
CHARLES UNIVERSITY, PRAGUE

FACULTY OF MATHEMATICS AND PHYSICS

DOCTORAL THESIS

PAVEL KŮS

Automatic hp-Adaptivity on Meshes with
Arbitrary-Level Hanging Nodes in 3D

Institute of Mathematics, AS CR

Advisor: RNDr. Tomáš Vejchodský, PhD.
Co-advisor: RNDr. Pavel Šolín, PhD.

Study program: M6 – Scientific and technical computing

2011

ACKNOWLEDGMENTS

I wish to express my deep gratitude to all the people who supported me throughout
my graduate studies. First, I want to thank my supervisor Dr. Tomáš Vejchodský
not only for his valuable advice with the mathematical part of the work, but also
for his great support, help and patience over the past four years. Apart from
that all, which encouraged me to proceed with the work, I also owe him for the
possibility to work at the Mathematical Institute and to visit many conferences,
where I met interesting people and learned new inspiring ideas.

This work would not have been possible without Dr. Pavel Šolín, the leader of
the HERMES project, who introduced me to the hp-FEM, taught me a lot about
various aspects of scientific computing and was a constant source of inspiration
and ideas for my work. I also feel indebted to him for the opportunity to study at
the University of Texas at El Paso and to visit Sandia National Laboratories for a
summer internship. It was the friendly approach of him and his wife Dagmar, that
made my stay at El Paso such a pleasant experience.

I also want to thank Prof. Ivo Doležel for his support, kindness and for many valu-
able discussions regarding physical and engineering applications of our project.
He gave me the opportunity to work at the Institute of Thermomechanics and
although being an extremely busy person, he always found time to help and en-
courage me.

I also have to thank all the colleagues from our team that I have met at El Paso,
namely David Andrš, Jakub Červený, Lenka Dubcová and Martin Zítka. I always
enjoyed to cooperate with them all and I learned a lot from them, particularly
about computers. I thank all other former and present members of the team for
their joint effort that made HERMES such a capable computing system.

Finally, I wish to thank my family for ceaseless support during my studies and
Míša for a strong encouragement during final stages of this work and for much
more.

This work was supported by the grants GAČR P102/11/0498 and IAA100760702.

ii

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 paragraph 1 of the
Copyright Act.

Prague, 2011 Pavel Kůs

iii

Abstract

The thesis is concerned with theoretical and practical aspects of the hp-adaptive
finite element method for solving elliptic and electromagnetic problems described
by partial differential equations in three spatial dimensions. Besides the standard
element refinements, the hp-adaptivity allows independent adaptation of degrees
of the polynomial approximation as well. This leads to exponentially fast conver-
gence even for problems with singularities. The efficiency of the hp-adaptivity
is enhanced even more by the ability of the algorithm to work with meshes with
arbitrary-level hanging nodes. This generality, however, leads to great complex-
ity of the implementation. Therefore, the thesis concentrates on the mathematical
analysis of algorithms that have led to successful implementation of the method.
In addition, the thesis discusses the numerical integration in 3D and the implemen-
tation of the method itself. Finally, numerical results obtained by this new imple-
mentation are presented. They confirm advantages of hp-adaptivity on meshes
with arbitrary-level hanging nodes.

Abstrakt

Dizertační práce se zabývá teoretickými a praktickými aspekty hp-adaptivní meto-
dy konečných prvků pro řesení eliptických a elektromagnetických úloh popsaných
parciálními diferenciálními rovnicemi ve třech prostorových dimenzích. Použí-
vaná hp-adaptivita umožňuje zjemňovat elementy v prostoru i zvyšovat jejich
polynomiální řád, což vede k exponenciálně rychlé konvergenci i pro úlohy se
singularitami. Efektivitu hp-adaptivity ještě zvyšuje schopnost algoritmu praco-
vat se sítěmi s visícími uzly libovolné úrovně. Tato obecnost však vede ke značné
komplexnosti implementace. Jádrem této práce je proto matematická analýza
algoritmů, které vedly k úspěšné implementaci metody. Dále jsou diskutovány
možnosti numerické integrace ve 3D a samotná implementace metody. V závěru
jsou předloženy numerické výsledky získané touto novou implementací, které
potvrzují výhody hp-adaptivity na sítích s visícími uzly libovolné úrovně.

iv

CONTENTS

1 Preface 1
1.1 Motivation and history of the finite element method 1
1.2 Existing hp-FEM software . 2
1.3 hp-FEM system HERMES . 3
1.4 Structure of the thesis . 4
1.5 The Goals of this work . 5

2 Introduction to the higher-order FEM 6
2.1 Function spaces . 6
2.2 Finite element mesh . 7

2.2.1 Minimum rule . 8
2.3 De Rham diagram . 9

2.3.1 Reference domain . 9
2.3.2 Reference mapping . 10
2.3.3 De Rham diagram for reference mappings 12
2.3.4 Transformation of polynomial spaces 12

2.4 Degrees of freedom . 13
2.4.1 Nodal elements . 14
2.4.2 Hierarchic elements . 14

2.5 Projection-based interpolation 15
2.6 Conformity requirements . 15
2.7 The Galerkin method . 16

3 Hexahedral mesh with arbitrary-level hanging nodes 18
3.1 Element refinements . 19
3.2 Regularity of the mesh . 20

3.2.1 Incompatible refinement 22
3.3 Constrained nodes . 22

3.3.1 Restrictions on basis functions 23
3.3.2 Types of constrains . 24
3.3.3 Dependency of the nodes 26
3.3.4 Resolving constrains . 26

v

3.4 Orientation handling . 33
3.4.1 Orientation of edges . 34
3.4.2 Orientation of faces . 35

4 hp-FEM in 3D for elliptic problems 39
4.1 Model elliptic problem . 40

4.1.1 Classical formulation . 40
4.1.2 Weak formulation . 40

4.2 Higher-order shape functions . 42
4.2.1 Shape functions on reference domain 42
4.2.2 Construction of local basis functions 44

4.3 Construction of global basis functions 49
4.3.1 Vertex basis functions . 49
4.3.2 Edge basis functions . 52
4.3.3 Face basis functions . 57
4.3.4 Bubble functions . 62

5 hp-FEM in 3D for electromagnetic problems 63
5.1 Time-harmonic Maxwell’s equations 64

5.1.1 Classical formulation . 64
5.1.2 Weak formulation . 64

5.2 Higher-order shape functions . 67
5.2.1 Construction of local basis functions 67

5.3 Construction of global basis functions 73
5.3.1 Edge functions . 74
5.3.2 Face functions . 76
5.3.3 Interior functions . 79

6 Numerical quadrature 81
6.1 Gauss quadrature rules . 82
6.2 Product quadrature rules . 82

6.2.1 Computational cost of the integration 82
6.2.2 Hierarchic elements . 83

6.3 Alternative approaches to quadrature 84
6.4 Reordering of quadrature . 84

6.4.1 The algorithm . 85
6.4.2 Asymptotic analysis . 87

6.5 Sparse schemes . 87
6.6 Comparisons . 88

6.6.1 CPU time of assembling 88
6.6.2 Performance of different quadrature techniques 89

vi

6.6.3 Conclusions . 89

7 Computer implementation 90
7.1 Meshes with hanging nodes . 90

7.1.1 Recursive data structures 91
7.2 Assembling . 91
7.3 Automatic adaptivity algorithm 92
7.4 Solution of the linear system . 94

8 Numerical examples 96
8.1 Distribution of electrostatic potential in the Fichera corner domain 96
8.2 Shock problem . 99
8.3 HHHcurl example . 102

9 Concluding remarks 105

vii

CHAPTER

ONE

PREFACE

1.1 Motivation and history of the finite element method

A development of the finite element method started at the end of the first half of
the 20th century. It was driven by a growing need for computer simulations of
technical problems described by partial differential equations and enabled by the
beginning of the development of computers.

In the following decades, the finite element method gained more and more pop-
ularity. It started to be used in variety of technical fields, e.g. civil engineering,
electrical engineering, fluid dynamics and others. In some fields, completely new
type of finite elements had to be developed, since standard treatment is not suit-
able for discretization of partial differential equations used there. For example,
for discretization of Maxwell’s equations, edge elements have been developed.

Apart from increasing number of fields, where FEM was used, another devel-
opment took place. At the very beginning, simple linear elements were used to
discretize the area and perform the calculation. When capabilities of computers
increased, it was clear, that there are much more effective possibilities. A wide
variety of adaptive algorithms have been developed in order to allow more pre-
cise solution of the problems. Namely, h-adaptivity appeared, allowing to refine
elements in space and p-adaptivity, which introduced usage of higher-order el-
ements. By combining those two approaches one can obtain hp-adaptivity, that
employs possibilities to adjust both element size and polynomial degree.

Obviously this method is the most demanding variant from the above mentioned,
not only from implementational point of view, but also for its analysis. However,
many interesting results showing its superiority have been achieved. Some of

1

Chapter 1 – Preface

them can be found in [42], [29] and elsewhere.

1.2 Existing hp-FEM software

Hand in hand with theoretical development, practical implementations of the method
started to appear. Their aim was at the beginning solely to verify theoretical re-
sults, but later, more sophisticated codes were developed with aspirations to be
used for engineering problems. Nowadays there are more groups developing own
hp-FEM code and it is hard to name all of them. Let us just mention few of them:

• The group of prof. L. Demkowicz at Texas Institute for Computational and
Applied Mathematics at University of Texas at Austin has been working on
hp-FEM software for a long time. Their package hp90 supports calculations
of two and three dimensional problems in H1, HHHcurl and HHHdiv spaces using
meshes with hanging nodes of the first level. For more information see web
page1 of the project or publications [14], [15] and [16].

• Software developed at Texas A&M University, at Institute of Aerodynamics
and Flow Technology of the German Aerospace Center in Braunschweig
and at the Numerical Methods Group at University of Heidelberg called
deal.II implements the hp-adaptivity for two and three dimensional prob-
lems. The adaptivity is driven by various types of local error estimators.
The library supports meshes with hanging nodes of the first level. Details
can be found in [7] or on the project website2.

• The group of prof. C. Schwab at Seminar for Applied Mathematics at Swiss
Federal Institute of Technology in Zurich develops a set of classes for solu-
tion of elliptic partial differential equations. It comprises various methods
including hp-adaptivity based on a-priori knowledge of the solution. For
more information see the web page3 or publication [22].

• Other software described in e.g. [39] and [24].

This is just a brief and incomplete list of the best known packages. Our group de-
velops and uses the system HERMES, which is described in detail in the following
section.

1http://users.ices.utexas.edu/˜leszek/projects.html
2http://www.dealii.org
3http://www.concepts.math.ethz.ch

2

Chapter 1 – Preface

1.3 hp-FEM system HERMES

HERMES is a modular C++ library for development of adaptive hp-FEM solvers.
It is focused on solving large range of problems from different fields that are de-
scribed by partial differential equations, including difficult multi-physics systems
and strongly coupled problems. Emphasis is put on effectivity of algorithms, but
also on their robustness, universality and ease of use of the library. One of the key
features is, that all algorithms are designed to be problem-independent and there-
fore do not have to be adjusted for each individual type of problem. HERMES
is developed by a group around prof. Pavel Šolín at the University of Nevada at
Reno (formerly at the University of Texas at El Paso), at the Institute of Thermo-
mechanics in Prague and at the University of West Bohemia at Pilsen.

System HERMES has been developed for a long time. The first was its 2D ver-
sion, that have already reached a very advanced state. It has been successfully
applied on multi-physic problems arising from different fields. It includes novel
features such as meshes with arbitrary-level hanging nodes, multi-mesh assem-
bling technique allowing to use different refinements for each physical field in a
coupled problem, dynamically changing meshes for nonstationary problems and
much more (see, e.g., [45], [43], [20], [47], [19]).

A 3D version of the software has been developed since 2005. The authors active
in that stage developed version capable of solution of elliptic problem on a fixed
tetrahedral mesh (see [52]). As a practical part of work on this thesis, capabilities
of HERMES 3D have been extended to hexahedral meshes with arbitrary-level
hanging nodes, allowing adaptivity and enabling HHHcurl calculations. Some of
the newly added features had been strongly inspired by the 2D version (such as
adaptivity for instance), others had to be developed independently (such as data
structures used to deal with 3D mesh, algorithms handling hanging nodes and
construction of basis functions, see [27], [28]).

The development of HERMES constantly continues and is carried out by many
new contributors. New features are being added and attempts are made to unify
2D and 3D versions and also by developing several related projects and improving
the user documentation. Details can be found on the projects website4, which is
regularly updated. Since HERMES is an open-source project, anyone is welcomed
to download its source code, use it and modify it.

4http://hpfem.org/hermes

3

Chapter 1 – Preface

1.4 Structure of the thesis

This thesis is divided into several parts, that follow a process leading from the the-
oretical background of the hp-FEM method through the theory used for our rather
demanding approach of meshes with arbitrary-level hanging nodes towards its
practical implementation and numerical results. We start with a brief introduction
to the field in Chapter 2, where essential definitions and concepts are formulated
and the method is explained. We do not, however, intent to provide a comprehen-
sive description, instead of that, several sources for a further detailed study are
given.

In the following part of the text, which constitutes the core of the thesis, we
address issues that arose during the development of the computer code. Even
though some of the tough problems we had to overcome are very technical, we
try to present them in a mathematically rigorous way. We have decided to orga-
nize this fundamental part into three chapters. In Chapter 3 we address problem-
independent issues related to the geometry. It mostly deals with meshes with
arbitrary-level hanging nodes and introduces structures used to describe relations
in the mesh. In the next two chapters we proceed to description of implementa-
tion for elliptic problems (Chapter 4) and Maxwell’s equations (Chapter 5). In
both of them we first introduce a model problem, its weak formulation and the
key properties. It is followed by a definition of local hierarchic basis functions
of higher polynomial degrees, as they are used in Hermes. Further we describe
in detail, how this local basis functions are used to construct global basis func-
tions on meshes with arbitrary-level hanging nodes, using structures described in
Chapter 3.

When we started to use the computer code for calculations, we realized, that nu-
merical quadrature of higher-order basis functions in 3D becomes a big issue. The
CPU time needed to evaluate the integrals and construct the stiffness matrix may
significantly exceed the time needed for solving the discreet problem. In Chap-
ter 6 we discuss possibilities of more effective implementation of the quadrature.
One of the approaches was adapted to our setting and successfully implemented
and tested.

The last part of the thesis is dedicated to the computer code. Of course, that the
computer code is extensive and there is no use of describing it systematically. On
the other hand, there are some details that may be found interesting, so we decided
to present them in Chapter 7 in a rather unstructured way. Finally, in Chapter 8,
several numerical examples are presented, as were solved by the Hermes 3D soft-
ware. From the included figures we can see, how the meshes described in the
previous chapters may look like in reality. We also present convergence compar-

4

Chapter 1 – Preface

isons, that show advantages of hp-FEM.

1.5 The Goals of this work

As was already mentioned, the work on this thesis included effort connected to
computer implementation of algorithms and performing simulations verifying its
correctness. A goal of this text is to deliver necessary theoretical background
and to describe challenges, that have been encountered during the development,
from the mathematical point of view. It includes presentation of several numerical
experiments, that should prove usefulness of the selected approach.

5

CHAPTER

TWO

INTRODUCTION TO THE
HIGHER-ORDER FEM

There are many books, that deal with the higher-order FEM, e.g. [46], [48] [40],
[14], [12] and others. Therefore there is no need to repeat all the theory in this
thesis. However, in this chapter we will give a brief introduction into the field, with
emphasis on those aspects of the finite element method, that are not widely used
in standard low-order approach and therefore may be worth recalling. We will
mention specifics of hierarchic elements, hp-FEM formulation and the de Rham
diagram, which plays essential role in the design of basis functions, especially for
electromagnetic problem.

2.1 Function spaces

First let us define function spaces, that will be used to introduce weak formulation
of partial differential equations, that we address in this work. Let Ω be a domain
in R3. Space used for elliptic equations is

H1 = {u ∈ L2(Ω); ∂u/∂xi ∈ L2(Ω), i = 1,2,3}, (2.1)

which consists of functions from L2(Ω), whose distributive partial derivatives lie
in L2(Ω) as well. It has been for long unclear, which space should be used for
discretization of Maxwell’s equations. Finally it has been shown (see, e.g., [9]),
that the proper space is

HHHcurl = {EEE ∈ (L2(Ω))3; ∇∇∇× EEE ∈ (L2(Ω))3}, (2.2)

6

Chapter 2 – Introduction to the higher-order FEM

which consists of square integrable vector-valued functions, whose distributional
curls are square integrable as well. Those spaces can be connected by the de Rham
diagram, described in the following section.

2.2 Finite element mesh

In the finite element approach, the notion of the finite element mesh is of the
crucial importance. By finite element mesh we mean a set of non-overlapping
open polytopic elements, that cover the domain Ω. There are many different types
of elements, that are used for 3D calculations, such as tetrahedra, hexahedra (and
also their combinations together with prisms and pyramids) or even more general
shapes. In this work we deal with hexahedral meshes only. The advantages of
hexahedral meshes for our approach are discussed at the beginning of Chapter 3,
which is dedicated to mesh-related issues.

Let us start with a definition of the hexahedral mesh.

Definition 2.1. (Finite element mesh) Hexahedral finite element mesh Th,p =
{K1,K2, . . . ,KM} over a polytope Ω ⊂ R3 is a geometrical division of Ω into a
finite number of non overlapping closed hexahedral elements Ki such that

Ω =
M⋃

i=1

Ki. (2.3)

Each cell Ki, i = 1, . . . ,M, is equipped with three orders pKi
1 , pKi

2 , pKi
3 , different for

each direction. If all three orders are the same and equal to pKi , we call pKi the
order of the element.

Definition 2.2. (Regular mesh) A mesh is called regular if for any two ele-
ments Ki,K j ∈ Th,p, i 6= j, the intersection Ki∩K j is either empty or it is a single
common vertex, edge or face.

Remark 2.1. The notion of regular mesh should not be confused with regular fam-
ily of triangulations, which is related to the shape of individual elements. Also
notice that some authors may use the term “conforming mesh” instead of “regular
mesh”.

Remark 2.2. Although we defined elements Ki to be closed, we use the same sym-
bol Ki even in certain situations, where an open set is required. This is typically
the case of the definitions of functional spaces on the element.

The concept of regular mesh is very important, since it is the only mesh that most
codes allow. Although our approach is capable of handling much more general

7

Chapter 2 – Introduction to the higher-order FEM

Figure 2.1: Minimum rule used to determine the order of edge e and face f .
In this case the minimum rule will result in pe = min{pK1

2 , pK2
2 , pK3

2 , pK4
2 }, p f

1 =
min{pK1

2 , pK2
2 } and p f

2 = min{pK1
3 , pK2

3 }

meshes, regular mesh is always used as initial mesh, from which the calculation
starts. The details will be explained in Chapter 3.

2.2.1 Minimum rule

In the definition of the mesh, we not only defined geometrical division of the
space, but also assigned order to each element. This order will later be used
to decide, which basis functions from the reference domain should be used to
define local basis on the element. The basis function is a polynomial on a given
element K and by the order of this basis function in K we mean the degree of this
polynomial. Since we use hierarchic basis, we always use only basis functions
with order smaller or equal to the order of the element (in each direction). The
details will be described later.

In the hierarchical basis, apart from shape functions associated with element inte-
riors (so called bubble functions), there are also shape functions associated with
vertices, edges and faces. Therefore we also have to specify orders of edges and
faces (orders of vertices are always one), so we are able to choose accordant basis
functions related to them.

The key restriction, that has to be observed in order to obtain polynomial space of
good properties, is that the orders of edges and faces are always smaller or equal

8

Chapter 2 – Introduction to the higher-order FEM

to appropriate element order, taken from all adjacent elements. The situations for
edge and face in the mesh are shown in Figure 2.1.

2.3 De Rham diagram

Proper understanding of the de Rham diagram is essential for finite elements,
especially for applications in electromagnetism (see [9]). In this section we want
to recall main ideas of the topic. An excellent analysis of the problem can be found
in [8], where authors elaborate ideas behind mimetic discretization of differential
operators. They use a rather complicated theory of differential forms. A very
good introduction to this topic, from a geometrical point of view, can be found in
[6]. In this introductory text we will restrict ourselves to simple approach towards
the de Rham diagram, as can be found in e.g. [48].

The de Rham diagram relates functional spaces H1, HHHcurl, HHHdiv and L2.

H1 ∇∇∇−→HHHcurl ∇∇∇×−−→HHHdiv ∇∇∇·−→ L2, (2.4)

where symbols ∇∇∇, ∇∇∇× and ∇∇∇· stand for gradient, curl and divergence, respectively.
The diagram is important for design of basis functions, as well as for stability
and convergence of Maxwell’s equations and related problems. Its meaning is,
that images of functions from one space always lie in the following space of the
sequence. Moreover, they form null space of the following operator.

2.3.1 Reference domain

As it has already been discussed, we use only hexahedral meshes in this work.
Thus the only reference domain we consider is a cube, defined as B = {ξξξ ∈
R3; −1 < ξ1,ξ2,ξ3 < 1}. It is depicted in Figure 2.2 together with denotation
of its vertices, edges and faces. The reference domain is used to define shape
functions (see Sections 4.2.2 and 5.2.1 for definition of shape functions for H1

and HHHcurl space, respectively) , that can be transformed to the physical mesh us-
ing reference mapping. It is also used for numerical integration, when the weak
formulation is transformed from the physical mesh to the reference domain and
suitable integration scheme is used to evaluate the integrals. The discussion of
numerical integration can be found in Chapter 6.

9

Chapter 2 – Introduction to the higher-order FEM

Figure 2.2: Reference cube B.

2.3.2 Reference mapping

Reference mapping maps the reference domain to each individual element in the
mesh. As a reference mapping we use trilinear map xxxK , that maps vertices vi of
reference domain B to vertices v′i of the element K. Using H1 vertex functions,
that will be defined in Section 4.2.2, we can define reference mapping as follows:

Definition 2.3. (Reference mapping) Let K be element of hexahedral mesh
with vertices v′i, i = 1, . . . ,8. Corresponding reference mapping xxxK is defined as

xxxK(ξξξ) =
8

∑
i=1

v′i ϕ
vi(ξξξ). (2.5)

Reference mapping is a vector-valued function defined on the reference domain B.
The use of vertex basis functions ϕvi could be, of course, avoided. It is, however,
good from the implementational point of view. Moreover, if we would like to

10

Chapter 2 – Introduction to the higher-order FEM

employ curvilinear elements (and we do not in this work), we could simply add
higher-order local basis functions to the sum in the definition. Details of this
approach can be found in [48].

Figure 2.3: Example of face in the physical mesh, whose vertices are not in com-
mon plain.

Remark 2.3. Even though we do not use curvilinear reference mappings to con-
struct elements of more general shape, element faces do not have to be parts of
plane. If four vertices of the face do not lie in a common plane, resulting shape
may look like an example depicted in Figure 2.3. The reason is, that the reference
mapping is trilinear, therefore faces are mapped by bilinear mappings, the result is
shown in the figure. Of course, line segments are mapped by linear mapping (1D
restriction of the 3D trilinear reference mapping) and therefore are mapped to line
segments, not curved lines. This remark is meant to show, what type of elements
can reference mapping approach handle. In the reality, however, we usually use
standard polytopes.

