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Abstract

The purpose of this work is to investigate continuous dependence on

parameters for generalized linear differential equations in a Banach space-

valued setting. More precisely, we establish a theorem inspired by the clas-

sical continuous dependence result due to Z. Opial. In addition, our second

outcome extends, to Banach spaces, the result proved by M. Ashordia in the

framework of finite dimensional generalized linear differential equations.

Roughly speaking, the continuous dependence derives from assumptions of

uniform convergence of the functions in the right-hand side of the equations,

together with the uniform boundedness of variation of the linear terms Fur-

thermore, applications of these results to dynamic equations on time scales

and also to functional differential equations are proposed.

Besides these results on continuous dependence, we complete the theory

of abstract Kurzweil-Stieltjes integration so that it is well applicable for our

purposes in generalized linear differential equations. In view of this, our

contributions are related not only to differential equations but also to the

abstract Kurzweil-Stieltjes integration theory itself.

The new results presented in this work are contained in the papers [26]

and [27], both accepted for publication.





Resumo

O objetivo deste trabalho é investigar a dependência contı́nua de soluções

em relação a parâmetros para equações diferenciais lineares generalizadas no

contexto de espaços de Banach. Mais precisamente, apresentamos um teo-

rema inspirado no resultado clássico de dependência contı́nua obtido por

Z. Opial. Nosso segundo resultado estende, para espaços de Banach, o

provado por M. Ashordia no contexto de equações diferenciais lineares gen-

eralizadas em dimensão finita. Em linhas gerais, a dependência contı́nua

decorre da convergência uniforme das funções à direita das equações, junta-

mente com a limitação uniforme da variação dos termos lineares. No mais,

são propostas aplicações desses resultados em equações dinâmicas em es-

calas temporais e também em equações diferenciais funcionais.

Além dos resultados em dependência contı́nua, completamos a teoria de

integração abstrata de Kurzweil-Stieltjes de modo que esta se adeque aos

nossos propósitos em equações diferenciais lineares generalizadas. Assim,

nossas contribuições dizem respeito não apenas a equações diferenciais, mas

também a teoria de integração abstrata de Kurzweil-Stieltjes em si.

Os resultados originais apresentados neste trabalho estão contidos nos

artigos [26] e [27], ambos aceitos para publicação.
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Introduction

The theory of generalized ordinary differential equations (generalized ODEs) has its roots in

the work of the Czech mathematician Jaroslav Kurzweil, see [24] and [25]. In particular, it was a

problem on continuous dependence on parameters which inspired J. Kurzweil to define such notion

of equations in 1957.

After Jaroslav Kurzweil, the problem of continuous dependence on a parameter for generalized

ODEs has been investigated by several authors as, for instance, Š. Schwabik [32], M. Ashordia [3],

D. Fraňková [12], M. Tvrdý [43], Z. Halas and M. Tvrdý [18]. Although, it seems that, up to now,

only in [1] the problem was treated for infinite dimensional spaces.

The theory of generalized ODEs in a general Banach space setting enables the investigation

of continuous and discrete systems from a common understanding. Indeed, the existence of cer-

tain correspondence between generalized ODEs and other types of differential systems, such as,

functional differential equations, equations with impulses, dynamic equations on time scales, are

well-known facts. See, for instance, [10], [23], [29], [32] or [39]. All these together represent good

reasons for revisiting the problem of continuous dependence on parameters for generalized ODEs,

once the existing correspondences may allow us to translate the obtained results for other theories

of differential equations.



12 Introduction

In the present work, we deal with integral equations of the form

x(t) = x̃+

∫ t

a

d[A(s)] x(s) + f(t)− f(a), t ∈ [a, b ] , (I)

where−∞<a< b<∞, X is a Banach space, x̃ ∈ X, A: [a, b ]→X is a function of bounded vari-

ation on [a, b ], f : [a, b ]→X is regulated on [a, b ] and the integral is understood in the Kurzweil-

Stieltjes’ sense.

The equation (I) is a special case of generalized ODEs, namely a linear equation, in its in-

tegral form. Concerning this type of equations for functions with values in a Banach space, the

contributions by Š. Schwabik in [33] and [34] are essential.

Our aim in this work is to present new results on continuous dependence on parameters which

are valid in a very general Banach space setting, for generalized ODEs of the type (I).

In order to do that, a better knowledge of abstract Kurzweil-Stieltjes-type of integral is needed.

This is the content of Chapter 1, where, together with the basic theory of such integral, we present

also some new results which will be important throughout the development of the thesis. We

mention that the new results contained in this chapter are described in the paper [26], to appear.

In the second chapter, we study equation (I). Some well-known properties of solutions of gene-

ralized linear differential equation are given in the first section. In the remaining of the chapter, we

establish two new results on continuous dependence on parameters. In summary, such results gen-

eralizes in some aspects the work by M. Ashordia, Z. Opial, Š. Schwabik, Z. Halas and M. Tvrdý,

in their respective papers [3], [30], [32] and [18]. Indeed, our Theorem 2.4, treating homogeneous

equations, was inspired in the result given Z. Opial for linear ordinary differential equation (cf. [30,

Theorem 1]). In addition, our main theorem in Section 2.3 has general assumptions in comparison

with the continuous dependence result found in [32]. This fact is pointed out in Propositions 2.11

and 2.12. The new results described in this chapter are contained in the paper [27], to appear.

The following two chapters are devoted to applications of the results obtained in Chapter 2 to

other differential equations theories. In Chapter 3, we obtain new results on continuous dependence

on parameters for linear dynamic equations on time scales via generalized ODEs. Concerning the

results presented in this chapter, let us mention that, Theorems 14 and 16 from [39], when restricted

to the linear case, follow as a consequence of our Theorem 3.3.
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The Chapter 4 concerns functional differential equations. At first, we show that, under an

assumption of Lipschitz-type, the existence of solution of the linear problem in functional diffe-

rential equation is guaranteed by existence of solution of the corresponding generalized linear

differential equation. Such procedure is a particular case of the one described by M. Federson and

Š. Schwabik in [10]. We conclude the chapter using the established correspondence to derive new

continuous dependence results for linear functional differential equations. It is worth highlighting

that our Theorem 4.4, provide a more general result than previous one, such as [10, Theorem 4.1]

and [11, Theorem 3.4] when restricted to linear equations with no impulses.





CHAPTER

1

Kurzweil-Stieltjes integration theory in

Banach space

The extension to Banach space-valued functions of integrals which are based on Riemann type

sums, such as the Kurzweil-Henstock and the McShane integrals, have been studied by many

authors. Among other contributions it is worth highlighting the monograph by Š. Schwabik and

G. Ye [37] which studies these type of integrals and their connections with the classic integrals

due to Bochner and Pettis. Concerning integrals of Stieltjes-type, C. S. Hönig presented a quite

complete study in [22] dealing with the interior integral, also known as Dushnik integral.

In this work, we deal with integral equations in the framework of Kurzweil-Stieltjes integral for

Banach space valued-functions, also called abstract Perron-Stieltjes integral. This chapter is de-

voted to the study of these integral. We collect some known results (see [33]) and we complete the

theory in such a way that the results we obtain are used in the following chapters. In particular, we

establish an Integration by Parts result under assumptions covered neither by Š. Schwabik [36] nor

15
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by K. M. Naralenkov [28]. Enclosing this chapter, two Substitution theorems, which complement

those treated by M. Federson in [7], are presented.

1.1 Preliminaries

In this section, we introduce the basic notions related to the abstract Kurzweil-Stieltjes integral.

The main references for this section are [22] and [33].

Let N = {1, 2, . . .} and R be the set of real numbers.

Throughout this work, X is a Banach space and L(X) is the Banach space of bounded linear

operators on X . By ‖ · ‖X and ‖ · ‖L(X) we denote the norm in X and the usual operator norm in

L(X) respectively. In particular, if X = R
m, for some fixed m ∈ N, the norm will be denoted by

single bars, | · |.

Assuming −∞<a< b< +∞, [a, b ] stands for the closed interval, (a, b) is its interior and

(a, b ], [a, b) are the corresponding half-closed intervals.

A division of [a, b ] is any finite set D = {α0, α1, . . . , αν(D)} with

a=α0<α1< . . . <αν(D) = b .

The set of all divisions of [a, b ] is denoted by D[a, b ].

We say f : [a, b ]→X is a finite step function on [a, b ], if there is a divisionD= {α0, . . . , αν(D)}

of [a, b ] such that f is constant on (αj−1, αj), for each j=1, 2, . . . , ν(D).

For an arbitrary function f : [a, b ]→ X ,

varba f = sup





ν(D)∑

j=1

‖f(αj)− f(αj−1)‖X ; D∈D[a, b ]





denotes the variation of f on [a, b ]. When varbaf < ∞, the function f is of bounded variation

on [a, b ]. By BV ([a, b ], X) we denote the Banach space of all X-valued functions of bounded

variation on [a, b ], equipped with the norm ‖f‖BV = ‖f(a)‖X + varbaf .
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Assume B = (L(X), X,X) is the bilinear triple obtained using the bilinear form

B : L(X)×X → X, B(A, x) = Ax ∈ X, for A ∈ L(X) and x ∈ X.

With respect to this bilinear triple B, we will now present general notions of bounded variation and

regulated functions.

Given F [a, b ] → L(X), f : [a, b ]→X and a division D= {α0, α1, . . . , αν(D)} of the interval

[a, b ], consider

V b
a (F,D) = sup





∥∥∥
ν(D)∑

j=1

[F (αj)− F (αj−1)] yj

∥∥∥
X
; yj ∈ X, ‖yj‖X ≤ 1





and

vba(f,D) = sup





∥∥∥
ν(D)∑

j=1

Fj [f(αj)− f(αj−1)]
∥∥∥
X
; Fj ∈ L(X), ‖Fj‖L(X) ≤ 1



 .

We define the B-variation of F on [a, b ] as

(B) varbaF = sup{V b
a (F,D) ; D ∈ D[a, b ]}

(also known as semi-variation of F , cf. [22]). Analogously, we define the B-variation of f on

[a, b ] as

(B) varbaf = sup{vba(f,D) ; D ∈ D[a, b ]}.

The notation (B)BV ([a, b ], L(X)) stands for the set of all functions F : [a, b ] → L(X) of

bounded B-variation on [a, b ], that is, (B) varba(F ) <∞, in which we consider the norm

‖F‖SV = ‖F (a)‖L(X) + (B) varbaF.

It is worth highlighting that, in the finite dimensional case, the concepts of bounded variation and

bounded B-variation are equivalent.

Now, let us recall that a function f : [a, b ]→ X is regulated on [a, b ], if the one-sided limits

f(t−) = lim
s→t−

f(s) and f(t+) = lim
s→t+

f(s)
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exist at every point of t ∈ [a, b ] (by convention f(a−) = f(a) and f(b+) = f(b)). For t∈ [a, b ],

we put ∆+f(t) = f(t+)− f(t) and ∆−f(t)=f(t)−f(t−).

By G([a, b ], X) we denote the set of all regulated functions f : [a, b ]→X , which is a Banach

space when endowed with the usual supremum norm

‖f‖∞ = sup{ ‖f(t)‖X ; t∈ [a, b ]}.

Clearly, C([a, b ], X) ⊂ G([a, b ], X), where C([a, b ], X) is the Banach space of all continuous

functions from [a, b ] to X .

A function F : [a, b ]→ L(X) is B-regulated on [a, b ] (or weakly regulated on [a, b ], cf. [22]),

if for every x ∈ X , with ‖x‖X ≤ 1, the function t ∈ [a, b ] 7−→ F (t) x is regulated. Similarly,

f : [a, b ] → X is B-regulated on [a, b ], if the function t ∈ [a, b ] 7−→ T f(t) is regulated for all

T ∈ L(X) with ‖T‖L(X) ≤ 1.

The set of all B-regulated operator valued functions is denoted by (B)G([a, b ], L(X)).

The next proposition presents some interesting properties of the classes of functions described

before.

Proposition 1.1. The following assertions hold:

(i) [22, Theorem I.3.1] Every regulated function f : [a, b ]→X is the uniform limit of finite step

functions.

(ii) [22, Corollary I.3.2.b] The set of all discontinuities of a regulated function f : [a, b ]→X is

at most countable.

(iv) [21, Theorem I.2.7] BV ([a, b ], L(X)) ⊂ G([a, b ], L(X)).

(v) [33, Proposition 1] If F ∈ BV ([a, b ], L(X)), then F ∈ (B)BV ([a, b ], L(X)) and

(B) varbaF ≤ varbaF .

(vi) [33, Proposition 3] G([a, b ], L(X)) ⊂ (B)G([a, b ], L(X)).

The next lemma presents an estimate which is well-known in the finite dimensional case for

Banach space-valued functions.
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Lemma 1.2. If g ∈BV ([a, b], X), then
∑

t∈[a,b)

‖∆+g(t)‖X +
∑

t∈(a,b]

‖∆−g(t)‖X ≤ varba g .

Proof. By Proposition 1.1 (ii), the set of discontinuties of g in the interval (a, b) can be written

as {tk ∈X ; k ∈N }. We can assume, without loss of generality, that tk < tk+1, k ∈ N. For each

n ∈ N, define

Sn = ‖∆
+g(a)‖X + ‖∆−g(b)‖X +

n∑

k=1

[
‖∆−g(tk)‖X + ‖∆+g(tk)‖X

]
.

Let ε > 0 and n∈N be given. Since g ∈ G([a, b], X) (see Proposition 1.1 (iv)), for each

k = 1, 2, . . . , n, choose δk > 0 in such a way that

‖g(tk + δk)− g(tk+)‖X <
ε

4 (n+1)
, ‖g(tk− δk)− g(tk−)‖X <

ε

4 (n+1)

and [tk − δk, tk + δk] ∩ {t1, t2, . . . , tn} = {tk} . Analogously, let δ0 > 0 be such that

‖g(a+ δ0)− g(a+)‖X<
ε

4
, ‖g(b−)− g(b− δ0)‖X<

ε

4
.

and also a+δ0< t1 and b−δ0> tn . It follows that

Sn ≤
(
‖g(a+)− g(a+ δ0)‖X + ‖g(a+ δ0)− g(a)‖X

)

+
n∑

k=1

‖g(tk+)− g(tk + δk)‖X +
n∑

k=1

‖g(tk + δk)− g(tk)‖X

+
n∑

k=1

‖g(tk−)− g(tk− δk)‖X +
n∑

k=1

‖g(tk− δk)− g(tk)‖X

+
(
‖g(b)− g(b− δ0)‖X + ‖g(b− δ0)− g(b−)‖X

)

<
ε

4
+ ‖g(a+δ0)− g(a)‖X +

n ε

4 (n+1)
+

n∑

k=1

‖g(tk+δk)− g(tk)‖X

+
n ε

4 (n+1)
+

n∑

k=1

‖g(tk)− g(tk−δk)‖X + ‖g(b)− g(b−δ0)‖X +
ε

4

that is, for each n ∈ N,

Sn < ε+
(
‖g(a+ δ0)− g(a)‖X +

n∑

k=1

‖g(tk + δk)− g(tk)‖X

)

+
( n∑

k=1

‖g(tk)− g(tk− δk)‖X + ‖g(b)− g(b− δ0)‖X

)
.
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Hence Sn ≤ varbag, for all n ∈ N. Since

∑

t∈[a,b)

‖∆+g(t)‖X +
∑

t∈(a,b]

‖∆−g(t)‖X = lim
n→∞

Sn ,

the expected estimate holds. �

1.2 Kurzweil-Stieltjes integral

Concerning Kurzweil-Stieltjes integral for functions taking values in a Banach space, the con-

tribuitions of M. Federson in [7] and also Š. Schwabik in [33] and [36] are essential. In this section,

we collect and extend some of these results.

