ εα−2∥φ∥L∞((0,T )×D).

Together with the strong convergence of Φε → I in L2(D) and the weak convergence of ∇ũε ⇀
∇u in L2(0, T ;L2(D)), we deduce∫ T

0

∫
D

S(∇ũε) : ∇(Φεφ) →
∫ T

0

∫
D

S(∇u) : ∇φ.

For the force term I6, ∫ T

0

∫
D

ϱ̃εf · Φεφ dx dt→
∫ T

0

∫
D

ϱf · φ dx dt

by the strong convergence of Φε to I in any Lq(D).

Let us turn to I3, where we argue similar as for I5. We rewrite∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : ∇(Φεφ) dx dt =

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : (Φε∇φ) dx dt

+

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : (∇(Φεφ)− Φε∇φ) dx dt

=

∫ T

0

∫
D

ΦT
ε ϱ̃εũε ⊗ ũε : ∇φ dx dt

+

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : (∇(Φεφ)− Φε∇φ) dx dt.

The latter term vanishes due to the embedding W 1,2(D) ⊂ Lp(D) for any p < ∞. Indeed, we
get with γ > 2 and the uniform bounds on ϱε and uε∣∣∣∣ ∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : (∇(Φεφ)− Φε∇φ)
∣∣∣∣

≤ ∥ϱ̃ε∥L∞(0,T ;Lγ(D))∥ũε∥2
L2(0,T ;L

4γ
γ−2 (D))

∥∇(Φεφ)− Φε∇φ∥L∞(0,T ;L2(D))
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≲ εα−2∥φ∥L∞((0,T )×D).

Hence, by ΦT
ε ϱ̃εũε ⊗ ũε → ϱu⊗ u in D′((0, T )×D), we obtain∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : ∇(Φεφ) dx dt→
∫ T

0

∫
D

ϱu⊗ u : ∇φ dx dt.

Collecting all convergences above, we end up with

0 =

∫
D

q0 · φ(0, ·) dx+
∫ T

0

∫
D

ϱu · ∂tφ dx dt+

∫ T

0

∫
D

ϱu⊗ u : ∇φ dx dt

+

∫ T

0

∫
D

ϱγ divφ dx dt−
∫ T

0

∫
D

S(∇u) : ∇φ dx dt+

∫ T

0

∫
D

ϱf · φ dx dt.

In order to finish the proof of Theorem 2.3, we have to show that ϱγ = ϱγ, which can be done
similarly to [Bra22, Section 7] and the arguments given in [DFL17, Lemma 4.5].

Remark 5.2. As already mentioned, the stronger assumption γ > 2 is needed to ensure that
ΦT

ε ϱ̃εũε ⊗ ũε converges to its counterpart. Indeed, for 1 < γ ≤ 2, we need to ensure that the
term ∇(Φεφ) − Φε∇φ = (∇(Φεe1)φ,∇(Φεe2)φ) vanishes in L∞(0, T ;Lq(D)) for some q > 2.
A similar calculation as for the L2-setting shows for any q > 2

∥∇Φε∥qLq(D) ≲
ε−2a2−q

ε (1− α2−q
ε )

| logαε|q
≤ ε−2a2−q

ε

| logαε|q
.

In order to make this vanish, one would need αε ∼ exp(a−1
ε ) = exp(exp(ε−α)). However, this

yields αεaε → ∞, meaning that neither Φε → I in some Lq(D) nor that the balls Bαεaε(x
ε
i ) stay

inside D.

Appendix A. Bogovskĭı’s operator in 2D and improved pressure estimates

In this section, we give an inverse to the divergence in the two-dimensional perforated domain,
and estimate its norm in any Lq(Dε). To the best of the authors’ knowledge, such estimates
for two spatial dimensions are just known in the L2-setting, see [NP22, Section 1.4]. Therefore,
we give here an explicit proof, which might be of independent interest. As an application, we
explain how to use it to prove Lemma 3.2.

Theorem A.1. Let D ⊂ R2 be a bounded domain with smooth boundary and Dε be defined as
in (3). Then, there exists an operator Bε such that for any q ≥ 1,

Bε : L
q
0(Dε) = {f ∈ Lq(Dε) :

∫
Dε

f dx = 0} → W 1,q
0 (Dε;R2),

and for any f ∈ Lq
0(Dε) we have

divBε(f) = f in Dε, ∥Bε∥qW 1,q
0 (Dε)

≲ (1 + C(ε, q))∥f∥qLq(Dε)
,

where

C(ε, q) = ε−2a2−q
ε

{
| log(ε/aε)|−q|α2−q

ε − 1| if q ̸= 2,

| log(ε/aε)|−1 if q = 2.

Proof. We follow the idea of [DFL17], where Lq-estimates are given for the case of three spatial
dimensions. Let f ∈ Lq

0(Dε). Then, there exists a function u ∈ W 1,q
0 (D) such that

divu = f̃ in D, ∥u∥W 1,q
0 (D) ≤ C∥f∥Lq(Dε)

for some constant C > 0 independent of ε (see [Bog80, Gal11]). However, u does not vanish on
the holes in general. To overcome this, recall that we chose αε = ε2a−1

ε in (19). Note also that
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the domains Bε2(x
ε
i ) \ Baε(x

ε
i ) are uniform John domains (see, e.g., [Osc22a, Example 3.2.2]),

so for each i ∈ Kε, there exists a Bogovkĭı operator Bi,ε satisfying

Bi,ε : L
q
0(Bε2(x

ε
i ) \Baε(x

ε
i )) → W 1,q

0 (Bε2(x
ε
i ) \Baε(x

ε
i )),

divBi,ε(g) = g in Bε2(x
ε
i ) \Baε(x

ε
i ), ∥Bi,ε(g)∥Lq(Bε2 (x

ε
i )\Baε (x

ε
i ))

≤ C∥g∥Lq(Bε2 (x
ε
i )\Baε (x

ε
i ))

for some constant C > 0 independent of ε (see [DRS10, Theorem 5.2]). Furthermore, we define
η0ε as in (12), and

θ0ε(r) =


1 if 0 ≤ r < ε2/2,
2
ε2
(ε2 − r) if ε2/2 ≤ r < ε2,

0 else.