11

Chapter 2 – Introduction to the higher-order FEM

2.3.3 De Rham diagram for reference mappings

For the construction of reference mappings, another version of the de Rham dia-
gram is important. It connects polynomial spaces on the reference domain W 1

B ⊂
H1(B) and WWWcurl

B ⊂HHHcurl(B) with polynomial spaces on the element K from the
physical mesh, W 1

K ⊂ H1(K) and WWWcurl
K ⊂ HHHcurl(K). The relevant part of the

diagram can be written as follows:

W 1
B

∇∇∇ξ−→ WWWcurl
B

↓ΦΦΦ1
K ↓ΦΦΦcurl

K

W 1
K

∇∇∇x−→ WWWcurl
K

(2.6)

It will be used for construction of transformations of polynomial spaces from the
reference domain to the element in the physical mesh.

2.3.4 Transformation of polynomial spaces

Transformation of polynomials (e.g. basis functions) from the reference domain
has to be done carefully, since it has to be done differently for different spaces.
For the H1 space, situation is simple. Function value of ŵ at ξ ∈ B has to be the
same as function value of transformed function w at transformed point x = xxxK(ξ).
So the relation can be expressed as

w(xxxK(ξ)) = ŵ(ξ), (2.7)

which means, that the mapping ΦΦΦ1
K has the form

w = ΦΦΦ
1
K(ŵ) = ŵ◦xxx−1

K . (2.8)

The situation is more complicated for the HHHcurl space. The transformation ΦΦΦcurl
K

has to be defined in such way, that the de Rham diagram (2.6) commutes. It means,
that one obtains the same function after applying transformations in two possible
ways in the diagram. In other words,

∇∇∇x(ΦΦΦ1
K(ŵ)) = ΦΦΦ

curl
K (∇∇∇ξ (ŵ)). (2.9)

By application of chain rule we obtain

EEE = ΦΦΦ
curl
K (ÊEE) =

((DxxxK

Dξξξ

)−T
ÊEE
)
◦xxx−1

K . (2.10)

12

Chapter 2 – Introduction to the higher-order FEM

When the weak formulation of an elliptic problem is transformed from the phys-
ical mesh to the reference element, we have to write gradient operator ∇∇∇x in the
physical mesh by means of the gradient operator ∇∇∇ξ on the reference domain. It
can be derived from the de Rham diagram, that

∇∇∇xw =
(DxxxK

Dξξξ

)−T
∇∇∇ξ ŵ. (2.11)

Similar relation may be derived for the curl operator, which is used in the weak
formulation of electromagnetic problems:

∇∇∇x× EEE = J−1
K (∇∇∇ξ × ÊEE), (2.12)

where
JK(ξ) = det

(DxxxK

Dξξξ

)
(2.13)

stands for the Jacobian of the reference map xxxK .

2.4 Degrees of freedom

Degree of freedom (often abbreviated as DOF) has an important role in the finite
elements. It is used in several contexts, but the meanings are connected. It will
be defined in the following definition of the finite element. In our context of
hierarchic elements, we use it also with connection to global basis functions and
finally, when problem is transformed to the form of system of linear equations,
DOFs may be related to its unknowns.

Definition 2.4. (Finite element) By finite element we mean triple (K,P,Σ),
where K is a domain in Rd , P is a space of polynomials on K of dimension n
and Σ is a set of linear forms Li : P→R, i = 1,2, . . . ,n, called degrees of freedom.

Definition 2.5. (Unisolvent finite element) We say, that finite element (K,P,Σ)
is unisolvent if arbitrary p ∈ P satisfies the property

Li(p) = 0 ∀i = 1, . . . ,n ⇒ p = 0.

It can be shown, that the unisolvency is equivalent with the fact, that there exists
such a basis q1, . . . ,qn of P such that Li(q j) = δi j, where δi j is the Kronecker delta.

In the following we will show two particular ways how to interpret this rather the-
oretical definition. The nodal approach, where degrees of freedom are associated
with values in certain points, is the most natural and the simplest one. It also has
many favorable properties and therefore it is the most popular choice.

13

Chapter 2 – Introduction to the higher-order FEM

The only disadvantage that prevented us from using it is that in the nodal ap-
proach the bases corresponding to different polynomial degrees are constructed
using completely different basis functions. Thus it is not possible to increase the
polynomial order of an element space just by adding extra basis functions. Rather
than that, one has to use completely different basis. This inconvenience that does
not matter at all when the order of elements is constant, would bring us many
troubles in the hp-adaptivity algorithm. Therefore we use hierarchic approach.
Let us, however, briefly describe both possibilities.

2.4.1 Nodal elements

The most natural choice of degrees of freedom is to define Li(p) as the function
value p(xi) in certain point xi ∈ K of the element. If points xi are chosen correctly,
finite element with degrees of freedom Li is unisolvent and it is called nodal. The
more points xi of the element we choose, the higher polynomial degree can be.
This choice is conventional from many reasons, for example for easy definition of
the interpolation. It is, however, not optimal for hp-adaptivity, because in the stan-
dard construction of nodal basis, all the basis functions have the same polynomial
degree. Hierarchic elements seem to be better choice for our needs.

2.4.2 Hierarchic elements

In the hierarchic approach we first select the basis Bk = {p1, p2, . . . , pnk} of the
polynomial space Pk. Basis can be simply extended by adding more basis func-
tions, so we can construct sequence of bases

Bk ⊂ Bk+1.

That is the hierarchic nature of the construction. Any polynomial p ∈ Pk can be
uniquely expressed as a linear combination

p =
nk

∑
i=1

βi pi

where βi are real coefficients. Now if we define Li(p) = βi, Li is evidently linear
form. By this choice we obtain a set of linear forms (degrees of freedom) such
that Li is directly associated with an element of the basis pi (rather than with a
point as in the nodal approach) and finally we can form a unisolvent finite element
(K,P,Σ), where Σ = {L1,L2, . . . ,LNp}.
The advantage is obvious. To obtain a finite element of higher order, one only
has to enrich the basis with several new functions, the rest remain intact. There

14

Chapter 2 – Introduction to the higher-order FEM

is, however, one disadvantage when compared to the nodal case. Linear forms
Li are not defined outside of the local polynomial space P(K). This means, that
we can not use those forms to define standard interpolation operators. Technique
called projection-based interpolation, which is used instead, is described in the
following.

2.5 Projection-based interpolation

Interpolation on finite element is important from many practical and theoretical
reasons, e.g. for the notion of conformity, that will be discussed in the following
section. First let us define interpolation, that can be used under certain condition,
that is fulfilled for most types of finite elements (including nodal).

Definition 2.6. (Finite element interpolant) Let (K,P,Σ) be unisolvent finite
element and B = {q1,q2, . . . ,qn} basis of the space P such that Li(q j) = δi j. Let
v ∈V , where P⊂V such that all linear forms L1,L2, . . . ,Ln are defined in v. Than
the finite element interpolant is defined as

IK(v) =
n

∑
i=1

Li(v)qi.

The problem is, that for hierarchical elements the degrees of freedom Li are not
defined outside the space P. Thus we have to find a different way, how to define
interpolation operators for hierarchical space. It is not at all straightforward and
requires deeper mathematical analysis. In this text, we will present the main ideas
only and skip the details, which can be found, e.g, in [48].

The key idea is, that we have to combine standard Lagrange interpolation with pro-
jection (that is the reason of calling this technique projection-based interpolation).
Consider function v ∈ V , P ⊂ V , as in the previous definition. The interpolant is
found by successive projecting v on spaces created by basis functions associated
with vertices, edges, faces and the element interior. After each step, we sub-
tract the partial interpolant from v and in the next step project only the difference.
Details can be seen in proofs of Theorems 4.4 and 5.2, where projection-based
interpolation technique is used, or in the book mentioned above.

2.6 Conformity requirements

In this section, let us discuss the notion of conformity requirements of function
spaces defined in Section 2.1. We do not present the exact definition of conformity,

15

Chapter 2 – Introduction to the higher-order FEM

since it is rather complicated and we would not use it in the following text. It
can be found in, e.g., [46]. The definition is related to the properties of the global
interpolant (which is defined using local interpolants on individual elements). The
idea is, that if the finite elements are conforming to a space V , global interpolants
of functions from V (or from its dense subspace) stay in V .

In this thesis we are constructing conforming finite elements for spaces H1 and
HHHcurl. Thus, let us state two fundamental theorems, that will be used in the fol-
lowing. The details can be found in, e.g., [35], [36], [37] and [46].

Theorem 2.1. (Conformity requirements of the space H1) Let Th,p be a finite
element mesh on a domain Ωh ⊂R3. The function v : Ωh→R belongs to H1(Ωh)
if and only if v|K ∈ H1(K) for each element K ∈ Th,p and the trace of v|K1 and
v|K2 on f is the same for each common face f = K1∩K2, K1,K2 ∈Th,p.

Proof. The proof is done using the Green’s theorem and can be found in [46].

Theorem 2.2. (Conformity requirements of the space HHHcurl) Let Th,p be a
finite element mesh on a domain Ωh ⊂R3. Consider a function EEE : Ωh→R3 such
that EEE|K ∈ (H1(K))3 for each element K ∈Th,p. Then EEE ∈HHHcurl(Ωh) if and only
if the traces of the tangential components nnn×EEE|K1 and nnn×EEE|K2 on f are the same
for each common face f = K1∩K2, K1,K2 ∈Th,p. The symbol nnn stands for a fixed
normal vector to the face f .

Proof. Again, the proof can be found in [46].

We have to keep those requirements in mind, when we design global basis func-
tions in Chapters 4 and 5.

2.7 The Galerkin method

The variational formulations of partial differential equations are typically formu-
lated in infinite dimensional spaces of functions. The idea of the Galerkin method
is to replace the infinite dimensional space by its finite dimensional subspace.
The problem in the finite dimension is then equivalent to a system of algebraic
equations, which can be solved by standard methods. To be more specific, let us
suppose, we want to find a solution u ∈V to a weak formulation

a(u,v) = l(v) for all v ∈V ,

where V is a space of infinite dimension, a stands for a bilinear and l for a linear
form. In the Galerkin method we construct sequence of finite-element subspaces

16

Chapter 2 – Introduction to the higher-order FEM

Vn and find sequence of approximate solutions un ∈Vn, such that

a(un,v) = l(v) for all v ∈Vn.

According to Céa’s lemma, the accuracy of the approximate solution un depends
on approximation properties of the space Vn, or, more precisely, on ability of the
space Vn to approximate the exact solution u. Our task therefore is to construct
such spaces in an adaptivity process. It has been shown, that hp variant of the
finite element method, allowing both spatial refinements and polynomial degree
variability is extremely efficient in this effort.

Its advantage is that it allows us to construct such subspaces of V , that reflect dif-
ferent types of behavior of the solution. We can use large higher-order elements
in areas, where the solution is smooth, small low-order elements around singular-
ities, anisotropic elements and polynomial orders in boundary layers, etc. And, of
course, the choice of element types is done fully automatically in the adaptivity
process, see Section 7.3 for details.

17

CHAPTER

THREE

HEXAHEDRAL MESH WITH
ARBITRARY-LEVEL HANGING NODES

In the finite element method, the concept of the finite element mesh is of a crucial
importance. In three spatial dimensions, various types of meshes are used. The
most common are tetrahedral, hexahedral or hybrid (where tetrahedral and hex-
ahedral elements are used together with prisms and pyramids) meshes. Another
fundamental distinction is whether we allow so-called hanging nodes in the mesh,
or not.

The reason, why we are interested in hanging nodes, is that we want to use adap-
tive algorithms, that will refine some elements in order to obtain more precise
solution in areas, where its behavior is complicated. There are some sophisticated
methods that allow local refinements and keep the tetrahedral mesh regular, see
e.g. [25], [11]. Of course, it is simpler to assemble stiffness matrix on the reg-
ular mesh. On the other hand, these methods are not general enough to allow
development of fully automatic adaptivity algorithm.

In this work we will consider hexahedral meshes with arbitrary-level hanging
nodes. Hexahedral elements have one advantage, which is essential for our in-
tents. It is very easy to refine hexahedral elements. We can simply split them into
two, four or eight sub-elements, which are again hexahedral. Division of tetra-
hedral elements into smaller tetrahedrons is more complicated, at least from the
implementational point of view.

It is also possible to divide tetrahedron to eight smaller tetrahedra. However,
dividing of hexahedron into two sub-elements is much simpler. It is not question

18

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

of dividing itself, but mainly of construction of basis functions on such meshes.
In algorithms using hexahedral meshes we can handle all situations by successive
application of simple splitting of hexahedron into two parts, as it is discussed in
the following and also in chapter devoted to practical implementation.

The drawback of presence of hanging nodes in the mesh is, that construction of
global basis functions is much more complicated. In [14] the authors describe
algorithms, that are capable of handling hanging nodes, but only of the first level.
Inspired by work [49], where a very sophisticated algorithm is described for 2D
problems, we wanted to allow arbitrary-level hanging nodes, which would bring
several advantages, that are discussed in the following.

It turned out, however, that the situation in 3D is much more complicated. The
geometrical complexity of the setting can be appreciated from the following text.
After introduction describing mesh refinements, we define in Section 3.3 struc-
tures used for description of complicated relations in the mesh and dependency of
vertices, edges and faces. In Section 3.4 orientation handling of edges and faces is
introduced. Those definitions are fundamental for the construction of global basis
functions for elliptic and for electromagnetic problems described in Sections 4.3
and 5.3, respectively.

3.1 Element refinements

As it was already mentioned, one of the important advantages of hexahedral ele-
ments is the possibility to refine them easily. The only type of refinement, that we
have to consider, is the division of an element into two halves. More complex re-
finements, such as natural isotropic refinement of an hexahedron to 8 sub-elements
can be achieved by successive application, as shown in Figure 3.1.

Figure 3.1: Isotropic refinement of a hexahedral element into 8 sub-elements by
successive halving.

Now let us define the element splitting more precisely.

19

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

Definition 3.1. (Element splitting) Let K be element of the mesh obtained by
the reference mapping xxxK . Let

xxx1
split(ξ1,ξ2,ξ3) = (

1
2

ξ1−
1
2
,ξ2,ξ3), x̃xx1

split(ξ1,ξ2,ξ3) = (
1
2

ξ1 +
1
2
,ξ2,ξ3).

By refining the element K in the direction ξ1 we mean removing element K from
the mesh and adding two elements K̄ and K̃ obtained by reference mappings xxxK ◦
xxx1
split and xxxK ◦ x̃xx1

split, respectively. In the same way we define splitting operators

and refinements in directions ξ2 and ξ3.

3.2 Regularity of the mesh

Possibility of refinements of elements in the mesh brings up an issue of regularity
of the mesh. First let us define several notions, that will be useful in the following:

Definition 3.2. (Mesh node) A node is an entity in the mesh, such that degrees
of freedom may be associated with it. In our case, a node can be either vertex,
edge, face or the element interior.

Definition 3.3. (Hanging node) A hanging node is such node, that is contained
in interior of another node of the same or higher dimension.

Theorem 3.1. (Regular mesh) The mesh is regular, if and only if there are no
hanging nodes present.

Proof. The statement of this theorem is obviously equivalent to the Definition 2.2.

Our automatic adaptive process is always started with a regular mesh, which is
called coarse (also base or initial) mesh. This mesh can be a product of some
mesh generation tool, or, in the case of simple geometries, it may be created by
hand. One of the advantages of adaptivity algorithms is that we do not have to
start with perfect fine mesh. The only demand we have on the initial mesh is to
capture the geometry of the domain.

When the automatic adaptivity process starts, elements are refined and hanging
nodes appear, unless we use some strategy to get rid of them (and as was men-
tioned in the beginning of this chapter, there is no sufficiently general method
available). Hanging nodes are parts of another nodes, therefore we have to treat
them differently – we are not allowed to assign values on them freely. In order to
satisfy the conformity requirements, values are imposed by the other nodes. The

20

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

Figure 3.2: Comparison of irregularity rules. Additional splitting of the upper
right element by the red face turns the mesh to 2-irregular.

presence of arbitrarily distributed hanging nodes brings lots of complications for
the implementation of the method. Therefore some authors simplify the setting
by only allowing hanging nodes of the first level, see e.g. [14].

Definition 3.4. (1-irregular mesh) Mesh is called 1-irregular, if each face is
adjacent to either undivided face, two faces or four faces obtained by dividing
face in both directions (the shape of “cross”, as in Figure 3.1).

The difference between 1- and 2-irregular mesh is illustrated in Figure 3.2. If
only black edges are present, the mesh is 1-irregular, according to the previous
definition. When the refinement indicated in red appears, the mesh starts to be
2-irregular. By the same way we could define n-irregular meshes for arbitrary n.

Although a 1-irregular mesh is much more flexible than the regular, those algo-
rithms that use it suffer from similar drawbacks as those, that use regular mesh (of
course, in much less extent). If the process of automatic adaptivity results in mesh
with hanging nodes of higher level, additional refinements have to be performed
in order to obtain mesh with hanging nodes of first level only. It means more el-
ement splitting and adding more degrees of freedom, which do not help decrease
the error and are present only in order to keep the mesh 1-irregular. Those extra
degrees of freedom cause slow-down of the convergence of the method.

Another problem is, that if we introduce forced refinements in order to enforce
1-irregularity of the mesh, we lost locality of the adaptivity procedure. In other
words instead of refining elements independently, only with respect to their con-
tribution to the error, we have to check, whether neighboring elements should be
refined as well. Sometimes it may not be sufficient to check neighboring elements

21

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

only, since forced refinements may spread through the mesh in a recursive manner.

From this reason we have chosen to overcome difficulties caused by handling
meshes with arbitrary level hanging nodes in order to achieve best possible con-
vergence of the method and also to avoid nonlocal refinement of elements.

3.2.1 Incompatible refinement

Figure 3.3: Incompatible element refinements.

The meshes with hanging nodes may not be completely arbitrary. There is one
situation, that has to be avoided. Two elements sharing one face can not be divided
in such way, that the common face would be split differently from either direction,
as shown in Figure 3.3. If such situation occurs during the adaptivity process, one
of the elements has to be further divided so that division of the face is not in
conflict. The reason of this is, that in the situation from Figure 3.3 we cannot say,
which nodes are constrained and we would not be able to construct global basis
functions (at least the way we do it).

3.3 Constrained nodes

In Section 2.4.2 we introduced the idea of hierarchic elements. We stated, that in
this approach, degrees of freedom are associated with mesh nodes. In a regular
mesh, generally all nodes may have assigned degrees of freedom, their number
depends on their order1.

1Degrees of freedom are not always present, e.g. if a node lies on Dirichlet boundary, if the

22

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

When we deal with meshes with hanging nodes, the situation is different. If we
want to keep basis functions conforming2, we cannot place degrees of freedom
into some of the nodes. Rather than that, local basis functions related to those
nodes will contribute to construction of global basis functions related to constrain-
ing nodes, as will be shown in accordant sections of Chapters 4 and 5.

In the following we will describe types of constrains and the way to handle them.
Although this is a mesh-related issue, if we want to define things meaningfully, we
have to have in mind, what will be basis functions like. Indeed, the purpose of all
these constrain handling is to be used for construction of global basis functions in
the future. That is the reason, why we will state something about basis functions
first, so that further definitions make sense.

3.3.1 Restrictions on basis functions

In the following we want to describe, how we will deal with constrains in the mesh
when constructing global basis functions. We will deal with basis functions in the
following chapters, but here we would like to address issues, which are more or
less related to the mesh itself and will be used for both H1 and HHHcurl space.

On the other hand, the following definitions would not be suitable for all types of
basis functions. So if we want to see the sense in the following chapter, we will
state in advance, that our local basis functions will be designed in the following
way:

• Vertex functions, if any, are simply trilinear on the reference cube with value
1 in one vertex and 0 in others.

• Edge functions are polynomial on one edge, linear in both directions per-
pendicular to the edge and vanish on all other edges.

• Face functions are polynomial in both directions parallel to the face and
linear in the other one and vanish in all other faces.

• Interior functions are supported in the element interior.

Note that HHHcurl basis functions are vector-valued, but in our approach for each
basis function only one component is nonzero and satisfies previous conditions.

order of the element used for discretization of elliptic problem is 1 (then there are only linear basis
functions and therefore no degrees of freedom related to edges and faces) or in the case of HHHcurl

space, where there are no degrees of freedom associated with vertices.
2Continuous for H1 space, tangential components continuous for HHHcurl space, etc.

23

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

3.3.2 Types of constrains

Let us describe types of constrains that we have to take in account. We can divide
them into two basic categories. Direct constrains occur when vertices, edges and
faces lie on a constraining face and values on them are imposed by the values on
the constraining face. Indirect constrains are, as the name suggests, caused by
more successive constrains spreading through the mesh.

The idea of handling arbitrary level hanging nodes is taken from work [49], where
it is described for 2D meshes. The 3D case, however, is much more complex.
There are more types of nodes, more types of constrains, both vertex and edge
nodes are subject to indirect constrains and overall geometrical situation and ne-
cessity of proper handling of orientations makes whole thing rather complicated
to implement.

Direct constrains

Figure 3.4: Direct constrains on face and edge.

Definition 3.5. (Direct constrains on face) Let face f be a part of face F , as in
the first part of Figure 3.4. Than we say, that face f , edges e1, . . . ,e4 and vertices
v1, . . . ,v4 are directly constrained by the face F . Moreover, edges e1 and e3 are
constrained by edges E1 and E3, edges e2 and e4 are constrained by edges E2 and
E4 and all vertices v1, . . . ,v4 are constrained by all edges E1, . . . ,E4 and all vertices
V1, . . .V4.

24

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

Definition 3.6. (Direct constrains on edge) Let edge e be a part of edge E, as
in the second part of Figure 3.4. Than we say, that edge e and vertices v1 and v2
are directly constrained by edge E and vertices v1, v2 are constrained by vertices
V1 and V2.

Definition 3.7. (Unconstrained nodes) Let n be a node (a vertex, edge or face)
in the mesh. If there is no node N such that n is constrained by N, we say, that
node n is unconstrained.

Unconstrained nodes and element interiors will be those, to whom degrees of free-
dom will be assigned. Values on constrained nodes are imposed by unconstrained
nodes, so there are no degrees of freedom associated with them.

Indirect constrains

Assume we have this situation. Node n is constrained by node N, but in the same
time, node N is constrained by node N̄. In such situation there will be no degrees
of freedom associated with the node N (it is constrained) and values on n will be
imposed by values on N̄.

Definition 3.8. (Indirect constrains) Consider nodes n1, . . .nk such that ni is
constrained by ni−1 for i = 2, . . . ,k. Than we say, that node nk is indirectly con-
strained by the node n1.

Remark 3.1. We can see, that faces may not be subjects of indirect constrains. It
is clear from the fact, that faces can only be constrained by faces and we can not
have three overlapping faces f1 ⊂ f2 ⊂ f3, since there are always two elements
adjacent to a face.

Definition 3.9. Consider vertex vk. By symbol NV v(vk) we denote a set of all
vertices vl , such that vk is constrained by vl , no matter whether directly or indi-
rectly. Similarly let us denote NEv(vk) and NFv(vk) sets of edges and faces that
constrain vk. Let us further define NEe(ek) and NFe(ek) sets of all edges and faces
constraining edge ek, respectively. Finally, let us define NF f (fk) set of all faces
constraining face fk.

Remark 3.2. According to the previous remark, NF f (fk) is either empty or con-
tains directly constraining face.

The difference between constraining, directly constrained and indirectly constrain-
ed nodes can be seen in Figures 4.10 and 4.11, where a part of a face function from
the space H1 is depicted. Note the importance of tracking indirect constrains in
order to preserve continuity of the global basis function.

25

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

3.3.3 Dependency of the nodes

In the previous section we introduced several sets, that describe constrains of in-
dividual nodes. We can think of it as if a constrained node was dependent on the
constraining one. In the following we will describe algorithms, that are used to
gather certain information about nodes. We call this process “resolving” nodes.
When a node n is to be resolved we need to know, that all the nodes that constrain
n have already been resolved. A question arises, whether this will be always pos-
sible, i.e. whether it is always true that either all nodes have been resolved (thus
the algorithm can stop) or that we can find an unresolved node such that all nodes,
that constrain it, have already been resolved.

