
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Marek Kobera

Qualitative properties of radiation
magnetohydrodynamics

Mathematical Institute of Charles University

Supervisor of the doctoral thesis: RNDr. Šárka Nečasová, DSc.
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Abstract: We consider a simplified model based on the Navier-Stokes-Fourier
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Next, we study a hydrodynamical model describing the motion of internal stellar
layers based on compressible Navier-Stokes-Fourier-Poisson system. We suppose
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radiative transfer and we assume that the system is steadily rotating.
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Keywords: compressible non-ideal resistive radiative magnetohydrodynamics, ex-
istence of a global-in-time weak solution, singular limit for small Mach, Péclet,
Froude, Alfvén numbers low stratification, tachoclines and upper radiative zones
in giant stars

ii



I would like to dedicate this thesis to my beloved wife Mgr. Veronika Koberová
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Preface

The fluid mechanics is a vast discipline with numerous applications in physi-
cal sciences and engineering. In both fields to arrive at particular solutions one
usually needs to solve certain differential equations numerically. As one faces
the problem of various time and length scales connected with values of physical
parameters appearing in the equations the complexity of the full numerical res-
olution of the problem at all scales can be overwhelming and also superfluous.
Therefore practitioners often take recourse to some popular simplified models.

The mathematical fluid mechanics brings to this situation mathematical rigour
and order. Some models which have been derived by formal arguments like
asymptotic power series analysis can be rederived rigorously. Moreover the proofs
can shed light on the sources of instabilities that can be observed in numerical
approximations and serve as inspirations for the particular choices of the most
suitable numerical schemes.

Magnetohydrodynamics is the simplest of possible descriptions of plasma.
Plasma is the most prevalent state of the matter in the visible part of the Uni-
verse. Matter emiting electromagnetic radiation makes approximately 4.9 % of its
energy-matter content. It was said that thereof about 99.999 % is in a plasmatic
state (Puerta, Mart́ın , 1998, page 57). However, not all matter that is partially
ionized is called plasma by definition. Plasma has to satisfy the following require-
ments (Karlický , 2014): the number of particles within the Debye sphere has to
be greater than one (i. e. plasma is dense enough to ensure that the movement
of its particles is ”collective”), quasineutrality (that is the Debye shielding length
λD is small in comparison with the typical referential length of the system and
therefore rather bulk than interfacial effects dominate) and electron plasma fre-
quency is much larger than electron-neutral collision frequency, meaning that the
behaviour of plasma is dominated by electromagnetic forces and not by ordinary
gas-like collisions.

The magnetohydrodynamical (MHD) approximation consists in neglecting any
solenoidal part of the electric field (as a consequence of quasineutrality) and
Maxwell’s displacement current. This is the last term that completed the full
Maxwell system, particularly Ampère’s law, and was introduced by James Clerk
Maxwell himself. As it contains a prefactor that equals in vacuum c−2, where c is
the speed of light (in vacuum), it seems plausible to assume that the time change

of the electric induction field ~D is not of that magnitude.
Any plasma will generally emit by its movement electromagnetic radiation in

forms of photon quanta. In dense (dusty) plasmas this effect may be small and
the radiation may be absorbed by nearby objects. This is not the case we treat
here. We mainly think of astrophysical plasmas that are in local thermal equi-
librium (LTE). Even in this case we can mentally divide photon quanta forming
a photon gas into two categories. The first one are photons that are in equilib-
rium with the studied plasma (typically electrons, ions and neutrals). This part
behaves according to the black body radiation, Stefan-Boltzmann law, with a
given temperature ϑ. However, due to mechanisms of synchrotron radiation (so
called Bremsstrahlung) and inverse Compton scattering we encounter photons in
the second category — radiation that is not in equilibrium with the plasmatic
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matter.
The photon quanta that are in equilibrium augment the pressure, energy and

entropy functions for gas, and its thermal conductivitity (a radiation contribu-
tion) as well. The latter that are out of equilibrium we describe by means of
a transport equation. This equation of transfer or radiative transport equation
(RTE) was derived by Chandrasekhar (Chandrasekhar , 1950, page 9) and in his
notation it reads

dIν
ds

= −κνρIν + jνρ, (1)

where Iν is the (specific) intensity (of radiation), s is the arclength of the radiation
pencil (thickness in a direction of propagation), ρ is the density of the material,
κν is the mass absorption coefficient for radiation at a frequency ν and finally jν
is the emission coefficient. In the LTE we apply Kirchhoff’s law

jν = κνB(ν, ϑ) (2)

where B(ν, ϑ) = 2hϑ3c−2/(exp( hν
kBϑ

) − 1) is the Planck function of black body
radiation.

This thesis is organized as follows. In the first part we introduce some no-
tations and some of the issues of incompressible and compressible Navier-Stokes
and Navier-Stokes-Fourier systems. This is a review of many results obtained by
various researchers in the past.

The second part then investigates the issue of existence of global-in-time weak
solutions of the problem of viscous resistive radiative magnetohydrodynamics.
The balance of momentum and the balance of energy contain radiative contri-
butions and the entropy inequality contains additional terms that are indefinite.
The proof of existence relies on the Feireisl - Novotný theory for compressible
Navier-Stokes-Fourier equations that was recalled in the first part and on veloc-
ity averaging lemmas due to Golse et al. (Golse, Lions, Perthame, Sentis , 1988).
This part extends the result of Ducomet and Feireisl (Ducomet, Feireisl , 2006)
to the case of a nonequilibrial part of the photon gas.

The third part briefly introduces a kind reader to the problem of singular
limits in fluid dynamics generally, and to the problem of incompressible limits for
a small Mach number specially. We present the basics of the Lighthill’s acoustic
analogy and properties of the wave equation for the acoustic potential. In the
case of a bounded domain Ω the theory developed in the paper of Layton and
Novotný (Layton, Novotný , 2010) is concisely reminded.

The final part of the thesis represents another original contribution. We in-
vestigate a singular limit for a simplified system in comparison to the second
part. Here the simplification consists in negligence of the momentum transfer
from the plasma to the nonequilibrial part of the photon gas and vice versa. The
omission of this term has been studied in literature and is considered to be well-
grounded. An advantage of that simplified system lies in the preservation of the
original Planck function B(ν, ϑ). We add non-inertial terms due to rotation: the
centrifugal and the Coriolis force. The existence theory developed in the second
part is applied here. The particular limit regime that can be used for example
in outer radiation zones of giant stars has got three ”orders” of smallness. If
ε denotes a quantity that is small, we choose the Froude number of the order√
ε, the Mach and Alfvén numbers of the order ε and the Péclet number of the
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order ε2. Moreover the infrarelativistic number is of order ε−1. In the terms of
physics that means that the material we study is under given conditions nearly
incompressible (slightly compressible), lowly stratified by an external force (grav-
ity), subject to a strong magnetic field and well in the realm of classical, not
relativistic physics. Moreover, the heat transfer is mainly due to radiation and
conduction, not convection. The programme of our investigation vaguely follows
the strategy delineated in the third part. We prove that a weak solution of the
system of compressible radiative magnetohydrodynamics in this limit converges
to a weak solution of a radiative-MHD problem that consists of an incompressible
Navier-Stokes system with an effective pressure and an extra right hand side, a
system for the magnetic field, a stationary transport equation for the deviation of
the radiative intensity from the Planck function B and a decoupled steady heat
equation for the ”third order” correction to the equilibrial temperature ϑ. This
equation has a diffusion term, an advection term, a heat source corresponding to
heating by absorption of the deviation of the radiative intensity, all with constant
coefficients, and a corrector uniform in space that preserves the zero mean prop-
erty of the temperature correction. This limit transition is studied under thermal
and mechanical isolation of the domain Ω. For the electric and magnetic field
we choose the boundary conditions for a contact with a perfect conductor and
for the radiative intensity the boundary condition expressing no reflection at the
boundary ∂Ω. The initial conditions are well-prepared, although an adaptation
to the ill-prepared case would not be difficult.

The contents of the second part has been submitted as the paper (Ducomet,
Kobera, Nečasová , 2014) and the contents of the fourth part as the paper (Do-
natelli, Ducomet, Kobera, Nečasová , 2016).
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1. Introduction

1.1 Notation

• Ω ⊂ RN domain — connected open set in an Euclidean space. We use
N = 3.