Let us recall the definition of the Kurzweil-Stieltjes integral.

As usual, a partition of a interval [a, b ] is a tagged division, P = (ξ,D), where D∈D[a, b ],

withD={α0, α1, . . . , αν(D)} and ξj ∈ [αj−1, αj ], j = 1, 2, . . . , ν(D) . Alternatively, we can write

P = (ξj, [αj−1, αj]) instead of P = (ξ,D).

A gauge on [a, b ] is any positive function δ:[a, b ]→(0,∞). Further, given a gauge δ on [a, b ],

a partition P = (ξj, [αj−1, αj]) is called δ-fine, if

[αj−1, αj] ⊂ (ξj − δ(ξj), ξj + δ(ξj)), for j = 1, 2, . . . , ν(P ) .

Given an arbitrary gauge δ on [a, b ], there exists at least one δ-fine partition of [a, b ]. This result is

known as Cousin’s Lemma, see [19, Theorem 4.1], for instance.

Definition 1.3. Let F : [a, b ]→ L(X) and g : [a, b ]→ X be given.

(i) The Kurzweil-Stieltjes integral (or shortlyKS-integral) of F with respect to g on [a, b ] exists,

if there is I ∈X satisfying: for every ε > 0, there exists a gauge δ on [a, b ] such that
∥∥∥S(F, dg, P )− I

∥∥∥
X
< ε for all δ-fine partitions P of [a, b ],

where S(F, dg, P ) =
ν(P )∑
j=1

F (ξj) [g(αj)− g(αj−1)], for P = (ξj, [αj−1, αj]). In this case, we

write I =

∫ b

a

F d[g].
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(ii) Similarly, J ∈X is the KS-integral of g with respect to F on [a, b ], we write J=

∫ b

a

d[F ]g,

if for every ε > 0, there exists a gauge δ on [a, b ] such that

∥∥∥S(dF, g, P )− J
∥∥∥
X
< ε for all δ-fine partitions P of [a, b ] ,

where S(dF, g, P ) =
ν(P )∑
j=1

[F (αj)− F (αj−1)] g(ξj), for P = (ξj, [αj−1, αj]).

Let us mention that, when restricted to Euclidian spaces, the integral defined above corresponds

to a particular case of the generalized Perron integral extensively studied in [32].

A typical situation arises when X is the set real numbers and F, g : [a, b ] → R. Taking

g(t)= t, for all t ∈ [a, b ], we have

S(F, dg, P ) =

ν(P )∑

j=1

F (ξj) (αj − αj−1), for all partitions P of [a, b ],

which corresponds to the usual Riemann sum. In this case, the integral from Definition 1.3 (i) is

actually the Kurzweil-Henstock integral (see [14, Definition 9.3]).

Another important relation to be pointed out concerns the Bochner-Stieltjes integral for Banach

space-valued functions. It is known that the set of Bochner integrable functions is strictly contained

in the set of Henstock integrable ones (cf. [8]). Clearly, then, every Bochner-Stieltjes integrable

function is KS-integrable (see [31]).

Furthermore, the KS-integral extends the Riemann-Stieltjes integral defined in the Banach

space setting (see [21]). More precisely:

If the Riemann-Stieltjes integral (RS)

∫ b

a

F d[g] exists, then theKS-integral

∫ b

a

F d[g]

also exists and both integrals coincide.

Regarding the KS-integral given by Definition 1.3, the properties of linearity and additivity

with respect to adjacent intervals hold in this abstract context (cf. [33]). Some further results are

summarized in the next proposition.

Proposition 1.4. Let F : [a, b ]→ L(X) and g : [a, b ]→ X.
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(i) [33, Proposition 10] If F ∈ (B)BV ([a, b ], L(X)) and g are such that the integral

∫ b

a

d[F ] g

exists, then ∥∥∥
∫ b

a

d[F ] g
∥∥∥
X
≤

(
(B)varbaF

)
‖g‖∞ . (1.1)

(ii) [33, Proposition 11] Let F ∈ (B)BV ([a, b ], L(X)) and gn: [a, b ]→X be such that the in-

tegral

∫ b

a

d[F ] gn exists for all n∈N and lim
n→∞

‖gn− g‖∞=0. Then the integral

∫ b

a

d[F ] g

exists and ∫ b

a

d[F ] g = lim
n→∞

∫ b

a

d[F ] gn .

(iii) [33, Proposition 15] If F ∈ (B)BV ([a, b ], L(X))∩(B)G([a, b ], L(X)) and g ∈G([a, b ], X),

then the integral

∫ b

a

d[F ] g exists.

(iv) [36, Theorem 13] If F ∈ (B)BV ([a, b ], L(X))∩G([a, b ], L(X)) and g ∈BV ([a, b ], X), then

both integrals

∫ b

a

F d[g] and

∫ b

a

d[F ] g exist, the sum

∑

a≤τ<b

∆+F (τ)∆+g(τ)−
∑

a<τ≤b

∆−F (τ)∆−g(τ) (1.2)

converges in X and we have

∫ b

a

F d[g] +

∫ b

a

d[F ] g

= F (b) g(b)− F (a) g(a)−
∑

a≤t<b

∆+F (t)∆+g(t)+
∑

a<t≤b

∆−F (t)∆−g(t)





(1.3)

Remark 1.5. In the particular case when F ∈BV ([a, b ], L(X)), the estimate (1.1) in Proposition

1.4 has a special form, namely,

∥∥∥
∫ b

a

d[F ] g
∥∥∥
X
≤

∫ b

a

d[varsaF ] ‖g(s)‖X ≤ varbaF ‖g‖∞ .

Besides the convergence result stated in Proposition 1.4 (ii), the next assertion provides another

criteria which will be needed later. Since it corresponds to an obvious extension of Lemma 2.2 of

[18] to Banach space-valued functions the proof was omitted.

Proposition 1.6. Let g, gn ∈G([a, b ], X) and F, Fn ∈BV ([a, b ], L(X)) for all n∈N. Assume

lim
n→∞

‖gn − g‖∞ = 0, lim
n→∞

‖Fn − F‖∞ = 0 and α∗ := sup
n∈N

varba Fn <∞.
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Then

lim
n→∞

(
sup

t∈ [a,b ]

∥∥∥
∫ t

a

d[Fn] gn−

∫ t

a

d[F ] g
∥∥∥
X

)
= 0 .

In the sequel, we prove some auxiliary properties of the KS-integral which are well-known in

the finite dimensional case (cf. e.g. [43]), but are not available in the literature when involving the

B-variation of functions with values in a Banach space. Since the proofs are not straightforward

adaptations from the results in finite dimension, we include them here.

Lemma 1.7. Let F : [a, b ]→ L(X) and g : [a, b ]→ X.

(i) Let F ∈ (B)BV ([a, b ], L(X)) and g ∈G([a, b ], X). Then, for each partition P of [a, b ], we

have

‖S(F, dg, P )‖X ≤ 2 ‖F‖SV ‖g‖∞ . (1.4)

Moreover, if the integral

∫ b

a

F d[g] exists, then

∥∥∥
∫ b

a

F d[g]
∥∥∥
X
≤ 2 ‖F‖SV ‖g‖∞ . (1.5)

(ii) Let F ∈G([a, b ], L(X)) and g ∈ (B)BV ([a, b ], X). Then, for each partition P of [a, b ], we

have

‖S(dF, g, P )‖X ≤ 2 ‖F‖∞ ‖g‖SV . (1.6)

Moreover, if the integral

∫ b

a

d[F ] g exists, then

∥∥∥
∫ b

a

d[F ] g
∥∥∥
X
≤ 2 ‖F‖∞ ‖g‖SV . (1.7)

Proof. We will prove (i). The inequalities in (ii) can be obtained in a similar way.

Consider an arbitrary partition P = (ξj, [αj−1, αj]) of [a, b ] with ν(P ) = m. Note that

S(F, dg, P )

= F (ξ1) [g(α1)− g(a)] +F (ξ2) [g(α2)− g(α1)] + . . . +F (ξm) [g(b)− g(αm−1)]

= F (b) g(b)−F (a)g (a)

− [F (ξ1)−F (a)] g(a)− [F (ξ2)− g(ξ1)]− . . . − [F (b)−F (ξm)] g(b)

= F (b) g(b)− F (a) g(a)−
m∑

j=0

[F (ξj+1)−F (ξj)] g(αj) ,
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where ξ0 = a and ξm+1 = b. Consequently, by the fact that F ∈ (B)BV ([a, b ], L(X)),

‖S(F, dg, P )‖X ≤
(
‖F (a)‖L(X) + ‖F (b)‖L(X)

)
‖g‖∞

+
∥∥∥

m∑

j=0

[F (ξj+1)− F (ξj)]
g(αi)

‖g(αi)‖X
‖g(αi)‖X

∥∥∥
X

≤

(
‖F (a)‖L(X)+‖F (b)‖L(X)+

∥∥∥
m∑

j=0

[F (ξj+1)−F (ξj)]
g(αi)

‖g(αi)‖X

∥∥∥
X

)
‖g‖∞

≤
(
‖F (a)‖L(X) + ‖F (b)‖L(X) + (B) varbaF

)
‖g‖∞ ≤ 2 ‖F‖SV ‖g‖∞ ,

and (1.4) holds.

Now, assuming that the integral

∫ b

a

F d[g] exists, given ε> 0, there is a gauge δ on [a, b ] such

that ∥∥∥S(F, dg, P )−

∫ b

a

F d[g]
∥∥∥
X
<ε, whenever P is δ-fine partition of [a, b ].

Fixing a δ-fine partition Pε of [a, b ], by (1.4), we have

∥∥∥
∫ b

a

F d[g]
∥∥∥
X
≤
∥∥∥
∫ b

a

F d[g]−S(F, dg, Pε)
∥∥∥
X
+ ‖S(F, dg, Pε)‖X

< ε+ 2 ‖F‖SV ‖g‖∞

Since ε> 0 is arbitrary, inequality (1.5) is true. �

Lemma 1.8. Let F : [a, b ] → L(X) be a finite step function. Then for any g : [a, b ] → X the

integral

∫ b

a

d[F ] g exists. Symmetrically, if g : [a, b ]→ X is a finite step function, then

∫ b

a

F d[g]

exists for any F : [a, b ]→ L(X).

Proof. We will only prove the case when F is a finite step function and g : [a, b ] → X is an

arbitrary function. The second possibility can be shown similarly.

Notice that, F can be written as

F =
m∑

j=1

χ(αj−1,αj) T̃j +
m∑

j=0

χ[αj ] F (αj),

for some division D={α0, α1, . . . , αm} of [a, b ] and T̃j ∈ L(X), j = 1, . . . ,m. Hence, by the

linearity of the integral, it is sufficient to prove the existence of the integral for functions of the
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form

χ(c,d) T̃ and χ[c ] S̃, with c, d ∈ [a, b ], T̃ , S̃ ∈ L(X).

Assume F = χ(c,d) T̃ . Given ε > 0, define

δ(t) =





ε, if t = c or t = d

1
2
min{ |t− c|, |t− d|}, if t ∈ [a, b ] \ {c, d}

.

For any δ-fine partition P of [a, b ], c and d are necessarily tags and S(dF, g, P ) = T̃ [g(c)− g(d)].

Thus ∫ b

a

d[F ] g = T̃ [g(c)− g(d)].

The proof for the case F = χ[d ] S̃ is analogous. �

Besides the Bolzano-Cauchy criteria for existence of the KS-integral (see [33, Proposition 7]),

Š. Schwabik provided, in the same paper, another condition under which such integral exists (see

Proposition 1.4 (iii)). The next theorem is our first outcome and supplements Schwabik’s result.

Theorem 1.9. Let F : [a, b ]→ L(X) and g : [a, b ]→ X.

(i) If F∈G([a, b ], L(X)) and g ∈ (B)BV ([a, b ], X), then the integral

∫ b

a

d[F ]g exists.

(ii) If F ∈ (B)BV ([a, b ], L(X)) and g ∈G([a, b ], X), then the integral

∫ b

a

F d[g] exists.

Proof. We will prove assertion (i). The second assertion can be proved with similar arguments.

By Proposition 1.1 (i), there exists a sequence of finite step functions Fn:[a, b ]→L(X), n∈N,

such that lim
n→∞

‖Fn − F‖∞ = 0.

By Lemma 1.8, the integral
∫ b

a
d[Fn] g exists, for each n∈N. Moreover, these integrals define

a Cauchy sequence in the Banach space X. Indeed, given ε > 0, there is n0 ∈ N such that

‖Fn − F‖∞ < ε, for n ≥ n0. Thus, using (1.7), we obtain

∥∥∥
∫ b

a

d[Fn − Fm] g
∥∥∥
X
≤ 2 ‖Fn − Fm‖∞ ‖g‖SV ≤ 4 ε ‖g‖SV , for all m,n ≥ n0.
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Let I ∈X be such that I = lim
n→∞

∫ b

a
d[Fn] g. Hence, there is N ∈N, with N ≥n0, such that

∥∥∥
∫ b

a

d[FN ] g − I
∥∥∥
X
< ε.

Assume δ is a gauge on [a, b ] such that

∥∥∥S(dFN , g, P )−

∫ b

a

d[FN ] g
∥∥∥
X
< ε, whenever P is a δ-fine partition of [a, b ].

Having this in mind together with (1.6), let us show that I is the KS-integral of g with respect to

F on [a, b ]. For an arbitrary δ-fine partition P of [a, b ], we get

∥∥∥S(dF, g, P )− I
∥∥∥
X

≤
∥∥∥S(dF, g, P )− S(dFN , g, P )

∥∥∥
X
+
∥∥∥S(dFN , g, P )−

∫ b

a

d[FN ] g
∥∥∥
X

+
∥∥∥
∫ b

a

d[FN ] g − I
∥∥∥
X

< 2 ‖F − FN‖∞ ‖g‖SV + 2ε < 2 ε (‖g‖SV + 1),

which concludes the proof of assertion (i). �

A direct consequence of Theorem 1.9 combined with Lemma 1.7 follows next.