If this is not true, it would mean, that there is a “circular” dependency of nodes.
That there are nodes n1, n2,. . ., nk, such that ni constrains ni+1 for i = 1, . . . ,k−
1 and furthermore nk constrains n1. We have to show, that this is impossible.
The reason lies in the way, how the mesh is refined. At the beginning we have
regular mesh with no hanging nodes, therefore no nodes are constrained. When
any element is refined, some of the nodes (vertices, edges or faces), that are added,
may be constrained by already present nodes. But there is no way, how newly
added nodes may constrain those nodes, who were present before addition. This
order based on time, when the node is added, creates natural hierarchy of nodes
with no cycles. Therefore, in the process of resolving constrains, we can always
find a node, that can be resolved (if we are not finished).

3.3.4 Resolving constrains

In this section we want to introduce additional data, which all constrained nodes
can be equipped with. We will also define their values. Note, that the algorithm
of finding those values is only dependent on the mesh itself and do not depend
on concrete choice of basis functions. Of course, if we want it to be useful in
what follows, we can use it only for basis functions satisfying restrictions stated
in previous sections. Those data defined here will be later used to construct global
basis functions in the mesh with hanging nodes.

Definition 3.10. (Vertex-vertex constrains) Let vk be constrained vertex. Let
us define CV v(vk) as a set of pairs

CV v(vk) = {(vc,γ),vc ∈ NV v(vk)},

where vc is constraining vertex and γ is a coefficient, describing, how “strong”
is the influence of constraining node on the constrained node, depending on its
“distance” in the mesh.

26

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

Possibility of defining such coefficient is consequence of presence of linear com-
ponents in local basis functions, as was explained in Section 3.3.1. Coefficient
γ has a similar meaning in all the following definitions. If vk is not constrained,
we define CV v(vk) = {(vk,1)} for simplicity, so that in some of the following
definitions we do not have to distinguish between constrained and unconstrained
vertices (formally it seems, that unconstrained vertex is constrained by itself).

Definition 3.11. (Edge-vertex constrains) Let vk be constrained vertex. Let us
define CEv(vk) as a set of triples

CEv(vk) = {(ec,γ, p),ec ∈ NEv(vk)},

where ec is constraining edge and p ∈ (−1,1) is position on the constraining edge
such that the value of edge function there will be used to determine values of
constrained vertices.

Position p∈ (−1,1) is considered in the local parametrization of the edge and has
a similar meaning in the following definitions.

Definition 3.12. (Face-vertex constrains) Let vk be constrained vertex. Let us
define CFv(vk) as a set of quadruples

CFv(vk) = {(fc,γ, p1, p2), fc ∈ NFv(vk)},

where fc stands for constraining face and p1 and p2 are positions (in the local
coordinate system) on the constraining face.

Definition 3.13. (Edge-edge constrains) Let ek be constrained edge. Let us
define CEe(ek) as a set of triples

CEe(ek) = {(ec,γ,(q1,q2)),ec ∈ NEe(ek)},

where ec is constraining edge and (q1,q2) is a part of the constraining edge, to
which corresponds edge ek. The value q1 represents position of its beginning and
q2 its end, respectively. Again we consider local parametrization, i.e. qi ∈ (−1,1).

If edge ek is not constrained, we define for the sake of simplicity CEe(ek) =
{(ek,1,(−1,1))}. Here the part (−1,1) consist of endpoints of the local parametri-
zation and thus it corresponds to the whole edge.

Definition 3.14. (Face-edge constrains) Let ek be constrained edge. Let us
define CFe(ek) as a set of quintuple

CFe(ek) = {(fc,γ, p,(q1,q2),d), fc ∈ NFe(ek)},

where fc is the constraining face and position p, part (q1,q2) and direction d
determine the segment on the constraining face fc, from where ek is constrained.

27

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

This situation is probably the most difficult (and implementation of construction
of such global basis functions is further complicated by the necessity of proper
handling of orientation of faces and edges involved). For illustration see Figure 3.6
where we can see the propagation of the constrain from the constraining face to
the indirectly constrained edge.

Definition 3.15. (Face-face constrains) Let fk be constrained face. Let us de-
fine CFe(fk) as a set of triples

CF f (fk) = {(fc,(q1
1,q

2
1),(q

1
2,q

2
2)), fc ∈ NF f (fk)},

where fc is constraining face and (q1
1,q

2
1), (q1

2,q
2
2) are parts (in x and y coordi-

nates), of the face fc occupied by the face fk.

This situation is quite simple, because there are no indirect constrains of faces.
Therefore the set CF f (fk) has at most one element, given by constraining face fc,
on which fk directly lies. Similarly as for vertices and edges, if face fk is not
constrained, we define CF f (fk) = {(fk,(−1,1),(−1,1))}.

0-1 1

-1

0

1

Figure 3.5: Situation on a face. Notice, that a = x(v1) = x(v4) = x(e4), b = x(v2) =
x(v3) = x(e2), c = y(v1) = y(v2) = y(e1) and d = y(v3) = y(v4) = y(e3). These
coordinates are used as positions pi and parts (q1

j ,q
2
j).

Having in mind restrictions we imposed on basis functions in Section 3.3.1, let us
introduce further notation. By x(n) and y(n) we denote coordinates of image of
node n mapped by xxxK

−1 to the reference face, as it is shown in Figure 3.5. Here,

28

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

by node n we mean any vertex vi, Vi or edge ei or Ei. The definition is meaningful
for edges as well, because we will always use only that of two coordinates, which
does not change for all points of the edge.

Now we define function Γ, which can be viewed as measure of how much does
constraining node influence constrained node, depending on its position (“dis-
tance” in the mesh). First for a constraining vertex Vi and constrained vertex vk,
k = 1,2,3,4 (as depicted in Figure 3.5) we have

Γ(Vi,vk) =
2−|x(Vi)− x(vk)|

2
· 2−|y(Vi)− y(vk)|

2
,

for i = 1,2,3,4. Similarly for constraining edge

Γ(Ei,n) =
2−|y(Ei)− y(n)|

2

for i = 1,3, where n may represent e1, e3 or vk and

Γ(Ei,n) =
2−|x(Ei)− x(n)|

2

for i = 2,4, where n may represent e2, e4 or vk.

Now we are ready to start defining data for constrained nodes. It has to be done in
such an order, that the data for the node n will be defined after the data for all nodes
on that n depends have already been defined. For discussion of dependency of
nodes see Section 3.3.3. In all following definitions we consider situation depicted
in Figure 3.5 and use its notation without further mentioning.

Constrained vertices

We start with vertices being constrained by other vertices. If vertices Vi, i =
1,2,3,4 from Figure 3.5 are unconstrained, each vertex vk is constrained by Vi
only. But if it is not the case, vk are constrained by all vertices constraining ver-
tices Vi. It may happen, that more of Vi are constrained by the same vertex VC. In
such case we add up contributions of VC “through” all Vi:

CV v(vk) =
4⊎

i=1

{
(vc,γ

′) : (vc,γ) ∈CV v(Vi),γ ′ = Γ(Vi,vk) γ

}
, (3.1)

where
⊎

works as a set union with the exception of the case where there are two or
more pairs (Vc,γ1), (Vc,γ2),. . ., (Vc,γn) to be included. Then instead of including
them all we include one pair (Vc,γ1 + γ2 + · · ·+ γn) only.

29

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

For vertices constrained by edges the situation is more complicated. First, we
have to store not only coefficient, but also position on constraining edge, from
where the vertex is constrained. Second is that we have to take into consideration
not only edges Ei and edges constraining those edges, but also edges constraining
vertices Vi, as we can see from the definition:

CEv(vk) =
4⊎

i=1

{
(ec,γ

′, p) : (ec,γ, p) ∈CEv(Vi),γ ′ = Γ(Vi,vk)γ

}
]

]
4⊎

i=1

{
(ec,γ

′, p) : (ec,γ,(Q1,Q2)) ∈CEe(Ei),

p =
Q2−Q1

2
coord(vk)+

Q1 +Q2

2
, γ
′ = Γ(Ei,vk)γ

}
, (3.2)

this time we add up contributions with the same ec and p (similarly as in the
previous case). We set coord(vk) = x(vk) for i = 1,3 (constraining edges E1 and
E3 parallel with x on the reference domain) and coord(vk) = y(vk) for i = 2,4
(constraining edges E2 and E4 parallel with y). Calculation of p has a meaning of
finding a position on the edge constraining edge Ei and it is calculated according
to which part of that edge corresponds Ei to (given by (Q1,Q2)). If Ei is not
constrained, then (Q1,Q2) = (−1,1) and therefore p = coord(vk).

Now let us proceed to the situation of vertices constrained by faces. Here we
have to take into account faces constraining vertices Vi, faces constraining edges
Ei and finally face F itself. This time we need to store two positions p1 and
p2, that describe coordinates on constraining face, from the value of constraining
face function will be taken to calculate the value of the constrained vertex (also
according to the coefficient γ .

CFv(vk) =
4⊎

i=1

{
(fc,γ

′, p1, p2) : (fc,γ, p1, p2) ∈CFv(Vi),γ ′ = Γ(vk,Vi)γ

}
]

4⊎
i=1

{
(fc,γ, p1, p2) : (fc,γ,P,(Q1,Q2),d) ∈CFe(Ei),γ ′ = Γ(vk,Ei)γ,

p1 = P, p2 =
Q2−Q1

2
coord(vk)+

Q1 +Q2

2
for d = Dx and

p1 =
Q2−Q1

2
coord(vk)+

Q1 +Q2

2
, p2 = P for d = Dy

}
]

]
{

(F,1,x(vk),y(vk))
}

, (3.3)

where again coord(vk) = x(vk) for i = 1,3 and coord(vk) = y(vk) for i = 2,4.
Symbols Dx and Dy stand for the directions V1V2 and V2V3, respectively. The

30

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

definition may seem rather complicated, but it has the same principle as those
preceding. First, faces constraining vertices Vi are taken into account. They all
will also constrain vertices vk, we only have to adjust coefficient γ according to
the position of vk on F . For faces fc constraining edges Ei we have to distinguish
in which direction d on the constraining face fc lies the edge, which the constrain
propagates from. According to that, appropriate position on the constraining face
is calculated. Finally we have to consider constraining face F on which vk lies.
Again we add up contributions with equal fc, p1 and p2.

Constrained edges

First let us address situation of edges constrained by another edges. The only
thing that contributes to a list of constrains of ek are edges Ei if unconstrained or
those edges that constrain them:

CEe(ek) =
⊎
i∈iE

{
(ec,γ

′,(q1,q2)) : (ec,γ,(Q1,Q2)) ∈CEe(Ei),

q1 =
Q2−Q1

2
coord1(ek)+

Q1 +Q2

2
, q2 =

Q2−Q1

2
coord2(ek)+

Q1 +Q2

2
,

γ
′ = Γ(ek,Ei)γ

}
, (3.4)

where i = {1,3}, coord1(ek) = x1(ek) and coord2(ek) = x2(ek) for k = 1,3 and
i = {2,4}, coord1(ek) = y1(ek) and coord2(ek) = y2(ek) for k = 2,4, respec-
tively. The important task is to determine, to what part (q1,q2) of the constrain-
ing edge ec would the edge ek correspond to. It is determined using the part
(Q1,Q2) (to which Ei corresponds in respect to ec) and coordinates of e on the
face F . Note that if Ei is not constrained, then (Q1,Q2) = (−1,1) and thus
(q1,q2) = (coord1(ek),coord2(ek)). As usually we add up contributions with the
same ec and (q1,q2).

Information of faces constraining edges is more complex, since we have to store
both position and part on a constraining face and also information, in which di-
rection edge lies (with respect to the constraining face).

CFe(ek) =
⊎
i∈iE

{
(fc,γ

′, p,(q1,q2),d) : (fc,γ, p,(Q1,Q2),d) ∈CFe(Ei),

q1 =
Q2−Q1

2
coord1(ek)+

Q1 +Q2

2
, q2 =

Q2−Q1

2
coord2(ek)+

Q1 +Q2

2
,

γ
′ = Γ(ek,Ei)γ

}
]
{

(F,1,coord′(ek),(coord1(ek),coord2(ek)),D)
}

, (3.5)

31

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

FE
e

e'

e''

Figure 3.6: Illustration of indirect constrains. Suppose face F is unconstrained.
Contributions of E to CEe(e′′) and F to CFe(e′′) depends on how reference element
is mapped to physical elements involved. But if we assume mapping which is most
“natural” from our point of view, it can be said, that (E,1/4 · 1/2 · 1/2,(0,1)) ∈
CEe(e′′) and (F,1/2 ·1/2,−1/2,(0,1),Dy) ∈CFe(e′′).

where i = {1,3}, coord1(ek) = x1(ek), coord2(ek) = x2(ek), coord′(ek) = y(ek)
and D = Dx for k = 1,3 and i = {2,4}, coord1(ek) = y1(ek), coord2(ek) = y2(ek)
coord′(ek) = x(ek) and D = Dy for k = 2,4, respectively. The notation is rather
complicated, since we have to distinguish in which direction the edge lies and
adjust variables accordingly. Important thing is, that the direction d is meant with
respect to the constraining face. It is set from F for a direct constrain, but for
indirect constrains through edges Ei it is copied without any change and does not
depend on the direction of ek with respect to F . Contributions with the same fc,
p, (q1,q2) and d are added up.

Constrained faces

This final step is simple, since there are no indirect constrains of faces. A face f
can be only constrained if it lies on a bigger face F as depicted in Figure 3.5:

CF f (f) =
{

(F, (x1(f), x2(f)), (y1(f), y2(f))
}

32

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

This concludes rather technical definitions of the constrain information of nodes.
It will be used in the following chapters to design the global basis functions.

3.4 Orientation handling

Proper treatment of orientations is a surprisingly difficult part of the implemen-
tation of the higher-order basis functions for 3D meshes. Without good math-
ematical preparation it is almost impossible to have all situations correct in the
computer code. From that reason we want to give a detailed description of the
way how orientations are dealt with.

I
II

I
II

II

I

I
II

I
II

II

I

Figure 3.7: Local orientation of edges and faces on the reference domain B.

Global basis functions in the physical mesh are constructed by “gluing” images
of shape functions defined on the reference domain and mapped by the reference
mapping, which was described in Section 2.3.2. The problem is, that there are
more possibilities how a reference cube may be mapped to the element in the
mesh, depending on which vertices in the mesh are images of which vertices of
the reference domain. And since higher-order shape functions may be unsymmet-
rical, we have to make sure to use correct mapping in order to make neighboring
parts of the global basis functions “match” together (in order to satisfy conformity
requirements of the finite element space).

We start with the reference element B. All edges and faces has to be oriented. We

33

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

have chosen orientation depicted in Figure 3.7. All edges are oriented in direction
of that axis ξ1, ξ2, ξ3, with which is the edge parallel. For faces, the situation is
more complicated. There are two axis parallel to each face, orientations I and II
are taken such that I is in the direction of the axis with the lower index.

3.4.1 Orientation of edges

Each edge in the mesh has to be equipped with unique orientation. It would be
possible to store it as an additional information, but it is not necessary if we define
it using unique indices i(v) of vertices v in the mesh.

Figure 3.8: Global orientation of edge v1v2 in the physical mesh. Example of
situation where i(v1) < i(v2) and therefore the orientation is from v1 to v2.

Definition 3.16. (Edge orientation) Consider edge e ∈Th,p with endpoints v1,
v2. Suppose i(v1) < i(v2). Then we say, that e is oriented in the direction from v1
to v2.

Now suppose we want to construct global basis functions. We do it by mapping
local basis function from the reference domain to elements adjacent to the edge e.
But in order to ensure conformity requirements, it may be necessary to “adjust”
local basis function in such way, that after mapping to the mesh, images “match”
on elements involved.

Figure 3.9: Illustration of construction of edge orientation change map. The coor-
dinate in the direction of the edge is “turned around”.

34

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

The adjustment will be performed by application of mapping, that switches di-
rection of one of the coordinates, if necessary. This mapping is defined in the
following:

Definition 3.17. (Orientation mapping) Let us assume element K with it’s
edge e. The mapping corresponding to the element, xxxK , will map local orien-
tation from the reference domain (as shown in Figure 3.7) to e. If this mapped
orientation is in the same direction as the global orientation of e, as defined in
Definition 3.16, we define xxxK,e

o as identity. In the other case, we define

• xxxK,e
o (ξ1,ξ2,ξ3) = (−ξ1,ξ2,ξ3) for xxx−1

K (e) ∈ {e1,e3,e9,e11}

• xxxK,e
o (ξ1,ξ2,ξ3) = (ξ1,−ξ2,ξ3) for xxx−1

K (e) ∈ {e2,e4,e10,e12}

• xxxK,e
o (ξ1,ξ2,ξ3) = (ξ1,ξ2,−ξ3) for xxx−1

K (e) ∈ {e5,e6,e7,e8}

The meaning of the definition is, that if local and global orientation of the edge do
not match, we “switch” the corresponding coordinate to fix it.

Remark 3.3. Note, that the definition of orientation mapping depends not only on
the edge e in the physical mesh, but also on the element, from which we “look” on
the edge. Indeed, this is the purpose of the orientation handling. The same edge
has to be treated differently, depending on from which element we “look” on it.

3.4.2 Orientation of faces

Now let us proceed to faces. Orientation of faces of the reference domain is de-
picted in Figure 3.7. Orientation of faces in the physical mesh is given by the
following definition and shown in Figure 3.10.

Definition 3.18. (Face orientation) Consider face f ∈Th,p given by vertices v1,
v2, v3, v4 of the physical mesh and assume, that for global indices i(vk) of vertices
vk, k = 1, . . . ,4, the following properties hold: i(v1) = min(i(v1), i(v2), i(v3), i(v4))
and i(v2) < i(v4). Than we say, that the first orientation I′ goes from v1 to v2
and the second orientation II′ from v1 to v4. Orientation of face f is given by
combination of I′ and II′.

When orientation of reference face (I, II) is mapped to the physical face, there
are eight possible situations of (I, II) and (I′, II′). That is much more complicated
than for edges, where there were only two possibilities - orientation was either the
same, or the opposite. Possible situations are shown in Figure 3.11.

35

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

I'

II'

Figure 3.10: Global orientation of a face v1v2v3v4 in the physical mesh. Here
i(v1) = min(v1,v2,v3,v4) and i(v2) < i(v4).

o=(1,1,1)

I

II

I'

II'

o=(-1,1,1)

I

II

I'

II'

o=(1,-1,1)

I

II

I'

II'

o=(-1,-1,1)

I

II

I'

II'

o=(1,1,-1)

II

I

I'

II'

o=(1,-1,-1)

II

I

I'

II'

o=(-1,1,-1)

II

I

I'

II'

o=(-1,-1,-1)

II

I

I'

II'

Figure 3.11: Possible combinations of global (I′, II′) and local (I, II) orientation
of a face.

Similarly as for edges, we have to define mappings that will “adjust” local basis
functions to different orientations. As we can see from Figure 3.11, the orien-
tation of the face can be described by three orientation flags o1, o2, o3, where
o = (o1,o2,o3). Each flag may be either 1 or −1. Meaning of the flags is the
following. If o1 = −1, we have to “reverse” the direction of coordinate ξi, the
first of the two directions of the face (the one with the lower index i). Flag o2
has a similar meaning, if o2 = −1 we have to “reverse” direction in the second
coordinate of the face. Finally, the third flag o3 has the meaning of swapping of
the two face coordinates. Described mappings are shown in Figure 3.12.

In the following we elaborate this idea in more rigorous way. First let us define

36

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

Figure 3.12: An illustration of the construction of the orientation mapping. The
top and the middle figures illustrate the switching of the direction in the two coor-
dinates of the face, the bottom figure illustrates swapping of them.

simple mappings, that we will use to construct the final orientation map.

Definition 3.19. Let us define mappings, that change the direction of one coordi-
nate:

xxx1(ξ1,ξ2,ξ3) = (−ξ1,ξ2,ξ3),
xxx2(ξ1,ξ2,ξ3) = (ξ1,−ξ2,ξ3),
xxx3(ξ1,ξ2,ξ3) = (ξ1,ξ2,−ξ3)

and mappings, that swap two coordinates:

xxx1,2(ξ1,ξ2,ξ3) = (ξ2,ξ1,ξ3),
xxx2,3(ξ1,ξ2,ξ3) = (ξ1,ξ3,ξ2),
xxx3,1(ξ1,ξ2,ξ3) = (ξ3,ξ2,ξ1).

37

Chapter 3 – Hexahedral mesh with arbitrary-level hanging nodes

Now we can proceed to a concrete element K and its face f . Depending on what
face of the reference domain corresponds f to, we select appropriate mappings.

Definition 3.20. Let us assume element K and its reference mapping xxxK . Now let
us define directions of faces on the reference cube B

• d1 = 2, d2 = 3 for xxx−1
K (f) ∈ {s1,s2}

• d1 = 1, d2 = 3 for xxx−1
K (f) ∈ {s3,s4}

• d1 = 1, d2 = 2 for xxx−1
K (f) ∈ {s5,s6}

as shown in Figure 2.2. With this in hand we can define atomic mappings

xxxK, f
o,1 = xxxd1, xxxK, f

o,2 = xxxd2, xxxK, f
o,3 = xxxd1,d2,

that will be used to construct the final mapping, as follows.

Definition 3.21. (Orientation mapping) Let us assume an element K and its
face f . Let (I, II) be orientation mapped from the reference cube B (as shown
in Figure 3.7) and (I′, II′) be the global orientation of the face f (as defined in
Definition 3.18). Let o = (o1,o2,o3) be appropriate orientation triple, as defined
in Figure 3.11. Let us define orientation mapping

xxxK, f
o = L

(
xxxK, f

o,1 ,o1
)
◦L
(
xxxK, f

o,2 ,o2
)
◦L
(
xxxK, f

o,3 ,o3
)
,

where L
(
xxx,oi

)
= xxx for oi = −1 and L

(
xxx,oi

)
= I for oi = 1, where I is an identity

mapping. In other words, we only want to apply those orientation adjustments
xxxK, f

o,i , i = 1,2,3, for which oi =−1.

In this rather long process we first selected appropriate mappings, according to
which reference face is our face f image of and then we included or did not in-
clude them in construction of the final mapping xxxK, f

o , taking into consideration
orientation flags o1, o2 and o3.

Remark 3.4. Again we stress out, that just defined orientation mapping may be
different for the same face f , when considered from two different elements, as is
suggested by the notation itself.

38

CHAPTER

FOUR

HP-FEM IN 3D FOR ELLIPTIC PROBLEMS

Many physical phenomena (distribution of electrostatic potential, stationary heat
conduction, etc.) can be modeled by second order elliptic partial differential equa-
tions. Thanks to this and their relative simplicity, the elliptic problems are the most
often investigated. There is a huge amount of well-known sources dealing with
elliptic problems and addressing their properties, so there is no need to list them.
Publications dedicated to hp-FEM method for elliptic problems include (but are
not at all restricted to) works [3], [4], [5], [24], [18], [17], [46], [48] and others.

In this chapter we want to apply geometrical properties and definitions discussed
in the previous chapter on solution of elliptic problems. The handling of arbitrary-
level hanging nodes is inspired by [49], where the process is described for two
dimensional problems. It has to be stated, however, that the algorithmization is
much more complicated in 3D. Although the algorithm presented in [49] is very
smart, its elegance is allowed by the fact, that the whole setting in 2D is relatively
simple, when compared to 3D case. For example, in 2D there are only few types of
dependency of vertices and edges, that have to be handled. Orientation of edges is
also not a big issue in 2D, while in 3D it becomes serious problem even for regular
meshes and starts to be very unpleasant for meshes with hanging nodes. Although
the principle is the same, number of different situations and combinations is in-
comparable. That is why we need more elaborate and systematic approach in 3D,
which is presented in this (and the previous) chapter.