• IQ characteristic function of a set Q

• B(a, r) open ball with its center at a ∈ RN and its radius r > 0

• S,T, . . . tensors

• I identity (operator, tensor)

• a⊗ b tensor product

• a× b antisymmetric part of a⊗ b — i. e. vector product

• |Q| Lebesgue measure of a set Q

• ∇x~a matrix with entries {∂xjai}Ni,j=1

• divxB column vector with entries
∑N

j=1 ∂xjBi,j, i = 1, . . . , N

• curlx~c vorticity ∇x~c− (∇x~c)
T antisymmetric matrix, in 3D represented by

a vector

• C(Q,X) for Q ⊂ RN and X Banach space is the (Bochner) Banach space
of continuous functions endowed with the sup norm

• BC(Q) for Q ⊂ RN is the space of bounded and continuous functions
endowed with the sup norm

• Cw(Q,X) for Q ⊂ RN and X Banach space is the Banach space of bounded
weakly continuous functions

• Ck(Q,X) for Q ⊂ RN , k ∈ N and X Banach space is the (Bochner) Banach
space of restrictions of k−times differential functions endowed with the
norm ||v||Ck(Q,X) := max|~α|≤k supx∈Q ‖∂~αv(x)‖X , where ~α is a multiindex

• Ck,ν(Q,X) for Q ⊂ RN , k ∈ N, ν ∈ (0, 1] and X Banach space is the
(Bochner) Banach space endowed with the norm ||v||Ck,ν(Q,X) := ||v||Ck(Q,X)

+ max|~α|=k sup(x,y)∈Q2:x 6=y
‖∂~αv(x)‖X
|x−y|ν

• Ck
c

(
Q,RM

)
for Q ⊂ RN and k,M ∈ N the space of the k−times differential

vector fields with a compact support in Q

• D
(
Q,RM

)
= C∞c

(
Q,RM

)
for Q ⊂ RN and k,M ∈ N the space of the

k−times differential vector fields with a compact support in Q endowed
with the local uniform convergence topology (of all derivatives)
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• Wm,p(Q) for m ∈ Z, p ∈ [1,∞] and Q ⊂ RN Sobolev space, for m /∈ Z
Aronszajn-Slobodetskii space

• L̇p(Q) =
{
v ∈ Lp(Q) :

∫
Q
v(x) dx = 0

}
• Ẇ 1,p(Q) = L̇p(Q) ∩W 1,p(Q)

• |w|+ := max{w, 0}

• |w|− := min{w, 0}

• R = 4−1∇x ⊗∇x double Riesz transform

• M(X) the set of signed Borel measures on X

• M+(X) the cone of non-negative elements of M(X)

• BV (Q) the function space of functions on Q with bounded variation

• H(Ω) = {~U ∈ L2(Ω;R3), divx~U = 0 in Ω, ~U
∣∣∣
∂Ω

= 0}

• U(Ω) = H(Ω) ∩W 1,2
0 (Ω;R3))

• V(Ω) =
{
~b ∈ L2(Ω;R3), divx~b = 0, ~b · ~n

∣∣∣
∂Ω

= 0
}

• W(Ω) = V(Ω) ∩W 1,2
0 (Ω;R3)

1.2 Introduction to models in fluid mechanics

A fluid is a substance that cannot sustain stress in its equilibrium — it starts
to flow1. Examples of fluids are liquids, gases and plasmas. Fluid dynamics is
applied in engineering, meteorology, astrophysics. We distinguish various levels
of description of the flow of fluids.

The first level is the level of molecular dynamics. At this level we assume we
can follow individual molecules/particles or at least some of their characteristics
if we take the quantum theory into account. We can relatively easily formulate
a dynamical system for n−body dynamics of molecules. In the classical physics
it is based on Newton’s equation, Lagrange or Hamilton’s formalism. In the
quantum non-relativistic case we use the Schrödinger equation, the Liouville-
von Neumann equation and Fock space. In the quantum relativistic case there
are ways how to generalize one particle Dirac, Klein-Gordon, Proca or generally
Bargmann-Wigner equation to the many body case. In the general relativistic
case we encounter Einstein’s equations. The Newtonian dynamic is fully time
reversible. The natural disadvantage of these models is that the typical n is huge
(cf. the Avogadro constant).

1However there are fluids with non-zero yield stress also like ketchups, collagen dispersions.
The very nature of the yield stress has been discussed in literature with the conclusion that
there is no real yield stress; that it looks like there is, depending on the timescale of the flow,
more exactly on the Deborah number. From the modelling and practical point of view there is
a yield stress, there are fluids with an activation mechanism.
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The second level of description is the level of Boltzmann equations and ki-
netic models. The Boltzmann transport equation arises under suitable assump-
tions from the BBGKY hierarchy of n−particle functions by reduction to the
one-particle function. The point of view is different: we follow the distribution
function in the phase space of dimension 6n+1 or in a seven dimensional space for
a one-particle function. There are many variants of the Boltzmann model like the
BGK equation, Fokker-Planck equation, Waldmann-Snider equation, and for our
use important Vlasov-type equations, like Landau equation, (see Villani , 2012).
Whereas the Boltzmann type equation assumes that the particles of the fluid
interact only by short-range potentials or collisions, the Vlasov-type equations
are suitable in situation of long range interactions, especially of the electromag-
netic nature. This is useful for modelling plasmas in astrophysics and elsewhere.
We can define Vlasov-Einstein, Vlasov-Maxwell, Vlasov-Yang-Mills and Vlasov-
Poisson equations, (see Vedenyapin, Sinitsyn, Dulov , 2011). The equations are
not time reversible, as it is shown by the celebrated Boltzmann H-theorem.

The third level then originates by integration of the Boltzmann-type equations
over the momentum. We get evolution equations for density %, velocity ~u and
temperature ϑ as moments of the scaled Boltzmann equation in some limits. The
equations are of Navier-Stokes type and when we start with Vlasov-Maxwell equa-
tions we obtain viscous electro-magneto-hydrodynamical equations, (see Arsénio,
Saint-Raymond , 2016). Further averaging may be required for some models of
turbulence.

The governing equations of motion in fluid mechanics have got the form of
conservation laws: balance of mass, linear and angular momentum, energy and
entropy. The general form of these balances is (Feireisl, Novotný , 2009)∫
B

d(t2, x) dx−
∫
B

d(t1, x) dx+

∫ t2

t1

∫
∂B

~F (t, x) ·~n(x) dS dt =

∫ t2

t1

∫
B

ς(t, x) dx dt,

(1.1)

where d is the volumetric density of a quantity, ~F is its flow rate at the boundary
of a ”testing body” B ∈ 2Ω and ς is its volumetric production rate. Of course,
we assume that all the integrals in (1.1) exist, especially ς = ς+ − ς− is a signed
measure, i. e. ς+ and ς− are non-negative regular Borel measures defined (at least)
on [0, T ]× Ω. The equation (1.1) should hold for all times t1 ≤ t2 and all bodies
B.

If we endow the conservation law (1.1) with some boundary conditions, like
in a Neumann IBVP, we may formulate it in distributions. If now the measure ς
is not absolutely continuous with respect to the Lebesgue measure, the quantity
d is no longer weakly continuous in time and we can define its left and right
limits in time as a measure in Ω when we take the test functions as the product
of a smooth, compactly supported test function in space and a continuously
differentiable sequence converging to the shifted function (1−H)(t), where H(t)
is the Heaviside function.

We review some simpler mathematical models than compressible viscous mag-
netohydrodynamics according to (Feireisl , 2010).
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1.3 Incompressible Navier-Stokes equations

The field of partial differential equations was entered into by Leonhard Euler who
derived a system for movement of fluids in 1757 (Euler , 1757)

divx~u = 0, (1.2a)

∂t~u+ divx(~u⊗ ~u) +∇xp = ~f. (1.2b)

Here ~u(t, x) is the velocity vector field and p(t, x) is the pressure scalar field. The
system (1.2a) – (1.2b) is nowadays known as the incompressible Euler equations.
The equation (1.2a) expresses the incompressibility of the fluid under considera-
tion, while (1.2b) is a particular form of Newton’s law. Here, of course, t denotes
time and x ∈ Ω spatial position with respect to a chosen origin of coordinates.
The vector field ~f is assumed to be a known vector field of density of forces,
usually external, which set or keep the fluid in motion.

It is well known that incompressible Euler equations (1.2a) – (1.2b) are con-
servative and hyperbolic. However, most real fluids are rather dissipative. Our
experience with mixing a fluid tells us that when we stop mixing they come to a
rest. Also, if a real fluid flows past an obstacle it does not move further unper-
turbed. This effect was for the first time quantified by Newton (Newton , 1687)
who introduced his notion of viscosity — internal resistance of fluid against veloc-
ity changes. In the 19th century this led to a reformulation of (1.2b) introducing
a viscous damping force divxν(∇x~u + ∇T

x~u) so that the renown incompressible
Navier-Stokes equations are

divx~u = 0, (1.3a)

∂t~u+ divx(~u⊗ ~u) +∇xp− divxν(∇x~u+∇T
x~u) = ~f, (1.3b)

where ν is the kinematic viscosity. We shall assume that it is positive. The
concept of viscosity is intrisically connected with statistical physics because it
introduces time irreversibility which is not present in Newton’s equation and
cannot be simply generalized to general relativity without violating causality.