Corollary 1.10. The following assertions hold:

(i) Let F, Fn ∈ G([a, b ], L(X)), n∈N, be such that lim
n→∞

‖Fn−F‖∞=0. Then, for any

g ∈ (B)BV ([a, b ], X), the integrals

∫ b

a

d[F ] g and

∫ b

a

d[Fn] g, n∈N,

exist and

lim
n→∞

∫ b

a

d[Fn] g =

∫ b

a

d[F ] g.

(ii) Let g, gn ∈ G([a, b ], X), n∈N, be such that lim
n→∞

‖gn − g‖∞ = 0. Then, for any function

F ∈ (B)BV ([a, b ], L(X)), the integrals

∫ b

a

F d[g] and

∫ b

a

F d[gn], n∈N,
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exist and

lim
n→∞

∫ b

a

F dgn =

∫ b

a

F dg.

Using Corollary 1.10, we are now able to present a general form of the integration by parts

theorem proposed by Š. Schwabik in [36]. Nevertheless, we need an auxiliar estimate to the series

in (1.2).

Lemma 1.11. Let F : [a, b ]→ L(X) and g : [a, b ]→ X.

(i) If F ∈ (B)BV ([a, b ], L(X)) ∩G([a, b ], L(X)) and g ∈ G([a, b ], X), then

∥∥∥
∑

t∈[a,b)

∆+F (t)∆+g(t)
∥∥∥
X
+
∥∥∥
∑

t∈(a,b]

∆−F (t)∆−g(t)
∥∥∥
X
≤ 4

(
(B) varbaF

)
‖g‖∞ . (1.8)

(ii) If F ∈ G([a, b ], L(X)) and g ∈ (B)BV ([a, b ], X) ∩G([a, b ], X), then

∥∥∥
∑

t∈[a,b)

∆+F (t)∆+g(t)
∥∥∥
X
+

∥∥∥
∑

t∈(a,b ]

∆−F (t)∆−g(t)
∥∥∥
X
≤ 4 ‖F‖∞

(
(B) varbag

)
.

Proof. Assuming F ∈ (B)BV ([a, b ], L(X)) ∩ G([a, b ], L(X)) and g ∈G([a, b ], X), by [36,

Lemma 11], the series in (1.8) converge. Let us prove that

∥∥∥
∑

t∈[a,b)

∆+F (t)∆+g(t)
∥∥∥
X
≤ 2

(
(B) varbaF

)
‖g‖∞ (1.9)

Consider {tk ∈ X; k ∈ N} the set of common points of discontinuity of the functions F and

g on (a, b), which by Proposition 1.1 (ii) is at most countable. Without loss of generality, we may

assume tk < tk+1, for every k ∈ N.

For each n ∈ N, define

Sn = ∆+F (a)∆+g(a)+
n∑

k=1

∆+F (tk)∆
+g(tk) .

Given ε > 0 and n ∈ N, since F is regulated, for each k = 1, 2, . . . , n, choose δk > 0 in such

a way that

‖F (tk+)−F (tk + δk)−‖L(X)<
ε

8 (n+1) ‖g‖∞
and [tk−δk, tk+δk]∩{t1, t2, . . . , tn} = {tk} .
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Analogously, let δ0 > 0 be such that b− δ0 > tn and also

‖F (a+)− F (a+ δ0)‖L(X)<
ε

8 ‖g‖∞
and a+ δ0 < t1

Using these inequalities and since ‖∆+g(t)‖X ≤ 2 ‖g‖∞, for t ∈ [a, b), we obtain

‖Sn‖X < 2 ‖g‖∞

(
‖F (a+)−F (a+ δ0)‖L(X) +

n∑

k=1

‖F (tk+)−F (tk + δk)‖L(X)

)

+
∥∥∥
[
F (a+ δ0)−F (a)

]
∆+g(a) +

n∑

k=1

[
F (tk + δk)−F (tk)

]
∆+g(tk)

∥∥∥
X

<
ε

4
+

n ε

4 (n+1)

+2 ‖g‖∞

∥∥∥∥∥
[
F (a+ δ0)−F (a)

] ∆+g(a)

2 ‖g‖∞
+

n∑

k=1

[
F (tk + δk)−F (tk)

] ∆+g(tk)

2 ‖g‖∞

∥∥∥∥∥
X

Therefore

‖Sn‖X < ε+2 ‖g‖∞

∥∥∥∥∥
[
F (a+ δ0)−F (a)

] ∆+g(a)

2 ‖g‖∞
+

n∑

k=1

[
F (tk + δk)−F (tk)

] ∆+g(tk)

2 ‖g‖∞

∥∥∥∥∥
X

≤ ε+2 ‖g‖∞
(
(B) varbaF

)
.

Since ε > 0 is arbitrary, we get

‖Sn‖X ≤ 2 ‖g‖∞
(
(B) varbaF

)

which, together with the fact that

∑

t∈[a,b)

∆+F (t)∆+g(t) = lim
n→∞

Sn,

lead to (1.9). Analogously, we can estimate the sum
∑

t∈(a,b]

∆−F (t)∆−g(t), which concludes the

proof of (i).

In case F ∈ G([a, b ], L(X)) and g ∈ (B)BV ([a, b ], X) ∩ G([a, b ], X), we can proceed simi-

larly. �
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Corollary 1.12 (Integration by Parts). If F ∈ (B)BV ([a, b ], L(X))∩G([a, b ], L(X)) and g ∈

G([a, b ], X) or F ∈G([a, b ], L(X)) and g ∈ (B)BV ([a, b ], X)∩G([a, b ], X), then both integrals

∫ b

a

F d[g] and

∫ b

a

d[F ] g

exist and (1.3) holds, that is,

∫ b

a

F d[g] +

∫ b

a

d[F ] g

= F (b) g(b)− F (a) g(a)−
∑

a≤t<b

∆+F (t)∆+g(t)+
∑

a<t≤b

∆−F (t)∆−g(t).





Proof. Suppose F ∈ (B)BV ([a, b ], L(X)) ∩ G([a, b ], L(X)) and g ∈G([a, b ], X). By Proposi-

tion 1.1 (i), there is a sequence {gn} of finite step functions on [a, b ] which tends uniformly to g

on [a, b ]. Since gn ∈ BV ([a, b ], X), for each n ∈ N, by Proposition 1.4 (iv), we have

∫ b

a

F d[gn] +

∫ b

a

d[F ] gn

= F (b) gn(b)− F (a) gn(a)−
∑

a≤t<b

∆+F (t)∆+gn(t)+
∑

a<t≤b

∆−F (t)∆−gn(t)





(1.10)

Using (1.8), we get

∥∥∥
∑

a≤t<b

∆+F (t)∆+(g(t)− gn(t))−
∑

a<t≤b

∆−F (t)∆−(g(t)− gn(t))
∥∥∥
X

≤ 4
(
(B) varba F

)
‖g − gn‖∞

and consequently, by the fact that lim
n→∞

‖gn − g‖∞ = 0, we obtain

lim
n→∞

(
∑

a≤t<b

∆+F (t)∆+gn(t)−
∑

a<t≤b

∆−F (t)∆−gn(t)

)

=
∑

a≤t<b

∆+F (t)∆+g(t)−
∑

a<t≤b

∆−F (t)∆−g(t).

On the other hand, we have

lim
n→∞

(∫ b

a

F d[gn] +

∫ b

a

d[F ] gn − F (b) gn(b) + F (a) gn(a)

)

=

∫ b

a

F d[g] +

∫ b

a

d[F ] g − F (b) g(b) + F (a) g(a) .
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In summary, letting n→∞ in (1.10), we obtain (1.3).

The second possibility, when F ∈ G([a, b ], L(X)) and g ∈ (B)BV ([a, b ], X) ∩ G([a, b ], X),

can be proved in a similar way. �

In [28], results on Integration by Parts for some generalizations of the Riemman-Stieltjes

integral are discussed. In particular, using a different approach than the one presented here,

K. M. Naralenkov gives necessary and sufficient conditions for such type of results for the so-

called Henstock-Stieltjes integral in a Banach space-valued setting.

We will close this section by formulating results on integration by substitution for the KS-

integral. Substitution formulas for vector integrals were the object of the Master Dissertation

of M. Federson [6] (see also [7]). Among the results of such study, it is worth mentioning the

following one.

Proposition 1.13.

(i) [7, Theorem 11] Let F : [a, b ] → L(X) and g : [a, b ] → X be such that the integral∫ b

a

F d[g] exists. Given H ∈ (B)BV ([a, b ], L(X)), if at least one of the integrals

∫ b

a

H(t) dt

[ ∫ t

a

F d[g]
]
,

∫ b

a

H F d[g]

exists, then the other one also exists and

∫ b

a

H(t) dt

[ ∫ t

a

F d[g]
]
=

∫ b

a

H F d[g].

(ii) [7, Theorem 12] Let F, H : [a, b ] → L(X) be such that the integral

∫ b

a

d[F ]H exists.

Given g∈BV ([a, b ], X), if at least one of the integrals

∫ b

a

dt

[ ∫ t

a

d[F ]H
]
g(t),

∫ b

a

d[F ]H g

exists, then the other one also exists and

∫ b

a

dt

[ ∫ t

a

d[F ]H
]
g(t) =

∫ b

a

d[F ]H g.
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In the next theorem we give a substituion formula for the case when an integral of the type
∫ b

a
H d[F ] g appears. The proof follows closely the ideas presented by M. Federson in [7].

Theorem 1.14 (Substitution Theorem). Let F : [a, b ]→L(X) and g: [a, b ]→X be such that the

integral

∫ b

a

d[F ] g exists. Given a functionH∈(B)BV ([a, b ], L(X)), if at least one of the integrals

∫ b

a

H(t) dt

[ ∫ t

a

d[F ] g
]
,

∫ b

a

H d[F ] g

exists, then the other one also exists and
∫ b

a

H(t) dt

[ ∫ t

a

d[F ] g
]
=

∫ b

a

H d[F ] g. (1.11)

Proof. Let us assume that the integral

∫ b

a

H d[F ] g exists.

Given ε > 0, let δ1 and δ2 be gauges on [a, b ] such that
∥∥∥∥S(H, dF, g, P )−

∫ b

a

H d[F ] g

∥∥∥∥
X

< ε for all δ1-fine partitions P of [a, b ] (1.12)

and ∥∥∥∥S(dF, g, P )−
∫ b

a

d[F ] g

∥∥∥∥
X

< ε for all δ2-fine partitions P of [a, b ].

The Saks-Henstock Lemma (see [33, Lemma 16]) states that, for any δ2-fine partition of [a, b ],

P =(ξj, [αj−1, αj]), we have
∥∥∥∥∥∥

ν(P )∑

k=j

[F (αk)− F (αk−1)] g(ξk)−

∫ αk

αk−1

d[F ] g

∥∥∥∥∥∥
X

≤ ε for j=1, 2, . . . , ν(P ). (1.13)

Define K(t) =

∫ t

a

d[F ] g, for t∈ [a, b ].

If P = (ξj, [αj−1, αj]) is a δ-fine partition of [a, b ], where δ(t) = min{δ1(t), δ2(t)}, t∈[a, b ],

then by (1.12), we get

∥∥∥S(H, dK,P )−

∫ b

a

H d[F ] g
∥∥∥
X

≤ ‖S(H, dK,P )− S(H dF, g, P )‖X +
∥∥∥S(H, dF, g, P )−

∫ b

a

H d[F ] g
∥∥∥
X

<

∥∥∥∥∥∥

ν(P )∑

j=1

H(ξj)

(∫ αj

αj−1

d[F ] g− [F (αj)−F (αj−1)] g(ξj)

)∥∥∥∥∥∥
X

+ ε
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As noticed in the proof of Theorem 11 in [7], the following equality holds

m∑

j=1

Aj xj =
m∑

j=1

[Aj −Aj−1]

(
m∑

k=j

xk

)
+A0

(
m∑

k=1

xk

)

for all Aj ∈ L(X) and all xj ∈ X . Taking m = ν(P ) and also

Aj = H(ξj), A0 = H(a), xj = [F (αj)− F (αk−1)] g(ξj)−

∫ αj

αj−1

d[F ] g,

for j = 1, . . . ν(P ), by (1.13), we obtain

∥∥∥S(H, dK,P )−

∫ b

a

H d[F ] g
∥∥∥
X

< ε+

∥∥∥∥∥∥

ν(P )∑

j=1

[H(ξj)−H(ξj−1)]
( ν(P )∑

k=j

xk

)
∥∥∥∥∥∥
X

+

∥∥∥∥∥H(a)

(
m∑

k=1

[F (αk)− F (αk−1)] g(ξk)−

∫ αk

αk−1

d[F ] g

)∥∥∥∥∥
X

< ε+ ε

∥∥∥∥∥∥

ν(P )∑

j=1

[H(ξj)−H(ξj−1)]

∑ν(P )
k=j xk

ε

∥∥∥∥∥∥
X

+ ‖H(a)‖L(X)

∥∥∥∥∥∥

ν(P )∑

k=1

[F (αk)− F (αk−1)] g(ξk)−

∫ αk

αk−1

d[F ] g

∥∥∥∥∥∥
X

< ε
(
1 + (B) varbaH + ‖H(a)‖X

)
.

Hence the integral

∫ b

a

H d[K] exists and (1.11) holds.

The other implication can be shown in a similar way. �

The last result of this chapter provides a different substitution formula not covered by previous

theorem, by assuming H ∈G([a, b ], L(X)) instead of H ∈ (B)BV ([a, b ], L(X)). On the other

hand, stronger conditions over F and g are imposed.

Unlike Theorem 1.14, the proof of the our second substitution theorem does not rely on the

Saks-Henstock Lemma, but on a convergence argument. To this aim, the following assertion will

be needed.
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Proposition 1.15. Let F ∈BV ([a, b ], L(X)), Hn : [a, b ]→L(X) and g: [a, b ]→X be such that

the integral

∫ b

a

Hn d[F ] g exists for all n ∈ N. If g is a bounded function and lim
n→∞

‖Hn−H‖∞=0,

then the integral

∫ b

a

H d[F ] g exists and

lim
n→∞

∥∥∥
∫ b

a

Hn d[F ] g −

∫ b

a

H d[F ] g
∥∥∥
X
= 0 .

Proof. It follows from the same argument used in [33, Proposition 11]. �

Theorem 1.16 (Second Substitution Theorem). Let F ∈BV ([a, b ], L(X)) and g: [a, b ]→X , boun-

ded, be such that the integral

∫ b

a

d[F ] g exists. Then, for each H ∈G([a, b ], L(X)), both integrals

in (1.11) exist and equality (1.11) holds.

Proof. Step 1. At first, we show that (1.11) holds when H : [a, b ]→L(X) is a finite step function,

which means that H can be written as linear combination of functions of the form

χ[a,τ ](t) H̃1, χ[σ,b ](t) H̃2, χ[a](t) H̃3, χ[b](t) H̃4,

where τ, σ ∈ (a, b) and H̃i ∈L(X) i = 1, 2, 3, 4. By the linearity of the integral, it is enough to

prove (1.11) for such functions.

Assume H = χ[a,τ ] H̃ , for τ ∈ (a, b), H̃ ∈L(X), and put K(t) =

∫ t

a

d[F ] g, for t∈ [a, b ].