In the following text we first introduce a model elliptic problem and briefly revise
its properties. As a next step we define higher-order shape functions on the refer-
ence cube. We use Lobatto functions for this purpose. The basis of our approach

39

Chapter 4 – hp-FEM in 3D for elliptic problems

including the definition of higher-order shape functions on the reference domain,
reference mapping technique and others are described in book [48], which is a
fundamental reference for this work and for the computer implementation.

The main part of this chapter is dedicated to the issue of construction of higher-
order global basis functions on meshes with arbitrary-level hanging nodes. We
have to overcome all suggested complications in order to design the algorithm,
that will “glue” the contributions to the global basis function from different ele-
ments properly in order to satisfy conformity requirements of the space.

4.1 Model elliptic problem

To keep things simple, we will restrict ourselves to the following model elliptic
problem. Of course, the presented theory and also the computer implementation
would work the same way, even for a more general setting.

4.1.1 Classical formulation

Let us consider a liner second-order elliptic problem of finding u∈C1(Ω)∩C2(Ω)
such that

−∇∇∇ ·
(
ã(xxx)∇∇∇u

)
= f in Ω, (4.1)

u = gD on ΓD, (4.2)
∂u
∂ννν

= gN on ΓN, (4.3)

where Ω ⊂ R3, is a bounded domain with Lipschitz boundary, ννν is the unit outer
normal to the boundary ∂Ω, the sets ΓD and ΓN are relatively open in ∂Ω, ΓD∩
ΓN = /0, and ΓD∪ΓN = ∂Ω.

4.1.2 Weak formulation

We need to introduce so called Dirichlet lift G, a function, that equals the boundary
condition on the Dirichlet boundary and that is sufficiently smooth on the domain
Ω:

G = gD on ΓD, (4.4)
G ∈C2(Ω)∩C(Ω). (4.5)

The particular choice of the Dirichlet lift G is not important, as shown later, as
long as it fulfills the above conditions.

40

Chapter 4 – hp-FEM in 3D for elliptic problems

Instead of seeking function u satisfying equations (4.1)–(4.3) we are looking for
a function u = u−G. We can rewrite equations (4.1)–(4.3) using new unknown
function u as

−∇∇∇ ·
(
ã(xxx)∇∇∇(u+G)

)
= f in Ω, (4.6)

u = 0 on ΓD, (4.7)
∂ (u+G)

∂ννν
= gN on ΓN. (4.8)

To obtain the weak formulation we multiply the equation (4.6) by a smooth test
function v and integrate over the domain Ω:∫

Ω

−∇∇∇ · (ã(xxx)∇∇∇(u+G))vdxxx =
∫

Ω

f vdxxx.

By using the Green’s theorem and the linearity of the ∇∇∇ operator we obtain the
form∫

Ω

ã(xxx)∇∇∇u ·∇∇∇vdxxx =
∫

Ω

f vdxxx−
∫

Ω

ã(xxx)∇∇∇G ·∇∇∇vdxxx+
∫

ΓN

ã(xxx)gNvdsss. (4.9)

As it is usual, we will use the notation of the bilinear and linear forms:

a(u,v) =
∫

Ω

ã(xxx)∇∇∇u ·∇∇∇vdxxx, (4.10)

l(v) =
∫

Ω

f vdxxx+
∫

ΓN

ã(xxx)gNvdsss. (4.11)

Formulation of the problem

Now we are ready to formulate the weak formulation of the problem. We do it by
using functions from appropriate Sobolev spaces in the equation (4.9).

Definition 4.1. (Weak solution) Let V = {v ∈ H1(Ω),v|ΓD = 0}, G ∈ H1(Ω),
G|ΓD = gD in the sense of traces, f ∈ L2(Ω), ã ∈ L∞(Ω) and the function u ∈ V
satisfies

a(u,v) = l(v)−a(G,v) ∀v ∈V. (4.12)

Than the function u = u+G is called the weak solution of problem (4.1)–(4.3).

41

Chapter 4 – hp-FEM in 3D for elliptic problems

Properties of the bilinear form a and the solution

Theorem 4.1. (Energetic norm) The function
(
a(v,v)

) 1
2 defines a norm in the

space V which is equivalent to the standard norm in the space H1.

This norm is called energetic norm and is denoted by ‖·‖e.

Theorem 4.2. The solution u exists and is unique.

Proof. The bilinear form a and the linear form l satisfy the assumptions of the
Lax-Milgram lemma.

Theorem 4.3. The solution u is independent on the choice of the Dirichlet lift G

Proof. It follows simply by considering two different Dirichlet lifts and corre-
sponding weak solutions and subtracting them.

4.2 Higher-order shape functions

As it was mentioned before, the advantage of higher-order global basis functions
is the ability of good approximation of smooth solutions using significantly less
degrees of freedom. First, let us define a set of higher-order shape functions on the
reference cube. Those functions will be used to construct global basis functions in
the physical mesh. A transformation used to map the functions from the reference
domain to the physical mesh is called the reference mapping and it has already
been introduced in Section 2.3.2.

A terminology may differ, so let us introduce this convention. When we speak
about basis functions on the reference domain, we refer to them as shape functions
or local basis functions. On the other hand basis functions in the physical mesh
are mentioned as global basis functions or just basis functions.

4.2.1 Shape functions on reference domain

In the following we describe the set of shape functions, that are considered on
reference cube, that was introduced in Section 2.3.1. As we use the hierarchic
basis (which has been introduced in Section 2.4.2), each shape function is related
to one of the nodes. There are 8 vertex, 12 edge, 6 face and 1 interior nodes. Most
of the notation used is taken from [48].

42

Chapter 4 – hp-FEM in 3D for elliptic problems

Order of the element

There are several advantages when using hexahedral elements. One of them is the
possibility of easy division into two sub-elements, which are hexahedral again.
The other advantage is the possibility to use different polynomial degree in each
direction. For this purpose we consider three local orders of approximation pb,1,
pb,2, pb,3 in directions of ξ1, ξ2, ξ3. Element orders may vary from 1 up to 10
in our code, even though there is no principle upper bound and number 10 has
been chosen rather arbitrary. From our simulation it seems, however, that this is
sufficiently high.

Similarly, we consider two local orders on each face si, i ∈ {1, . . . ,6}, denoted by
psi,1, psi,2. Those orders are in directions of a local two-dimensional system of
coordinates on each face, that matches corresponding pair of three-dimensional
coordinates ξ1, ξ2, ξ3, always in lexicographic order. The same applies for edges.
The order of the edge ei is denoted by pei .

Figure 4.1: Vertex, edge, face and bubble local basis functions on the reference
cube. Note, that the last cube has one of the vertices cut off, since bubble functions
are local to the element interior and vanish on its boundary.

Polynomial space

Now we are ready to define the polynomial space on the reference element B:

W 1
B = {w ∈ Qpb,1,pb,2,pb,3; w|si ∈ Qpsi,1,psi,2, i = 1, . . . ,6,

w|e j ∈ Ppe j , j = 1, . . . ,12}. (4.13)

Here

Qp1,p2,p3 = span{ξ i1
1 ξ

i2
2 ξ

i3
3 ; −1≤ ξ1,ξ2,ξ3 ≤ 1,

i1 = 0, . . . , p1, i2 = 0, . . . , p2, i3 = 0, . . . , p3} (4.14)

43

Chapter 4 – hp-FEM in 3D for elliptic problems

and
Qp1,p2 = span{ζ i1

1 ζ
i2
2 ; i1 = 0, . . . , p1, i2 = 0, . . . , p2}, (4.15)

where ζ1, ζ2 are local coordinates on the appropriate face of the reference domain
B. Finally

Pp = span{η i; i = 0, . . . , p}, (4.16)

where η is a local coordinate on the appropriate edge.

4.2.2 Construction of local basis functions

In this section we describe the exact way how to construct the local basis func-
tions. Thank to the product geometry of the reference domain, it is natural to
construct them as products of 1D polynomial functions. Lobatto shape functions
have been chosen for their good conditioning properties.

Figure 4.2: Legendre polynomials.

One-dimensional Lobatto shape functions

First let us remind the definition of Legendre polynomials. There are many ways
to define them, we chose a recurrent definition.

44

Chapter 4 – hp-FEM in 3D for elliptic problems

Definition 4.2. Legendre polynomials are defined as follows:

L0(x) = 1,

L1(x) = x,

Lk(x) =
2k−1

k
xLk−1(x)−

k−1
k

Lk−2(x), k ≥ 2.

Those polynomials are well known and have many interesting properties. Several
first Legendre polynomials are depicted in Figure 4.2.

Next let us define the Lobatto shape functions as integrals of previously defined
legendre polynomials.

Definition 4.3. Lobatto polynomials are defined as follows:

l0(x) =
1− x

2
,

l1(x) =
1+ x

2
,

lk(x) =
1√

2/(2k−1)

∫ x

−1
Lk−1(ξ)dξ , k ≥ 2,

where Lk denote Legendre polynomials.

It follows from their orthogonality that all functions lk, k ≥ 2, vanish at both end-
points of the interval [−1,1], while l0 and l1 vanish at one endpoint and equal to
1 at the other. This fact is used when dividing basis functions into categories. Or-
thogonality of Legendre polynomials ensures good conditioning properties of the
Lobatto basis. In Hermes we use Lobatto functions l0, . . . , l10.

Local basis functions

To define the set Σ 1
B of degrees of freedom we have to describe construction of

concrete basis of the space W 1
B . It has to include functions associated to vertices,

edges, faces and element interiors. It is in accordance with the nodal approach
and conformity requirements of the space H1.

• Vertex functions ϕvi , i = 1, . . . ,8 are defined as trilinear functions in the form

ϕ
vi = ld1(ξ1)ld2(ξ2)ld3(ξ3), (4.17)

where d j = 0,1 and j = 1,2,3. Thus, there are eight possible combinations
corresponding to the eight vertices. For the construction of vertex functions

45

Chapter 4 – hp-FEM in 3D for elliptic problems

Figure 4.3: Lobatto shape functions lk for k = 0, . . . ,5. Note, that for k ≥ 2 lk
vanishes at endpoints of the interval [0,1].

we use only first two lobatto functions l0, l1, which are linear and equal
to 1 at one endpoint of the interval [−1,1] and to 0 at the other. Their
function values in vertices are 0 with the exception of one vertex, where
all three composing functions have value 1. We say that vertex function is
associated or related to the vertex, where it’s function value is 1. Traces of
vertex functions are linear on edges and bilinear on faces. Vertex functions
form basis of the lowest-order element.

• edge functions ϕ
ei
k , i = 1, . . . ,12, k = 2, . . . , pei are defined in the form

ϕ
ei
k = ld1(ξ1)ld2(ξ2)ld3(ξ3). (4.18)

Edge functions corresponding to the edge ei are constructed in the following
way. Let ξl be axis parallel to the edge ei. Then component dl = k, may be
chosen from 2, . . . , pei . Other two indices are either 0 or 1 (there are 4
combinations corresponding to 4 different edges parallel to ξl . The trace of
edge function ϕ

ei
k equals to the 1D Lobatto function on the edge ei and is

zero on all other edges and in all vertices. Edge functions are present only
for such edges e j, for which pe j ≥ 2 and their number is pe j −1.

46

Chapter 4 – hp-FEM in 3D for elliptic problems

• face functions ϕ
si
k1,k2

, i = 1, . . . ,6, k1 = 2, . . . , psi,1, k2 = 2, . . . , psi,2 corre-
sponding to the face si are constructed in such way, that the trace on face
si is the product of lobatto functions lk1 and lk2 in directions parallel to the
face. The remaining index dl , where ξl is perpendicular to the face si, is 0
or 1 (there are two faces perpendicular to ξl). The formula is:

ϕ
si
k1,k2

= ld1(ξ1)ld2(ξ2)ld3(ξ3). (4.19)

A face function is zero on all other faces, on all edges and in all vertices.
Face functions associated with the face si are present only if psi,1 ≥ 2 and
psi,2 ≥ 2 and their number is (psi,1−1)(psi,2−1).

• bubble functions ϕb
k1,k2,k3

, kl = 2, . . . , pb,l , l = 1, . . . ,3 are equal to zero in all
vertices, edges and faces and complete the basis of W 1

B :

ϕ
b
k1,k2,k3

= ld1(ξ1)ld2(ξ2)ld3(ξ3). (4.20)

Bubble functions are present if all pb,1, pb,2 and pb,3 are at least 2 and their
number is (pb,1−1)(pb,2−1)(pb,3−1).

All types of local basis functions are illustrated in Figure 4.1.

Remark 4.1. One essential feature of this distinction of local basis function is that
all vertex functions vanish in all vertices but one, all edge functions vanish in
all vertices and all edges but one and all face functions vanish in all vertices, all
edges and all faces but one. Bubble functions are nonzero only in the element
interior. This plays a vital role in the projection based interpolation described in
Section 2.5 and it is also used in the proof of the following theorem.

Theorem 4.4. (Local basis) Local basis functions given by formulas (4.17),
(4.18), (4.19), (4.20) constitute basis of the space W 1

B defined in (4.13).

Proof. All functions (4.17), (4.18), (4.19) and (4.20) are obviously linearly inde-
pendent. Now consider arbitrary function u∈W 1

B . We want to show, that this func-
tion can be expressed as a linear combination of functions (4.17), (4.18), (4.19),
(4.20). Values of u in vertices determine values of coefficients of vertex functions
αvi (since vertex function corresponding to each vertex is the only nonzero from
all functions of the basis). This expression is called a vertex interpolant:

uv =
4

∑
i=1

α
viϕ

vi.

From the way of its construction it is obvious, that u−uv vanishes in all vertices
and (u− uv)|ei ∈ Ppei for i = 1, . . . ,12 (it holds from the definition of u and from

47

Chapter 4 – hp-FEM in 3D for elliptic problems

the fact, that uv is a trilinear function). From this reason we can define edge
interpolant uei on each edge ei, since traces ϕ

ei
2 , . . . ,ϕei

pei
on ei are polynomials

of degrees 2, . . . , pei and have zero values in endpoints of ei. Therefore there are
unique coefficients α

ei
k such that

uei =
pei

∑
k=2

α
ei
k ϕ

ei
k ,

where uei = u−uv on ei. Summing edge interpolants uei for all edges ei we obtain
a complete edge interpolant ue:

ue =
12

∑
i=1

uei.

We can see, that u− uv − ue vanishes in all vertices and on all edges. In the
same way as for the edges we can construct face interpolant usi for each face si.
From the definition of the space W 1

B it follows that u|si ∈ Qpsi,1,psi,2 , therefore also
(u−uv−ue)|si ∈ Qpsi,1,psi,2 and because it is zero in vertices and edges, it can be
expressed as linear combination of functions ϕ

si
k1,k2

:

usi =
psi,1

∑
k1=2

psi,2

∑
k2=2

α
si
k1,k2

ϕ
si
k1,k2

and again, by summing all face interpolants usi we obtain complete face inter-
polant us:

us =
6

∑
i=1

usi.

Function u− uv− ue− us = ub is zero on the whole boundary of B and its poly-
nomial degree is at most the same as the polynomial degree of u (thanks to the
minimum rule (2.2.1)), therefore it can be expressed as a linear combination of
functions ϕb

k1,k2,k3
:

ub =
pb,1

∑
k1=2

pb,2

∑
k2=2

pb,3

∑
k3=2

α
b
k1,k2,k3

ϕ
b
k1,k2,k3

.

This concludes the proof, since we have shown that u can be expressed as a linear
combination of local basis functions.

Theorem 4.5. A triple (B,W 1
B ,Σ 1

B), where degrees of freedom in Σ 1
B are associated

with particular basis functions, constitutes the finite element.

Proof. It follows from the definition of finite element in Chapter 2.

48

Chapter 4 – hp-FEM in 3D for elliptic problems

4.3 Construction of global basis functions

In the finite element method, solution of the problem is sought as a combination of
basis functions. In the concept of hierarchic basis, each basis function is related to
an entity in the mesh, which in the case of three dimensional mesh can be vertex,
edge, face or element interior.

We start with the space H1, which is used for discretization of elliptic problems.
The regularity requirement of this space is the continuity. Therefore, all basis
functions has to be created in such way, that they are continuous in all vertices,
edges and faces. In the following text, a rather technical description of such a
construction is described. At first for the regular mesh, where the situation is
simpler. Even though using functions with correct orientations is a big issue, one
has to consider only elements adjacent to a given vertex, edge or face. On all
other elements the basis function equals to zero. Bubble (or interior) functions
are simple, they are local to one element and zero elsewhere and therefore their
continuity is clear.

For the case of meshes with hanging nodes, new problems arise. Here much more
elements may be involved and great effort has to be made to keep everything
conforming. A rather sophisticated algorithm has been developed in [49] for two
dimensional case. We used the idea, but in the 3D setting everything is much more
complicated.

4.3.1 Vertex basis functions

First let us describe the construction of global vertex functions. Vertex functions
are the simplest, because they are trilinear on each element, there is always only
one vertex function corresponding to each vertex1 and finally there is no orienta-
tion of vertices, that has to be taken into account for edges and faces.

Definition of global vertex basis function is very straightforward and it is de-
scribed in the next section. When hanging nodes are present, situation becomes
more complicated. A support of the basis function can be constituted by many
elements as constrains “spread” through the mesh. This is described in detail in
the following

1There is always one degree of freedom related to the vertex, but only if the vertex is not
constrained. If it is constrained, there is no degree of freedom and therefore no vertex function
correspond to this vertex.

49

Chapter 4 – hp-FEM in 3D for elliptic problems

Regular mesh

On the regular mesh, construction of global vertex basis functions is simple. Ver-
tex function associated with vertex v is defined on a patch formed by elements
sharing v (it is zero elsewhere) by transforming local vertex function on the ele-
ments in such a way, that they can be “glued” together with value 1 in vertex v.
More rigorous definition will be given for the irregular mesh with hanging nodes,
since the regular mesh is its special case.

Figure 4.4: Two elements with images of the local basis vertex function being
“glued” together to form a part of a global vertex function.

Mesh with hanging nodes

On the mesh with hanging nodes, more elements may be involved in construc-
tion of global basis function. The general definition will use the machinery of
constrains, that has been developed in Chapter 3.

Definition 4.4. (Global vertex basis function) Let vc be an unconstrained vertex
and let the set CV v(vc) be calculated according to the previous definitions. Global
vertex function wvc associated to vc is defined on element K as follows:

w|K = ∑
v∈K, (vc,γ)∈CV v(v)

γ ΦΦΦ
1
K(ϕ v̂), (4.21)

50

Chapter 4 – hp-FEM in 3D for elliptic problems

1

0

0

0

00

0

0

0

0

0
0

00
0

0

0
0

0

0
0

Figure 4.5: Example of one element of the coarse mesh with many refinements.
Numbers assigned to vertices represent function γ defined when constructing ver-
tex basis function (associated to a vertex with number 1).

where v̂ = xxx−1
K (v) is the corresponding vertex of the reference domain and ϕ v̂ is

a local vertex basis function associated with the vertex v̂. The transformation ΦΦΦ1
K

from the reference element to K has been defined in Section 2.3.4.

The meaning of the definition is clear. When defining global basis vertex function
in the mesh with hanging nodes, we have to add images of local basis vertex
functions from many elements. They are added multiplied by coefficient γ , which
corresponds to the “distance” of the vertex from the constraining vertex in the
mesh and determines, how much is the contribution reduced. An example can
be seen in Figure 4.5, where coefficients γ are shown for a part of a mesh with
hanging nodes.
Remark 4.2. Let us note, that although many elements may be involved in the
construction of the basis function, a support of the function is limited and cannot
spread through the mesh without control. More precisely, a support of the vertex

51

Chapter 4 – hp-FEM in 3D for elliptic problems

basis function is always subset of the area formed by those elements from the
coarse mesh2, that share vertex vc.

In the following theorem we state the key feature of the whole construction of the
vertex global basis function from the previous text.

Theorem 4.6. (Conformity of global vertex basis function) Global vertex basis
function associated with vertex v defined in Definition 4.4 is continuous in Ω and
therefore conforms to the space H1.

Proof. Coefficients γ are constructed in such a way, that the values of the global
vertex basis function in all vertices are the same, no matter from which element we
go. The reason is the following. Consider a constraining edge E with endpoints
a and b and midpoint c. When we look at the value of the basis function at c
from the side of element adjacent to edge E, it has to be equal to the average of
values of coefficients γ at points a and b. This is because the value at c is obtained
as a sum of values of trilinear shape functions associated with vertices a and b,
multiplied by the coefficients γ .

When we look at the value of the basis function at c from the side of an element
having c as is its vertex, we can see, that it is equal to the value of γ at c, since the
only shape function involved in forming the global vertex basis function is that
associated with vertex c, which has value 1 at c. The rest can be seen from defini-
tions in Section 3.3.4 (and from an illustrative example presented in Figure 4.5).
The value of γ at c equals to the average of values of γ at a and b. Therefore the
value of the global vertex basis function at c is the same from all sides.

That implies, that the values are the same also on all edges and faces, since values
there are images of linear and bilinear functions (local basis vertex function is
linear on edges and bilinear on faces) and restrictions of mappings xxxK and xxxK′ on
the common edge or face shared by K and K′ are the same. Therefore also its
images are the same on all common edges and faces. Therefore the global vertex
basis functions are continuous.

4.3.2 Edge basis functions

In this section we will describe construction of global edge basis functions. Their
construction is more complicated than construction of vertex functions. First of
all, there may be more edge functions related to an edge. Another inconvenience

2By the coarse mesh we mean the initial mesh, that partitions the domain before any refine-
ments are made, see Section 3.1.

52

Chapter 4 – hp-FEM in 3D for elliptic problems

is that we have to take into account the orientation of the edge and adjust projected
local basis function accordingly.

For the regular mesh, the situation is simplified by the fact that support of an
edge function is always composed of elements sharing the edge (usually but not
necessarily 4 elements), while for the case of meshes with hanging nodes, it may
be composed of many elements and coefficients for constrained edges has to be
calculated similarly as for vertex nodes3.

Regular mesh

As for the vertex functions, in this section we only want to suggest how the global
edge functions are created. Rigorous definition will follow in the next, more gen-
eral section.

Figure 4.6: Creation of global edge basis function on two elements of a regular
mesh.

The idea is to map local edge function from the reference domain onto elements
adjacent to the edge which the constructed edge function is related to. This time
we have to deal with the orientation. Edge functions have to be adjusted in such
a way, that after “gluing” them together they will be continuous. An illustrative
situation can be seen in Figure 4.6.

3This is one of those things that make the 3D implementation of the construction of basis
functions much harder than implementation in 2D, where this is not necessary.

53

Chapter 4 – hp-FEM in 3D for elliptic problems

Constrained edge coefficients

Before we proceed to the definition of the global edge basis function on a mesh
with hanging nodes, we need to prepare one more thing. In Chapter 3 we intro-
duced a lot of geometrical data, that describe relations and constrains in the mesh.
The main use of this data is to determine, which basis functions on constrained
nodes will “contribute” to form globally continuous basis functions.