To have a complete mathematical formulation of a problem to be solved we
have to endow the system (1.3a) – (1.3b) with initial and boundary conditions.
Since the incompressible Navier-Stokes equations are differential equations of first
order in time, we usually assume their initial conditions in the simplest case

~u(0,·) = ~u0 in Ω, (1.4)

where ~u0 is a spatial vector field of velocity of the fluid at a given time t = 0 and
Ω is a domain in an ambient Euclidean space. For the boundary conditions we
can choose from a wider set of conditions, so called no-slip boundary conditions

~u = ~0 on ∂Ω, (1.5)

being still the most usual. The IBVP for incompressible Navier-Stokes equations
(1.3a) – (1.3b), (1.4), (1.5) has been used extensively in many various numerical
simulations. There are indications that it has got its central position in classical
physics fairly: it is a canonical regularization of the incompressible Euler system
(1.2a) – (1.2b) with the impermeability boundary condition

~u · ~n = 0 on ∂Ω, (1.6)
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where ~n is the unit outer vector field on the boundary ∂Ω, and it can be recovered
as a limit system of various more general models in fluid mechanics, especially of
Boltzmann equation (Arsénio, Saint-Raymond , 2016) and as a low Mach number
limit of compressible Navier-Stokes-Fourier system (Alazard , 2006). There is also
a few examples of solutions to Navier-Stokes equations, but their stability and
therefore physical relevance is largely unknown (cf. e. g. (Taylor, Green , 1937)).

The choice of proper physical boundary conditions for the incompressible
Navier-Stokes system has not been settled in spite of serious recent effort. For
various situations, especially for the analysis of pressure it may be suitable to
select the Navier boundary conditions

α~u · ~τ + (1− α)~τ · S~n = 0 on ∂Ω, (1.7)

where we denoted the viscous part of the Cauchy stress tensor by S = 2νD with
D := 1

2
(∇x~u+∇T

x~u) being the deformation rate tensor, α ∈ [0, 1] a constant and
~τ an arbitrary tangential vector field on the boundary ∂Ω. Naturally, when (1.7)
is combined with (1.6) the rôle of α is a switch between the no-slip boundary
conditions (for α = 1) and the (complete) slip boundary conditions (for α = 0).
The Navier boundary conditions can be understood as an expression for the
velocity of the fluid at the boundary ∂Ω; in that case α is linked to the friction
coefficient. (Let us note that in the real world the friction coefficient should
depend on the pressure at the boundary which seems to be out of reach of current
mathematical fluid analysis and that one expects a plastic-like behaviour of the
boundary condition, namely up to a certain threshold fluid it exhibits no-slip and
after exceeding it partial or complete slip).

The issue of global well posedness for large data, which is usually required
in mathematical modelling, is for (1.3a) – (1.3b), (1.4), (1.5) an outstanding
long-term open problem, at least in three dimensions — we know functional
settings where existence has been established and other functional settings where
uniqueness holds. Historically, the question of existence of solutions led to the
introduction of the notion of generalized solution, so called weak solutions by
Leray (Leray , 1934). One of the main results on regularity of solutions to the
incompressible Navier-Stokes system is due to Beale, Kato and Majda (Beale,
Kato, Majda , 1984) which maintains that we have got a regular solution up to
a time T for which

‖~ω‖L1(0,T ;L∞(Ω)) ≤ c, (1.8)

where ~ω := curlx~u is vorticity of the flow. This results entails that a corresponding
2D problem has got a smooth global solution. Moreover regularity criteria can
be formulated in terms of Hölder continuity of the direction of the vorticity (see
da Veiga , 2016).

The issue of regularity of the Navier-Stokes system is also intimately connected
to the occurrence of singularities. The dimension of the singular set was estimated
by the celebrated paper of Caffarelli, Kohn and Nirenberg (Caffarelli, Kohn,
Nirenberg , 1982) for so called suitable weak solutions. The particular difficulty
of the Navier-Stokes consists in an interplay between the nonlinear convective
term divx~u⊗ ~u, the non-local pressure term ∇xp and the time derivative ∂t~u. As
was already mentioned in the book of Temam (Temam , 1977) we have lack of
information on the regularity of the time derivative of the pressure. This was
later carried out in more details by Wolf (Wolf , 2007) who split the pressure into
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terms corresponding to individual terms in the Navier-Stokes system (locally)
and found out that pressure p can be decomposed p = p0 + ∂tp̃h, where p0 is

a L
5
3
loc((0, T ) × Ω) function and p̃h a harmonic, zero-mean Cweak([0, T ];L

5
3
loc(Ω))

function — (see Wolf , 2007, Theorem 2.6, pp. 113 – 114).
The weak (variational) formulation by Leray (Leray , 1934) eliminates the

pressure p choosing solenoidal vector fields as test functions:∫ T

0

∫
Ω

~u · ∇x~ϕ dx dt = 0 (1.9a)

∀~ϕ ∈ D((0, T )× Ω;R3),∫ T

0

∫
Ω

(
~u · ∂t~ϕ+ ~u⊗ ~u : ∇x~ϕ− S : ∇x~ϕ+ ~f · ~ϕ

)
dx dt =

∫
Ω

~u0 · ~ϕ(0, ·) dx

(1.9b)

∀~ϕ ∈
{
~ψ ∈ D

(
[0, T )× Ω;R3

)
: divx ~ψ = 0

}
.

If now we assume that ~u0 ∈ L2(Ω,R3), ~f ∈ L2((0, T ) × Ω,R3) we obtain from
application of Grönwall’s lemma upon testing the weak formulation (1.9b) with
~ϕ := ~u.

‖~u‖L∞(0,T ;L2(Ω;R3)) ≤ ‖~u0‖L2(Ω;R3) e
T
2 ∀T ≥ 0 (1.10)∥∥∇x~u+∇T

x~u
∥∥
L2(0,T ;L2(Ω;R3))

≤ c
√

1 + eT ∀T ≥ 0 (1.11)

with a constant c independent of the final time T, but dependent on the data ~u0

and ~f.
These estimates determine the so called Leray-Hopf solution to (1.9a) – (1.9b)

in the so called Ladyzhenskaya space L2(0, T ;W 1,2(Ω;R3))∩L∞(0, T ;L2(Ω;R3))
by Korn’s inequality and although the previous testing was only formal, in the
existence proof of a solution to (1.9a) – (1.9b) by approximations we still obtain
(1.10) – (1.11) for them, but in the limit we get the energetic inequality only

1

2

d

dt

∫
Ω

|~u(t, x)|2 dx+

∫
Ω

S(t, x) : ∇x~u(t, x) dx ≤
∫

Ω

~f(t, x) · ~u(t, x) dx, (1.12)

by weak lower semicontinuity.
For the slip boundary conditions (1.7) with α = 0 the weak formulation of

(1.3b),(1.7), (1.4) is essentially the same as (1.9b) up to the choice of the space
for test functions. This time it has to reflect (1.7) so that we can easily test (1.3b)

with (approximations of) ~u. The space is
{
~ψ ∈ D

(
[0, T )× Ω;R3

)
: divx ~ψ =

0, ~ψ · ~n
∣∣∣
∂Ω

= 0
}
. Using the famous Helmholtz decomposition ~ψ = H(~ψ) +∇xΦ,

where H(~ψ) is the solenoidal part of ~ψ and Φ satisfies the homogeneous Neumann

problem for the Poisson equation 4Φ = divx ~ψ, we can test the weak formula-
tion of (1.3b) with a non-soleinodal (formerly inadmissible) test function ∇xΦ
which leads under the assumption of satisfaction of the compatibility condition
divx~u0 = 0 to the weak formulation of the equation for pressure in the case of
slip boundary conditions∫

Ω

p4~ψ dx =

∫
Ω

(S− ~u⊗ ~u) : ∇x∇x
~ψ dx−

∫
Ω

~f · ∇x
~ψ dx. (1.13)
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with ~ψ · ~n
∣∣∣
∂Ω

= 0. Here we can use the regularity theory for the Poisson equation

and immediately conclude that p ∈ L 5
3 ((0, T )×Ω) because ~u ∈ L 10

3 ((0, T )×Ω;R3)
by the (isotropic) interpolation of the Ladyzhenskaya space.

The same summability of the pressure holds for the IBVP (1.3a)–(1.3b), (1.4),
(1.5)(Solonnikov , 2002, pp. 356 – 362), but with a different proof based on the
representation of the pressure by a compositions of the heat operator, double
Riesz transform and the operator of divergence applied to a solution of a problem
for heat equation in the spirit of Oseen. Let us finish this section noticing that
the pressure function p in (1.3b) is not completely the same what we understand
under a pressure in the simple physics. First of all, the function p is not a pressure,
but rather a pressure divided by the density that is assumed in this case to be
constant. Secondly, the pressure is not an absolute quantity, it is determined up
to a constant and it can be negative, as well as positive. Finally, due to its low
regularity, it may be unbounded and may not enjoy its trace on surfaces like ∂Ω,
so its coincidence with a measured pressure is doubtful. From the mathematical
analysis it also yields that (the irregular part of) pressure may experience jumps
in its time evolution.

1.4 Barotropic Compressible Navier-Stokes

equations

From the discussion in the Section 1.3 we can see that the case of the incom-
pressible Navier-Stokes equations is in a sense ”singular”, a limit case of zero
compressibility or zero Mach number. Sometimes to solve the problems related
to incompressible models we introduce a slight compressibility and let that com-
pressibility tend to zero finally. That gives a clue we could embed incompress-
ible Navier-Stokes equation in a broader class of barotropic compressible Navier-
Stokes equation.