Obviously, ∫ τ

a

H d[F ] g =

∫ τ

a

H d[K] = H̃

∫ τ

a

d[F ] g . (1.14)

Given ε> 0, let

δ(t) =





ε, if t = τ ,

1
2
|τ − t|, if τ < t ≤ b .

Then, for any δ-fine partition P of [τ, b ], with D = {α0, α1, . . . , αm} and ξ = (ξ1, ξ2 . . . , ξm),

we have ξ1 = α0 = τ, α1<τ + ε, and moreover

S(H, dF, g, P ) = H̃ [F (α1)− F (τ)] g(τ) and S(H, dK,P ) = H̃ [K(α1)−K(τ)].
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As a consequence of the Hake’s Theorem for the KS-integral (see [33, Corollary 24]), we get

∫ b

τ

H d[F ] g = H̃∆+F (τ) g(τ) and

∫ b

τ

H d[K] = H̃∆+K(τ) = H̃∆+F (τ) g(τ),

that is, ∫ b

τ

H d[F ] g =

∫ b

τ

H d[K] = H̃∆+F (τ) g(τ) .

This together with (1.14) yield (1.11).

The remaining cases H = χ[τ,b ] H̃, H = χ[a] H̃ and H = χ[b] H̃ have similar proofs.

Step 2. LetH ∈G([a, b ], L(X)) and consider the sequenceHn : [a, b ]→L(X), n∈N, of finite step

functions such that limn→∞ ‖Hn−H‖∞=0.

Put, again, K(t) =

∫ t

a

d[F ] g, for t∈ [a, b ]. By step 1 and Proposition 1.15, we have

lim
n→∞

∫ b

a

Hn d[K] = lim
n→∞

∫ b

a

Hn d[F ] g=

∫ b

a

H d[F ] g .

On the other hand, noticing that K ∈BV ([a, b ], L(X)), by Proposition 1.4 (ii), it follows that

lim
n→∞

∫ b

a

Hn d[K] =

∫ b

a

H d[K] =

∫ b

a

H(t) dt

[∫ t

a

d[F ] g
]
,

which leads to (1.11). �



CHAPTER

2

Generalized linear differential

equations in Banach space

In the present chapter, we introduce the main object of our studies, namely, linear integral

equations of the form

x(t) = x̃+

∫ t

a

d[A] x+ f(t)− f(a) , t ∈ [a, b ] .

with respect to the Kurzweil-Stieltjes integral for Banach space-valued functions.

This chapter is divided into three sections. The first one presents some basic results on linear

generalized ODEs (c.f. [35] and [36]) and adds some auxiliar assertions which are well-known in

the finite dimensional case (see [43]). The second section brings up our theorem on continuous

dependence of solutions on a parameter which was inspired by the classical Z. Opial’s result (see

[30]). In addition, using an assumption of uniformly bounded variation, in the third section, we

present a result on continuous dependence on a parameter for linear nonhomogeneous equations.

35
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2.1 Basic results

LetA∈BV ([a, b ], L(X)), f ∈G([a, b ], X) and x̃∈X , whereX is a fixed Banach space. Con-

sider the nonhomogeneous integral equation

x(t) = x̃+

∫ t

a

d[A] x+ f(t)− f(a) , t ∈ [a, b ], (NH)

where the Stieltjes-type integral is in the sense of Kurzweil (see Chapter 1).

The equation (NH) is called here generalized linear integral equation. In case X is the Eu-

clidean space, a complete theory can be found, for instance, in the monographs by Š. Schwabik [32]

and by Š. Schwabik, M. Tvrdý and O. Vejvoda [38].

It is worth mentioning that, using the symbolical notation introduced by J. Kurzweil in [24],

the linear problem (NH) corresponds to the generalized ordinary differential equation

dx

dτ
= D[A(t)x+ f(t)], x(a) = x̃ , (2.1)

whose definition is given by the solutions of (NH). Indeed, a function x : [a, b ]→ X is a solution

of (2.1) on [a, b ], if the KS-integral
∫ b

a
d[A] x exists and x satisfies the equality (NH) for each

t∈ [a, b ]. Clearly x(a) = x̃ whenever x is a solution of (NH).

Fundamental results on the existence and uniqueness of a solution of (NH) were established

by Š. Schwabik in [34]. In particular, taking into account the closing remark in [34], the following

result is a special case of Proposition 2.8 from [34].

Proposition 2.1. Let A∈BV ([a, b ], L(X)) be such that

[
I −∆−A(t)

]−1
∈ L(X), for all t ∈ (a, b ] . (E)

Then, for every x̃∈X and every f ∈G([a, b ], X), the equation (NH) has a unique solution x on

[a, b ] and x∈G([a, b ], X).

On the solutions of (NH) the following assertions are true.
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Lemma 2.2. Let A∈BV ([a, b ], L(X)) satisfy (E), f ∈G([a, b ], X) and x̃∈X . If x is the corre-

sponding solution of (NH) on [a, b ], we have

∆+x(t) = ∆+A(t) x(t) + ∆+f(t) for t∈ [a, b), (2.2)

∆−x(t) = ∆−A(t) x(t) + ∆−f(t) for t∈ (a, b ], (2.3)

(x− f)∈BV ([a, b ], X) with varba (x− f) ≤ (varbaA) ‖x‖∞, (2.4)

cA := sup{ ‖[I −∆−A(t)]−1‖L(X) <∞ : t∈ (a, b ] }, (2.5)

‖x(t)‖X ≤ cA (‖x̃‖X + ‖f(a)‖X + ‖f‖∞) exp (cA vartaA) for t∈ [a, b ] . (2.6)

Proof. The equalities (2.2) and (2.3) follow from [34, Proposition 2.3].

For any division D= {α0, α1, . . . , αν(D)} of [a, b ], by Remark 1.5, we have

ν(D)∑

j=1

∥∥x(αj)− f(αj)− x(αj−1) + f(αj−1)
∥∥
X

=

ν(D)∑

j=1

∥∥∥
∫ αj

αj−1

d[A(s)] x(s)
∥∥∥
X
≤

ν(D)∑

j=1

[
(varαj

αj−1
A) ‖x‖∞

]
= (varbaA) ‖x‖∞.

Then, taking the supremum over all divisions of [a, b ], we obtain (2.4).

When t ∈ [a, b ] is such that ‖∆−A(t)‖L(X) <
1
2
, it is known that

∥∥[I −∆−A(t)]−1
∥∥
L(X)

≤
1

1− ‖∆−A(t)‖L(X)

< 2

(cf. e.g. [40, Lemma 4.1-C]). On the other hand, since the set

{t∈ [a, b ]; ‖∆−A(t)‖L(X) ≥
1
2
}

is finite (cf. [22, Corollary I.3.2.a]), we have clearly cA <∞.

Let B : [a, b ] → L(X) be defined by B(a) = A(a) and B(t) = A(t−) for t∈ (a, b ]. By

[34, Corollary 2.6] and [34, Proposition 2.7], we get

A− B ∈BV ([a, b ], L(X)), varbaB ≤ varbaA

and

A(t)− B(t) = ∆−A(t),

∫ t

a

d[A− B] x = ∆−A(t) x(t) for t∈ (a, b ].
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Hence,

[I −∆−A(t)] x(t) = x̃+

∫ t

a

d[B(s)] x(s) + f(t)− f(a) for t∈ (a, b ],

or equivalently,

x(t) = [I −∆−A(t)]−1
(
x̃+

∫ t

a

d[B(s)] x(s) + f(t)− f(a)
)
.

Taking into account (2.5) and Remark 1.5, we obtain

‖x(t)‖X ≤ K1 +K2

∫ t

a

d[h(s)] ‖x(s)‖X for t∈ [a, b ],

where K1 = cA (‖x̃‖X + 2 ‖f‖∞), K2 = cA and h(s) = varsaB, s ∈ [a, b ]. Noticing that h is

nondecreasing and left-continuous on (a, b], the relation (2.6) can be derived by applying the ge-

neralized Gronwall inequality (see e.g. [32, Corollary 1.43] or [38, Lemma I.4.30].) �

Lemma 2.3. Let A, An ∈ BV ([a, b ], L(X)), n∈N, be such that (E) and

lim
n→∞

‖An − A‖∞ = 0 (2.7)

are satisfied. Then
[
I −∆−An(t)

]−1
∈ L(X), t ∈ (a, b ], (2.8)

for n∈N sufficiently large. Moreover, there is µ∗ ∈ (0,∞) such that

cAn
:= sup{ ‖[I −∆−An(t)]

−1‖L(X) : t∈ (a, b ] }≤µ∗ (2.9)

for n∈N sufficiently large.

Proof. Notice that, by (2.7), lim
n→∞

‖∆−An−∆−A‖∞=0. Hence, there is n0 ∈N such that

‖∆−An(t)−∆−A(t)‖L(X) <
1
4
min{1, 1

cA
}, for t∈ (a, b ] and n ≥ n0, (2.10)

where cA is given by (2.5).

Consider the finite setD :={t∈ (a, b ]; ‖∆−A(t)‖L(X) ≥
1
4
} (see [22, Corollary I.3.2.a]). Then,

for t∈ [a, b ]\D and n ≥ n0, we have

‖∆−An(t)‖L(X) ≤ ‖∆
−An(t)−∆

−A(t)‖L(X) + ‖∆
−A(t)‖L(X) <

1
2
,
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which, by [40, Lemma 4.1-C], implies that I −∆−An(t) is invertible and

‖[I −∆−An(t)]
−1‖L(X) < 2, for t∈ [a, b ] \D and n ≥ n0.

On the other hand, given t∈D and n ≥ n0, write

I −∆−An(t) = (I −∆−A(t))
(
I − Tn(t)

)
, (2.11)

where Tn(t) = [I−∆−A(t)]−1
(
∆−An(t)−∆

−A(t)
)
. Thus, in order to prove that I −∆−An(t) is

invertible, it is sufficient to show that [I − Tn(t)]
−1 exists.

Due to (2.5) and (2.10), we have

‖Tn(t)‖L(X) ≤ ‖[I −∆−A(t)]−1‖L(X) ‖∆
−An(t)−∆

−A(t)‖L(X) <
1
4
.

Thus, by [40, Lemma 4.1-C], I − Tn(t) is invertible with ‖[I − Tn(t)]
−1‖L(X) < 2 which, together

with (2.11), leads to

‖[I −∆−An(t)]
−1‖L(X) < 2 cA for t∈D and n ≥ n0.

In summary, (2.8) and (2.9) hold for n ≥ n0 and µ∗ := 2 max{1, cA}. �

2.2 Continuous dependence on a parameter: variations

bounded by a weight

In this section, we deal with the homogeneous linear integral equation

x(t) = x̃+

∫ t

a

d[A] x , t ∈ [a, b ], (H)

where x̃∈X and A∈BV ([a, b ], L(X)).

The main result of this section is provided by the next theorem. It generalizes, in some sense,

Theorem 1 from [30] due to Z. Opial, which is stated for the case when X is the Euclidean space

and the operator-valued functions A, An, n ∈ N, are absolutely continuous on [a, b ].
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Theorem 2.4. Let A, An ∈BV ([a, b ], L(X)) and x̃, x̃n ∈X for all n∈N. Let A satisfy (E) and x

be the solution of (H) on [a, b ]. Further, assume

lim
n→∞

‖An−A‖∞
(
1+ varbaAn

)
= 0 , (2.12)

and

lim
n→∞

‖x̃n− x̃‖X =0 . (2.13)

Then, for n ∈ N sufficiently large, the equation

xn(t) = x̃n +

∫ t

a

d[An] xn, t ∈ [a, b ] (2.14)

has a unique solution xn on [a, b ] and

lim
k→∞

‖xn− x‖∞ = 0 . (2.15)

Proof. At first, notice that, since

‖An−A‖∞≤‖An−A‖∞
(
1+ varbaAn

)
for all n∈N,

(2.12) implies (2.7). Therefore, by Lemma 2.3, there is n0 ∈N such that (2.8) holds for each

n ≥ n0, which ensures the existence of a solution of (2.14) (cf. Proposition 2.1).

Assume n ≥ n0 and let x and xn be the solutions on [a, b ] of (H) and (2.14) respectively.

Consider the equation

xn(t)− x(t) = x̃n − x̃+

∫ t

a

d[A] (xn− x) + hn(t)−hn(a) for t∈ [a, b ] ,

where

hn(t) =

∫ t

a

d[An−A] xn for t∈ [a, b ] . (2.16)

By Lemma 2.2, we have

‖xn − x‖∞ ≤ cA (‖x̃n−x̃‖X + ‖hn‖∞) exp (cA varbaA). (2.17)

In view of this inequality and regarding the assumption (2.13), to complete the proof it is enough

to show that limn→∞ ‖hn‖∞ = 0.
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Applying the Integration by Parts theorem (cf. Corollary 1.12) to the right-hand side of (2.16)

and using the Substitution formula (cf. Theorem 1.14), we get

hn(t) = [An(t)−A(t)] xn(t)− [An(a)−A(a)] x̃n−

∫ t

a

(An−A) d[xn]−∆t
a(An−A, xn)

= [An(t)−A(t)] xn(t)− [An(a)−A(a)] x̃n−

∫ t

a

(An−A) d[An] xn −∆t
a(An−A, xn)

for t∈ [a, b ], where

∆t
a(An−A, xn)=

∑

a≤s<t

[∆+(An(s)−A(s))∆
+xn(s)]−

∑

a<s≤t

[∆−(An(s)−A(s))∆
−xn(s)] .

Inserting the relations (2.2) and (2.3) (with f ≡ 0) in the equality above, we get

∆t
a(An−A, xn)

=
∑

a≤s<t

[∆+(An(s)−A(s))∆
+An(s)xn(s)]−

∑

a<s≤t

[∆−(An(s)−A(s))∆
−An(s)xn(s)] ,

from where, by Lemma 1.2, it follows that

‖∆t
a(An−A, xn)‖X ≤ 2 ‖An−A‖∞ (vartaAn) ‖xn‖∞ for t∈ [a, b ].

Moreover, using arguments analogous to those found in the proof of [33, Proposition 10], one can

prove that the estimate

∥∥∥
∫ t

a

(An−A) d[An] xn

∥∥∥
X
≤ ‖An−A‖∞ varbaAn ‖xn‖∞

holds. Therefore, ‖hn‖∞ ≤ αn ‖xn‖∞, where

αn := ‖An−A‖∞

(
2+3 varbaAn

)
with lim

n→∞
αn = 0. (2.18)

Note that, ‖xn‖∞, n ≥ n0, defines a bounded sequence in R. Indeed, by (2.17)

‖xn‖∞≤‖xn− x‖∞+ ‖x‖∞≤ cA
(
‖x̃n− x̃‖X +αn‖xn‖∞

)
exp (cA varbaA)+ ‖x‖∞ ,

or equivalently,

(
1− cA αn exp (cA varbaA)

)
‖xn‖∞≤ cA ‖x̃n− x̃‖X exp (cA varbaA)+ ‖x‖∞.
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By (2.13) and (2.18), there is n1≥n0 such that

‖x̃n− x̃‖X < 1 and cA αn exp (cA varbaA)<
1
2

for n ≥ n1.