The core problem we have to solve is the following: Consider interval [−1,1] with
subinterval [q1,q2], as shown in Figure 4.7. Now consider Lobatto function lk
defined on [−1,1]. The question is, how this function can be expressed by means
of a linear function and Lobatto functions? This expression has the following
form:

lk ◦ xoc
o

(q2−q1

2
x+

q2−q1

2

)
=

lk ◦ xoc
o (q1) l0(x)+ lk ◦ xoc

o (q2)l1(x)+
k

∑
m=2

δ
k,(q1,q2),oc
m,oe lm ◦ xoe

o (x) (4.22)

for all x ∈ [−1,1]. On the left-hand side of the equation we have values of con-
straining function restricted to the interval [q1,q2]. On the right-hand side we have
two linear functions with coefficients taken as function values of the constraining
function in the endpoints of the interval [q1,q2] and higher-order contributions
with unknown coefficients. Orientation adjustments are discussed in the follow-
ing remark. By plugging k−1 different values, we obtain k−1 linearly indepen-
dent equations with k− 1 unknown coefficients δ

k,(q1,q2),oc
m,oe , m = 2, . . . ,k. Those

equations are solved and resulting coefficients used in construction of global basis
functions in the mesh with hanging nodes.

Remark 4.3. Special attention, again, has to be given to proper orientation han-
dling. At this place, we will not develop notation with such precision, as we did
in Section 3.4. The symbol oc represents the orientation flag of the constraining
edge, while oe represents the orientation flag of the constrained edge. We can
see, that coefficients δ depend on both of them. The purpose of mappings xoc

o
and xoe

o is to alter the coordinate direction, in accordance with definitions from
Section 3.4.1.

From the efficiency reasons, we do not solve the system every time. Rather than
that, for each position of edge/face on big face and for each degree of the con-
straining function we calculate unique number – the hash. When we need the
coefficients, we first look into the hash table to find out, whether we have already
solved this particular situation. If so, we do not calculate the coefficients again,

54

Chapter 4 – hp-FEM in 3D for elliptic problems

+ +

q1 q2-1 1

Figure 4.7: Calculation of constrained coefficients. A part of the function defined
on interval [−1,1] is reconstructed on sub-element [q1,q2] by adding linear and
higher-order part.

we just use them. If not, we find the coefficients by solving the linear system
arising from the equation (4.22), as it was described above.

Mesh with hanging nodes

On the mesh with hanging nodes, more local basis functions has to be put together
to form the global edge basis function, this time both vertex and edge local basis
functions will be involved.

Definition 4.5. (Global edge basis function) Let ec be unconstrained edge and
let sets CEv(ec) and CEe(ec) be calculated according to the previous definitions.
Global edge function wec

k associated to ec, of order k≤ pec is defined on element K

55

Chapter 4 – hp-FEM in 3D for elliptic problems

as follows:

wec
k |K = ∑

v∈K, (ec,γ,p)∈CEv(v)
γ lk(p) ΦΦΦ

1
E(ϕ v̂)+

+ ∑
e∈K, (ec,γ,(q1,q2))∈CEe(e)

pec

∑
m=2

γ δ
k,(q1,q2),oc
m,oe ΦΦΦ

1
K(ϕ ê

m ◦xxxK,e
o),

where

v̂ = xxx−1
K (v), ê = xxx−1

K (e)

are the corresponding vertex and edge of the reference domain. Function ϕ v̂ is
the local vertex basis function associated with the vertex v̂ and ϕ ê

k is the local
edge basis function associated with the edge ê of the order k. Transformation ΦΦΦ1

K
from the reference element to K has been defined in (2.3.4) and the orientation
adjustment xxxK,e

o has been defined in Section 3.4.1.

The definition is similar to the case of vertex global basis functions, but it is more
complicated due to the fact, that both vertex and edge functions have to be in-
cluded. First, contributions of vertices are added. Similarly as in the previous
section, coefficient γ adjusts contribution of a vertex v according to its “distance”
from constraining edge. Additional coefficient lk(p) alter contribution according
to the position p on the constraining edge, from where the vertex v is constrained
(and the value of the constraining function in that point is lk(p)). On the second
line we have contribution of edges, again multiplied by coefficient γ with similar
meaning and with coefficient defined in the previous section, ensuring that proper
linear combination of edge functions is used to ensure continuity on edges.
Remark 4.4. Again we want to point out, that even though support of the edge
function may comprise many elements as the mesh is refined, it will never “ex-
tend” beyond limit given by union of elements of the coarse mesh, that share
edge ec.

The whole described procedure has the purpose of constructing continuous edge
global basis function. Let us conclude it in a theorem similar to one we stated for
vertex functions.

Theorem 4.7. (Conformity of global edge basis function) Global edge basis
function associated with edge e defined in Definition 4.5 is continuous in Ω and
therefore conforms to the space H1.

Proof. First let us to show continuity on constraining edges, where the basis func-
tion has the form of higher-order polynomial. The construction of constrained co-
efficients has been described in the previous text. They are calculated according to

56

Chapter 4 – hp-FEM in 3D for elliptic problems

formula (4.22) which guarantees, that values on each such edge are the same from
all sides (both from elements adjacent to the constraining edge and elements ad-
jacent to smaller constrained edge, which is a part of bigger one). The continuity
than can be shown from the linearity of other components of the edge functions,
similarly as for vertex functions.

4.3.3 Face basis functions

Face functions are even more complicated than those associated with edges. There
are several reasons. For meshes with hanging nodes, all vertex, edge and face
functions has to be combined on potentially many elements to form global ba-
sis functions. Moreover, there are many possible combinations of face and edge
orientations, that has to be solved properly.

Regular mesh

Again, let us start with the case of regular meshes. The situation is quite simple.
Two elements only share given face and the global face basis function is created by
putting two images of the local face function together, as shown in Figure 4.8. The
only thing that has to be taken care of is proper orientation handling, since there
are eight possible orientations of the face (from the viewpoint of each element),
as it has been described in Section 3.4.2.

Figure 4.8: Construction of global face basis function on a regular mesh.

57

Chapter 4 – hp-FEM in 3D for elliptic problems

Constrained face coefficients

The idea behind is similar as for edges, just extended to two dimensions. For an
edge, we first had to subtract linear part corresponding to two vertices, the rest was
created by Lobatto functions, corresponding to the edge. For the face function, we
similarly have to subtract parts corresponding to vertices and edges.

First let us define
lk1,k2(x,y) = lk1(x) lk2(y),

which will be useful to simplify orientation handling. Constrained coefficients on
edges were calculated in (4.22), according to Figure 4.7. Now we want to for-
mulate a similar relation, that could be used to find constrained coefficients on a
face, so that values on smaller faces “match” values on larger face to which they
are adjacent. An example of such situation is presented in Figure 4.9, where also
the decomposition of the constraining function into vertex, edge and face contri-
butions is suggested. The coefficient of the vertex contribution is just the value
of the constraining face function in the vertex. Coefficients of edge contributions
can be found using the procedure described in the previous section. The following
formula shows, how the coefficients of face contribution may be calculated:

lk1,k2 ◦ xoc
o

(q2
1−q1

1
2

x+
q2

1−q1
1

2
,

q2
2−q1

2
2

y+
q2

2−q1
2

2

)
=

lk1,k2 ◦ xoc
o (q1

1,q
1
2) l0(x)l1(y)+ lk1,k2 ◦ xoc

o (q2
1,q

1
2) l1(x)l1(y)+

lk1,k2 ◦ xoc
o (q2

1,q
2
2) l1(x)l0(y)+ lk1,k2 ◦ xoc

o (q1
1,q

2
2) l0(x)l0(y)+

lk2 ◦ x
oe1
o (q2

2)
k1

∑
m=2

δ
k1,(q1

1,q
2
1),oc

m,oe1
lm(x)l1(y)+ lk1 ◦ x

oe2
o (q2

1)
k2

∑
m=2

δ
k2,(q1

2,q
2
2),oc

m,oe2
l1(x)lm(y)+

lk2 ◦ x
oe3
o (q1

2)
k1

∑
m=2

δ
k1,(q1

1,q
2
1),oc

m,oe3
lm(x)l0(y)+ lk1 ◦ x

oe4
o (q1

1)
k2

∑
m=2

δ
k2,(q1

2,q
2
2),oc

m,oe4
l0(x)lm(y)+

k1

∑
m1=2

k2

∑
m2=2

ζ
(q1

1,q
2
1),(q

1
1,q

2
1),oc

m1,m2,o f lm1,m2 ◦ x
o f
o (x,y). (4.23)

The whole scheme may seem rather complicated, but it is similar to the case of
edges. On the first line, we have constraining function. On the two following
lines, we have bilinear contributions of four vertices, with known coefficients.
On the other two lines, there are contributions of edges, again with known co-
efficients. Finally, on the last line, there is contribution of face functions with
unknown coefficients.

Remark 4.5. All local basis functions in the relation has to be equipped with
proper orientation mapping. Notation introduced in Section 3.4 does not suit

58

Chapter 4 – hp-FEM in 3D for elliptic problems

exactly for this situation, but the idea is the same. The symbol oc is the orien-
tation flag of constraining face, o f is the orientation flag of the constrained face
and oe1, . . . ,oe4 are orientation flags of edges involved. Those flags are used to
construct mappings xoc

o , x
o f
o and x

oe1
o , . . . ,x

oe4
o , whose purpose is to adjust coordi-

nates in such a way, that calculated coefficients are in accordance with orientation
handling defined in Section 3.4.

The equation has to be satisfied for all x,y∈ [−1,1]. If we choose (k1−1)×(k2−
1) grid points in [−1,1], we obtain system of (k1−1)(k2−1) linearly independent
linear equations for (k1−1)(k2−1) unknown coefficients α

i, j
f . It is easy to show,

that the system of equations solved have a unique solution. Again, we use caching
to avoid repetitive calculations of the same situation.

Figure 4.9: Illustrative figure showing, how face function related to the face ABCD
may be expressed in terms of basis functions related to constrained nodes. First
vertex interpolant is calculated in I and subtracted. Then edge interpolants are
calculated for EI, FI, GI and HI and subtracted. Finally, face interpolants for
small faces are calculated. This idea is used in our text, although we allow to
calculate interpolation for arbitrary sub-face of the constraining face.

Mesh with hanging nodes

With this definitions in hand, we may proceed to the most complicated situation,
the construction of global face functions on meshes with hanging nodes.

Definition 4.6. (Global face basis function) Let fc be unconstrained face and
let the sets CFv(fc), CFe(fc) and CF f (fc) be calculated according to the previous
definitions. Global face function w fc

k1,k2
associated to fc, of orders k1 ≤ p fc

1 , k2 ≤

59

Chapter 4 – hp-FEM in 3D for elliptic problems

p fc
2 is defined on element K as follows:

w fc
k1,k2
|K = ∑

v∈K, (fc,γ,p1,p2)∈CFv(v)
γ lk1(p1) lk2(p2) ΦΦΦ

1
K(ϕ v̂)+

+ ∑
e∈K, (fc,γ,p,(q1,q2),d)∈CEe(e)

pec

∑
m=2

γ ε
k1,k2,p,(q1,q2),d,oc
m,oe ΦΦΦ

1
K(ϕ ê

m ◦xxxK,e
o)+

+ ∑
f∈K, (fc,(q1

1,q
2
1),(q

1
1,q

2
1))∈CF f (f)

p1
fc

∑
m1=2

p2
fc

∑
m2=2

ζ
(q1

1,q
2
1),(q

1
1,q

2
1),oc

m1,m2,o f ΦΦΦ
1
K(ϕ f̂

m1,m2
◦xxxK, f

o),

(4.24)

where

v̂ = xxx−1
K (v), ê = xxx−1

K (e), f̂ = xxx−1
K (f)

are the vertex, the edge and the face on the reference cube, corresponding to the
vertex v, the edge e and the face f in the physical mesh, respectively. Transfor-
mation ΦΦΦ1

K from the reference element to K has been defined in (2.3.4) and the
orientation adjustments xxxK,e

o and xxxK, f
o have been defined in Section 3.4.

The definition may seem complicated, but the structure is clear. First we sum up
contributions of vertex functions, with proper coefficient γ reflecting “distance”
of the vertex from constraining face and also multiplied by values of appropriate
Lobatto functions in points p1 and p2, reflecting from which point on the con-
straining face is vertex constrained. On the second line, edge contributions are
added with coefficient γ with the similar meaning and coefficient ε , that has been
calculated in the section dedicated to edge functions, ensuring that edge functions
of different orders form result corresponding to the constraining function. Finally,
on the last line, we have face functions, again with appropriate coefficients defined
in the previous section.

An illustrative example can be seen in Figures 4.10 and 4.11. We have shown
a process of creation of a global face basis function on the mesh with hanging
nodes. On the second figure we can see all vertices, edges and faces, that are
involved in this still relatively simple situation. Constructed face functions have
the following properties.

Remark 4.6. Global face basis function associated with face fc defined in Defini-
tion 4.6 vanishes in all elements of the coarse mesh that do not share face fc.

Theorem 4.8. (Conformity of global face basis function) Global face basis
function associated with face f defined in Definition 4.6 is continuous in Ω and
therefore conforms to the space H1.

60

Chapter 4 – hp-FEM in 3D for elliptic problems

Proof. The idea is similar as for edge functions. Function values on faces and
edges with higher polynomial orders “match” thanks to the construction. The rest
follows from the way, how coefficients in vertices are calculated and from linearity
of face function in one direction.

Figure 4.10: Global face function constructed on mesh with hanging nodes. Three
of the elements involved are shown.

Figure 4.11: Decomposition of situation from Figure 4.10. All nodes constrained
by the large face both directly and indirectly are marked by arrows. Basis func-
tions from all those nodes has to be used to form continuous basis function.

61

Chapter 4 – hp-FEM in 3D for elliptic problems

4.3.4 Bubble functions

Construction of global bubble basis functions is simple, since they are local to
one element only. Hence it is not necessary to ensure conformity requirements by
“gluing” images of local basis functions on more elements of the physical mesh.
A global bubble basis function is defined as follows.

Definition 4.7. (Global bubble basis function) Global bubble basis function
wK

k1,k2,k3
∈ Vh,p, associated to the element K, of orders k1 ≤ pK

1 , k2 ≤ pK
2 and

k3 ≤ pK
3 , is defined as w|K′ = 0 on all elements K′ 6= K and

wK
k1,k2,k3

|K = ΦΦΦ
1
K(ϕb

k1,k2,k3
), (4.25)

where ϕb
k1,k2,k3

is a local bubble function . Transformation ΦΦΦ1
K from the reference

element to K has been defined in (2.3.4).

Remark 4.7. Just for completeness let us state, that global bubble functions are
local to one element only and vanish in all other elements of the mesh.

Theorem 4.9. (Conformity of global bubble basis function) Global bubble ba-
sis function associated with element K defined in Definition 4.7 is continuous in
Ω and therefore conforms to the space H1.

Proof. Obvious from the definition, since we construct the bubble function on one
element only, by composing two continuous functions.

62

CHAPTER

FIVE

HP-FEM IN 3D FOR ELECTROMAGNETIC
PROBLEMS

In this chapter we want to address the usage of the hp-FEM for electromagnetic
problems described by Maxwell’s equations. It has similar structure like the pre-
vious chapter, that has been devoted to elliptic problems. First we want to state the
problem in both classical and weak formulation and describe some of its key prop-
erties. In the next section we define vector-valued higher-order shape functions,
that are suitable for discretization of the HHHcurl space. Shape functions are used in
Section 5.3 to define global basis functions. As in the previous chapter, we will
use mesh-related definitions and structures from Chapter 3 to ensure conformity
of constructed global basis functions.

The finite element method has been used for Maxwell’s equations for a long time.
Soon it was shown, that standard H1-conforming elements are not appropriate, see
e.g. [9], [10], [31], [33] and [34]. It led to design of special elements for HHHcurl

space. At first, the lowest-order Whitney elements appeared (see [51]). More
recently it became obvious, that it would be beneficial to develop higher-order
elements (see [1], [18], [32] and others).

The definition of higher-order HHHcurl shape functions in this work is strongly in-
spired by definitions used in the 2D code. For details see e.g. [44], [50]. The main
difference, similarly as for the H1 space, is in the way, how basis functions on
individual elements are “glued” together in order to form global basis functions.

63

Chapter 5 – hp-FEM in 3D for electromagnetic problems

5.1 Time-harmonic Maxwell’s equations

Due to the limited length of this text, we skip the derivation from the fundamental
laws of electromagnetics and we directly introduce the model problem of time-
harmonic Maxwell’s equations. For details see e.g. [23] or [46].

5.1.1 Classical formulation

Let us start with classical formulation of time-harmonic Maxwell’s equations. The
problem is to find EEE ∈ [C2(Ω)]3∩ [C1(Ω)]3 such that

∇∇∇×
(

µ
−1
r ∇∇∇× EEE

)
− k2

εr EEE = ΦΦΦ in Ω, (5.1)
EEE×ννν = 0 on ΓP, (5.2)

µ
−1
r (∇∇∇× EEE)×ννν− jkλ EEET = ggg on ΓI, (5.3)

where Ω ⊂ R3, is a bounded domain with Lipschitz boundary, ννν is the unit outer
normal to the boundary ∂Ω, the sets ΓP and ΓI are relatively open in ∂Ω, ΓP∩ΓI =
/0, and ΓP∪ΓI = ∂Ω, the symbol EEET stands for the tangential projection of EEE to
the boundary

EEET = (ννν× EEE)×ννν

and λ is the impedance

λ = Z
√

µ0

ε0
,

where Z is a material parameter. The boundary conditions (5.2) and (5.3) are
called perfect conductor and impedance boundary condition, respectively.

5.1.2 Weak formulation

In order to derive the weak formulation of problem (5.1)–(5.3) we first multiply
the equation (5.1) with sufficiently smooth complex vector-valued function FFF and
integrate over the domain Ω:∫

Ω

(
∇∇∇× (µ

−1
r ∇∇∇× EEE) · FFF− k2

εr EEE · FFF
)

dxxx =
∫

Ω

ΦΦΦ · FFF dxxx, (5.4)

where the inner product for complex vectors aaa, bbb is defined as

aaa ·bbb =
3

∑
i=1

aibi.

64

Chapter 5 – hp-FEM in 3D for electromagnetic problems

After applying the Green’s theorem, we obtain the form∫
Ω

(
(µ
−1
r ∇∇∇× EEE) · (∇∇∇× FFF) − k2

εr EEE · FFF
)

dxxx+

+
∫

∂Ω

ννν× (µ
−1
r ∇∇∇× EEE) · FFFT dsss =

∫
Ω

ΦΦΦ · FFF dxxx, (5.5)

where FFFT stands for the tangential projection of FFF to the boundary of the domain
Ω:

FFFT = (ννν× FFF)×ννν .

As a next step we use the boundary conditions. The space, where the test functions
FFF are taken from will be specified later, but from now on we will use only such
test functions, that satisfy the condition

FFF×ννν = 0 on ΓP. (5.6)

The field EEE itself satisfies this condition thanks to the perfect conductor boundary
condition (5.2). This implies that on the ΓP part of the boundary, the surface
integral in (5.5) vanishes. For the remaining part of the surface ΓI we use the
impedance boundary condition (5.3):∫

Ω

(
(µ
−1
r ∇∇∇× EEE) · (∇∇∇× FFF) − k2

εr EEE · FFF
)

dxxx−

−
∫

ΓI

jkλ EEET · FFFT dsss =
∫

Ω

ΦΦΦ · FFF dxxx+
∫

ΓI

ggg · FFFT dsss. (5.7)

We can see that the appropriate space for the functions in the weak formulation is

V = {EEE ∈HHHcurl(Ω); ννν× EEE = 0 on ΓP}, (5.8)

where the space HHHcurl(Ω) has been defined in Section 2.1.

Assumptions

In order to introduce the weak solution, we need to assume some properties of the
domain and the data of the problem:

• The domain Ω ⊂ R3 is bounded and simply connected, with Lipschitz-
continuous boundary ∂Ω.

• The boundary of the domain consists of two relatively open parts ΓP and ΓI,
∂Ω = ΓP∪ΓI, ΓP∩ΓI = /0.

65

Chapter 5 – hp-FEM in 3D for electromagnetic problems

• The domain Ω can be split into several open simply connected sub-domains
Ω1, Ω2, . . . , Ωn with Lipschitz-continuous boundary, such that Ω =

⋃n
i=1 Ωi

and Ωi ∩Ω j = /0 for i, j ∈ 1 . . .n, i 6= j. The permitivity and permeability
parameters εr and µr can be discontinuous, but has to be smooth in each
sub-domain Ωi. This allows us to deal with problems with several different
materials.

• εr|Ωi ∈ H3(Ω), i ∈ 1, . . . ,n

• There exists a positive constant Cε > 0 such that for each sub-domain Ω1,
Ω2,. . . , Ωn either Im(εr)≥Cε or Im(εr) = 0.

• The impedance function λ ∈ L∞(ΓI), λ > 0.

• Further, we assume ΦΦΦ ∈ (L2(Ω))3 and ggg ∈ (L2(ΓI))3.

Weak formulation

Denote the sesquilinear form

a(EEE, FFF) =
∫

Ω

(
(µ
−1
r ∇∇∇× EEE) · (∇∇∇× FFF) − k2

εr EEE · FFF
)

dxxx−
∫

ΓI

jkλ EEET · FFFT dsss

and the linear form

l(FFF) =
∫

Ω

ΦΦΦ · FFF dxxx+
∫

ΓI

ggg · FFFT dsss.

Definition 5.1. (Weak solution) Let us consider all the above assumptions. Let
the function EEE ∈V satisfy

a(EEE, FFF) = l(FFF) ∀FFF ∈V. (5.9)

Then the function EEE is called the weak solution of problem (5.1)–(5.3).

Existence and uniqueness of the solution

Theorem 5.1. (Unique solution) Assume that the domain Ω, boundary parts ΓP
and ΓI, coefficients εr, µr, λ and data ΦΦΦ and ggg satisfy the assumptions from the
definition 5.1. Let us further assume that either the impedance boundary ΓI is not
empty, or that the imaginary part of εr is positive in some open sub-domain of Ω.

Then for any wave number k > 0, problem (5.9) has a unique solution EEE ∈V .

66

Chapter 5 – hp-FEM in 3D for electromagnetic problems

Proof. The proof can be found in [46].

At this point the description of mathematical properties of the equations is suffi-
cient for our purposes. More details can be found in literature, which was men-
tioned at the beginning of this chapter.

5.2 Higher-order shape functions

In this section we present shape (or local basis) functions used in the space HHHcurl.
The procedure is similar to that used for H1 space in Section 4.2. Again we con-
sider only hexahedral elements with reference element described in Section 2.3.1
and depicted in Figure 2.2.

5.2.1 Construction of local basis functions

As we can see from the de Rham diagram (see Section 2.3), spaces W 1 and Wcurl

used for discretization of spaces H1 and HHHcurl are connected through the gradient
operator555. The local basis functions should also be constructed in this fashion.
Consider product monomial ξ i

1ξ
j

2 ξ k
3 ∈W 1. Its gradient should be included in the

space Wcurl:

555ξ
i
1ξ

j
2 ξ

k
3 ∈W 1 =

(
iξ i−1

1 ξ
j

2 ξ
k
3 , jξ i

1ξ
j−1

2 ξ
k
3 , kξ

i
1ξ

j
2 ξ

k−1
3
)
.

This is the general guideline, how to define local basis functions of the space
HHHcurl. But rather than using gradients of functions from H1 as basis functions,
we use simpler functions, which have always only one component nonzero.

Remark 5.1. The fact that HHHcurl is defined as a vector-valued space brings several
complications not only for the practical implementation of the algorithms, but also
for their description. Making pictures is also more complicated, since 3D plots
containing vectors are usually not very lucid, but, on the other hand, 3 different
figures showing one component each do not give the general picture very well.