The barotropicity means that the pressure p is now a function of the density
ρ which happens in the case of isothermal or adiabatic flows of an ideal gas. We
study IBVP for barotropic compressible Navier-Stokes equations consisting of the
balances of mass and momentum

∂t%+ divx%~u = 0, (1.14a)

∂t (%~u) + divx(%~u⊗ ~u) +∇xp− divxS = %~f, (1.14b)

endowed with an initial conditions (1.4) and boundary conditions (1.7). We
confine ourselves to the case where there is no inflow or outflow from the domain
Ω, i. e. (1.6) holds. Let us note that for simplicity we took the right hand

side of (1.14b) in the form %~f which covers the gravitational interaction, but
does not cover e. g. the Lorentz force. Here also S is more general than in the
incompressible case. In the simplest case of Newtonian compressible isotropic
fluid S = µ

(
∇x~u+∇x~u

T − 2
3
divx~u I

)
+ η divx~u I, where µ > 0 is the shear and

η ≥ 0 the bulk viscosity. This case is established from the hypotheses that S(∇x~u)
should be a linear, symmetric and rotationally invariant function by Chorin and
Marsden, (see Chorin, Marsden , 1979, pp. 32 – 33). The weak formulation of
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the problem (1.14a) – (1.14b) is analogous to (1.9a) – (1.9b) and is omitted for
the sake of brevity (the MHD version is treated in Part 2).

Clearly, if we choose the no-slip boundary conditions (α = 1 in (1.7)), then the
total mass of fluid ||%||L1(Ω) is a constant of motion as stated by the law of mass
conservation. If we formulate the problem (1.14a), (1.14b) and (1.7) with α = 0
or α = 1 weakly and test the weak formulation of (1.14b) with approximations
of ~u and pass to the limit, we get an energy inequality, analogous to (1.12) in the
incompressible case

1

2

d

dt

∫
Ω

(
%(t, x) |~u(t, x)|2 + 2H(%(t, x))

)
dx+

∫
Ω

S(t, x) : ∇x~u(t, x) dx ≤ (1.15)∫
Ω

(
%~f
)

(t, x) · ~u(t, x) dx,

where H(%) = %
∫ %

1
p(x)
x2

dx is a special expression for the Helmholtz free energy
of the fluid and thanks to slip or no-slip boundary conditions combined with the
impermeability (1.6) we have not got any energy flux accross the boundary (the
energetical isolation).

The strategy of Lions (Lions , 1996, 1998) is to study problems in fluid dy-
namics first without possible boundary effects which can complicate for example
the choice of suitable test functions. He studies problems in the flat torus T 3

case (i. e. with periodic boundary conditions) and then in the R3 case where we
need a certain decay conditions. The latter case needs a certain decay conditions
”near infinity”. One possible choice is a convergence towards a rest state with a
constant density

~u→ ~0 %→ % as |x| → ∞, (1.16)

where % is a non-negative constant.
Let us define an affinely shifted Helmholtz function

H(%) := H(%)− (%− %)H%(%)−H(%). (1.17)

This function is non-negative as H(%) is locally uniformly convex, if we assume
that the pressure function p(%) is nondecreasing (a natural assumption except
for processes undergoing structural changes as phase transitions), and then the
energy inequality becomes

d

dt

∫
Ω

1

2

(
%(t, x) |~u(t, x)|2 +H(%(t, x))

)
dx+

∫
Ω

S(t, x) : ∇x~u(t, x) dx ≤ (1.18)∫
Ω

(
%~f
)

(t, x) · ~u(t, x) dx,

where we emphasize the structure: the first term in the lhs is the kinetic energy of
the fluid, the second one its Helmholtz free energy; their change is due to viscous
dissipation (third term which is non-positive if transferred to the rhs) and the
power of (external) forces — the first term in the rhs. This inequality should be
understood in its weak formulation. The essential ingredient to get an analogue
of the Ladyzhenskaya space for ~u in the compressible case is once again Korn’s
inequality, this time in the form

||~u||W 1,p(Ω,R3) ≤ c

(
||~u||Lp(Ω,R3) +

∥∥∥∥∇x~u+∇x~u
T − 2

3
divx~u I

∥∥∥∥
Lp(Ω,R3×3)

)
(1.19)
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which holds for p ∈ (1,∞) (cf. Reshetnyak , 1994, Theorem 3.2, p. 146 and
Theorem 3.3, p. 149).

The pressure function p in (1.14b) is a sufficiently smooth function of the
density %, its particular form is given by an equation of state (EOS) for the fluid
considered. A special attention has been given to the polytropic case, where

p(%) = a%γ γ ≥ 1 (1.20)

holds true. Here a > 0 is a constant and γ denotes polytropic index, which in an
isentropic (especially adiabatic reversible) process coincides with the adiabatic
exponent. This is for ideal gases equal to the ratio of specific heat capacity at
constant pressure and volume, respectively. For a monoatomic gas, like noble
gases, it is γ = 5

3
=: γ1. For gases with more degrees of freedom it is γ < γ1. For

the isothermal process of (the ideal) gas we have got from its EOS γ = 1. For
the polytropic case (1.20) the a-priori estimates are a direct consequence of the
energetic inequality (1.15), resp. (1.18) in the bounded, resp. unbounded case if
we assume (1.16) with the help of Korn’s inequality (1.19). We get

% ∈ L∞(0, T ;Lγ(Ω)) (1.21a)
√
%~u ∈ L∞(0, T ;L2(Ω)) (1.21b)

~u ∈ L2(0, T ;W 1,2(Ω)) (1.21c)

provided Ω is bounded. For unbounded domains Ω we get instead of (1.21a) an
estimate for %− %. Keeping in mind that an existence theorem for weak solutions
of the IBVP (1.14a), (1.14b), (1.7) and replacements of the initial conditions
(1.4) and the impermeability condition (1.6) will be obtained by the Banach-
Alaoglu-Bourbaki theorem from a-priori estimates (1.21a)–(1.21c), we would like
to estimate all the terms arising in weak formulation of the problem in weakly
closed spaces, especially in terms of Lebesgue spaces in a Lp((0, T ) × Ω) for
p > 1 and T > 0 arbitrary. Here the initial conditions have to be given for the
density % and for the momentum %~u. The initial condition for % will be implicitly
given by the notion of the renormalized solution of (1.14a). The initial condition
for the kinetic energy now follows from the initial conditions for density and
momentum. Let us stress that this approach necessitates constant viscosities and
strong convergence of the initial condition for density %0,n in a Lebesgue space.

Next problem consists in identification of the weak limits, which will be de-
noted by overbars. This problem enforces by Hölder’s inequality from the con-
vective term that γ > 3

2
and a need for an improved estimated of the pressure,

since from (1.21a) we know

||p||L1((0,T )×Ω) ≤ c (1.22)

only. Let us notice that the problem of existence of weak solutions to the afore-
mentioned IBVP would be simpler if it would have been known that the density
% enjoys a lower bound, i. e. no vacuum zones develop in time if they are not
present in the initial condition for %. In that case we might treat the case of
non-constant, density dependent viscosity coefficients µ(%) and η(%).

The essential invention needed for establishing existence of solutions to baro-
tropic Navier-Stokes equations is the weak continuity for convergences implied by
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a-priori estimates (1.21a) – (1.21c) at hand of the quantity which Lions (Lions ,
1996, 1998) called the effective viscous flux evf := p%− %divx4−1divxS. Simple
formal computation reveals that

evf = %4−1divx

(
%~f
)
− ∂t

[
%divx4−1 (%~u)

]
−

divx
[
%~udivx4−1 (%~u)

]
+ %~u · ∇x4−1divx (%~u)− %divx4−1divx (%~u⊗ ~u) . (1.23)

The rhs of (1.23) is weakly continuous in Lp−spaces with p sufficiently high
(achievable by extra terms in a suitable approximation scheme).

The proof of weak continuity of the effective viscous flux leans on its precom-
pactness established by compensated compactness — div-curl lemma, (cf. Málek,
Nečas, Rokyta, Růžička, 1996, p. 158) for the 2D version. However we use its
4D version. For the convergence of approximative momenta %n~un we choose the
corresponding four-vectors as ~Un := (%n, %n~un) and ~V i

n := (uin, 0, 0, 0), where
i = 1, . . . , 3 denotes the component of velocity vector field in cartesian co-
ordinates. For γ > 3

2
the hypotheses of the div-curl lemma are satisfied as

divt,x~Un = 0 along (1.14a), which is surely precompact, and curlt,xV
i
n is pre-

compact in W−1,p ((0, T )× Ω) for p ∈ [1, 4) independently of γ. Therefore

%n~un ⇀ %~u in L
6γ

4γ+3 ((0, T )× Ω) . (1.24)

This allows to pass to the limit in the weak formulation of (1.23): take an arbi-
trary ϕ ∈ D ((0, T )× Ω) and partially integrate (1.23) for approximations indexed
by n tested by ϕ∫ T

0

∫
R3

evfn dx dt =

∫ T

0

∫
R3

%nϕ4−1divx

(
%n ~f
)

dx dt+ (1.25)∫ T

0

∫
R3

%ndivx4−1 (%n~un) ∂tϕ dx dt+

∫ T

0

∫
R3

[
%n~undivx4−1 (%n~un) · ∇xϕ+

%nϕ~un · ∇x4−1divx (%n~un)−∇x4−1∇x (%nϕ) : %n~un ⊗ ~un
]

dx dt.