Thus, ‖xn‖∞< 2
(
cA exp (cA varbaA)+ ‖x‖∞

)
for n≥n1 which, together with (2.18), proves that

limn→∞ ‖hn‖∞ = 0 and, consequently, the theorem holds. �

In [30], Z. Opial notes that his main theorem can be extended to nonhomogeneous equations

treating them as special homogeneous problems. Using such procedure, well-known in classical

theory of ordinary differential equations, it is possible to see that Theorem 2.4 is also true for

nonhomogeneous problems when X is the Euclidean space R
m, for some m ∈ N.

To make it clear, let us recall that given A : [a, b ] → L(Rm) and f : [a, b ] → R
m, we can

define a (m+1)× (m+1)−matrix valued function B: [a, b ]→ L(Rm+1) by

B(t) =


A(t) f(t)

0 0


 for t∈ [a, b ].

It is easy to check that if x is a solution to (NH) and y(t) =


x(t)

1


 , then y is a solution to the

homogeneous equation

y(t) = ỹ +

∫ t

a

d[B] y, with ỹ =


x̃
1


 (2.19)

Conversely, if y is a solution of (2.19) and x is formed by its firstm components then x is a solution

to (NH), where x̃∈R
m is formed by the first m components of ỹ.

Similarly, we define

Bn(t) =


An(t) fn(t)

0 0


 for t∈ [a, b ] and n∈N .

where An : [a, b ] → L(Rm) and fn : [a, b ] → R
m, n ∈ N. And again, for each n ∈ N, we have

the correspondence between the solutions of

yn(t) = ỹn +

∫ t

a

d[Bn] yn, t ∈ [a, b ], with ỹn =


x̃n

1


 ,
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and

xn(t) = x̃n +

∫ t

a

d[An] xn + fn(t)− fn(a), t ∈ [a, b ]. (2.20)

In view of these remarks, the next assertion is a direct consequence of Theorem 2.4.

Corollary 2.5. Let m∈N, A,An ∈BV ([a, b ], L(Rm)), f, fn ∈BV ([a, b ],Rm), and x̃, x̃n ∈R
m

for n∈N. Assume (E), (2.13) and

lim
n→∞

(
‖An − A‖∞

(
1 + varbaAn + varbafn

))
= 0 (2.21)

lim
n→∞

(
‖fn − f‖∞

(
1 + varbaAn + varbafn

))
= 0 (2.22)

Then equation (NH) has a unique solution x on [a, b ] and, for each n∈N large enough there is a

unique solution xn on [a, b ] to the equation (2.20) and (2.15) is true.

Remark 2.6. Note that in Corollary 2.5, we require the functions f, fn, n ∈ N, being of bounded

variation and not only regulated. Such condition is needed to ensure that B and Bn, n ∈ N, define

functions of bounded variation, once we have

varbaB ≤ varbaA+ varbaf and varbaBn ≤ varbaAn + varbafn, n ∈ N.

2.3 Continuous dependence on a parameter: uniformly

bounded variation

The main result of this section concerns the continuous dependence on a parameter for solutions

of nonhomogeneous linear integral equations of type (NH). It recalls the result by M. Ashordia for

linear generalized ODEs in the framework of Rm-valued functions, m∈N (see [3, Theorem 1]).

However, unlike [3], no variation-of-constants formula is used. Thus, we do not need to require

the additional condition [I +∆+A(t)]−1 ∈L(X) for t∈ [a, b ]; condition (E) remains enough.

The proof presented below follows the ideas provided by Z. Halas and M. Tvrdý in [18], where

an extention of Ashordia’s result to the complex case is given.
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Theorem 2.7. Let A, An ∈BV ([a, b ], L(X)), f, fn ∈G([a, b ], X) and x̃, x̃n ∈X for all n∈N.

Let A satisfy (E) and x be the solution of (NH). Assume (2.7), (2.13) and also

α∗ := sup
n∈N

(
varbaAn

)
<∞ , (2.23)

lim
n→∞

‖fn− f‖∞ = 0 . (2.24)

Then, for n ∈ N sufficiently large, there is a unique solution xn on [a, b ] of equation

xn(t) = x̃n +

∫ t

a

d[An] xn + fn(t)− fn(a) , t ∈ [a, b ] (2.25)

and (2.15) holds.

Proof. Note that, by Lemma 2.3, there exists n0 ∈N such that (2.8) is true for n ≥ n0. Hence, for

each n≥n0, equation (2.25) has a unique solution xn on [a, b ].

Set wn = (xn − fn)− (x− f) and consider the equation

wn(t) = w̃n +

∫ t

a

d[An]wn + hn(t)− hn(a) for t∈ [a, b ],

where w̃n = (x̃n − fn(a))− (x̃− f(a)) and

hn(t) =
(∫ t

a

d[An] fn −

∫ t

a

d[A] f
)
+

∫ t

a

d[An − A] (x− f).

Let µ∗ > 0 be as in (2.9). By Lemma 2.2 and by (2.23), we have

‖wn(t)‖X ≤ cAn
(‖w̃n‖X + ‖hn‖∞) exp (cAn

varbaAn),

that is,

‖wn(t)‖X ≤ µ∗ (‖w̃n‖X + ‖hn‖∞) exp (µ
∗ α∗) for t∈ [a, b ]. (2.26)

Note that (2.13) and (2.24) imply that lim
n→∞

‖w̃n‖X = 0. Also, since x − f is a function of

bounded variation on [a, b ] (cf. Lemma 2.2), using the relation (1.7), we get

‖hn‖∞ ≤

(
sup

t∈ [a,b ]

∥∥∥
∫ t

a

d[An] fn −

∫ t

a

d[A] f
∥∥∥
X

)
+ 2 ‖An − A‖∞ ‖x− f‖BV .

Then, in view of Theorem 1.6 and (2.7), lim
n→∞

‖hn‖∞ = 0.
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Finally, by the inequality (2.26), we deduce that

lim
n→∞

‖(xn − fn)− (x− f)‖∞ = lim
n→∞

‖wn‖∞ = 0

which, together with (2.24), leads to (2.15). �

We will close this section with a comparison between Theorem 2.7 and two similar available

results: Proposition 8.3 in [1] (see also [32, Theorem 8.2] for the finite dimensional case) and

Theorem 8.8 from [32]. To this aim, let us recall the class of functions introduced by J. Kurzweil

in his papers [24] and [25] (see also [32, Definition 3.8]).

Let r > 0 be given and let us set Ω = Br × [a, b ], where Br := {x ∈ X : ‖x‖X ≤ r}. In the

sequell, we assume h : [a, b ]→R is a nondecreasing function and ω: [0,∞)→R is a continuous

increasing function with ω(0)= 0.

Definition 2.8. A function F : Ω→ X belongs to the class F(Ω, h, ω) if

‖F (x, t2)− F (x, t1)‖X ≤ |h(t2)− h(t1)|

for all (x, t2), (x, t1)∈Ω and

‖F (x, t2)− F (x, t1)− F (y, t2) + F (y, t1)‖X ≤ ω
(
‖x− y‖X

)
|h(t2)− h(t1)|

for all (x, t2), (x, t1), (y, t2), (y, t1)∈Ω.

In particular, when F (x, t) = A(t)x + f(t), with A : [a, b ] → L(X) and f : [a, b ] → X , we

get

‖[A(t2)−A(t1)] x+ f(t2)− f(t1)‖X ≤ |h(t2)−h(t1)|,

‖[A(t2)−A(t1)] (y− x)‖X ≤ ω(‖y− x‖X) |h(t2)−h(t1)|,
(2.27)

for t1, t2 ∈ [a, b ] and x, y ∈Br.

With (2.27) in mind, Theorem 8.2 from [32] can be written as follows.

Theorem 2.9. Let A,An : [a, b ]→L(X), f, fn : [a, b ]→X and x̃n, x̃∈X for all n∈N and let

r > 1. Assume (2.13), (2.27) and

‖[An(t2)−An(t1)] x+ fn(t2)− fn(t1)‖X ≤ |h(t2)−h(t1)|,

‖[An(t2)−An(t1)] (y− x)‖X ≤ ω(‖y− x‖X) |h(t2)−h(t1)|,
(2.28)
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for t1, t2 ∈ [a, b ], x, y ∈Br and n∈N. Assume further that

lim
n→∞

‖An(t)−A(t)‖L(X) = 0 and lim
n→∞

‖fn(t)− f(t)‖X = 0 for t∈ [a, b ]. (2.29)

Let xn be solutions of (2.25) for all n∈N and let x : [a, b ]→ X be such that

lim
n→∞

‖xn(t)− x(t)‖X = 0 and x(t)∈Br for t∈ [a, b ].

Then x∈BV ([a, b ], X) and it is a solution of (NH) on [a, b ].

Similarly, when restricted to the linear case, Theorem 8.8 from [32] reduces to the next result.

Theorem 2.10. Let X =R
m for some m∈N. Let A, An : [a, b ]→L(X), f, fn : [a, b ]→X, and

x̃n, x̃ ∈ X for all n∈N. Given r > 1, suppose that (E), (2.13) and (2.29) are satisfied. Further,

assume (2.27) holds with h continuous and

‖[An(t2)−An(t1)] x+ fn(t2)− fn(t1)‖X ≤ |hn(t2)−hn(t1)|,

‖[An(t2)−An(t1)] (y− x)‖X ≤ ω(‖y− x‖X) |hn(t2)−hn(t1)|,
(2.30)

for t1, t2 ∈ [a, b ], x, y ∈Br and n∈N, where hn : [a, b ]→R, n∈N, are nondecreasing, left con-

tinuous functions such that

lim sup
n→∞

[hn(t2)−hn(t1)] ≤ h(t2)−h(t1) whenever a≤ t1≤ t2≤ b. (2.31)

If x is the solution of (NH), then for n∈N sufficiently large, equation (2.25) has a unique solution

xn on [a, b ] and (2.15) holds.

The following two propositions establish a connection between the assumptions of Theo-

rem 2.7 and the previous continuous dependence results, namely Theorems 2.9 and 2.10. The

proofs we present here were inspired in a similar type of comparison due to M. Tvrdý [43], in case

X has finite dimension.

Proposition 2.11. Let A, An : [a, b ] → L(X) and f, fn : [a, b ] → X for n∈N. Assume

(2.27) to (2.29) hold. Then An, A∈BV ([a, b ], L(X)), fn, f ∈BV ([a, b ], X) for all n∈N and

the relations (2.7), (2.23) and (2.24) are satisfied.
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Proof. First of all, note that, taking x=0 in (2.27) and (2.28), we get

‖A(t2)−A(t1)‖L(X) ≤ ω(1) |h(t2)−h(t1)|,

‖An(t2)−An(t1)‖L(X) ≤ ω(1) |h(t2)−h(t1)|
for t1, t2 ∈ [a, b ], n∈N (2.32)

and

‖f(t2)− f(t1)‖X ≤ |h(t2)−h(t1)|,

‖fn(t2)− fn(t1)‖X ≤ |h(t2)−h(t1)|
for t1, t2 ∈ [a, b ], n∈N. (2.33)

In view of these inequalities, it is clear thatA, An, f, fn, n∈N, are functions of bounded variation

on [a, b ]. Moreover,

varbaAn ≤ ω(1)
(
h(b)− h(a)

)
, for all n∈N

and (2.23) follows.

Now, let us prove the relation (2.7), that is, lim
n→∞

‖An − A‖∞ = 0.

Step 1. Notice that (2.32) and (2.29) imply that

‖A(t−)−A(s)‖L(X) ≤ ω(1) |h(t−)−h(s)|,

‖An(t−)−An(s)‖L(X) ≤ ω(1) |h(t−)−h(s)|
for t∈ (a, b ], s∈ [a, b ], n∈N (2.34)

and

‖A(t+)−A(s)‖L(X) ≤ ω(1) |h(t+)−h(s)|,

‖An(t+)−An(s)‖L(X) ≤ ω(1) |h(t+)−h(s)|
for t∈ [a, b), s∈ [a, b ], n∈N. (2.35)

Step 2. Given ε> 0 and t∈ (a, b ], let us choose s0 ∈ (a, t) and n0 ∈N such that

|h(t−)−h(s0)|<
ε

3ω(1)
and ‖An(s0)−A(s0)‖L(X)<

ε

3
for n ≥ n0.

Using these inequalities and (2.34), we get

‖An(t−)−A(t−)‖L(X)

≤ ‖An(t−)−An(s0)‖L(X) + ‖An(s0)−A(s0)‖L(X) + ‖A(s0)−A(t−)‖L(X)

< ω(1) |h(t−)−h(s0)|+
ε

3
+ω(1) |h(t−)−h(s0)|<ε,

which means

lim
n→∞

An(t−) = A(t−) for t ∈ (a, b ]. (2.36)
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Similarly, regarding (2.35), it follows that

lim
n→∞

An(t+) = A(t+) for t ∈ [a, b). (2.37)

Step 3. Now, suppose that (2.7) is not valid. Then there is ε̃ > 0 such that, for any k ∈N, there

exist mk ≥ k and tk ∈ [a, b ] such that

‖Amk
(tk)−A(tk)‖L(X) ≥ ε̃. (2.38)

We can assume, without loss of generality, that mk+1 > mk for any k ∈N and

lim
k→∞

tk = t̄ ∈ [a, b ]. (2.39)

Firstly, consider the case when t̄∈ (a, b] and assume the interval (a, t̄ ) has infinitely many

elements of the sequence {tk}, that is, (a, t̄ ) contains a subsequence which we still denote by

{tk}. By (2.34),

‖A(t̄−)−A(tk)‖L(X) ≤ ω(1) [h(t̄−)−h(tk)],

‖Amk
(t̄−)−Amk

(tk)‖L(X) ≤ ω(1) [h(t̄−)−h(tk)]
for k ∈ N.

Thus, by (2.36) and since lim
k→∞

(h(t̄−)−h(tk))= 0, there is k0 ∈N such that

‖Amk0
(t̄−)−A(t̄−)‖L(X) <

ε̃

3
,

‖A(t̄−)−A(tk0)‖L(X) ≤ ω(1) [h(t̄−)−h(tk0)] <
ε̃

3

‖Amk0
(t̄−)−Amk0

(tk0)‖L(X) <
ε̃

3
.

As a consequence, by (2.38), we finally get

ε̃ ≤ ‖Amk0
(tk0)−A(tk0)‖L(X)

≤ ‖Amk0
(tk0)−Amk0

(t̄−)‖L(X) + ‖Amk0
(t̄−)−A(t̄−)‖L(X) + ‖A(t̄−)−A(tk0)‖L(X) < ε̃,

which is a contradiction.