For the basis functions, however, things are simplified by defining all of them with
only one nonzero component. That means, that vector values are always parallel to
one of the axis. So if we say, that tangential component of a basis function vanish
on the edge, it means either that values are zero on the edge or that direction of
the vectors is perpendicular to the edge (parallel to one of two remaining axis
perpendicular to the edge). The same holds for the faces. If tangential component
of a basis function is said to vanish on a face, it means, that it is either zero or

67

Chapter 5 – hp-FEM in 3D for electromagnetic problems

that it is perpendicular to this face (for faces there are two linearly independent
tangential directions).

Orders of elements

We again want to allow different orders in each direction and the meaning of the
order of the element pb,1, pb,2 and pb,3, faces psi,1 and psi,2 and edges pei are the
same as in the elliptic case, see Section 4.2. The only difference is, that in the
HHHcurl space the lowest order is 0, not 1. This may sound confusing, but may be
seem as a logical consequence of the way how basis functions are derived, as it
was described in the previous paragraph.

The minimum rule has the same form as for the H1 reference domain, which
means, that orders of faces psi,1 and psi,2 are smaller or equal to corresponding
pair of orders of the element (two of pb,1, pb,2 and pb,3 parallel to the local face
coordinates) and the order of edge pei is at most equal to the minimum of orders
(in the direction of the edge ei) of adjacent faces.

Local basis functions

The finite element (B,Wcurl,Σcurl) should be equipped with a polynomial space
defined as follows:

Wcurl = {EEE ∈ Qpb,1,pb,2+1,pb,3+1×Qpb,1+1,pb,2,pb,3+1×Qpb,1+1,pb,2+1,pb,3
,

EEEt |si ∈ Qpsi,1,psi,2+1×Qpsi,1+1,psi,2 , i = 1, . . . ,6,

EEE ·ttt|e j ∈ Ppe j
, j = 1, . . . ,12}, (5.10)

where EEEt |si = EEE−nnni(EEE ·nnni) is the projection of the vector EEE on the face si, with nnni
being the outer normal vector to the face si. The scalar product EEE ·ttt|e j represents
the projection of the vector EEE on the edge e j.

Conformity requirements of the space HHHcurl, see Section 2.6 suggest, that shape
functions will be divided into categories associated with edges, faces and element
interior. Unlike in the case of H1 space, there are no vertex functions. Shape
functions are again constructed as products of 1D Lobatto functions li and also
Legendre polynomials Li, defined in Section 4.2.2. Since HHHcurl is a vector space,
all shape functions have to be vector-valued. To keep the definition simple, all
vector values are parallel to one of the axis ξ1, ξ2 or ξ3, in other words, only one
component is nonzero.

68

Chapter 5 – hp-FEM in 3D for electromagnetic problems

• Edge functions ψ
ei
k , i = 1, . . . ,12, k = 0, . . . , pei are defined as follows (po-

sitions of edges on the reference domain were defined in Section 2.3.1).

ψ
e1
k = Lk(ξ1)l0(ξ2)l0(ξ3)ξ1ξ1ξ1 k = 0, . . . , pe1, (5.11)

ψ
e2
k = l1(ξ1)Lk(ξ2)l0(ξ3)ξ2ξ2ξ2 k = 0, . . . , pe2,

ψ
e3
k = Lk(ξ1)l1(ξ2)l0(ξ3)ξ1ξ1ξ1 k = 0, . . . , pe3,

ψ
e4
k = l0(ξ1)Lk(ξ2)l0(ξ3)ξ2ξ2ξ2 k = 0, . . . , pe4,

ψ
e5
k = l0(ξ1)l0(ξ2)Lk(ξ3)ξ3ξ3ξ3 k = 0, . . . , pe5,

ψ
e6
k = l1(ξ1)l0(ξ2)Lk(ξ3)ξ3ξ3ξ3 k = 0, . . . , pe6,

ψ
e7
k = l1(ξ1)l1(ξ2)Lk(ξ3)ξ3ξ3ξ3 k = 0, . . . , pe7,

ψ
e8
k = l0(ξ1)l1(ξ2)Lk(ξ3)ξ3ξ3ξ3 k = 0, . . . , pe8,

ψ
e9
k = Lk(ξ1)l0(ξ2)l1(ξ3)ξ1ξ1ξ1 k = 0, . . . , pe9,

ψ
e10
k = l1(ξ1)Lk(ξ2)l1(ξ3)ξ2ξ2ξ2 k = 0, . . . , pe10,

ψ
e11
k = Lk(ξ1)l1(ξ2)l1(ξ3)ξ1ξ1ξ1 k = 0, . . . , pe11,

ψ
e12
k = l0(ξ1)Lk(ξ2)l1(ξ3)ξ2ξ2ξ2 k = 0, . . . , pe12 .

The edge functions in H1 space vanish at all vertices and on all edges but
one. Here the situation is similar, but this time not the function value, but
the tangential component of ψ

ei
k only vanish on all edges except for ei. Such

edge shape function is said to be associated with this edge. The trace of the
function equals to the Legendre polynomial Lk. There are always pei edge
functions associated with edge ei .

Edge functions of the lowest order k = 0 are always present. They are called
Whitney functions and they form the standard lowest-order basis.

• Face functions are defined for each face si, i = 1, . . . ,6 in two groups: ψ
si,1
k1,k2

with vectors in direction of the first local face coordinate and ψ
si,2
k1,k2

with
vectors in direction of the second local face coordinate. The easiest way
how to define them is again to list them all.
Face s1:

ψ
s1,1
k1,k2

= l0(ξ1)Lk1(ξ2)lk2(ξ3)ξ2ξ2ξ2, (5.12)

k1 = 0, . . . , ps1,1, k2 = 2, . . . , ps1,2 +1,

ψ
s1,2
k1,k2

= l0(ξ1)lk1(ξ2)Lk2(ξ3)ξ3ξ3ξ3,

k1 = 2, . . . , ps1,1 +1, k2 = 0, . . . , ps1,2.

69

Chapter 5 – hp-FEM in 3D for electromagnetic problems

Face s2:

ψ
s2,1
k1,k2

= l1(ξ1)Lk1(ξ2)lk2(ξ3)ξ2ξ2ξ2, (5.13)

k1 = 0, . . . , ps2,1, k2 = 2, . . . , ps2,2 +1,

ψ
s2,2
k1,k2

= l1(ξ1)lk1(ξ2)Lk2(ξ3)ξ3ξ3ξ3,

k1 = 2, . . . , ps2,1 +1, k2 = 0, . . . , ps2,2.

Face s3:

ψ
s3,1
k1,k2

= Lk1(ξ1)l0(ξ2)lk2(ξ3)ξ1ξ1ξ1, (5.14)

k1 = 0, . . . , ps3,1, k2 = 2, . . . , ps3,2 +1,

ψ
s3,2
k1,k2

= lk1(ξ1)l0(ξ2)Lk2(ξ3)ξ3ξ3ξ3,

k1 = 2, . . . , ps3,1 +1, k2 = 0, . . . , ps3,2.

Face s4:

ψ
s4,1
k1,k2

= Lk1(ξ1)l1(ξ2)lk2(ξ3)ξ1ξ1ξ1, (5.15)

k1 = 0, . . . , ps4,1, k2 = 2, . . . , ps4,2 +1,

ψ
s4,2
k1,k2

= lk1(ξ1)l1(ξ2)Lk2(ξ3)ξ3ξ3ξ3,

k1 = 2, . . . , ps4,1 +1, k2 = 0, . . . , ps4,2.

Face s5:

ψ
s5,1
k1,k2

= Lk1(ξ1)lk2(ξ2)l0(ξ3)ξ1ξ1ξ1, (5.16)

k1 = 0, . . . , ps5,1, k2 = 2, . . . , ps5,2 +1,

ψ
s5,2
k1,k2

= lk1(ξ1)Lk2(ξ2)l0(ξ3)ξ2ξ2ξ2,

k1 = 2, . . . , ps5,1 +1, k2 = 0, . . . , ps5,2.

Face s6:

ψ
s6,1
k1,k2

= Lk1(ξ1)lk2(ξ2)l1(ξ3)ξ1ξ1ξ1, (5.17)

k1 = 0, . . . , ps6,1, k2 = 2, . . . , ps6,2 +1,

ψ
s6,2
k1,k2

= lk1(ξ1)Lk2(ξ2)l1(ξ3)ξ2ξ2ξ2,

k1 = 2, . . . , ps6,1 +1, k2 = 0, . . . , ps6,2.

Tangential components of all face functions ψ
si,1
k1,k2

, ψ
si,2
k1,k2

vanish on all edges
and all faces with the exception of si. There are (psi,1 +1)psi,2 + psi,1(psi,2 +
1) face functions associated with the face si and they are present if psi,1 ≥ 1
or psi,2 ≥ 1.

70

Chapter 5 – hp-FEM in 3D for electromagnetic problems

• Bubble functions ψ
b,1
k1,k2,k3

, ψ
b,2
k1,k2,k3

, and ψ
b,3
k1,k2,k3

are the last to be added to
the basis:

ψ
b,1
k1,k2,k3

= Lk1(ξ1)lk2(ξ2)lk3(ξ3)ξ1ξ1ξ1, (5.18)

k1 = 0, . . . , pb,1, k2 = 2, . . . , pb,2 +1, k3 = 2, . . . , pb,3 +1,

ψ
b,2
k1,k2,k3

= lk1(ξ1)Lk2(ξ2)lk3(ξ3)ξ2ξ2ξ2,

k1 = 2, . . . , pb,1 +1, k2 = 0, . . . , pb,2, k3 = 2, . . . , pb,3 +1,

ψ
b,3
k1,k2,k3

= lk1(ξ1)lk2(ξ2)Lk3(ξ3)ξ3ξ3ξ3,

k1 = 2, . . . , pb,1 +1, k2 = 2, . . . , pb,2 +1, k3 = 0, . . . , pb,3.

There are (pb,1 +1)pb,2 pb,3 + pb,1(pb,2 +1)pb,3 + pb,1 pb,2(pb,3 +1) bubble
functions, which are present only if at least two of three orders pb,1, pb,2,
pb,3 are greater or equal to 1.

We do not present figures of local basis functions, but their shape can be seen very
clearly from Figures 5.1–5.5, where global basis functions constructed on regular
mesh are shown.

Remark 5.2. Section 4.2 presents properties of local basis functions of the space
H1, namely the property of function values being zero on certain types of nodes
(vertices, edges and faces) for each class of local basis functions (associated with
vertices, edges, faces and element interior). In the case of the HHHcurl space the idea
is similar, with the difference, that we are not speaking about vanishing function
values, but just tangential components of the vectors. Tangential components of
edge functions vanish on all edges with the exception of the edge to which the
function is related. Tangential components of face functions vanish on all edges
and all faces but that to which the function is related. And finally, tangential com-
ponents of bubble functions vanish on all edges and faces. These properties play
the essential role in the projection-based interpolation described in Section 2.5
and in the proof of the following theorem.

Theorem 5.2. (Local basis) Functions (5.11), (5.12)–(5.17) and (5.18) constitute
a hierarchic basis of the space Wcurl defined in (5.10).

Proof. The proof will be performed in a similar way as for Theorem 4.4. All
functions (5.11), (5.12)–(5.17) and (5.18) are linearly independent. Consider ar-
bitrary function EEE ∈Wcurl. In the following we will show, that this function can
be expressed as a linear combination of functions (5.11), (5.12)–(5.17) and (5.18).
Function EEE is vector valued, EEE = (E1,E2,E3). As we have seen above, all local
basis functions are defined in such a way, that their vectors are parallel to one

71

Chapter 5 – hp-FEM in 3D for electromagnetic problems

of the axis ξ1, ξ2, ξ3. Therefore the process of finding linear combination of lo-
cal basis functions to be equal to EEE can be divided into three parts. In each part
we find the linear combination of local basis functions parallel to ξ1 to be equal
to EEE1 = (E1,0,0), the linear combination of those parallel to ξ2 to be equal to
EEE2 = (0,E2,0) and, finally, the linear combination of local basis functions parallel
to ξ3 to be equal to EEE3 = (0,0,E3).

In the following we will construct the linear combination that constitutes EEE1. Lin-
ear combinations that equal to EEE2 and EEE3 can be constructed analogically. First
let us find an edge interpolant EEE1

ei
of EEE1. From the definition of edge local basis

functions (5.11) we can see, that the only edges parallel to ξ1 and thus relevant
for constructing EEE1 are e1, e3, e9 and e11. From the Definition 5.10 we can see,
that the degree of the tangential component of EEE on ei is at most pei . Tangential
components of functions ψ

ei
0 , . . . ,ψei

pei on the edge ei are Legendre polynomials of
degrees from 0 to pei . Therefore there are unique coefficients α

ei
0 ,. . . , α

ei
pei such

that

EEEei =
pei

∑
k=0

α
ei
k ψ

ei
k

and EEEei is the edge interpolant on edge ei, meaning that tangential components of
EEE and EEEei are equal on edge ei. By summing appropriate edge interpolants we get
edge interpolant

EEE1
e = ∑

i∈{1,3,9,11}
EEEei

in the direction of ξ1.

Let us proceed to the face functions. Since we are projecting first component
of EEE, the only faces relevant are s3, s4, s5 and s6, always with only one part of
face functions1 ψ

si,1
k1,k2

, i = 3, . . . ,6, k1 = 0, . . . , psi,1, k2 = 2, . . . , psi,2 + 1. We can
see, that first component of EEE −EEE1

e vanishes on edges e1, e3, e9 and e11. Now
E1|si ∈ Qpsi,1,psi,2+1, therefore there are coefficients α

si,1
k1,k2

such that

EEE1
si

=
psi,1

∑
k1=0

psi,2

∑
k2=2

α
si,1
k1,k2

ψ
si,1
k1,k2

is the projection of EEE−EEE1
e on the face si. This is possible thank to the fact, that

EEE−EEE1
e is in the first local face direction polynomial of maximal degree psi,1 and

corresponding components of local basis functions ψ
si,1
k1,k2

are Legendre polynomi-
als of degrees 0, . . . , psi,1 and in the second local face direction it is a polynomial

1For the second component of EEE we would use ψ
s1,1
k1,k2

, ψ
s2,1
k1,k2

, ψ
s5,2
k1,k2

and ψ
s6,2
k1,k2

and for the third

component we would use ψ
si,2
k1,k2

, i = 1, . . . ,4.

72

Chapter 5 – hp-FEM in 3D for electromagnetic problems

of maximal degree psi,2 + 1 and corresponding components of ψ
si,1
k1,k2

are Lobatto
polynomials of degree 2, . . . , psi,2 + 1 (and that is sufficient to express EEE−EEE1

e as
linear combination, since it vanishes on edges e1, e3, e9 and e11, as it was men-
tioned before.

By summing particular face interpolants we get the face interpolant

EEE1
s =

6

∑
i=3

EEE1
si

in the direction of ξ1.

From the previous construction we can see, that EEE−EEE1
e−EEE1

s vanish on all edges
and on faces s3, s4, s5 and s6. The last step is to find the coefficients α

b,1
k1,k2,k3

of the

linear combination of bubble functions ψ
b,1
k1,k2,k3

, k1 = 0, . . . , pb,1, k2 = 2, . . . , pb,2 +
1, k3 = 2, . . . , pb,3 +1 in the direction of ξ1

EEE1
b =

pb,1

∑
k1=0

pb,2

∑
k2=2

pb,2

∑
k3=2

α
b,1
k1,k2,k3

ψ
b,1
k1,k2,k3

such that EEE−EEE1
e−EEE1

s =EEE1
b. This can be done, since local basis functions ψ

b,1
k1,k2,k3

,
k1 = 0, . . . , pb,1, k2 = 2, . . . , pb,2 + 1, k3 = 2, . . . , pb,3 + 1 vanish on all edges and
faces with the exception of s1 and s2 and are formed as products of Legendre poly-
nomials of degrees 0, . . . , pb,1 in the direction of ξ1 and Lobatto polynomials of
degrees 2, . . . , pb,2 +1 and 2, . . . , pb,3 +1 in the directions ξ2 and ξ3, respectively.

We have shown, that EEE can be expressed as a linear combination of local basis
functions in the form

EEE =
3

∑
d=1

(
EEEd

e +EEEd
s +EEEd

b
)
,

which concludes the proof.

5.3 Construction of global basis functions

In this section we will describe construction of global basis functions in HHHcurl.
The idea is the same as for H1 basis functions, that were described in Section 4.3.
From that reason, we will not go into such details, as we did for the H1 space.
There are two main differences. First, the construction is complicated by the
fact, that basis functions are vector-valued. Luckily this does not complicate the
situation significantly, since we constructed local basis functions to be nonzero

73

Chapter 5 – hp-FEM in 3D for electromagnetic problems

in one direction only. However, for the face functions, we have to construct two
types of basis functions (with two possible directions of the vectors) and also only
edges parallel to the vectors are constrained. Second difference is the absence
of vertex functions, given by different conformity requirements. Not only we do
not have to construct vector basis functions, but we can also ignore constrains of
vertices by edges and faces, which simplifies things a little.

5.3.1 Edge functions

Edge functions in HHHcurl are constructed similarly as in the H1 space, which has
been described in Section 4.3.2. We do not want to repeat unnecessarily, so we
will not go into details in features, that are analogical. As in the elliptic case, we
will use sets defined in Chapter 3, describing geometric relations in the mesh. We
will not, however, use all of them, since there are no basis functions associated to
vertices, due to different conformity requirements of the space HHHcurl.

Figure 5.1: The lowest-order HHHcurl edge function.

Regular mesh

For the regular mesh, the situation is simple. In Figures 5.1 and 5.2 we can see a
part of a regular mesh, consisting of four elements only. In the first figure, we can

74

Chapter 5 – hp-FEM in 3D for electromagnetic problems

see the lowest-order edge (Whitney) basis function. Its values are constant in the
direction of the edge. In the later figure we can see the higher-order edge basis
function. In both figures the vector values are depicted by arrows and in addition
there is a cutting plane in the middle with color showing magnitude of the vectors
in that place.

Figure 5.2: Higher-order HHHcurl edge function.

In both figures, the four shown elements constitute the support of the basis func-
tions. We can see, that on some of the faces on the boundary of the domain, the
function values are not zero. However, tangential components are zero (vectors
are perpendicular to the boundary faces), which is in accordance with the confor-
mity requirements of the space HHHcurl.

Mesh with hanging nodes

In the following we will give a general definition of global edge basis functions.
As in the case of the H1 space, more elements may be involved, but this time we
have to consider edge functions only. When we were constructing global edge
basis functions in H1, we first derived coefficients δ

k,(q1,q2),oc
m,oe , that describe, how

would basis function of order m contribute in the linear combination, that produce
function identical to basis function of order k on interval (q1,q2) of the edge. For
details see Section 4.3.2. We will not repeat the process, since the idea is the

75

Chapter 5 – hp-FEM in 3D for electromagnetic problems

same. The difference, though, is, that the component of the edge function in the
direction of the edge is the Lagrange, not the Lobatto polynomial. Values of the
coefficients will be therefore different and we denote them as δ̄

k,(q1,q2),oc
m,oe .

Definition 5.2. (Global edge basis function) Let ec be unconstrained edge and
let the CEe(ec) be calculated according to definitions in Chapter 3. Global edge
function EEEec

k associated to ec, of order k≤ pec is defined on element K as follows:

EEEec
k |K = ∑

e∈K, (ec,γ,(q1,q2))∈CEe(e)

pec

∑
m=2

γ δ̄
k,(q1,q2),oc
m,oe ΦΦΦ

curl
K (ψψψ ê

m ◦xxxK,e
o), (5.19)

where

ê = xxx−1
K (e)

is the corresponding edge of the reference domain. Function ψψψ ê
k is an edge local

basis function associated with the edge ê of the order k. Transformation ΦΦΦcurl
K

from the reference element to K has been defined in Section 2.3.4 and the orien-
tation adjustment xxxK,e

o has been defined in Section 3.4.1.

The definition has the same structure as its counterpart from Chapter 4 and it does
not need any further comments.

Remark 5.3. From the same reasons as for the H1 space, a global edge basis func-
tion associated with the edge ec defined in Definition 5.2 vanishes in all elements
of the coarse mesh that do not share edge ec.

Theorem 5.3. (Conformity of global edge basis function) Global edge basis
function associated with edge e defined in Definition 5.2 has continuous tangential
components on all edges and faces of the mesh and therefore it conforms to the
space HHHcurl(Ω).

Proof. Analogous to the H1 case, see Theorem 4.7.

5.3.2 Face functions

Similarly as for edge functions, we will not go into as many details here as we
did for the H1 face functions in Section 4.3.3. As in the previous section, we do
not have to consider vertex functions, which leaves us to edge and face functions.
Otherwise we again use the sets, that has been defined in Chapter 3.

76

Chapter 5 – hp-FEM in 3D for electromagnetic problems

Figure 5.3: HHHcurl face function.

Regular mesh

As usually, let us first describe the face functions in the regular mesh. In such case,
the face function is nonzero on two elements sharing the face only. In Figures 5.3
and 5.4 they are the two bottom elements (we are using the same part of the mesh
as for the edge functions).

Unlike in the H1 space, there are two types of face functions for each face, since
there are two directions parallel to the edge and vectors of the function may lay
in either of them. In Figures 5.3 and 5.4 we show both possibilities (and also
different orders of the basis functions). Note that again, on all boundary faces of
the domain the vectors are either zero or they are perpendicular to the face.

Mesh with hanging nodes

Now let us proceed to the most complicated case, construction of global face basis
functions on mesh with hanging nodes. In Section 4.3.3 we described this process
in detail for the case of the H1 space. Even though there are some differences
(absence of vertex functions, functions are vector-valued), we can skip substantial
part of the description, that may be done analogically. It applies especially to

construction of coefficients ε̄
k1,k2,p,(q1,q2),d,oc
m,oe and ζ̄

(q1
1,q

2
1),(q

1
1,q

2
1),oc

m1,m2,o f , that are again

77

Chapter 5 – hp-FEM in 3D for electromagnetic problems

Figure 5.4: Another HHHcurl face function having different direction of vectors and
different order then the on Figure 5.3.

constructed in order to ensure continuity.

There is, however, one more significant difference. In Chapter 3, CFe(fc), has
been defined to contain all edges lying on the face fc and further all edges con-
strained by those edges. All such edges are constrained by fc. In the HHHcurl space,
there are two variants of face functions for each face with two possible direc-
tions of vectors. Of course, face function constrains only edges in the direction
of its vectors. Therefore we have to split the set CFe(fc) up into two disjoint sets
CFe,1(fc) and CFe,2(fc), each containing edges constrained by the corresponding
type of face functions.

Definition 5.3. (Global face basis function) Let fc be unconstrained face and sets
CFe(fc) and CF f (fc) be calculated according to definitions in Chapter 3. Global
face function EEE fc,t

k1,k2
associated to face fc, of orders k1 ≤ p fc

1 , k2 ≤ p fc
2 is defined

on element K as follows:

EEE fc,t
k1,k2
|K = ∑

e∈K, (fc,γ,p,(q1,q2),d)∈CEe(e)

pec

∑
m=2

γ ε̄
k1,k2,p,(q1,q2),d,oc
m,oe ΦΦΦ

curl
K (ψψψ ê

m ◦xxxK,e
o)+

+ ∑
f∈K, (fc,(q1

1,q
2
1),(q

1
1,q

2
1))∈CF f ,t(f)

p1
fc

∑
m1=2

p2
fc

∑
m2=2

ζ̄
(q1

1,q
2
1),(q

1
1,q

2
1),oc

m1,m2,o f ΦΦΦ
curl
K (ψψψ f̂

m1,m2
◦xxxK, f

o),

78

Chapter 5 – hp-FEM in 3D for electromagnetic problems

where

ê = xxx−1
K (e) and f̂ = xxx−1

K (f)

are the edge and the face on the reference cube, corresponding to the edge e and
the face f in the physical mesh, adjacent to the element K. Symbol ψψψ ê represents
a local edge basis function associated to edge ê. Similarly, ψψψ f̂ stands for a local
face basis function associated to face f̂ . Finally, t ∈ {1,2} represents one of two
possible directions of function vectors, as defined in Section 5.2.1. The transfor-
mation ΦΦΦcurl

K from the reference element to K has been defined in Section 2.3.4
and the orientation adjustments xxxK,e

o and xxxK, f
o have been defined in Section 3.4.