Here we can use a weak time continuity in Lp(Ω) spaces which we can get from
the system (1.14a) – (1.14b) by dual estimates of time derivatives of density and
momentum ∂t%n and ∂t (%n~un) arguing like in (Boyer, Fabrie , 2013, Proposition
V.1.7, p. 363). Thus, by virtue of (1.24), regularizing properties of the operator
4−1divx and the weak time continuity we can pass to the limit n → ∞ in the
first three terms on the rhs of (1.25).

The last two terms on the rhs of (1.25) can be rendered as a commutator
of I and R, where I is the identity operator and R is the pseudodifferential
operator of double Riesz transform ∇x4−1∇x with its symbol

ξiξj

|~ξ|
. Then we can

use once again the div-curl lemma as in the proof of Theorem 10.27, p. 350 in
the book (Feireisl, Novotný , 2009, proof of Theorem 10.27, p. 350). Altogether
the convergences above lead to the identity

evf − p%+ divx4−1divxS% = 0 (1.26)

from the limit equation obtained from (1.14b). For the constant coefficient case
(shear and bulk viscosities) we get

divx4−1divxS =

(
4

3
µ+ η

)
divx~u (1.27)
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and we can thus simplify (1.26) to

p(%)%− p(%)% =

(
4

3
µ+ η

)(
%divx~u− %divx~u

)
(1.28)

which can lead to the strong convergence of densities %n if the right hand side of
(1.28) vanishes. However this could work for γ ≥ 2 only because we have not got
better summability of divx~u than what follows from (1.21c).

The problem of % /∈ L2(Ω) was successfully solved by Feireisl (Feireisl , 2001).
One of the essential parts of the solution relies on renormalization of the continuity
equation (1.14a); we talk about so called renormalized solutions. Whereas in the
context of hyperbolic conservation laws we add to the original equation a set of
inequalities for ”entropies” which should select a physical unique solution, in the
context of compressible Navier-Stokes equation we rather solve another equation
than what was given (1.14a) so that we have not got a ”source” term −%divx~u
in the transport equation for %. This is changed to β(%)divx~u instead with β a
nonlinear, but BC(R+

0 ) — a bounded and continuous function. The renormalized
equation

∂tb(%) + divx (b(%)~u)− (b(%)− %b′(%)) divx~u = 0 (1.29)

should be valid in the sense of distributions (test functions not vanishing on
the boundary ∂Ω, nor at the initial time level {t = 0}, only at the final time
level {t = T}). This formulation allows both for a weak formulation of the initial
condition for density, and for the validity of the original (1.14a) when we can take
suitable cut-off functions as the functions b and pass to the limit. Conversely,
in (Feireisl, Novotný , 2009) it is proved that we can get (1.29) from (1.14a) for
% ∈ L∞loc ((0, T )× Ω) (and ~u ∈ L1

loc

(
(0, T ;W 1,1

loc (Ω;RN)
)
). For the renormalized

equation (1.29) we observe that the correct expression of the impermeability
condition is now

%~u · ~n = 0 on ∂Ω (1.30)

as b′(%) is not determined there.
Remark: The boundary condition (1.30) seems to be in a good agreement

with the continuity of density % across the boundary ∂Ω in a contact with vacuum
established for the compressible Euler system (see Serre , 2015, page 3).

The next ingredient in the proof of existence is an improvement of the pressure
estimates. This enabled Lions to prove existence for γ ≥ 9

5
. The tool that made it

possible in (Feireisl , 2001) to drop this condition is the oscillation defect measure.
Finally, to get a strong convergence of %n to % in L1 ((0, T )× Ω) we take as the
renormalizing function b cut-off functions of % log % in (1.29) and assume strong
convergence of the approximative initial conditions for density %0,n → %0 in Lq(Ω)
with q > 1. Formally, in the weak sense, we may use weak continuity of density
and write identities for both approximative renormalized equation of continuity
and for the renormalized equation for the limit:∫

Ω

(%n log %n) (t, x) dx−
∫

Ω

(%0,n log %0,n) (x) dx = −
∫ t

0

∫
Ω

%ndivx~un dx dt

(1.31a)∫
Ω

(% log %) (t, x) dx−
∫

Ω

(%0 log %0) (x) dx = −
∫ t

0

∫
Ω

%divx~u dx dt (1.31b)
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where t ∈ R+. Passing to the limit in (1.31a) and then substracting (1.31b), we
obtain another expression for the rhs of (1.28)(

4

3
µ+ η

)∫ t

0

∫
Ω

(
%divx~u− %divx~u

)
dx dt = (1.32)

(
4

3
µ+ η

)∫
Ω

(
% log %− % log %

)
(t, ·) dx.

Now, as p(%)% ≤ p(%)%, 4
3
µ + η > 0 and % log % ≤ % log % by weak lower semicon-

tinuity of convex functions, we have got that the lhs of (1.32) is non-negative,
while its rhs is non-positive, therefore we obtain identities

% log % = % log % (1.33a)

% divx~u = % divx~u (1.33b)

Thus, %n → % in L1((0, T ) × Ω) and interpolating with (1.21a) in the
bounded Ω case we get

%n → % in Lp ((0, T )× Ω) (1.34)

for p ∈ [1, γ).

1.5 Compressible Navier-Stokes-Fourier

equations

In the previous Sections 1.3 and 1.4 we have not followed what happens to the
internal energy of the fluid if it is heated by internal friction due to nonvanishing
viscosities. Naturally, we may say that the fluid is in a perfect equilibrium,
e. g. in a contact with a thermostat. However, there are practical technical
problems like a simple pipe (Hagen-Poisseuille) flow, where we can observe an
increase of temperature 0.5◦C/m which is not negligible. From the point of view
of a mathematician, there are interesting problems of systems that are coupled.
That means here that the change in temperature affects the flow. We may think
of several mechanisms, how this happens, the temperature dependent viscosities
is the most prominent one. Next, in meteorology, oceanography and astronomy
we encounter so called Oberbeck-Bousinessq approximation wherein temperature
influence density and through it buoyancy of the fluid. Also the heat (or entropy)
transfer is affected by convection of the fluid, its viscous dissipation and pressure.

The term ”Fourier” in the title refers to Fourier’s law which states that the
heat flux is proportional to the gradient of temperature

~q = −κ∇xϑ. (1.35)

This is by far the most used law in the field of heat transfer, although its rigorous
derivation still poses a long-standing open problem for physicists in the field of
statistical physics. However, the form of the law is the same as those of Darcy’s
and Fick’s laws. Here ϑ is the absolute temperature, measured in Kelvins, ~q
is the vector field of heat flux and κ is the non-negative coefficient of thermal
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conductivity which may depend on density, temperature and the temperature
gradient, leading to a nonlinear version of Fourier’s law. This option is not
followed here. The thermal conductivity coefficient is allowed to depend on the
magnetic field as well, which is termed sometimes as (Maggi)-Righi-Leduc effect
in the case of electrons, sometimes as Senftleben-Beenakker effect in the case of
neutral polyatomic paramagnetic or diamagnetic gases.

When we add the balance of energy to our balance of mass and balance of lin-
ear momentum, we obtain a complete system of conservation laws, as we assume
the balance of linear momenta is automatically satisfied, because we choose a
symmetric Cauchy stress tensor T = −pI+S. The complete system in an inertial
coordinate system reads

∂t%+ divx%~u = 0, (1.36a)

∂t (%~u) + divx(%~u⊗ ~u) +∇xp− divxS = %~f, (1.36b)

∂t

(
1

2
%|~u|2

)
+ divx

(
1

2
%|~u|2~u

)
+ divx(p~u)− p divx~u = divx(S~u)− (1.36c)

S : ∇x~u+ %~f · ~u.

The last equation (1.36c) arises when we formally multiply the momentum bal-
ance (1.36b) by ~u and it expresses the time change of the internal kinetic energy
of the fluid. We now observe that when we integrate (1.36c) in Ω we get the rate
of dissipation of the total kinetic energy 1

2

∫
Ω
%|~u|2 dx given by −

∫
Ω
T : D dx dt

(viscous dissipation) and
∫

Ω
~f · ~u dx dt (power of (external) forces) as soon as the

boundary conditions do not allow any flux of energy over the boundary ∂Ω. The
First Law of Thermodynamics claims that the total energy of such a closed system
must be constant, therefore we introduce density of internal energy e such that
the total energy (in our case sum of the internal and kinetic ones) is preserved.
The equation for e has also got a form of a conservation law

∂t (%e) + divx (%e~u) + divx~q + p divx~u = r + S : ∇x~u. (1.37)

Here we have used our knowledge of thermodynamics that internal energy is
linked to temperature and introduced into the equation both heat flux ~q and the
(rate of the) heat sources r. Let us assume that the following assumption

r = 0 (1.38)

and the following boundary conditions

~u = ~0, (1.39a)

~q · ~n = 0 (1.39b)

are satisfied. If conditions (1.38), (1.39a) – (1.39b) are met then we say that our
complete system (1.36a) – (1.36c) is mechanically and thermally isolated. For
such a system we may form the balance of energy

∂t

(
%e+

1

2
%|~u|2

)
+ divx

(
%

(
e+

1

2
%|~u|2

)
~u

)
+ divx (~q − T~u) = %~f · ~u (1.40)
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and the total energy∫
Ω

[
%

(
1

2
|~u|2 + e

)]
dx(t) =

∫ t

0

∫
Ω

%~f · ~u dx dt+

∫
Ω

[
%

(
1

2
|~u|2 + e

)]
dx(0)

(1.41)
a. e. t ∈ [0, T ]

or in the case of a potential force field ~f = ∇xΨ(x) in the form of sum of kinetic,
potential and internal energy∫

Ω

[
%

(
1

2
|~u|2 −Ψ + e

)]
dx(t) =

∫
Ω

[
%

(
1

2
|~u|2 −Ψ + e

)]
dx(0) (1.42)

a. e. t ∈ [0, T ],

where all the terms are actually non-negative for the case of a gravitational po-
tential.