As before, set for xεi ∈ Kε and x ∈ D the functions ηiε(x) = η0ε(|x−xεi |) and θiε(x) = θ0ε(|x−xεi |),
and define for u ∈ W 1,q(Bε2(x

ε
i )) the operator Li,ε as

Li,εu(x) = θiε(x)

(
u(x)− 1

|Bε2(x
ε
i )|

∫
Bε2 (x

ε
i )

u dx

)
+ ηiε(x)

1

|Bε2(x
ε
i )|

∫
Bε2 (x

ε
i )

u dx.

Note that this immediately implies Li,εu = 0 on ∂Bε2(x
ε
i ) as well as Li,εu = u on ∂Baε(x

ε
i ).

Moreover, by Poincaré’s inequality,∥∥∥∥u− 1

|Bε2(x
ε
i )|

∫
Bε2 (x

ε
i )

u dx

∥∥∥∥
Lq(Bε2 (x

ε
i ))

≤ Cε2∥∇u∥Lq(Bε2 (x
ε
i ))

for some constant C > 0 independent of ε. Hence, by the estimate (13),

∥∇Li,εu∥Lq(Bε2 (x
ε
i ))

≤ ∥∇θiε∥L∞(D)

∥∥∥∥u− 1

|Bε2(x
ε
i )|

∫
Bε2 (x

ε
i )

u dx

∥∥∥∥
Lq(Bε2 (x

ε
i ))

+ ∥∇u∥Lq(Bε2 (x
ε
i ))

+ ∥∇ηiε∥Lq(Bε2 (x
ε
i ))

1

|Bε2(x
ε
i )|

∫
Bε2 (x

ε
i )

|u| dx

≲ ∥∇u∥Lq(Bε2 (x
ε
i ))

+ ε−
2
q a

2
q
−1

ε ∥u∥Lq(Bε2 (x
ε
i ))

{
| logαε|−1|α2−q

ε − 1|
1
q if q ̸= 2,

| logαε|−
1
2 if q = 2,

yielding an operator Li,ε : W
1,q(Bε2(x

ε
i )) → W 1,q

0 (Bε2(x
ε
i )). Eventually, we define

Bε(f) = u−
∑
i∈Kε

Li,εu− Bi,ε divLi,εu.

Note that this operator is well defined due to∫
Bε2 (x

ε
i )

divLi,εu dx =

∫
∂Bε2 (x

ε
i )

Li,εu · n dσ = 0

since Li,εu = 0 on ∂Bε2(x
ε
i ). Furthermore, for any x ∈ Baε(x

ε
i ),

divLi,εu(x) = divu(x) = f̃(x) = 0

by Li,εu = u in Baε(x
ε
i ) and f̃(x) = 0 on D \Dε. Hence,∫

Bε2 (x
ε
i )\Baε (x

ε
i )

divLi,εu dx = 0

as wished. Moreover, this leads for any x ∈ Baε(x
ε
i ) to

Bε(f)(x) = u(x)− Li,εu(x) = 0,

so indeed Bε(f) = 0 on D \Dε. Seeing finally that the holes Bε2(x
ε
i ) are disjoint, we sum up

the estimates obtained to finish the proof of the theorem. □
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With the help of the operator Bε, we can show Lemma 3.2. Recalling aε = exp(−ε−α) for
some α > 2, we have for any 1 ≤ q < 2 the uniform bound

1 + C(ε, q) ≲ 1 + ε−2a2−q
ε | log(ε/aε)|−1α2−q

ε ≲ 1 + ε−2+αq+2(2−q) = 1 + εq(α−2)+2 ≲ 1,

and for q = 2, we have

1 + C(ε, 2) ≲ 1 + ε−2| log(ε/aε)|−1 ≲ 1 + εα−2 ≲ 1.

The idea is now to test the momentum equation (7) by the function

φ(t, x) = ξ(t)Bε

[
ϱθε −

1

|Dε|

∫
Dε

ϱθε

]
for θ < γ − 1 and some ξ ∈ C∞

c ([0, T )). Note that the function φ is not regular enough
in the time variable to use it as test function, however, one can overcome this by using a
time-regularization argument (see [FN09, Section 2.2.5] for details). The proof of the improved
integrability of the density now follows the same lines as [Bra22, Appendix B] (see also [Osc22a,
Section 4.2.2]).
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[LP21] Yong Lu and Milan Pokorný, Homogenization of stationary Navier–Stokes–Fourier system in domains
with tiny holes, J. Differential Equations 278 (2021), 463–492. MR 4205176

[LS18] Yong Lu and Sebastian Schwarzacher, Homogenization of the compressible Navier—Stokes equations
in domains with very tiny holes, Journal of Differential Equations 265 (2018), no. 4, 1371 – 1406.

[Lu20] Yong Lu, Homogenization of Stokes equations in perforated domains: a unified approach, J. Math.
Fluid Mech. 22 (2020), no. 3, Paper No. 44, 13. MR 4145838

[Mas02] Nader Masmoudi, Homogenization of the compressible Navier–Stokes equations in a porous medium,
ESAIM: Control, Optimisation and Calculus of Variations 8 (2002), 885–906.
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