Remark 5.4. Global face basis function associated with face fc defined in Defini-
tion 5.3 vanishes in all elements of the coarse mesh that do not share face fc.

Theorem 5.4. (Conformity of global face basis function) Global face basis
function associated with face f defined in Definition 5.3 has continuous tangential
components on all edges and faces of the mesh and therefore it conforms to the
space HHHcurl(Ω).

Proof. Analogous to the H1 case, see Theorem 4.8.

5.3.3 Interior functions

Global interior basis functions (also called bubble functions) are again defined on
one element only, so no effort has to be done to ensure the conformity. An example
of an interior function can be seen in Figure 5.5. Again, vectors are either zero on
each face of the element, or perpendicular to it.

A global interior basis function is defined as follows.

Definition 5.4. (Global interior basis function) Global interior basis function
EEEK,t

k1,k2,k3
defined on Ω and associated to an element K, of orders k1 ≤ pK

1 , k2 ≤ pK
2

and k3 ≤ pK
3 , is defined as KKK|K′ = 0 on all elements K′ 6= K and

EEEK,t
k1,k2,k3

|K = ΦΦΦ
curl
K (ψψψb,t

k1,k2,k3
), (5.20)

where ψψψb,t is a local bubble function and t ∈ {1,2,3} represents one of three pos-
sible directions of function vectors, as defined in Section 5.2.1. Transformation
ΦΦΦcurl

K from the reference element to K has been defined in (2.3.4).

Remark 5.5. Again, global interior functions vanish in all elements but one.

79

Chapter 5 – hp-FEM in 3D for electromagnetic problems

Figure 5.5: HHHcurl interior function.

Theorem 5.5. (Conformity of global interior basis function) Global bubble
basis function associated with element K defined in Definition 5.4 has continu-
ous tangential components on all edges and faces of the mesh and therefore it
conforms to the space HHHcurl(Ω).

Proof. It is obvious from the definition, since we construct the bubble function on
one element only, the tangential components vanish.

80

CHAPTER

SIX

NUMERICAL QUADRATURE

Integration of higher-order basis functions is another issue, that is not as straight-
forward as it may seem. In traditional low-order FEM codes, the bulk of the
computational time is the solution of the resulting system of linear equations. The
assembling of the stiffness matrix, which comprises evaluations of integrals in the
weak formulation, is just negligible in comparison. Therefore there is no need to
think about it.

In the case of higher-order elements, the situation is different. The question of nu-
merical integration becomes an important issue for higher-order shape functions,
especially in three dimensions. If we want to calculate stiffness matrix exactly1,
the order of the quadrature has to correspond to the degree of polynomial basis
functions on the given element. As the polynomial degree of the basis grows,
number of integration points in the appropriate integration rule grows as well,
which makes the calculation more expensive.

Note that all integration in our code is being performed on the reference domain,
which is possible thanks to the reference mapping technique, which is described
in Section 2.3.2. It means, that we never transform integration points into the
physical domain, rather than that we transform the integrand in such a way, that it
can be integrated on the reference domain. Therefore all the quadrature techniques
mentioned in the following text are designed for the reference cube only.

1In reality (when elements in the mesh are not cuboids), we are unable to calculate integrals
exactly anyway, since the inverse reference mapping is not polynomial and therefore it can not
be evaluated exactly by the numerical quadrature. On the other hand, if the elements are not
degenerated, this error does not spoil the convergence of the method.

81

Chapter 6 – Numerical quadrature

In this chapter, ideas from [30] and [21] are used, extended to 3D and simplified
to a form suitable for our implementation. This chapter is based on paper [26].

6.1 Gauss quadrature rules

The choice of the quadrature type is very important. Even though two quadrature
rules integrate exactly polynomials up to certain degree, their performance can
differ significantly when integrating non-polynomial functions (which is in reality
often the case, since the inverse Jacobi matrix is non-polynomial for general mesh
elements). The usual choice for higher-order integration are Gauss quadrature
rules. The 1D integral over the segment (−1,1) is then approximated by the
formula ∫ 1

−1
f (ξ)dξ ≈

n

∑
i=1

wn,i f (ξn,i). (6.1)

The integration points ξn,i and the weights wn,i can be found by inserting linearly
independent functions with known integrals (such as polynomials of different de-
grees) into the equation. We have 2n unknowns, so if we insert polynomials of
degrees 0,1, . . . ,2n− 1, we obtain a system of 2n linearly independent nonlinear
equations with 2n unknowns. If solved, the resulting rule will be exact for all
polynomials of degree up to 2n−1, thanks to the linearity of polynomials.

6.2 Product quadrature rules

Since the integration is performed on reference element, which is a cube in our
case, the most natural choice of the integration rules is to use tensor products of
1D Gauss rules.

6.2.1 Computational cost of the integration

In this chapter, for simplicity, let us stick to the case of elliptic problems. Now let
us estimate the computational cost of the calculation of the local stiffness matrix.
Assume that we have a cubic element of polynomial degree p in all directions.
Such element has to be equipped with basis functions with polynomial degree up
to p in each direction. In total we have (p+1)3 basis functions on such element,
since it has this number of degrees of freedom (see Chapter 4 for details). In order
to evaluate the local stiffness matrix, we have to calculate the integral in (4.12) for
each pair of basis functions on this element. Therefore we have (p + 1)3× (p +

82

Chapter 6 – Numerical quadrature

1)3 evaluations of the integral. We integrate products of basis functions, whose
polynomial degree is up to p2 in each direction. Quadrature rule that will calculate
these integrals exactly (obtained as a product of 1D Gauss quadrature rules) has
approximately p3 points (each 1D rule has approximately p points). The value
of the integral is calculated as a sum of products of function values in each point
of the integration rule, so if we are interested in the asymptotic complexity of the
evaluation, we can estimate the time to calculate an integral as O(p3). Since we
have to do (p + 1)3× (p + 1)3 such calculations, total asymptotic complexity of
the evaluation of the local stiffness matrix is O(p9).

It is obvious, that this is extremely unfavorable and makes the assembling proce-
dure very time-consuming for higher values of p. For the numerical solution of
partial differential equations in more than 3 dimensions, this estimate is even more
severe and makes it virtually impossible to use such straightforward approach to-
wards the evaluation of integrals. For truly high-dimensional calculations, which
are becoming more and more desirable for example for financial problems, com-
pletely different ways towards estimation of the values of the integrals, such as
Smoljak’s schemes are used. For more details see Section 6.5.

6.2.2 Hierarchic elements

We have seen in the previous section, that the simplest implementation of the nu-
merical quadrature leads to extremely high computational costs. In the following
we describe several ideas how to make the calculation more economical. The first
one is very simple. If we use hierarchic rather then nodal basis, which is our case,
we can take advantage of the structure of the basis functions. In the hierarchic
case, the basis of the element of order p is obtained by adding several polyno-
mial functions of degree p to the basis of the element of order p− 1. Therefore,
the basis consist of polynomials of various degrees from 1 up to p and obviously
it would be wasteful to integrate the product of two low-degree polynomials with
quadrature rule which is exact for product of polynomials of degree p. It would be
better to pick different quadrature rule for each pair of shape functions according
to their degree.

As we consider basis functions on cube (cube is the reference domain), they have
different degrees in each direction. Assume we have to calculate product of two
functions of degrees (px, py, pz) and (qx,qy,qz). Obviously, the rule capable of ex-
act calculation is of order (px +qx, py +qy, pz +qz). This approach, however, has a
slight drawback. From the efficiency reasons, the system HERMES precalculates
the values of the shape functions in the integration points of the particular rule.
If we precalculated values of all shape functions for all rules of order (px, py, pz),

83

Chapter 6 – Numerical quadrature

px, py, pz ∈ {1, . . . ,P}, where P is the maximal degree of polynomials used in the
basis, the size of the tables would occupy a big portion of the computer memory.2

Possible solution of this problem is to use only quadrature rules with the same
order in all directions, i.e. instead of the rule of order (px, py, pz) we use the rule
of order (pm, pm, pm), where pm = max(px, py, pz). The advantage is that we do
not precalculate so many quadrature rules. The drawback is that we use schemes
with more integration points than necessary, which slow down the process of as-
sembling. The comparisons can be found in Section 6.6.

6.3 Alternative approaches to quadrature

In the previous section we described, how the simple numerical quadrature works.
We have seen, however, that this approach may lead to quadrature rules with very
high number of integration points and therefore to long time of calculation. In
this section we want to describe two different approaches towards the numerical
quadrature. The first one is based upon the works [30] and [21]. Ideas used there
for 2D basis functions are adapted to our slightly different approach, which allows
it’s substantial simplification. Thanks to it, the extension to 3D is possible without
much trouble.

The second alternative is presented mainly for reference. Smoljak’s schemes are
used for integration in partial differential equations in more dimensions, where
all conventional approaches fail due to the “curse of dimensionality”. If the stan-
dard product integration rule (even with just two points in each dimension) is
used, the total number of integration points would rise exponentially with number
of dimensions. It seems that the only solution is to construct sparse integration
meshes, which do not integrate exactly, but, if constructed properly, convergence
is not spoiled. It seems, however, that this idea starts to be useful for truly high-
dimensional problems and is not that suitable for 3D.

6.4 Reordering of quadrature

So far it seemed, that the right way is to optimize the amount of work needed for
calculation of every single integral, which can be achieved by selecting different
integration rules with appropriate order. Here the approach is different. We as-

2Not speaking about the time needed to perform the precalculation. It would be impossible to
precalculate all tables at the beginning. Even though we implemented system of precalculation on
demand, where only those tables, which are really needed, are precalculated on the fly, the amount
of memory consumed is still huge.

84

Chapter 6 – Numerical quadrature

semble the whole local stiffness matrix at once, using the integration rule capable
of integration of functions of maximal degree on the element. It means, that we in
fact over-integrate functions of lower order. This waste of computational time is
justified by bigger saving in different way.

We can use the fact, that both basis functions and integration rules are constructed
as Cartesian products of 1D functions and integration rules. Thanks to this struc-
ture, we can reorder the whole calculation, save some results into auxiliary fields
and use them multiple times. The core idea of this approach is that even though
each basis function is different, they are all generated as combination of relatively
small set of 1D functions. Therefore, for higher order there can be thousands of
basis functions, but they can be divided into ten groups only, in which all func-
tions are created by the same function in the x variable. In some sense this part
of integral can be calculated only once for the whole stiffness matrix comprising
many integrals.

One has to realize, that the idea is not just a simple change of the order of in-
tegration, like in Fubini’s theorem. Here we not only split the integration into
three successive 1D integrations, but also split the integrand to a product of three
functions of one variable (x, y and z). Those two operations together allow us to
precalculate auxiliary fields, which are used during the calculation multiple times.
This saves a significant amount of computational time, as will be shown in the
following.

6.4.1 The algorithm

In the articles [30], [21], the authors distinguish between vertex, edge and bubble
basis functions and use slightly different algorithm for each group. Our algorithm
does not do that and treats all types of basis functions in the same way. We con-
sider basis functions on the reference domain K = [−1,1]3 in the form

Fk1,k2,k3(ξ1,ξ2,ξ3) = f 1
k1

(ξ1) f 2
k2

(ξ2) f 3
k3

(ξ3), (6.2)

where (k1,k2,k3) ∈ M = {1, . . . ,n1}× {1, . . . ,n2}× {1, . . . ,n3}. Our goal is to
calculate all the integrals ∫

K
Fkkk(ξξξ)Fk′k′k′(ξξξ)Z(ξξξ)dξξξ , (6.3)

where kkk,kkk′ ∈ M. The integrals will be approximated by one quadrature rule ob-
tained as a product of three 1D rules with sufficiently high order in each direction.

85

Chapter 6 – Numerical quadrature

Individual 1D rules may have different order:

R1 = {(w1
i ,ξ

1
i), i = 1, . . . ,m1},

R2 = {(w2
i ,ξ

2
i), i = 1, . . . ,m2},

R3 = {(w3
i ,ξ

3
i), i = 1, . . . ,m3},

where w j
i stands for the weight and ξ

j
i for the integration point. The compound

rule then has the form:

R = {(w1
i1w2

i2w3
i3 , (ξ 1

i1, ξ
2
i2, ξ

3
i3)), i1 = 1, . . . ,m1, i2 = 1, . . . ,m2, i3 = 1, . . . ,m3},

the number of integration points being m = m1m2m3. Using the product structure
of basis functions and integration rules, the integral from (6.3) can be approxi-
mated as
m1

∑
i1=1

m2

∑
i2=1

m3

∑
i3=1

w1
i1w2

i2w3
i3 f 1

k1
(ξ 1

i1) f 2
k2

(ξ 2
i2) f 3

k3
(ξ 3

i3) f 1
k′1

(ξ 1
i1) f 2

k′2
(ξ 2

i2) f 3
k′3

(ξ 3
i3)Z(ξ 1

i1,ξ
2
i2,ξ

3
i3).

Now the summation can be reordered:
m1

∑
i1=1

w1
i1 f 1

k1
(ξ 1

i1) f 1
k′1

(ξ 1
i1)

m2

∑
i2=1

w2
i2 f 2

k2
(ξ 2

i2) f 2
k′2

(ξ 2
i2)

m3

∑
i3=1

w3
i3 f 3

k3
(ξ 3

i3) f 3
k′3

(ξ 3
i3)Z(ξ 1

i1 ,ξ
2
i2,ξ

3
i3).

Let us introduce an auxiliary field G(k3,k′3, i1, i2), where

G(k3,k′3, i1, i2) =
m3

∑
i3=1

w3
i3 f 3

k3
(ξ 3

i3) f 3
k′3

(ξ 3
i3)Z(ξ 1

i1,ξ
2
i2,ξ

3
i3). (6.4)

It is important to realize, that the just defined term really depends only on k3, k′3,
i1 and i2. Indeed, all terms depending on k1, k′1, k2 and k2 were put in front of the
last sum and i3 is being summed over.

Similarly, let us introduce another auxiliary field H(k2,k′2,k3,k′3, i1):

H(k2,k′2,k3,k′3, i1) =
m2

∑
i2=1

w2
i2 f 2

k2
(ξ 2

i2) f 2
k′2

(ξ 2
i2)G(k3,k′3, i1, i2). (6.5)

This field depends on k2 and k′2 in addition, but, thanks to the summation, it does
not depend on i2. Now the integral (6.3) can be approximated as∫

K
Fkkk(ξξξ)Fk′k′k′(ξξξ)Z(ξξξ)dξξξ ≈

m1

∑
i1=1

w1
i1 f 1

k1
(ξ 1

i1) f 1
k′1

(ξ 1
i1)H(k2,k′2,k3,k′3, i1). (6.6)

When generating the (stiffness) matrix of the integrals, we first precalculate the
field G, than the field H and finally use it to calculate all the integrals (6.6), where
kkk,kkk′ ∈M.

86

Chapter 6 – Numerical quadrature

6.4.2 Asymptotic analysis

Now let us estimate the amount of work needed to generate the stiffness ma-
trix according to the above described procedure. The numerical comparisons are
presented in Section 6.6, here we want to do just a rough estimate. As in Sec-
tion 6.2.1, we assume, that the polynomial degree of our basis functions is up to
p in each direction. Therefore we have p3 functions and the 1D integration rules,
that comprise the final integration rule, have approximately p integration points.

In Section 6.2.1, we approximated the work needed to generate the stiffness ma-
trix to O(p9). In the algorithm described above, we first precalculate field G,
which requires asymptotically O(p4) operations. Than the field H is precalcu-
lated, which requires O(p5) operations. That should be negligible in comparison
with the main part, which are calculations using the formula (6.6). There is p3

functions, therefore we have to calculate p6 integrals. But in the formula (6.6)
there is only one summation, with respect to i1. Other summations are hidden in
the auxiliary fields. Therefore the complexity of this part is O(p7).

This seems to be promising, but, on the other hand, we have to realize, that degrees
p are usually relatively small (up to 10 in our code), so the asymptotic analysis is
not sufficient to prove the value of the proposed algorithm. Comparisons of real
numbers of operations needed to calculate the stiffness matrix are presented in
Section 6.6.

6.5 Sparse schemes

The idea of sparse schemes was first introduced by Smolyak in [41]. The goal
of this approach is to construct an integration grid, similar to the simple prod-
uct grid, but with fewer points. The reason, why this is possible, is that slight
under-integration does not always spoil the convergence. However, this is a rather
complicated matter from both theoretical and practical point of view and therefore
we will restrict ourselves to this brief description.

Moreover, from the experiments and comparisons we made it seems that this ap-
proach is not the most successful for problems in three dimensions. It’s role starts
to be vital for problems in much more dimensions, which arise in various fields
including financial math. There, sparse grids seems to be the only method capable
to cope with the “curse of dimensionality”.

87

Chapter 6 – Numerical quadrature

6.6 Comparisons

In this section we want to compare different approaches to quadrature with respect
to the number of operations needed and to the CPU time. First of all we want to
show, that the CPU time needed to assembly the stiffness matrix (and, of course,
most of this time is consumed by numerical integration) is significant for calcu-
lations in 3D. This justifies the effort done to speed up the integration process.

Figure 6.1: The comparison of the performance of described methods with respect
to the simple product method. The horizontal axis corresponds to the order of
elements and the vertical one shows the ratio N/Nsimple, where Nsimple and
N stand for the numbers of operations of the simple product method and of the
particular one, respectively.

6.6.1 CPU time of assembling

The solving process in our code has two main parts, assembling and solving the
stiffness matrix. It is very complicated to compare the CPU time needed to per-

88

Chapter 6 – Numerical quadrature

form each part, because it very strongly depends on the problem setting. It de-
pends not only on the number of elements of the mesh and the orders used in the
finite element space, but also on the structure of the mesh and on the presence of
hanging nodes.

So far we did not work out a systematic and representative comparison of CPU
times for different problems, but sometimes the assembling time exceeds the time
needed to solve the resulting linear system, so faster quadrature can be very wel-
comed in some cases.

6.6.2 Performance of different quadrature techniques

In Figure 6.1 we can see a comparison of number of operations needed to assem-
bly the mass matrix for elements of various orders. On the graph we can see the
ratios of the number of operations of individual methods with respect to the simple
product method (therefore it is 1 for all polynomial degrees in the simple prod-
uct case.) Simple product method is the simplest, where each individual integral is
calculated by the same rule, whose order is given by the order of the element. This
is, of course, extremely expensive. Variable order methods use different order for
each integral depending on order of integrated functions. Isotropic variant uses
the same order for all three directions, as it was described in Section 6.2.2. Fi-
nally, the curve described as reordering corresponds to the method, that has been
described in Section 6.4. We chose to calculate the number of operations for mass
matrix, but for the stiffness matrix, the ratios would be similar.

6.6.3 Conclusions

We have shown, that the concept of reordering of summation works well and
decreases the number of operations needed to construct the local stiffness matrix.
It’s effect grows with growing order of elements. Even though incorporating into
the code might bring certain complications (we have to keep in mind, that the
method is not just a reordering of summation for one integral, but that generates
whole element’s stiffness matrix at once), it is definitively worth considering.

89

CHAPTER

SEVEN

COMPUTER IMPLEMENTATION

In the previous chapters we presented theoretical background and described algo-
rithms used for practical implementation of hp-adaptive finite element method for
3D problems. Algorithms are presented in a way, which is suitable to theoretical
analysis. In this chapter we would like to make few remarks regarding practical
implementation, as it is done in HERMES 3D. Of course, the computer code is
rather extensive and it would make no sense to describe it as a whole. Instead of
that we will focus on few areas, where the algorithmization is highly nontrivial
and may have a huge impact to the resulting code, not only from the viewpoint of
time-efficiency, but also regarding further maintainability.

7.1 Meshes with hanging nodes

The idea of dealing with hanging nodes in the mesh has been described in detail
in Chapter 3. The division of an element has been described there as removing of
one element from the mesh and adding two its sons instead. This is not exactly
what we do in the code. Elements are never removed from the mesh, we only set
an active flag to false. This approach has several advantages. It allows us to keep
the structure of the mesh, when the divided element (father) has access to indices
of its sons. In addition to this, we keep similar structure of faces. Again, we do
not remove the divided faces, we only mark them as non-active and keep indices
of its sub-faces. These structures allows us to use recursive algorithms to traverse
the mesh. Moreover, when element is to be unrefined (coarsened), we can simple
remove its sons and mark bigger element as active again.

90

Chapter 7 – Computer implementation

7.1.1 Recursive data structures

Let us describe mesh data structures very briefly. Since the code is written in C++,
most of the entities of the mesh (elements, faces, edges, vertices, boundaries, etc.)
are declared as classes. For the implementation of the algorithms it is extremely
important to be able to follow relations in the mesh (such as finding sons of refined
elements, faces of elements, neighboring elements, vertices of elements or faces,
elements and faces that are defined by given set of vertices, etc.), there are dozens
of different types of queries, that the system has to be able to handle.

An obvious solution of these needs would be to connect corresponding objects by
pointers. When pointers are used, we do not have to allocate memory in advance –
everything can be done dynamically as the number of mesh entities grows during
the adaptivity process. Pointers, however, suffer from various drawbacks. There-
fore we use indexing of mesh entities and Judy1 arrays to manage the data. Judy
arrays have many advantages. They combine sparse dynamic arrays with hash
tables to optimize speed, memory efficiency and scalability.

Some of the demanded queries, such as to find vertices of the given element, are
simple and straightforward. The class modeling a mesh element contains an array
of indices of its vertices and with this index in hand, one can retrieve vertex objects
from the array. Other queries, such as to retrieve a face given by four vertex indices
or to retrieve the vertex that lies between two given vertices, are more complex.
However, thanks to the Judy arrays they can by simply implemented. All we have
to do is to use an extra hash table for each such relation.

7.2 Assembling

In most of the FEM codes it is usual to separate the local and the global assembly
step. First local stiffness matrices are created for individual elements and then
global stiffness matrix is created, using some kind of connectivity information.
Our approach is slightly different. During the process of resolving the constrains,
we obtain information attached to each node (vertex, edge, face and element inte-
rior), a set of quadruples consisting of index of degree of freedom, index of local
basis function, its orientation variant and coefficient, with which it should be mul-
tiplied. Now we can, for each element, perform double loop over this set and for
each pair evaluate the weak form. The result of the integral is added to the appro-
priate entry of the global stiffness matrix. The correct row and column correspond
to the indices of degrees of freedom associated with it. We can see, that no local

1http://judy.sourceforge.net

91

Chapter 7 – Computer implementation

stiffness matrices are constructed and also global basis functions are in fact not
constructed. Assembling is carried out element by element and global stiffness
matrix is updated according to assembly information, constructed for each node.