To be in agreement with thermodynamics to formulate correctly the complete
system we have to take into account the Second Law of Thermodynamics. It
states that the entropy in all physically admissible processes in a closed system
does not decrease. We reformulate it into an inequality of the Clausius-Duhem
type where the entropy production rate is non-negative. We will need a certain
form of an equation of state (EOS) as in Section 1.4

p = p(%, ϑ). (1.43)

The book (Feireisl, Novotný , 2009) treats forms of EOS that are near the EOS of
the ideal gas. The symbol p = p(%, ϑ) denotes the thermodynamic pressure and
e = e(%, ϑ) is the specific internal energy, interrelated through Maxwell’s relation

∂e

∂%
=

1

%2

(
p(%, ϑ)− ϑ∂p

∂ϑ

)
. (1.44)

The entropy density function s(%, ϑ) has to satisfy the Gibbs’ relation

Ds = ϑ−1
(
De+ pD%−1

)
. (1.45)

Dividing (1.37) by temperature ϑ leads to the entropy equality

∂t (%s) + divx (%s~u) + divx
~q

ϑ
= ς, (1.46)

where the entropy production rate

ς = ϑ−1
(
S : ∇x~u− ϑ−1~q · ∇xϑ

)
≥ 0, (1.47)

from the choice of constitutive laws, namely Newton’s rheological law (see an
introduction in Section 1.4 with conditions on viscosities which are kept here even
though these may not be constants anymore that make S : ∇x~u a non-negative
quadratic form in terms of first space partial derivatives of ~u) and Fourier’s law
(1.35)). Note that we may choose other constitutive laws and if we can enforce
the condition ς ≥ 0 or even a stronger version of the entropy inequality, i. e. that
the entropy production rate is maximal.
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So far we have fulfilled the Zeroth, First and Second Laws of Thermodynamics.
The Third Law is connected with the EOS and is violated in the case of ideal gas.
This cannot be satisfied without quantum considerations. The system (1.36a),
(1.36b), (1.37) with (1.38), (1.46) of balance laws of mass, momentum, energy
without heat sources, entropy is certainly overdetermined. From the point of
view of mathematical analysis we have got a problem with a viscous dissipation
term S : ∇x~u because from the a-priori estimate (1.21c) it is in L1((0, T ) × Ω)
only. Therefore the balance of internal energy (1.37) we treat as a constraint and
modify the entropy equality (1.46) to the inequality (1.48)

∂t (%s) + divx (%s~u) + divx
~q

ϑ
≥ ς, (1.48)

if the entropy production rate is still given by (1.47). The explanation is that
we cannot prove that the equality is satisfied unless the weak solution is smooth
enough. If there are weak solutions such that entropy inequality (1.48) holds
instead of entropy equality (1.46) it remains one of the major open problems of
mathematical fluid dynamics. The weak formulation of (1.48) is standard (only
take non-negative test function to preserve the inequality sign), once we assume
there is an initial condition for entropy in the form

%s(0, .) = (%s)0 in Ω. (1.49)

It remains to specify an EOS and transport coefficients µ, η and κ. From the
rational thermodynamics we can infer several requirements on the constitutive
relations, but their particular form is not specified, because these are characteris-
tics of a given material. We also sometimes do not know how the relations should
look like in a particular situation, as relevant experimental data are missing or
are insufficient, because mathematical theory typically needs bounds in extreme
cases like very low or very high temperatures. Sometimes experiments are com-
pletely excluded like in many astrophysical situations. Finally, there is also a
discrepancy between mathematics and physics. Available mathematical theory
typically falls behind what is observed and needed in the physical practice. The
theory of turbulence can serve as an example.

We require that our fluid is thermodynamical stable. This means that the
following two inequalities hold for any state variables, a couple (%, ϑ),

∂%p > 0 (1.50a)

∂ϑe > 0 (1.50b)

Since −%∂p 1
%

= %−1 (∂%p)
−1 > 0 is the (isothermal) compressibility of the fluid,

the condition (1.50a) means that the fluid is always compressible. Moreover if we
keep the entropy constant when taking the derivative of pressure with respect to
density, we get square of the speed of sound in the fluid. Therefore (1.50a) means
that the speed of sound in the fluid is always positive. The second condition
(1.50b) means that the specific heat capacity (at constant volume) is always
positive.

The mathematical theory of complete systems is essential divided into works
dealing with local in time solutions or solutions not deviating too much from
a stationary equilibrium, and works establishing the existence of global in time
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weak solutions. Let us focus on the latter. There we can discern three dif-
ferent approaches, cf. (Novotný , 2012; and references therein). The first one is
due to Feireisl who split the pressure into its density-dependent part and a part
depending on temperature in the linear way

p(%, ϑ) = pc(%) + ϑpϑ(%), (1.51)

where both parts satisfy asymptotically power laws, pϑ with a sufficiently smaller
growth with respect to the growth of pc. This setting has to be accompanied with
µ = const., η = const., and κ(ϑ) having a suitable polynomial growth.

The second approach is due to Bresch and Desjardins, so called cold pressure.
They use the same splitting (1.51), but this time pϑ(%) = % and pc(%) has asymp-
totically power growth for large densities, but is singular for low densities. They
are able to prove an estimate of % in a Sobolev space if the viscosities are density
dependent and linked by

2

(
%+

1

3

)
µ′ − η′ = 2µ. (1.52)

The third approach, we use and focus on, is due to Feireisl and Novotný (Fei-
reisl, Novotný , 2009). In this approach these authors generalized the expression
for pressure of the ideal gas and augmented it with the radiative pressure due to
the Stefan-Boltzmann law which helped them to get suitable a-priori bounds for
temperature ϑ.

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+
a

3
ϑ4, (1.53)

where P : [0,∞)→ [0,∞) is a given function with the following properties:

P ∈ C1 ([0,∞)) , P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (1.54)

0 <
5
3
P (Z)− P ′(Z)Z

Z
< c for all Z ≥ 0, (1.55)

lim
Z→∞

P (Z)

Z5/3
= p∞ > 0. (1.56)

and a > 0 is the Stefan-Boltzmann constant. According to Maxwell’s relation
(1.44), the specific internal energy e is

e(%, ϑ) =
3

2
ϑ
ϑ3/2

%
P
( %

ϑ3/2

)
+ a

ϑ4

%
, (1.57)

and the associated specific entropy reads

s(%, ϑ) = M
( %

ϑ3/2

)
+

4a

3

ϑ3

%
, (1.58)

with

M ′(Z) = −3

2

5
3
P (Z)− P ′(Z)Z

Z2
< 0.

The condition (1.54)3 expresses a stronger version of the thermodynamical sta-
bility (1.50a), that is the compressibility at zero density (existing in the form of
liminf at least) is still positive for any given temperature ϑ. We can also observe
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that there is a ”degenerated region” of low temperatures ϑ and/or large densities
%, thus of large Z, where the inequality in (1.56) remains strict, that means our
gas still possesses a certain internal energy density e even in the case of the hypo-
thetical zero absolute temperature ϑ = 0 and the expression for M ′(Z)→ 0− as
Z →∞ thanks to (1.55). This means that our gas is assumed to have at least one
component behaving like a Fermi-Dirac gas (in the case of plasmas this is usually
an electron gas) except for other components which may follow the Bose-Einstein
or Maxwell-Boltzmann statistics. In this case the Third Law of Thermodynamics
is saved. Let us recall that in the case P is linear we have got the Boyle-Marriot
law for ideal gases p(%, ϑ) = Rm

Mm
%ϑ with Rm the universal molar gas constant

and Mm their (average) molecular weight does not satisfy (1.56). In this sense
the current mathematical analysis cannot treat the isothermal ideal gas case and
needs a Fermi contribution in the degenerate region.

The hypotheses for the transport coefficients are the following

c1(1 + ϑα) ≤ µ(ϑ) ≤ c−1
1 (1 + ϑα), µ′(ϑ) < c2, 0 ≤ η(ϑ) ≤ c3(1 + ϑα), (1.59)

c1(1 + ϑ3) ≤ κ(ϑ) ≤ c2(1 + ϑ3) (1.60)

with positive constants c1, c2, c3 and an exponent α ∈ (2
5
, 1]. The third power

in (1.60) corresponds to a contribution from the radiative heat transfer which is
essential in astrophysical models. Actually, Feireisl, Novotný (2009) mentions
that the coefficient in this contribution is proportional to the photon mean field
path and the speed of light. Regarding a physical plausability of the range of
the power α we may cite Sutherland’s law which leads asymptotically to α = 1

2
.