For the case when t̄∈ [a, b) and the set of those k ∈N for which tk ∈ (a, t̄ ) is only finite, there

is a subsequence of {tk} contained in the interval (t̄, b) which we may denote again by {tk}.
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Therefore, arguing similarly as before, there is k0 ∈N such that

ε̃ ≤ ‖Amk0
(tk0)−A(tk0)‖L(X)

≤ ‖Amk0
(tk0)−Amk0

(t̄+)‖L(X) + ‖Amk0
(t̄+)−A(t̄+)‖L(X) + ‖A(t̄+)−A(tk0)‖L(X) < ε̃,

which is a contradiction. Thus (2.7) is satisfied.

To obtain (2.24), one can use the inequalities in (2.33) and follow the steps 1 to 3. �

Proposition 2.12. LetA,An : [a, b ]→L(X), f, fn : [a, b ]→X for n∈N and let h, hn : [a, b ]→R,

n∈N, be as in Theorem 2.9. Furthermore, assume (2.27) and (2.29) to (2.31) hold. Then, for any

n∈N, we have An, A∈BV ([a, b ], L(X)), fn, f ∈BV ([a, b ], X) and the relations (2.7), (2.23)

and (2.24) are satisfied.

Proof. As in the proof of Proposition 2.11, taking x=0 in (2.27) and (2.30), we obtain

‖A(t2)−A(t1)‖L(X) ≤ ω(1) |h(t2)−h(t1)|,

‖An(t2)−An(t1)‖L(X) ≤ ω(1) |hn(t2)−hn(t1)|
for t1, t2 ∈ [a, b ], n∈N (2.40)

and

‖f(t2)− f(t1)‖X ≤ |h(t2)−h(t1)|,

‖fn(t2)− fn(t1)‖X ≤ |hn(t2)−hn(t1)|
for t1, t2 ∈ [a, b ], n∈N. (2.41)

By (2.31), there is n0 ∈N such that hn(b)−hn(a)≤h(b)−h(a)+ 1 for n ≥ n0. Hence, in

view of (2.40), for any n∈N, we have

varbaAn≤ max
{
(h(b)−h(a)+ 1) , varbaA1, . . . , varbaAn0

}
<∞,

which proves (2.23).

Suppose that (2.7) does not hold. Then there is ε̃ > 0 such that for any k ∈N, there exist

mk ≥ k and tk ∈ [a, b ] such that mk+1>mk for k ∈N and the relations (2.38) and (2.39) are true.

At fisrt, consider the case when t̄∈ (a, b) and let an arbitrary ε> 0 be given. Since h is contin-

uous, we may choose η > 0 in such a way that

h(t̄+η)−h(t̄−η)<
ε

ω(1)
. (2.42)
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Furthermore, by (2.29), there is k1 ∈N such that

‖Amk
(t̄)−A(t̄)‖L(X)<ε for all k ≥ k1 (2.43)

and, by (2.31), (2.40) and (2.42), there is k2 ∈N, k2 ≥ k1, such that

‖Amk
(τ2)−Amk

(τ1)‖L(X) ≤ ω(1) [h(t̄+η)−h(t̄−η)] + ε< 2 ε (2.44)

whenever τ1, τ2 ∈ (t̄−η, t̄+η) and k ≥ k2 . This, together with (2.29), implies immediately that

‖A(τ2)− A(τ1)‖L(X) = lim
k→∞

‖Amk
(τ2)−Amk

(τ1)‖L(X)≤ 2 ε (2.45)

for any τ1, τ2 ∈ (t̄−η, t̄+η).

Finally, let k3 ∈ N be such that k3 ≥ k2 and

|tk − t̄| < η for all k ≥ k3. (2.46)

Then, in view of inequalities (2.42) to (2.46), we have

‖Amk
(tk)−A(tk)‖L(X)

≤ ‖Amk
(tk)−Amk

(t̄)‖L(X) + ‖Amk
(t̄)−A(t̄)‖L(X) + ‖A(t̄)−A(tk)‖L(X)≤ 5 ε .

Hence, choosing ε < 1
5
ε̃ and making use of (2.38), we get ε̃ > ‖Amk

(tk)−A(tk)‖L(X) ≥ ε̃ which

is a contradiction. This proves that (2.7) is satisfied.

The adaptation of the proof for the cases t̄ = a or t̄ = b is obvious.

Finally, by (2.29) and (2.41), the inequalities (2.43) to (2.45) can be rewritten for the functions

f, fn, n ∈ N. Consequently (2.24) also holds. �



CHAPTER

3

Applications to dynamic equations on

time scales

The theory of time scales, whose initial studies are due to S. Hilger [20], has recently been

receiving special attention. The reason is that this theory represents a unified treatment of both

continuous and discrete analysis. This means that differential and difference equations can be

regarded as particular cases of the so-called dynamic equations on time scales. Furthermore, the

potential for applications of time scales calculus is remarkable. We can mention, for instance,

population dynamics or the modeling of a simple electric circuit (cf. [2]).

In this chapter, based on the correspondence between dynamic equation and generalized differ-

ential equations established in [39], we apply some theorems from Chapter 2 to obtain new results

on continuous dependence on parameter for dynamic equations on time scales.

51
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3.1 Basic results and definitions

Throughout this chapter we restrict ourselves to problems involving R
m-valued functions, for

some fixed m∈N. We remind the reader that any norm in R
m is denoted by single bars, | · |, while

the operator norm in L(Rm) is represented by ‖ · ‖.

A time scale is a nonempty closed subset of R which we denote by T. The real numbers, the

integers, the natural numbers are well-known examples of time scales, as are the Cantor set and

the groups hZ = {h q : q ∈ Z} for h > 0.

Given a, b ∈ T, [a, b]T stands for the compact interval in T, that is, [a, b]T = [a, b] ∩ T.

As usual, for each t∈T, we define the jump operators by

ρ(t) := sup{s ∈ T : s < t} and σ(t) := inf{s ∈ T : s > t}.

If σ(t) = t, we say that t is right-dense, while if ρ(t) = t then t is called left-dense.

A function f : [a, b ]T→R
m is rd-continuous on [a, b ]T, if f is continuous at every right-dense

point of [a, b ]T and the left-sided limit, f(t−), exists for every left-dense point t ∈ [a, b ]T. Clearly,

every rd-continuous function is also regulated.

In the following lines we recall some terminology and notations from time scales calculus

which we will be needed later. For a more comprehensive study of this topic, see [4] and [5], for

instance.

Define T
κ = T, whenever the time scale T is unbounded from above, otherwise, let Tκ =

T \ (ρ(maxT), maxT].

The ∆-derivative of a function f : [a, b ]T → R at a point t∈T
κ is defined by

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s
, where s∈T \ {σ(t)},

provided the above limit exists. If f∆(t) exists for each t∈ [a, b ]T ∩ T
κ, then f is ∆-differentiable

on [a, b ]T. In addition, a vector-valued function f : [a, b ]T → R
m is ∆-differentiable on [a, b ]T,

if its coordinate functions fi : [a, b ]T → R, i = 1 . . . ,m, are ∆-differentiable on [a, b ]T. In this

case, f∆(t) =
(
f∆
1 (t), . . . , f∆

m(t)
)
.
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It is known that every ∆-differentiable function is continuous (see [4, Theorem 1.16 (i)]) and

the linearity of the ∆-derivative holds (see [4, Theorem 1.20]). Moreover, when T = R, the ∆-

differentiability corresponds the usual notion of Frechét differentiability while, for T = Z, the

∆-derivative is precisely the usual forward difference operator. These facts show how calculus on

time scales can unify and extend both continuous and discrete analysis.

Among all available theories of integration on time scales, here we deal with the Riemann

∆-integral. In order to define such notion of integral, let us mention the following result:

For each δ > 0, there exists a division D = {α0, . . . , αν(D)} of [a, b ]T such that, for

each j = 1, . . . , ν(D), either tj − tj−1 ≤ δ or tj − tj−1 > δ and ρ(tj) = tj−1.

(cf. [5, Lemma 5.7])

For a given δ > 0,Dδ = Dδ[a, b ]T denote the set of all divisions of [a, b ]T with the property above.

A bounded function f : [a, b ]T → R
m is Riemann ∆-integrable on [a, b ]T , if there is I ∈R

m

satisfying: for every ε > 0, there exists δ > 0 such that

|SD(f)− I| < ε

for every Riemann ∆-sum, SD(f) :=
ν(D)∑
j=1

f(ξj) (αj − αj−1), corresponding to the a division

D∈Dδ,D = {α0, . . ., αν(D)}, independent of the way we choose ξj ∈ [αj−1, αj), j = 1, . . ., ν(D).

In this case, I =
∫ b

a
f(t)∆t.

Now, let us consider the linear dynamic equation

y∆(t) = P (t) y(t) + h(t) , y(a) = x̃ , t ∈ [a, b]T, (3.1)

where x̃ ∈ R
n, P : [a, b ]T → L(Rn) and h : [a, b ]T → R

n are rd-continuous on [a, b]T. Thanks to

the Fundamental Theorem of Calculus (cf. [15, Theorem 4.1]), such initial valued problem can be

rewritten as the following integral equation

y(t) = x̃+

∫ t

a

[
P (s) y(s) + h(s)

]
∆s , t ∈ [a, b]T.

Besides, a function y : [a, b ]T → R
n satisfying the integral equality above is said to be a solution

of (3.1) on [a, b ]T.
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Quite recently, A. Slavı́k proved in [39] that the Riemann ∆-integral can be regarded as a spe-

cial case of the Kurzweil-Stieltjes integral. In addition, in the mentioned paper, a correspondence

between dynamic equations on time scales and generalized differential equations is established.

Considering the importance of such results to our aim, we summarize them in the following propo-

sition.

Proposition 3.1. Let σ̃ : (−∞, supT)→ T be a function given by

σ̃(t) := inf{s ∈ T : s ≥ t}.

(i) [39, Theorem 5] Let f : [a, b ]T→R
m be an rd-continuous function. Define

F1(t)=

∫ t

a

f(s)∆s for t∈ [a, b ]T

and

F2(t)=

∫ t

a

f(σ̃(s)) d[σ̃(s)] for t∈ [a, b ] .

Then F2 = F1 ◦ σ̃ on [a, b ].

(ii) [39, Theorem 12] If y : [a, b ]T → R
m is a solution of (3.1), then the function x = y ◦ σ̃ :

[a, b ]→ R
m is a solution of (NH), where

A(t)=

∫ t

a

P (σ̃(s)) d[σ̃(s)] and f(t)=

∫ t

a

h(σ̃(s)) d[σ̃(s)] for t∈ [a, b ] . (3.2)

Symmetrically, if x: [a, b ]→R
m is a solution of (NH), then the function y : [a, b ]T→R

m,

given by y(t)= x(t) for t∈ [a, b ]T, is a solution of (3.1).

Remark 3.2. Since the function σ̃ : [a, b ] → [a, b ]T defined in Proposition (3.1) is clearly mono-

tone and left continuous, it is easy to check that A : [a, b ]→ L(Rn) and f : [a, b ]→ R
n as given

by (3.2) are well-defined, left-continuous and of bounded variation on [a, b ].

3.2 Continuous depencende for dynamical equations on

time scales

In this section, using the results presented in Chapter 2 we derive two theorems on continuous

dependence on parameters for dynamic equations on time scales.
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Unlike the usual theory of dynamic equations on time scales (cf. [4]), in the present work,

since the solutions of the problems of the type (3.1) are obtained via theory of generalized linear

differential equations, no extra assumption over the linear term is needed to ensure the existence

of solutions. This means that the rd-continuity of the functions in the right-hand side of equations

is sufficient for our purposes.

The next theorem is our first outcome in this section and it is based on Theorem 2.7.

Theorem 3.3. Let P, Pn: [a, b ]T → L(Rm) and h, hn: [a, b ]T → R
m, for n∈N, be rd-continuous

functions on [a, b ]T. Assume x̃, x̃n ∈R
m, n∈N, are such that

lim
n→∞

|x̃n− x̃| = 0 (3.3)

If there is M > 0 such that

sup
t∈[a,b ]T

‖Pn(t)‖ ≤M for n∈N, (3.4)

and moreover

lim
n→∞

sup
t∈[a,b ]T

∥∥∥
∫ t

a

(Pn(s)−P (s))∆s
∥∥∥ = 0,

lim
n→∞

sup
t∈[a,b ]T

∣∣∣
∫ t

a

(hn(s)−h(s))∆s
∣∣∣ = 0.

(3.5)

hold, then there exists a solution y : [a, b ]T → R
m of (3.1), the initial value problems

y∆n (t) = Pn(t) yn(t) + hn(t) , yn(a) = ỹn , t ∈ [a, b ]T (3.6)

have solutions yn : [a, b ]T → R
m for all n∈N, and

lim
n→∞

sup
t∈[a,b ]T

|yn(t)− y(t)| = 0 . (3.7)

Proof. Consider the functions A∈BV ([a, b ], L(Rm)) and f ∈BV ([a, b ],Rm) given by (3.2) and

let x : [a, b ] → R
m be the solution of (NH), whose existence is guarantee by Proposition 2.1,

having in mind Remark 3.2.

For each n∈N and t∈ [a, b ], define

An(t)=

∫ t

a

Pn(σ̃(s)) d[σ̃(s)] and fn(t)=

∫ t

a

hn(σ̃(s)) d[σ̃(s)]. (3.8)
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Since the functions An : [a, b ]T → L(Rm) are left-continuous on (a, b] for all n∈N, the general-

ized linear differential equations (2.25) have solutions xn : [a, b ]→ R
m, n∈N.

Note that, by Proposition 3.1 (i), for each n ∈ N and each t ∈ [a, b ],

‖An(t)− A(t)‖ =
∥∥∥
∫ t

a

(Pn − P )(σ̃(s)) d[σ̃(s)]
∥∥∥.

=
∥∥∥
∫ σ̃(t)

a

(Pn − P )(s)∆s
∥∥∥ ≤ sup

τ∈[a,b ]T

∥∥∥
∫ τ

a

(Pn − P )(s)∆s
∥∥∥.

Therefore

‖An − A‖∞ ≤ sup
t∈[a,b ]T

∥∥∥
∫ t

a

(Pn − P )(s)∆s
∥∥∥, n∈N. (3.9)

Analogously,

‖fn − f‖∞ ≤ sup
t∈[a,b ]T

∣∣∣
∫ t

a

(hn − h)(s)∆s
∣∣∣, n∈N. (3.10)

Using (3.5), we obtain

lim
n→∞

‖An − A‖∞ = 0 and lim
n→∞

‖fn − f‖∞ = 0,

which means that assumptions (2.7) and (2.24) of Theorem 2.7 are satisfied.

On the other hand, given a ≤ c < d ≤ b, by a property of the abstract KS-integral (cf.

Proposition 1.4 (i)),

‖An(d)− An(c)‖ =

∥∥∥∥
∫ d

c

Pn(σ̃(s)) d[σ̃(s)]

∥∥∥∥ ≤ ‖Pn ◦ σ̃‖∞
(
vardc σ̃

)
,

holds for each n∈N, where from by (3.4), we get

varbaAn ≤

(
sup

t∈[a,b ]T

‖Pn(t)‖L(Rm)

)
(
varba σ̃

)
≤M

(
varbaσ̃

)
, for all n ∈ N.