7.3 Automatic adaptivity algorithm

The automatic adaptivity algorithm lies in the very core of the hp-FEM code. It’s
purpose is to identify elements, where the solution seems not to be satisfactorily
resolved and to propose an optimal way to deal with. In the case of h-adaptivity,
the situation is quite straightforward. The only thing we need is to identify el-
ements, where the solution has a higher error. Then we can simply refine these
elements, obtain a new mesh and continue with the process. There are various
sophisticated ways how to estimate the error on individual element which work
fine for the h-adaptivity. They are, however, not very useful for the case of hp-
adaptivity. The problem is, that they produce only one number as an output (the
error estimate). That is enough to identify problematic elements and also to refine
them, if we have only one option, which is the case of the h-adaptivity. For the
hp-adaptivity, more information is needed. We have to know something about the
shape of the error to be able to choose from wide range of refinement candidates
available: we can increase the order of the element (or even imply different order
in each direction) or refine the element and choose different orders for each of it’s
sub-elements.

There is no way, how an estimator producing one number only could guide the
hp-adaptivity. There are attempts to design similar estimators, that would also
decide what is the best way to refine, or at least whether it is better to refine the
element and keep the order small or to increase the order (see, e.g. [16]). Such
methods may be successful for specialized problems (mainly elliptic), but they
are not robust enough for the use in more general setting, like multi-physics prob-
lems, where more physical fields with completely different behavior are coupled
together. Extreme complexity of such problems together with the lack of theoreti-
cal results lead to skepticism about further development of general, robust enough
estimator.

At the present moment, we use the concept of a reference solution. This is a solu-
tion calculated on a finer grid and therefore more accurate. The difference between
the solution and the reference solution then can be used as an error estimate. The
main advantage is the robustness, this approach should give reasonable results for
most types of physical fields. The main disadvantage is the computational cost,
which is enormous – the cost to calculate the reference solution is bigger than the
cost of the solution itself. This is of course far from optimal, but, on the other

92

Chapter 7 – Computer implementation

hand, it is not as bad as it may seem. The reference solution is very expensive,
but it produces hp-meshes, that use only a small fraction of degrees of freedom
that h-mesh would need. Effort should be made to find another way of estimat-
ing the shape of the error, but even with the reference solution, the hp-adaptivity
has respectable results. The automatic adaptivity algorithm may be described as
follows:

1. Start with a coarse initial mesh τh,p.

2. Calculate a solution uh,p ∈Vh,p on the mesh τh,p.

3. Construct an enriched finite element space Vre f ⊃ Vh,p and find a solution
ure f ∈Vre f .

4. Construct the error function eh,p = ure f −uh,p and calculate its energy norm
Ei on each element Ki.

5. Calculate the approximation of the global error

E = ∑
Ki∈τh,p

Ei.

If E is smaller than prescribed tolerance, uh,p is the final solution of the
algorithm.

6. From the elements, that has not yet been considered and marked for refine-
ment take the element Ki ∈ τh,p with the highest error.

7. Construct a list of refinement candidates for this element.

8. Project the reference solution on each of the candidates. Choose the candi-
date with smallest projection error and mark the element for refinement.

9. According to prescribed criterion, if not enough elements were marked for
refinement, continue with step 6.

10. Perform chosen refinements for all marked elements and create a new mesh.

11. Continue with step 2.

93

Chapter 7 – Computer implementation

Refinement candidates

Special attention has to be given to step 7 – the creation of the list of refinement
candidates. The question is, whether the list should be large (then we have to
spend a lot of time performing interpolations of the reference solution), or small
(then we risk that the convergence may be slower, since we will not choose the
optimal refinement).

There are many ways, how candidates may be constructed. The first way is in-
creasing the order of the element – it may be increased by 1, by 2 (or more), or we
can increase the order in some directions only. The second possibility is to split
the element to more sub-elements. It can be halved (3 possible ways), divided to
4 (another 3 ways) or 8 sub-elements. Now there is question of redistributing or-
ders. Even if we consider the case of 8 sub-elements only, if we wanted to employ
all possible combinations of 3 different smaller orders to be issued to individual
sub-elements, we would have 38 possibilities how to do it. And if we would like
to consider anisotropic orders, we would end up with tens or even hundreds of
thousands of candidates (if all possibilities of choice were combined).

It is hard to set objective criterion to decide the optimal way. But according to our
simulations, limiting the number of candidates does not damage the convergence
significantly. In our experiments we used anisotropic orders only for candidates
without elements splitting (increasing the order in different ways) and we limited
the number of different order combinations for element splitting. This area should
be, however, studied more rigorously to find an optimal strategy, although it may
be problem-dependent.

7.4 Solution of the linear system

The final step of the calculation is solving a very large set of linear equations with
relatively sparse matrix. Of course, using meshes with hanging nodes results in
more dense matrices, since the support of basis functions involve more elements
and therefore there are more “interactions” between individual global basis func-
tions. Despite this fact, matrices still may be described as sparse.

As usually, there are two main possibilities to solve the system, to use iterative
(see e.g. [38]) or direct (see e.g. [13]) solvers. Both of them have well known
advantages and drawbacks. We usually prefer to use the direct solver UMFPACK2

because of the possibility to use it for various types of matrices resulting from
different physical fields, without the necessity of employing preconditioners to

2http://www.cise.ufl.edu/research/sparse/umfpack

94

Chapter 7 – Computer implementation

ensure convergence of the method. But system HERMES allows to use any type
of method, the choice is on the user.

95

CHAPTER

EIGHT

NUMERICAL EXAMPLES

In this chapter we want to present some numerical examples, that prove abilities of
the implementation of the method. Their aim is not to calculate real engineering
problems, but to show advantages of the hp-adaptivity on meshes with arbitrary-
level hanging nodes over simpler methods.

8.1 Distribution of electrostatic potential in the Fichera
corner domain

The first example to be presented is finding the distribution of the electrostatic
potential in Fichera corner domain. The problem is to solve the Poisson’s equation
in a domain, where it exhibits singularity. It will show the idea, that it is most
efficient to use small low-order elements close to the singularity and large higher-
order elements in areas, where the solution is smooth. Of course, the mesh is a
product of completely automatic adaptivity process, that has been described in the
previous text. The problem is given by the following equation:

−∆u = f in Ω,

u = uD on ∂Ω,

where Ω = (−1,1)3 \ [0,1]3 and f and uD are chosen to comply with the exact
solution

u(x1,x2,x3) = (x2
1 + x2

2 + x2
3)

1/4.

96

Chapter 8 – Numerical examples

Figure 8.1: Exact solution and its gradient on the Fichera corner domain.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

E
rr

or
 [%

]

Degrees of Freedom

linear
quadratic

hp

Figure 8.2: The convergence curves for adaptive FEM on meshes with arbitrary
level hanging nodes using linear, quadratic and various orders (hp-FEM), respec-
tively. Relative error in H1 norm is shown on the vertical axis as a function of the
number of DOFs.

97

Chapter 8 – Numerical examples

Figure 8.3: The hp meshes for the Fichera corner domain problem. We can see
initial mesh (top-left), mesh after 9 refinement steps (top-right) and final mesh
with detail of the singularity (bottom).

The missing part of the cube represents a metallic object. The solution, represent-
ing the electric potential in the surrounding air is smooth, but its gradient exhibits
a strong singularity near the re-entrant corner. The exact solution and the gradient
are depicted in Figure 8.1.

In Figure 8.3 we can see several meshes, that are obtained successively in the
adaptivity process. It starts with simple mesh consisting of seven quadratic ele-
ments only. During the adaptivity process, elements are refined towards the sin-
gularity and also large higher-order elements appear in areas, where the solution

98

Chapter 8 – Numerical examples

is smooth. This is in a good accordance with the theory.

Figure 8.4: Exact solution of the shock problem.

It can be seen from the convergence curve in Figure 8.2 that the hp-FEM out-
performs both piecewise-linear and piecewise-quadratic FEM significantly. Ob-
viously if one does not require very small relative error, quadratic, or even linear
elements can be used. On the other hand, if one needs really good approximation
with relative error below 0.1 percent, both linear and quadratic approximations
become too expensive and hp-FEM is the most suitable from compared methods.

8.2 Shock problem

In the second example we solve the same elliptic equation, but this time we con-
struct the exact solution in such a way that instead of point singularity there is
internal layer with large gradient. The problem is taken from [14]. We solve

99

Chapter 8 – Numerical examples

Poisson’s equation with mixed boundary conditions:

−∆u = f in Ω,

u = uD on ΓD,

∂u
∂n

= g on ΓN,

where Ω = [0,1]3, ΓD consists of faces of Ω lying in planes x = 0, y = 0 and z = 0
and ΓN consist of the remaining faces.

Figure 8.5: Mesh after 8 iterations of the shock problem.

The data f , uD and g are chosen to comply with the exact solution

u(r) = tan−1(α(r− r0)),

where r stands for the distance of a point xxx from the point (1/4,1/4,1/4) rep-
resenting the center of the sphere, r = |xxx− (1/4,1/4,1/4)| and r0 =

√
3 repre-

sents radius of the sphere. The internal layer is created by function tan−1(αx),
which, for large α , grows very steeply close to x = 0, while being smooth (almost

100

Chapter 8 – Numerical examples

constant) otherwise. We choose parameter α = 40, where this sharp transition
of tan−1(αx) around x = 0 (and therefore sharp transition of the exact solution
around the described sphere) is very significant. Exact solution with sharp inter-
nal layer can be seen in Figure 8.4.

Figure 8.6: The convergence curves for different methods. First two correspond
to adaptivity with linear quadratic elements. The other two correspond to calcula-
tions on regular fixed meshes consisting of 8 and 64 elements, respectively, using
order from 1 to 10. Last curve shows hp-adaptivity. Relative error in energy norm
is shown on the vertical axis as a function of the number of DOF.

We performed several calculations for different variants of the finite element meth-
od. The comparison of convergence curves can be seen in Figure 8.6. We used
h-adaptivity for linear and quadratic elements, as in the previous example. In
addition, we compare also the p-method. We performed calculations on regular
fixed meshes obtained by splitting the computational domain into 8 and 64 cubic
elements, respectively. On these meshes we always prescribe constant order p for
p = 1, . . . ,10. Finally we used hp-FEM method.

An example of the hp mesh can be seen in Figure 8.5. We can see very small

101

Chapter 8 – Numerical examples

elements around the internal layer. More of the higher-order elements are inside
of the domain, so they cannot be visible in the figure. We can also see exam-
ples of second-level hanging nodes. In convergence comparison in Figure 8.6 we
can see, that, again, hp-adaptivity outperforms the other methods that have been
considered.

8.3 HHHcurl example

Finally, let us present a simple numerical example using the HHHcurl space. The
HHHcurl space is used to model electromagnetic problems. In this work we want
to show a simple situation only. It will prove the benefits of higher-order HHHcurl

elements, that have been described in Chapter 5.

Figure 8.7: Exact solution of the HHHcurl problem.

In this example we compare the rate of convergence of uniform refinements in
space (with all elements having the same order) with the rate of convergence of
calculation on a fixed mesh with increasing order of elements. So no adaptivity is

102

Chapter 8 – Numerical examples

Figure 8.8: Comparison of convergence. First three curves correspond to uniform
refinements of the whole mesh using the same order 0, 1 or 2, respectively, for
all elements. Two other curves show convergence of p method on fixed mesh
consisting of 8 and 64 elements with uniformly increasing orders. Unlike in the
previous examples, no adaptivity is used.

involved in this case. We solve the equation

∇∇∇×∇∇∇× EEE− EEE = ΦΦΦ in Ω,

which is a special case of (5.1). We consider boundary condition

EEE×ννν = 0

on the whole boundary. The right hand side of the equation ΦΦΦ is chosen in such
way, that the exact solution is

EEE(x,y,z) = (xcos(y)cos(z),ycos(z)cos(x),zcos(x)cos(y))T .

The exact solution is depicted in Figure 8.7. We can see, that the boundary condi-
tion is satisfied for this function, since all vectors on the boundary are perpendic-
ular to it.

103

Chapter 8 – Numerical examples

In Figure 8.8 we can see the comparison of errors, obtained by solving the problem
with constant low order on successively uniformly refined meshes on one side and
using one mesh with increasing order of elements on the other. The exact solution
is very smooth, therefore it is not surprising, that better results are obtained using
few elements with higher order. In fact, the best convergence is obtained using
mesh with eight elements only with increasing order.

104

CHAPTER

NINE

CONCLUDING REMARKS

In this short final chapter we want to conclude our work and also point out some
directions, in which the further development might go. As was mentioned in the
preface, the main goal of this work was to create, implement and test algorithms
for hp-adaptive finite element method, that uses conforming basis functions on
meshes with arbitrary distribution of hanging nodes in three spatial dimensions.
The main goals have been achieved, as we can see from the above description
of algorithms and from the presented numerical examples, that have been solved
using our code.

What first might have seemed as quilt straightforward extension of the 2D code,
turned out to be algorithmically much more demanding in 3D. Namely handling
of hanging nodes in 3D meshes and proper construction of global basis functions
become very difficult to implement, since there are many different situations that
have to be taken into account. In addition to that, visualization and therefore also
testing is much more demanding in 3D. Finally, a necessity of more systematic
approach become clear. The results of this effort were presented in the main part
of this thesis. Despite all described problems, we succeeded to deliver functional
code capable of solving benchmark problems.

The main part of this thesis is formed by a formal description and analysis of
the most difficult parts of the implementation, which comprise mesh handling,
following relations and constrains in the mesh and construction of conforming
global basis functions of higher order. This is preceded by short, but hopefully
sufficiently comprehensive introduction to the theory. It also suggests sources
for more detailed study of the field. The last part of the thesis is dedicated to

105

Chapter 9 – Concluding remarks

computer realization of the described algorithms. First we analyze possibilities
of faster numerical integration and make few remarks about the implementation.
Then, in the last chapter, several numerical results are presented. The included
convergence comparisons show advantages of the selected method.

The development of the HERMES 3D project is an ongoing process. The next
step is the extension of internal data structures and algorithms necessary for solv-
ing coupled and time-dependent problems. The recent development goes in the
direction of unifying common parts of HERMES 3D with HERMES 2D. This
should solve the problems, since the missing features are similar for both 2D and
3D codes. This will conclude the first phase of the development of HERMES 3D.

There are, however, many efficiency-related issues, that have to be addressed.
They are basically the same for 2D and 3D, but are more necessary for 3D, since
calculations there are much more time demanding and without some improve-
ments, the software would not be suitable for complex engineering problems
solved on complicated geometries. The first group of improvements are strictly
computer-related. Some of them are simple optimizations, that may save a lot of
computer time in the phase of numerical integration and construction of stiffness
matrix. For example, when elements in the mesh are cuboids and the weak form
does not depend explicitly on space coordinates, one can precalculate local stiff-
ness matrix and use it for all elements, which will speed up the assembly process
dramatically.

When such conditions are not satisfied, a more general approach of evaluating
each individual local stiffness matrix has to be used (as it is implemented now).
However, there is still a possibility of huge savings of the CPU time by employ-
ing parallelism. Introduction of shared memory multiprocessing would be quite
straightforward – by using OpenMP we can parallelize evaluation of integrals or
even the whole local stiffness matrices, since those calculations are independent.
Using MPI in order to turn HERMES into fully parallel application, capable of
running on clusters, would require more effort. On the other hand, it could be
simplified by using specialized libraries such as PETSc, that would take care of
parallel matrix handling and solution of the linear problem.

Probably the most demanding possible improvements require more substantial
changes to the whole adaptive algorithm. The most time-consuming part of the
calculation is finding of the reference solution. If we found a way, how to avoid
it, we would save a lot. The standard way, how to guide adaptivity procedure by
using analytical estimator of the error (see, e.g. [2]) does not, however, meet our
needs. For the hp-adaptivity we need to estimate not only the size of the error, but
also its shape if we want to be able to select appropriate refinement candidates.
Moreover, we want the method to be robust and problem-independent, so that it

106

Chapter 9 – Concluding remarks

can be used for various types of coupled problems without further adjustments.
Deriving analytical estimators with such conditions would be extremely hard, if
not impossible.

One of the possible solutions to this problem would be to solve more reference
problems on smaller parts of the domain, which may be faster, but hopefully will
still provide enough information to guide the hp-adaptivity. This idea is among
those, that should be investigated in the future.

107

BIBLIOGRAPHY

[1] M. Ainsworth and J. Coyle. Hierarchic hp-edge element families for
Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput.
Methods Appl. Mech. Engrg., 190:6709–6733, 2001.

[2] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Ele-
ment Analysis. John Wiley & Sons, Inc, New York, 2000.

[3] I. Babuška and B. Q. Guo. Approximation properties of the hp version of the
finite element method. Comput. Methods Appl. Mech. Engrg., 133:319–346,
1996.

[4] I. Babuška and T. Strouboulis. Finite Element Method and Its Reliability.
Clarendon Press, Oxford, 2001.

[5] I. Babuška and M. Suri. The p- and hp-versions of the finite element method.
Comput. Methods Appl. Mech. Engrg., 80:5–26, 1990.

[6] D. Bachman. A Geometric Approach to Differential Forms. Birkhäuser,
Boston, 2006.

[7] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II - A general-purpose
object-oriented finite element library. ACM Trans. Math. Softw., 33(4):24,
2007.

[8] P. Bochev and J. Hyman. Principles of mimetic discretizations of differential
operators. Compatible Spatial Discretizations, pages 89–120, 2006.

[9] A. Bossavit. Computational Electromagnetism: Variational Formulation,
Edge Elements, Complementarity. Academic Press, Boston, 1998.

[10] A. Bossavit and J. Verite. A mixed fem-bem method to solve 3D eddy current
problems. IEEE Trans. Magn., 18:431–435, 1982.

108

BIBLIOGRAPHY

[11] J. Brandts, S. Korotov, M. Křížek, and J. Šolc. On nonobtuse simplicial
partitions. SIAM Rev., 51(2):317–335, 2009.

[12] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and
Applications of Finite Element Analysis. John Wiley & Sons, Inc, Hoboken,
1974.

[13] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia,
2006.

[14] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and
A. Zdunek. Computing with hp-Adaptive Finite Elements, Volume 2. Chap-
man & Hall/CRC Press, Boca Raton, 2008.

[15] L. Demkowicz, D. Pardo, and W. Rachowicz. 3D hp-adaptive finite ele-
ment package (3dhp90). TICAM Report 02-24, University of Texas at Austin,
2002.

[16] L. Demkowicz, W. Rachowicz, and P. Devloo. A fully automatic hp-
adaptivity. TICAM Report 01-28, University of Texas at Austin, 2001.

[17] L. Demkowicz et al. Toward a universal hp-adaptive finite element strategy.
part 1: constrained approximation and data structure. Comput. Methods
Appl. Mech. Engrg., 77:79–112, 1989.

[18] L. Demkowicz et al. De Rham diagram for hp-finite element spaces. Com-
put. Math. Appl., 39:29–38, 2000.

[19] L. Dubcová. hp-FEM for coupled problems in fluid dynamics. Doctoral
thesis, Charles University, Prague, 2010.

[20] L. Dubcová, P. Šolín, J. Červený, and P. Kůs. Space and time adaptive two-
mesh hp-finite element method for transient microwave heating problems.
Electromagnetics, 30(1):23–40, 2010.

[21] T. Eibner and J. M. Melenk. Fast algorithms for setting up the stiffness
matrix in hp-fem: a comparison. Numerical Analysis Report 3/05.

[22] P. Frauenfelder and C. Lage. Concepts - An object-oriented software pack-
age for partial differential equations. M2AN, 36(5):937–951, 2002.

[23] J. Jin. The Finite Element Method in Electromagnetics. John Wiley & Sons,
Inc, New York, 2002.

109

BIBLIOGRAPHY

[24] G. E. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Com-
putational Fluid Dynamics. Oxford University Press, New York, 2005.

[25] S. Korotov and M. Křížek. Local nonobtuse tetrahedral refinements of a
cube. Appl. Math. Letters, 16:1101–1104, 2003.

[26] P. Kůs. Integration in higher-order finite element method in 3D. Proceedings
PANM 2010, Dolní Maxov, pages 131–136, 2010.

[27] P. Kůs, P. Šolín, and I. Doležel. On adaptive hp-FEM with arbitrary-level
hanging nodes in 3D. Proceedings ENUMATH 2007, Graz, Austria, 2007.

[28] P. Kůs, P. Šolín, and I. Doležel. Solution of 3D singular electrostatics prob-
lems using adaptive hp-FEM. COMPEL, 27(4):939–945, 2008.

[29] J. M. Melenk. hp-Finite Element Methods for Singular Perturbations.
Springer-Verlag, Berlin Heidelberg, 2002.

[30] J. M. Melenk, K. Gerdes, and C. Schwab. Fully discrete hp-finite elements:
Fast quadrature. Research Report No. 99-15, 1999.

[31] P. Monk. An analysis of Nédélec’s method for spatial discretization of
Maxwell’s equations. J. Comput. Appl. Math, pages 103–121, 1993.

[32] P. Monk. On the p- and hp-extension of Nédélec’s h(curl)-conforming ele-
ments. J. Comput. Appl. Math., pages 117–137, 1994.

[33] P. Monk. Finite Element Methods for Maxwell’s Equations. Clarendon Press,
Oxford, 2002.

[34] G. Mur. Edge elements, their advantages and their disadvantages. IEEE
Trans. Magn., 30:3552–3557, 1994.

[35] J. C. Nédélec. A new family of mixed finite elements in R3. Numer. Math.,
50:57–81, 1986.

[36] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential
Equations. Springer-Verlag, Berlin, 1997.

[37] P. A. Raviart and J. M. Thomas. Primal hybrid finite element methods for
second-order elliptic equations. Math. Comput., 31:391–413, 1997.

[38] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia,
2003.

110

BIBLIOGRAPHY

[39] A. Schröder. Constraints coefficients in hp-FEM. Proceedings of ENU-
MATH Conference, Graz, Austria, pages 183–190, 2007.

[40] C. Schwab. p- and hp-Finite Element Methods. Calderon Press, Oxford,
1998.

[41] S. A. Smolyak. Quadrature and interpolation formulas for tensor product of
certain classes of functions. Dokl. Akad. Nauk, pages 240–243, 1963.

[42] B. Szabo and I. Babuška. Finite element analysis. John Wiley & Sons, New
York, 1991.

[43] J. Červený. Adaptive finite element methods for nonlinear coupled problems.
Master Thesis, University of Texas at El Paso, 2007.

[44] T. Vejchodský, P. Šolín, and M. Zítka. On some aspects of the hp-FEM for
time-harmonic Maxwell’s equations. Numerical Mathematics and Advanced
Applications (Proceedings of ENUMATH 2005), pages 691–699, 2006.

[45] T. Vejchodský, P. Šolín, and M. Zítka. Modular hp-FEM system HERMES
and its application to the Maxwell’s equations. Math. Comp. Simul., 76:223–
228, 2007.

[46] P. Šolín. Partial Differential Equations and the Finite Element Method. John
Wiley & Sons, Inc, Hoboken, New Jersey, 2004.

[47] P. Šolín, L. Dubcová, and I. Doležel. Adaptive hp-FEM with arbitrary-level
hanging nodes for Maxwell’s equations. Adv. Apl. Math. Mech, 2(4):518–
532, 2010.

[48] P. Šolín, K. Segeth, and I. Doležel. Higher-Order Finite Element Methods.
Chapman & Hall/CRC Press, Boca Raton, 2004.

[49] P. Šolín, J. Červený, and I. Doležel. Arbitrary-level hanging nodes and au-
tomatic adaptivity in the hp-FEM. Math. Comput. Simulation, 2007.

[50] P. Šolín, M. Zítka, and I. Doležel. On a hp-finite element method for singular
electro- and magnetostatic problems. Proceedings of ISEF, Baiona, Spain,
2005.

[51] H. Whitney. Geometric Integration Theory. Princeton University Press,
Princeton, 1957.

[52] M. Zítka. On some aspects of adaptive higher-order finite element method
for three-dimensional elliptic problems. Doctoral thesis, Charles University,
Prague, 2008.

111