Sutherland derived it from preliminary version of later Born-Green kinetic theory
due to Maxwell (Sutherland , 1893). Mathur and Todos (Mathur, Thodos , 1963)
have surveyed data from measurement of viscosities of certain gases up to 10
000 Kelvins. From their graph we may infer approximately the following values
of α. Hydrogen — 0.86, helium — 0.88, nitrogen — 0.82, oxygen — 0.61, neon
— 0.70. Other gases reviewed there are argon, krypton and xenon. Around 20
years later these values were corrected by Vargaftik and Vassilevskaya (Vargaftik,
Vasilevskaya , 1984). Their values are: helium — 0.71, neon — 0.63, argon —
0.68, krypton — 0.69, xenon — 0.69. All are covered by the theory of Feireisl
and Novotný.

To get a-priori estimates we introduce the shifted Helmholtz function, similar
to (1.17), now associated to a given constant non-negative density % and a positive
temperature ϑ

H(%, ϑ) := H(%, ϑ)− (%− %)H%(%, ϑ)−H(%, ϑ). (1.61)

Here the ”Helmholtz free energy” is H(%, ϑ) := %e(%, ϑ)− ϑ%s(%, ϑ). The shifted
Helmholtz function has a number of nice properties ((see for proofs Feireisl, No-
votný , 2009)), especially

1. H(%, ϑ) is non-negative

2. H(%, ϑ) attains its strict minimum at (%, ϑ)

3. H(%, ·) is decreasing on (0, ϑ) and increasing on (ϑ,∞)

4. H(·, ϑ) is locally uniformly convex on R+
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Let us choose for Ω bounded % as the mean density % := |Ω|−1 ∫
Ω
% dx which is

constant in time due to (1.36a). The energy inequality written with the upper
defined function is∫

Ω

(
1

2
%|~u|2 +H(%, ϑ)

)
dx (t2) + ϑς

[
[t1, t2]× Ω

]
≤∫

Ω

(
1

2
%|~u|2 +H(%, ϑ)

)
dx (t1) for a. e. t1 < t2 ∈ [0, T ]. (1.62)

On the left hand side of (1.62) ς is a non-negative Radon measure and the symbol
ς
[
[t1, t2]× Ω

]
denotes the value of this measure over the set in the brackets.

Definition 1.5.1 We say that (%, ~u, ϑ) is a weak solution of problem (1.36a)
– (1.36b), (1.40), (1.39a), (1.39b) with (1.35), (1.60), (1.44) and S defined as in
Subsection 1.4 with viscosities µ, η dependent on temperature ϑ subject to (1.59)
iff

% ≥ 0, ϑ > 0 for a.a. (t, x)× Ω,

% ∈ L∞(0, T ;L5/3(Ω)), ϑ ∈ L∞(0, T ;L4(Ω)),

~u ∈ L2(0, T ;W
1, 8

5−α
0 (Ω;R3)),

ϑ ∈ L2(0, T ;W 1,2(Ω)),

and if %, ~u, ϑ satisfy the integral identities (1.63), (1.64), (1.65), (1.66):∫ T

0

∫
Ω

[(
%+ b(%)

)
∂tϕ+

(
%+ b(%)

)
~u · ∇xϕ+

(
b(%)− b′(%)%

)
divx~u ϕ

]
dx dt

(1.63)

= −
∫

Ω

(
%0 + b(%0)

)
ϕ(0, ·) dx

to be satisfied for any ϕ ∈ C∞c ([0,∞) × Ω), and any b ∈ C∞ ([0,∞)), b′ ∈
C∞c ([0,∞)), ∫ T

0

∫
Ω

(%~u · ∂t~ϕ+ %~u⊗ ~u : ∇x~ϕ+ p divx~ϕ) dx dt = (1.64)∫ T

0

∫
Ω

(
S : ∇x~ϕ− %~f · ~ϕ

)
dx dt−

∫
Ω

(%~u)0 · ~ϕ(0, ·) dx

for any ~ϕ ∈ C∞c ([0, T )× Ω;R3),∫ T

0

∫
Ω

(
%s∂tϕ+ %s~u · ∇xϕ+

~q

ϑ
· ∇xϕ

)
dx dt (1.65)

≤ −
∫

Ω

(%s)0ϕ(0, ·) dx+

∫ T

0

∫
Ω

1

ϑ

(
~q · ∇xϑ

ϑ
− S : ∇x~u

)
ϕ dx dt

for any ϕ ∈ C∞c ([0, T )× Ω), ϕ ≥ 0,∫
Ω

(
1

2
%|~u|2 + %e(%, ϑ)

)
(τ, ·) dx+

∫ τ

0

∫
Ω

%~f · ~u dx dt = (1.66)∫
Ω

(
1

2%0

|(%~u)0|2 + (%e)0

)
dx for a. a. τ ∈ (0, T ).

With all this we can formulate the existence theorem due to Feireisl and
Novotný (Feireisl, Novotný , 2009).
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Theorem 1.5.1. Let Ω ∈ R3 be a bounded domain with ∂Ω ∈ C2,ν for ν > 0. Let
the hypotheses (1.53)–(1.60) hold. Let the initial data satisfy

%0 ∈ L
5
3 (Ω), (1.67)

|~m0|2

ρ0

∈ L1(Ω), (1.68)

ϑ0 ∈ L∞(Ω) ess inf
Ω
ϑ0 > 0, (1.69)

where ~m0 is the initial value for the momentum. Then the IBVP for Navier-
Stokes-Fourier system in the case of mechanical and thermal isolation (1.36a),
(1.36b), (1.48), (1.39a), (1.39b) with initial conditions (%0, ~m0, ϑ0) admits a weak
solution (%, ~u, ϑ) in the sense of the Definition 1.5.1 satisfying

% ∈ Cw(0, T ;L
5
3 (Ω)). (1.70)
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2. Global existence of a weak
solution for a model in radiation
magnetohydrodynamics

2.1 Introduction

There are a number of situations when stars can be described by compressible
fluids and their dynamics is controlled by intense magnetic fields coupled with a
simplified model of radiation. Following studies by (Ducomet, Feireisl, Nečaso-
vá , 2011) and (Ducomet, Feireisl , 2006) we consider a mathematical model of
radiative flow where the motion of the fluid is described by the standard Galilean
fluid mechanics giving an evolution of the mass density % = %(t, x), the velocity
field ~u = ~u(t, x), and the absolute temperature ϑ = ϑ(t, x) as functions of the
time t and the Eulerian spatial coordinate x ∈ Ω ⊂ R3. The effect of radiation is
incorporated in the radiative intensity I = I(t, x, ~ω, ν), depending on the director
~ω ∈ S2, where S2 ⊂ R3 denotes the unit sphere, and the frequency ν ≥ 0. This
system of equations is coupled to a simplified Maxwell system of electrodynamics
where we assume the quasineutrality of the plasma described and neglect the
Maxwell displacement current. This system describes an evolution of the magnetic
induction ~B = ~B(t, x) and the electric field ~E = ~E(t, x), resp. the magnetic field
~H = ~H(t, x) and the electric induction ~D = ~D(t, x). The collective effect of
the radiation is then expressed in terms of integral means with respect to the
variables ~ω and ν of quantities depending on I: the radiation energy ER is given
as

ER(t, x) =
1

c

∫
S2

∫ ∞
0

I(t, x, ~ω, ν) d~ω dν. (2.1)

The time evolution of I is described by a transport equation with source terms S̃
depending on nonnegative quantities of the absolute temperature ϑ and frequency
of radiation ν, while the effect of radiation on the macroscopic motion of the fluid
is represented by an extra source term of radiative heating/cooling in the energy
equation and an extra source term of acceleration/deceleration both evaluated in
terms of S̃.

The Maxwell system of classical electrodynamics in our case reduces to Fara-
day’s law of induction

∂t ~B + curlx ~E = 0, (2.2)

together with Gauss’s law for magnetism

divx ~B = 0, (2.3)

Ampère’s law
~J = curlx ~H, (2.4)

Coulomb’s law
divx ~D = 0, (2.5)
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and (a nonlinear version of) Ohm’s law

~J = σ( ~E − ~B × ~u), (2.6)

where ~B = ζ ~H, ~D = ε̃ ~E, σ is the (nonlinear) electrical conductivity, ζ = ζ
(∣∣∣ ~H∣∣∣)

and ε̃ is the dielectric permittivity. All the material properties are assumed to be
scalars.