Hence the assumption (2.23) of Theorem 2.7 is satisfied as well. Consequently,

lim
n→∞

‖xn − x‖∞ = 0

is true. In view of this, since by Proposition 3.1 (ii), the functions y, yn : [a, b ]T→R
m, n∈N,

obtained as the restriction of x and xn to [a, b ]T respectively, are the corresponding solutions of

(3.1) and (3.6), it follows that (3.7) is also true, which completes the proof. �
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Two continuous dependence results for solutions of nonlinear dynamic equations on time scales

were presented in [39]. These results derive from Theorems 8.2 and 8.7 from [32] by way of the re-

lation between generalized ODEs and dynamic equations on time scales stated in Theorem 3.3 (ii).

In view of Propositions 2.11 and 2.12, Theorem 3.3 provides, for the linear case, a result which

generalizes both Theorem 14 and Theorem 16 from [39].

Making use of Corollary 2.5 we obtain the following theorem.

Theorem 3.4. Let P, Pn: [a, b ]T → L(Rm) and h, hn: [a, b ]T → R
m for n∈N be rd-continuous

functions on [a, b ]T and let x̃, x̃n ∈R
m, n∈N, be given. Assume (3.3) holds and

lim
n→∞

[
1 + αn

]
sup

t∈[a,b ]T

∥∥∥
∫ t

a

(Pn(s)−P (s))∆s
∥∥∥ = 0,

lim
n→∞

[
1 + αn

]
sup

t∈[a,b ]T

∣∣∣
∫ t

a

(hn(s)−h(s))∆s
∣∣∣ = 0,

(3.11)

where αn = supt∈[a,b ]T
‖Pn(t)‖L(Rm) + supt∈[a,b ]T

‖hn(t)‖Rm , n∈N. Then equation (3.1) has a

solution y, equations (3.6) have solutions yn for all n∈N and (3.7) holds.

Proof. Consider the functions An, A, fn, f, n∈N, defined by (3.2) and (3.8). Let x and

xn, n∈N, be the solutions of the generalized linear differential equations (NH) and (2.25), re-

spectively. Similarly as in the proof of Theorem 3.3, the estimates (3.9) and (3.10) are true. In

addition,

varbaAn≤

(
sup

t∈[a,b ]T

‖Pn(t)‖L(Rm)

)
(varbaσ̃) and varba fn≤

(
sup

t∈[a,b ]T

‖hn(t)‖Rm

)
(varbaσ̃).

These estimates, together with (3.11), lead to the assumptions of Corollary 2.5. Thus (2.15) holds

and we may complete the proof of the theorem using the same argument as in the end of the proof

of Theorem 3.3. �





CHAPTER

4

Applications to functional differential

equations

In this chapter, we apply the continuous dependence results obtained in Chapter 2 to Retarded

Functional Differential Equations (we write RFDEs for short). The first section of this chapter,

presents some preliminary notations and results concerning the relationship between RFDEs and

generalized differential equations (e.g. [9], [10], [23] and [29]). In the second section, new results

on continuous dependence of solutions on a parameter in the framework of RFDEs are obtained.

4.1 RFDEs and generalized differential equations

For some fixed m ∈ N, let Rm be the Euclidean space with norm | · |. Recall that G([a, b ],Rm)

denotes the Banach space of all regulated functions defined on [a, b ] with values in R
m, equipped

with the induced norm: ‖f‖ = sup
t∈[a,b ]

|f(t)|, f ∈ G([a, b ],Rm).

59
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In what follows, let us fix a, b, r ∈ R with a < b and 0 < r < (b− a). For y : [a− r, b]→ R
m

and t ∈ [a, b ], define the function yt : [−r, 0] → R
m, which expresses the history or memory of y

on [t− r, t], by

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

It is clear that for y ∈ G([a− r, b],Rm) and t ∈ [a, b ], we have yt ∈ G([−r, 0],R
m).

Given f : G([−r, 0],Rm)× [a, b]→ R
m and φ ∈ G([−r, 0],Rm), consider the following initial

value problem for a retarded functional differential equation

ẏ(t) = f(yt, t), ya = φ. (4.1)

Recall that a function y : [a− r, b]→ R
m is a solution of (4.1) on [a, b ], if y ∈ G([a− r, b],Rm),

ya = φ and the equality ẏ(t) = f(yt, t) holds for almost every t ∈ [a, b ].

Initial value problems for functional differential equations with continuous initial condition

were extensively studied by J. Hale in [16]. With regard to linear systems, we can mention the

papers [41] and [42] by M. Tvrdý, where the equations have initial data in BV ([−r, 0],Rm). In

the present work, we are particularly interested in linear RFDEs





ẏ(t) = L(yt, t)

ya = φ,
(4.2)

where φ ∈ G([−r, 0],Rm) and the function L : G([−r, 0],Rm)× [a, b ]→ R
m is linear in the first

variable.

An equivalent formulation to problem (4.2) can be written if the mapping t 7−→ L(yt, t) is

assumed to be integrable in some sense on [a, b ], for every y ∈ G([a− r, b],Rm). More precisely,





y(t) = φ(0) +

∫ t

a

L(ys, s) ds, t ∈ [a, b ],

ya = φ.

(4.3)

Concerning the function L : G([−r, 0],Rm) × [a, b ] → R
m, we assume, for each y ∈ G([a −

r, b],Rm), t 7−→ L(yt, t) is Kurzweil-Henstock integrable on [a, b ] (see Chapter 1) and that the

following Lipschitz condition is satisfied:
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(L) There exists M : [a, b ]→ R Kurzweil-Henstock integrable on [a, b ] such that

∣∣∣∣
∫ t2

t1

L(ys − zs, s) ds

∣∣∣∣ ≤
∫ t2

t1

M(s) ‖ys−zs‖ ds, t1, t2 ∈ [a, b ], y, z ∈ G([a− r, b],Rm).

A particular situation in which condition (L) holds is when

L(ψ, t) =

∫ 0

−r

dθ[η(t, θ)]ψ(θ), t ∈ [a, b ], ψ ∈ C([−r, 0],Rm)

where the function η : R × R → L(Rm), which exists by the Riesz Representation Theorem (cf.

[40, Theorem III.5.6]), is such that, for each t, the function η(t, ·) is left continuous and of bounded

variation on [−r, 0], with m(t) = var0−rη(t, ·) being Lebesgue integrable on [a, b ]. In this case,

|L(ψ, t)| ≤ m(t) ‖ψ‖, t ∈ [a, b ], ψ ∈ C([−r, 0],Rm).

As in [9] (see also [10]), the Lipschitz-type condition was imposed to the indefinite integral

of L rather than to the function itself. Such type of condition, together with an assumption of

Caratheodory-type, was used by M. Federson and P. Táboas in [9] to prove a correspondence

between RFDEs and a certain class of generalized differential equations with values in a Banach

space. Notice that, in the linear case, a Caratheodory-type condition holds in the unity ball, by

taking z as the null function in (L).

The problem of regarding RFDEs as a class of generalized differential equations was first

treated by C. Imaz and Z. Vorel in [23] and by F. Oliva and Z. Vorel in [29]. Based on the ideas

coming from the mentioned papers, for y ∈ G([a− r, b],Rm) and t ∈ [a, b ], define

F (y, t)(ϑ) =





0, a− r ≤ ϑ ≤ a,
∫ ϑ

a
L(ys, s) ds, a ≤ ϑ ≤ t ≤ b,

∫ t

a
L(ys, s) ds, a ≤ t ≤ ϑ ≤ b.

(4.4)

It is easy to check that, for each pair (y, t) ∈ G([a − r, b],Rm) × [a, b ], the function F (y, t) :

[a− r, b]→ R
m is continuous on [a− r, b], that is, F (y, t) ∈ C([a− r, b],Rm).

For each t ∈ [a, b ], consider A(t) : G([a− r, b],Rm)→ G([a− r, b],Rm) given by

A(t)y = F (y, t), for y ∈ G([a− r, b],Rm) . (4.5)
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By the Lipschitz condition (L), we have

‖A(t)y‖ = sup
ϑ∈[a−r,b]

|F (y, t)(ϑ)| ≤ sup
ϑ∈[a,t]

∣∣∣∣
∫ ϑ

a

L(ys, s) ds

∣∣∣∣ ≤
∫ t

a

M(s) ds ‖y‖, (4.6)

for y ∈ G([a − r, b],Rm). Then, in view of the linearity of the function L and the linearity of the

integral, A(t) ∈ L
(
G([a− r, b],Rm)

)
.

On the other hand, for a ≤ s1 < s2 ≤ b and y ∈ G([a− r, b],Rm), by (L), we have

‖[A(s2)− A(s1)]y‖ = sup
ϑ∈[a−r,b]

∣∣[A(s2)y](ϑ)− [A(s1)y](ϑ)
∣∣

= sup
ϑ∈[s1,s2]

∣∣∣∣
∫ ϑ

s1

L(ys, s) ds

∣∣∣∣

≤
(∫ s2

s1

M(s) ds
)
‖y‖.

Thus, it follows that

‖A(s2)− A(s1)‖L(G([a−r,b],Rm)) = sup
‖y‖≤1

‖[A(s2)− A(s1)]y‖ ≤

∫ s2

s1

M(s) ds (4.7)

and therefore

varbaA ≤

∫ b

a

M(s) ds, (4.8)

which implies that the function A : [a, b ] → L
(
G([a − r, b],Rm)

)
is of bounded variation. In

addition, thanks to the Hake property of the Kurzweil-Henstock integral (see [14, Theorem 9.5]),

∆−A(t)= 0, for every t ∈ (a, b]. Hence, condition (E) holds and Proposition 2.1 ensures the

existence of a unique solution of the generalized linear differential equation

x(t) = x̃+

∫ t

a

d[A] x, t ∈ [a, b ], (H)

where x̃ is the function defined on [a− r, b] by

x̃(ϑ) =





φ(ϑ− a), ϑ ∈ [a− r, a],

φ(0), ϑ ∈ [a, b ].
(4.9)

More generaly, let us consider the perturbed problem




ẏ(t) = L(yt, t) + h(t)

ya = φ,
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where, as before, φ ∈ G([−r, 0],Rm), L : G([−r, 0],Rm) × [a, b ] → R
m is linear in the first

variable and satisfies (L), and the function h : [a, b ] → R
m is Kurzweil-Henstock integrable on

[a, b]. Also, assume the mapping t 7−→ L(yt, t) is Kurzweil-Henstock integrable on [a, b ], for

every y ∈ G([a− r, b],Rm). Hence, we can write the integral form of the perturbed problem as





y(t) = φ(0) +

∫ t

a

L(ys, s) ds+

∫ t

a

h(s) ds, t ∈ [a, b ],

ya = φ.

(4.10)

Similarly to the homogeneous case, for t ∈ [a, b ], define

f(t)(ϑ) =





0, a− r ≤ ϑ ≤ a,
∫ ϑ

a
h(s) ds, a ≤ ϑ ≤ t ≤ b,

∫ t

a
h(s) ds, a ≤ t ≤ ϑ ≤ b.

(4.11)

Note that, by definition, f(t) ∈ C([a − r, b],Rm), for every t ∈ [a, b ]. Moreover, it is not hard to

prove that the function f : [a, b ]→ G([a− r, b],Rm) is continuous.

Let A : [a, b ] → L(G([a − r, b],Rm)) be given by (4.5). According to Proposition 2.1

and having in mind the properties of the function A described before, there exists a solution

x : [a, b ]→G([a− r, b],Rm) of the generalized linear differential equation

x(t) = x̃+

∫ t

a

d[A] x+ f(t)− f(a), t ∈ [a, b ], (NH)

with x̃ as in (4.9).

The connection between the solutions of (NH) and (4.10) or, in particular, in the homogeneos

case, between (H) and (4.3), can be established as in [9] and [10]. In the following lines, we

describe this relationship in more details. In order to do that, an auxiliar result, borrowed from

[10], is needed (see also [29, Lemma 2.1]). It is important to mention that the proof given in [10]

corresponds to a technical manipulation of the solution and does not depend on the conditions of

Caratheodory- and Lipschitz-types assumed there. In view of this, we can state [10, Lemma 3.3]

for our purposes as follows.
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Lemma 4.1. Assume x is a solution of (NH) on [a, b ] with initial condition given by (4.9), where

A and f are the functions defined in (4.5) and (4.11) respectively. Then, for all t ∈ [a, b ], we have

x(t)(τ) = x(τ)(τ), τ ∈ [a− r, t] (4.12)

and

x(t)(τ) = x(t)(t), τ ∈ [t, b]. (4.13)

Proposition 4.2. Let φ ∈ G([−r, 0],Rm) and L : G([−r, 0],Rm) × [a, b ] → R
m be a function

linear in the first variable such that t 7−→ L(yt, t) is Kurzweil-Henstock integrable on [a, b ] and

(L) holds. Assume x is a solution of (NH) on [a, b ] with initial condition given by (4.9), where A

and f are the functions defined in (4.5) and (4.11) respectively. For ϑ ∈ [a− r, b], let

y(ϑ) =





x(a)(ϑ), ϑ ∈ [a− r, a],

x(ϑ)(ϑ), ϑ ∈ [a, b ].
(4.14)

Then y is a solution of (4.10) on [a− r, b].

Proof. First of all, note that, by the definition of y and (4.9), we have ya = φ. Indeed,

ya(θ) = y(a+ θ) = x(a)(a+ θ) = x̃(a+ θ) = φ(θ), for all θ ∈ [−r, 0].

Let us fix an arbitrary ϑ ∈ [a, b ]. By Lemma 4.1, we can write

y(ϑ)− y(a) = x(ϑ)(ϑ)− x(a)(a)

= x(ϑ)(ϑ)− x(a)(ϑ)

=
(∫ ϑ

a

d[A]x
)
(ϑ) +

[
f(ϑ)− f(a)

]
(ϑ).

=
(∫ ϑ

a

d[A]x
)
(ϑ) +

∫ ϑ

a

h(s) ds. (4.15)

Given ε > 0, since x : [a, b ] → G([a − r, b],Rm) is regulated, by [13, Proposition 1.9] (with

an obvious extension to Banach space-valued functions), there is a finite sequence, a = t0 < t1 <

. . . < tn = ϑ, such that

‖x(t)− x(s)‖ < ε, whenever tk−1 < s < t < tk for k = 1, . . . , n. (4.16)
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Consider a gauge δ on [a, ϑ] corresponding to the existence of the integral
∫ ϑ

a
d[A]x, that is, a

gauge such that

∥∥∥∥S(dA, x, P )−
∫ ϑ

a

d[A] x

∥∥∥∥ < ε, for all δ-fine partitions P of [a, ϑ]. (4.17)

Assume further that

δ(τ) < min{ tk−tk−1

2
: k = 1, . . . , n}, for τ ∈ [a, ϑ],

0 < δ(τ) < min{|τ − tk|, |τ − tk−1|}, for τ ∈ (tk−1, tk), k = 1, . . . , n.

It is easy to check that, by this choice of the gauge, each subinterval of a δ-fine partition contains

at most one of the points t0, . . . , tn and, in this case, it corresponds to the tag of that interval.

Moreover, by the continuity of the Kurzweil-Henstock primitive on [a, ϑ] (cf. [14, Theorem 9.15]),

we can assume also that
∣∣∣∣∣

∫ tk+δ(tk)

tk

M(s) ds

∣∣∣∣∣ <
ε

n+ 2
, for each k = 0, 1, . . . , n. (4.18)

Having in mind the relations (4.15) and (4.17), for a δ-fine partition P = (ξj, [αj−1, αj]) of

[a, ϑ], we get

∣∣∣∣y(ϑ)− y(a)−

∫ ϑ

a

L(ys, s) ds−

∫ ϑ

a

h(s) ds

∣∣∣∣

=

∣∣∣∣
( ∫ ϑ

a

d[A]x
)
(ϑ)−

∫ ϑ

a

L(ys, s) ds

∣∣∣∣

≤

∣∣∣∣
[ ∫ ϑ

a

d[A]x− S(dA, x, P )
]
(ϑ)

∣∣∣∣+
∣∣∣∣S(dA, x, P )(ϑ)−

∫ ϑ

a

L(ys, s) ds

∣∣∣∣

< ε+

∣∣∣∣∣∣

ν(P )∑

j=1

[
A(αj)− A(αj−1)

]
x(ξj)(ϑ)−

∫ ϑ

a

L(ys, s) ds

∣∣∣∣∣∣

< ε+

ν(P )∑

j=1

∣∣∣
[
A(αj)− A(αj−1)

]
x(ξj)(ϑ)−

∫ αj

αj−1

L(ys, s) ds
∣∣∣

For each j = 1, . . . , ν(P ), by the definition of A and taking into account the relations

x(ξj)s = x(s)s = ys, s∈ [αj−1, ξj],

ys = x(s)s = x(αj)s, s∈ [ξj, αj],
for each j = 1, . . . , ν(P ),
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(cf. Lemma 4.1), it follows that
∣∣∣
[
A(αj)− A(αj−1)

]
x(ξj)(ϑ)−

∫ αj

αj−1

L(ys, s) ds
∣∣∣

=
∣∣∣
∫ αj

αj−1

L(x(ξj)s, s) ds−

∫ αj

αj−1

L(ys, s) ds
∣∣∣ =

∣∣∣
∫ αj

ξj

L(x(ξj)s − x(αj)s, s) ds
∣∣∣,

where from, using (L), we get
∣∣∣
[
A(αj)− A(αj−1)

]
x(ξj)(ϑ)−

∫ αj

αj−1

L(ys, s) ds
∣∣∣ ≤

∫ αj

ξj

M(s) ‖x(ξj)s − x(αj)s‖ ds. (4.19)

In case ξj = tk, for some k = 0, . . . , n, the inequality above, together with (4.18), leads to
∣∣∣
[
A(αj)− A(αj−1)

]
x(ξj)(ϑ)−

∫ αj

αj−1

L(ys, s) ds
∣∣∣ < 2 ‖x‖

ε

n+ 2
. (4.20)

Otherwise, if [αj−1, αj] does not contain any point of the set {t0, . . . , tn}, we have

‖x(ξj)s − x(αj)s‖ = sup
θ∈[−r,0]

|x(ξj)(s+ θ)− x(αj)(s+ θ)|

= sup
ρ∈(ξj ,αj ]

|x(ξj)(ρ)− x(αj)(ρ)|

≤ sup
ρ∈(ξj ,αj ]

{
|x(ξj)(ρ)− x(ξj+)(ρ)|+ |x(ξj+)(ρ)− x(αj)(ρ)|

}

≤ ‖x(ξj)− x(ξj+)‖+ ‖x(ξj+)− x(αj)‖

which, by (4.16) and (4.19), implies
∣∣∣
[
A(αj)− A(αj−1)

]
x(ξj)(ϑ)−

∫ αj

αj−1

L(ys, s) ds
∣∣∣ < 2 ε

∫ αj

ξj

M(s) ds. (4.21)

In summary, thanks to (4.19), (4.20) and (4.21), we have
∣∣∣∣y(ϑ)− y(a)−

∫ ϑ

a

L(ys, s) ds−

∫ ϑ

a

h(s) ds

∣∣∣∣

< ε+

ν(P )∑

j=1

∣∣∣
[
A(αj)− A(αj−1)

]
x(ξj)(ϑ)−

∫ αj

αj−1

L(ys, s) ds
∣∣∣

< ε+

ν(P )∑

j=1

∫ αj

ξj

M(s) ‖x(ξj)s − x(αj)s‖ ds

< ε+
∑

j ; [αj−1,αj ]∩{t0,...,tn}6=∅

2 ‖x‖
ε

2n+ 1
+ 2 ε

∑

j ; [αj−1,αj ]∩{t0,...,tn}=∅

∫ αj

ξj

M(s) ds

< ε+ 2 ‖x‖ (n+ 1)
ε

n+ 2
+ 2 ε

∫ ϑ

a

M(s) ds,
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that is,

∣∣∣∣y(ϑ)− y(a)−

∫ ϑ

a

L(ys, s) ds−

∫ ϑ

a

h(s) ds

∣∣∣∣ < ε
(
1 + 2 ‖x‖+ 2

∫ ϑ

a

M(s) ds
)
.

Then, since ε > 0 is arbirtary, the result is proved. �

Using these tools, in the next section, we will translate the continuous dependence result ob-

tained in Chapter 2 to the framework of RFDEs.

4.2 Continuous dependence for linear functional differ-

ential equations

In this section, we provide new theorems on continuous dependence for linear functional diffe-

rential equations based on results presented in Chapter 2. More precisely, considering the following

initial value problems





ẏ(t) = L0((y0)t, t) + h0(t)

ya = φ0

,





ẏn(t) = Ln((yn)t, t) + hn(t)

(yn)a = φn

, n ∈ N,

we investigate sufficient conditions ensuring that the sequence of the solutions yn tends to the

solution y.

In [16], J. Hale presents a well-known result on continuous dependence which corresponds to a

natural generalization of the methods from the theory of ordinary differential equations. Roughly

speaking, in Theorem 2.2 from [16], it is proved that the solutions depend continuously on a

parameter whenever uniqueness is required. However, such result, as the theory developed in [16],

is stated for functional differential equations with continuous right-hand sides. Regarding this fact,

following results cover rather more general problems.

Concerning the functions Ln : G([−r, 0],Rm) × [a, b ] → R
m and hn : [a, b ] → R

m, n∈N ∪

{0}, throughout this section, we assume the following conditions are fulfilled:

1. Ln is linear in the first variable, for all n ∈ N ∪ {0}.
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2. For every y ∈ G([a− r, b],Rm) and n ∈ N ∪ {0}, the mapping t 7−→ Ln(yt, t) is Kurzweil-

Henstock integrable on [a, b ].

3. For each n ∈ N ∪ {0}, there exists Mn : [a, b ]→ R Kurzweil-Henstock integrable on [a, b ]

such that ∣∣∣∣
∫ t2

t1

Ln(ys − zs, s) ds

∣∣∣∣ ≤
∫ t2

t1

Mn(s) ‖ys − zs‖ds,

for all t1, t2 ∈ [a, b ] and all y, z ∈ G([a− r, b],Rm).

4. hn is Kurzweil-Henstock integrable on [a, b ], for all n ∈ N ∪ {0}.

The first result of this section is related to Theorem 2.4 and deals with the homogeneous equa-

tion.

Theorem 4.3. Let Ln : G([−r, 0],Rm) × [a, b ] → R
m, n ∈ N ∪ {0}, be a sequence of functions

which satisfies conditions 1 to 3. Assume

lim
n→∞

[
1+

∫ b

a

Mn(s) ds
]

sup
t∈[a,b ]

∣∣∣
∫ t

a

[
Ln − L0

]
(ys, s) ds

∣∣∣ = 0 (4.22)

holds for any choice of y ∈ G([a− r, b],Rm). Further, consider a sequence φn ∈ G([−r, 0],R
m),

n ∈ N ∪ {0}, such that

lim
n→∞

‖φn − φ0‖ = 0. (4.23)

Then, for each n ∈ N ∪ {0}, there exists a solution yn on [a− r, b] of equation




yn(t) = φn(0) +

∫ t

a

L((yn)s, s) ds, t ∈ [a, b ],

(yn)a = φn,

(4.24)

and lim
n→∞

‖yn− y0‖∞ = 0 .

Proof. To simplify the notation, let X denote the Banach space G([a− r, b],Rm).

For each n ∈ N ∪ {0}, consider the functions x̃n ∈ X and An : [a, b ] → L(X) defined as

follows

x̃n(ϑ) =





φn(ϑ− a), ϑ ∈ [a− r, a]

φn(0), ϑ ∈ [a, b]
(4.25)

and
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[
An(t)y

]
(ϑ) =





0, a− r ≤ ϑ ≤ a
∫ ϑ

a
Ln(ys, s) ds, a ≤ ϑ ≤ t ≤ b

∫ t

a
Ln(ys, s) ds, a ≤ t ≤ ϑ ≤ b

, t ∈ [a, b ], y ∈ X. (4.26)

Notice that the estimates (4.7) and (4.8) are also true for the functions An, n ∈ N ∪ {0}. Thus,

for each n ∈ N ∪ {0}, An is of bounded variation and left continuous which, by Proposition 2.1,

imply the existence of a solution xn : [a− r, b]→ X of

xn(t) = x̃n +

∫ t

a

d[An] xn, t ∈ [a, b ].

The definition of An, together with condition 3, implies

‖An − A0‖∞ = sup
t∈[a,b ]

‖An(t)− A0(t)‖L(X)

= sup
t∈[a,b ]

(
sup
‖y‖≤1

‖An(t)y − A0(t)y‖X

)

≤ sup
‖y‖≤1

[
sup
t∈[a,b ]

∣∣∣
∫ t

a

[
Ln − L0

]
(ys, s) ds

∣∣∣
]
.

Moreover, as in (4.8), we also have

varbaAn ≤

∫ b

a

Mn(s) ds, n ∈ N. (4.27)

In view of these inequalities and (4.22), the assumption (2.12) of Theorem 2.4 is satisfied, that

is, limn→∞ ‖An − A0‖∞ [1 + varbaAn] = 0. Besides, (4.23) means that the sequence of initial

conditions x̃n tends to x̃0, that is, (2.13) from Theorem 2.4 also holds. Hence,

lim
n→∞

‖xn− x0‖∞ = 0 . (4.28)

Taking into account Proposition 4.2, for each n ∈ N ∪ {0}, problem (4.24) has a solution

yn : [a− r, b]→ R
m given by

yn(ϑ) =





xn(a)(ϑ), ϑ ∈ [a− r, a]

xn(ϑ)(ϑ), ϑ ∈ [a, b ]
(4.29)

which, together with (4.28), concludes the proof. �
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From Theorem 2.7, we obtain the following continuous dependence result for nonhomoge-

neous linear RFDEs.

Theorem 4.4. Let Ln : G([−r, 0],Rm) × [a, b ] → R
m and hn : [a, b ] → R

m, n ∈ N ∪ {0}, be

functions satisfying conditions 1 to 4. Consider a sequence φn ∈ G([−r, 0],Rm), n ∈ N ∪ {0},

such that (4.23) holds. Further, assume

lim
n→∞

‖hn − h0‖∞ = 0, (4.30)

lim
n→∞

sup
t∈[a,b ]

∣∣∣
∫ t

t0

[
Ln − L0

]
(ys, s) ds

∣∣∣ = 0 , for all y ∈ G([a− r, b],Rm), (4.31)

µ∗ := sup
n∈N

∫ b

a

Mn(s) ds <∞, (4.32)

where, for each n ∈ N, Mn is the function corresponding to condition 3. Then, for each n ∈

N ∪ {0}, there exists a solution yn on [a− r, b] of equation




yn(t) = φn(0) +

∫ t

a

L((yn)s, s) ds+

∫ t

a

hn(s) ds, t ∈ [a, b ],

(yn)a = φn.

(4.33)

and lim
n→∞

‖yn− y0‖∞ = 0 .

Proof. To simplify the notation, let X denote the Banach space G([a− r, b],Rm).

For n ∈ N ∪ {0}, let x̃n ∈ X and An ∈ BV ([a, b ], L(X)) be given by (4.25) and (4.26)

respectively and let fn : [a, b ]→ X be defined by

fn(t)(ϑ) =





0, a− r ≤ ϑ ≤ a,
∫ ϑ

a
hn(s) ds, a ≤ ϑ ≤ t ≤ b,

∫ t

a
hn(s) ds, a ≤ t ≤ ϑ ≤ b.

Since An is left continuous, for each n ∈ N ∪ {0}, by Proposition 2.1, there exists a solution

xn : [a, b ]→ X of the generalized linear equation

xn(t) = x̃n +

∫ t

a

d[An] xn + fn(t)− fn(a) , t ∈ [a, b ]

Similarly as in the proof of Theorem 4.3, we have

‖An − A0‖∞ ≤ sup
‖y‖≤1

[
sup
t∈[a,b ]

∣∣∣
∫ t

a

[
Ln − L0

]
(ys, s) ds

∣∣∣
]
.
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which, together with (4.31), implies limn→∞ ‖An −A0‖∞ = 0. Having (4.27) and (4.32) in mind,

we get

sup
n∈N

varbaAn ≤ µ∗ <∞.

Moreover, in view of the definition of fn, (4.30) yields limn→∞ ‖fn − f0‖∞ = 0.

In summary, we have the assumptions of Theorem 2.7 satisfied and (4.28) holds. Therefore, by

Proposition 4.2, the solutions yn of (4.33) are given by (4.29), for each n ∈ N∪{0}. Consequently,

limn→∞ ‖yn − y0‖∞ = 0. �

With respect to continuous dependence on parameters for functional differential equations, let

us mention two results inspired in the theory of generalized differential equations. One of them is

Theorem 4.1 from [10], which derives from [32, Theorem 8.2] using the correspondence between

impulsive RFDEs and generalized differential equations. Secondly, we have Theorem 3.4 from

[11] whose proof follows the ideas of the proof of [32, Theorem 8.6], even if it is not obtained via

theory of generalized differential equations.

Recalling Proposition 2.11 in Chapter 2, which shows that the assumptions of Theorem 2.7 are

more general than those in Theorem 2.9, we can say that, for the linear case, our result (namely,

Theorem 4.4) encompasses previous one, as [10, Theorem 4.1] and [11, Theorem 3.4], when no

impulses are involved.





Bibliography

[1] S. M. Afonso; E. Bonotto; M. Federson; Š. Schwabik, Discontinuous local semiflows
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[34] Š. Schwabik, Linear Stieltjes integral equations in Banach spaces, Math. Bohem. 124(4)

(1999), 433–457.
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