This gives us from (2.2)

∂t ~B + curlx( ~B × ~u) + curlx(
1

σ
curlx(

1

ζ
~B)) = 0. (2.7)

Following (Blanc, Ducomet , 2015) we will denote

M(s) =

∫ s

0

τ∂τ (τζ(τ))dτ, (2.8)

and rewrite the equation (2.2) as a version of the Poynting theorem

∂tM(| ~H|) + ~J · ~E = divx( ~H × ~E). (2.9)

Together with the principles of continuum mechanics, the magnetofluid (Ca-
bannes , 1970, Kulikovskiy, Lyubimov , 1965) with radiation effects (Pomraning
, 2005) problem can be described by the system of equations

∂t%+ divx(%~u) = 0 in (0, T )× Ω; (2.10)

∂t(%~u) + divx(%~u⊗ ~u) +∇xp(%, ϑ) = (2.11)

divxS− ~SF + %∇xΨ + ζ ~J × ~H in (0, T )× Ω;

∂t

[
%

(
1

2
|~u|2 + e(%, ϑ)

)
+M(| ~H|)

]
+ divx

[
%

(
1

2
|~u|2 + e(%, ϑ) +

p(%, ϑ)

%

)
~u

]
=

(2.12)

%∇xΨ · ~u− divx

(
~q − S~u+

ζ

ε̃
~D × ~H

)
− SE in (0, T )× Ω;

∂tI + c~ω · ∇xI = cS̃ in (0, T )× Ω× (0,∞)× S2. (2.13)

Note that, contrary to the model studied in (Ducomet, Nečasová , 2014), a radia-
tion term appears in the momentum equation in spite of this term may be small.
The electrical conductivity σ hidden in (2.11) can depend on the density %, on

the temperature ϑ and the magnetic field ~H (cf. (2.34)) of the magnetofluid.
The symbol p = p(%, ϑ) denotes the (equilibrium) thermodynamic pressure

and e = e(%, ϑ) is the specific internal energy, interrelated through Maxwell’s
relation

∂e

∂%
=

1

%2

(
p(%, ϑ)− ϑ∂p

∂ϑ

)
. (2.14)

Observe that both the pressure and the internal energy involve both a radiation
and a thermal term. The meaning of this splitting is that there is a part of the
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photon gas in the equilibrium with plasma whereas another part is not. The lat-
ter is described by the transport equation (2.13) and is caused mainly by inverse
Compton scattering and synchrotron radiation (Kolb , 2008). Naturally, our de-
scription is somehow ”mixed” since we use classical thermodynamics and classical
electrodynamics for the description of matter while the radiation is described by
geometrical optics.

Furthermore, S is the viscous part of the stress tensor determined by Newton’s
rheological law

S = µ
(
ϑ,
∣∣∣ ~H∣∣∣)(∇x~u+∇T

x~u−
2

3
divx~u I

)
+ η

(
ϑ,
∣∣∣ ~H∣∣∣) divx~u I, (2.15)

where the shear viscosity coefficient µ > 0 and the bulk viscosity coefficient
η ≥ 0 are effective functions of the absolute temperature and the magnitude of
the magnetic field. Once again, we tacitly assume isotropy of the considered
medium (without the presence of a magnetic field). Similarly, ~q is the heat flux
given by Fourier’s law

~q = −
(
κRϑ

3 + κM

(
%, ϑ,

∣∣∣ ~H∣∣∣))∇xϑ, (2.16)

with the constant radiative heat conductivity coefficient κR > 0 and with a
molecular heat conductivity coefficient κM > 0.

Further the source term of radiation is due to absorption/emission and scat-
tering of light

S̃ = Sa,e + Ss, (2.17)

where
Sa,e(t, x, ~ω, ν) = σa(ν, ϑ)

(
B(ν, ϑ)− I(t, x, ~ω, ν)

)
, (2.18)

Ss(t, x, ~ω, ν) = σs(ν, ϑ)

(
1

4π

∫
S2
I(t, x, ~ω, ν) d~ω − I(t, x, ~ω, ν)

)
, (2.19)

SE(t, x) =

∫
S2

∫ ∞
0

S̃(t, x, ~ω, ν) d~ω dν , (2.20)

and
~SF (t, x) = c−1

∫
S2

∫ ∞
0

~ωS̃(t, x, ~ω, ν) d~ω dν, (2.21)

with the absorption coefficient σa = σa(ν, ϑ) ≥ 0, and the scattering coefficient
σs = σs(ν, ϑ) ≥ 0. Here B(ν, ϑ) denotes (equilibrial) black body radiation.
According to Planck’s law we recall

B(ν, ϑ) =
2hϑ3c−2

e
hν
kBϑ − 1

. (2.22)

More restrictions on the structural properties of constitutive relations will be
imposed in Section 2.2 below.

System (2.10) – (2.22) is supplemented with the boundary conditions mod-
elling the mechanical and heat isolation combined with no-slip and transparency
(radiation does not reflect back to the domain Ω) at the boundary:

~u|∂Ω = ~0, ~q · ~n|∂Ω = 0; (2.23)

26



I(t, x, ~ω, ν) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0, (2.24)

where ~n denotes the outer normal vector to ∂Ω.
For the electromagnetic fields we adopt boundary conditions of a perfect con-

ductor (assuming outside Ω there are zero fields and using the continuity of the
following components of the fields across ∂Ω)

~E × ~n|∂Ω = ~0, ~B · ~n|∂Ω = 0. (2.25)

It remains to complement the system with the Poisson equation for the self-
gravitational potential Ψ from the right-hand side of (2.11)

−∆Ψ = 4πG%, (2.26)

where G is Newton’s gravitational constant.

System (2.10) – (2.26) can be viewed as a simplified model in radiation hydro-
dynamics, the physical foundations of which were described by (Pomraning , 2005)
and (Mihalas, Weibel-Mihalas , 1984) in the framework of the theory of special
relativity. Similar systems have been investigated more recently in astrophysics
and laser applications (in the relativistic and inviscid case) by (Lowrie, Morel,
Hittinger , 1999), (Buet, Després , 2004), with a special attention to asymptotic
regimes, see also (Dubroca, Feugeas , 1999), (Lin , 2007) and (Lin, Coulombel,
Goudon , 2006) for related numerical issues.

The existence of local-in-time solutions and sufficient conditions for blow up
of classical solutions in the non-relativistic inviscid case were obtained by (Zhong,
Jiang , 2007), see also the recent papers (Jiang, Wang , 2009; 2012) for related
one-dimensional ”Euler-Boltzmann” type models. Moreover, a simplified version
of the system has been investigated by (Golse, Perthame , 1986), where the global
existence was proved by means of the theory of nonlinear semigroups.

Concerning viscous fluids, a number of similar results have been considered
in the recent past in the one-dimensional geometry (Amosov , 1985, Ducomet,
Nečasová , 2010a;b; 2012; 2013) and a global existence result has also recently
been proved in the 3D setting in (Ducomet, Feireisl, Nečasová , 2011) under some
hypotheses on transport coefficients, for the “complete system” (when a radiative
source appears only in the right-hand side of (2.11)).

Our goal in the present paper is to show that the existence theory developed
in (Ducomet, Feireisl, Nečasová , 2011) and (Ducomet, Feireisl , 2006) relying on
previous works (Feireisl , 2004), (Feireisl , 2001) and (Feireisl, Novotný , 2009;
Chapter 3), can be adapted to the problem (2.10) – (2.26).

As stressed in (Ducomet, Feireisl, Nečasová , 2011), a complete proof of exis-
tence is now well understood ((see Feireisl, Novotný , 2009; Chapter 3)) therefore
we focus as in (Ducomet, Feireisl, Nečasová , 2011) on the property of weak
sequential stability for problem (2.10) – (2.26) in the framework of the weak so-
lutions introduced in (Ducomet, Feireisl , 2006). More specifically, we introduce
a concept of finite energy weak solution in the spirit of (Ducomet, Feireisl , 2006)

and show that any sequence {%ε, ~uε, ϑε, ~Hε, Iε}ε>0 of solutions to problem (2.10) –
(2.26), bounded in the natural energy norm, possesses a subsequence converging
to (another) weak solution of the same problem. Such a property highlights the
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essential ingredients involved in the ”complete” proof of existence that may be
carried over by means of the arguments delineated in (Feireisl, Novotný , 2009;
Chapter 3).

The essential contribution to the proof comes from the entropy inequality. Due
to a relevant ”radiative” contribution one faces a similar situation encountered in
(Ducomet, Feireisl, Nečasová , 2011), namely that the total entropy production
has not a “definite sign” and, accordingly, we can establish the strong convergence
of the radiative contribution with the help of regularity of velocity averages. This
is also connected to the fact that we do not introduce radiation entropy in the
total entropy inequality.

The paper is organized as follows. In Section 2.2, we list the principal hypothe-
ses imposed on constitutive relations, introduce the concept of weak solution to
problem (2.10) – (2.26), and state the main result. Uniform bounds imposed on
weak solutions by the data are derived in Section 2.3.1. The property of weak
sequential stability of a bounded sequence of weak solutions is established in Sec-
tion 2.3.2. Finally, we introduce a suitable approximation scheme and discuss the
main steps of the proof of existence in Section 2.3.3.

2.2 Hypotheses and main results

Hypotheses imposed on constitutive relations and transport coefficients are moti-
vated by the general existence theory for the Navier-Stokes-Fourier system devel-
oped in (Feireisl, Novotný , 2009; Chapter 3) and reasonable physical assumptions
(Pomraning , 2005).

Firstly, we consider the pressure in the form

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+
a

3
ϑ4, a > 0, (2.27)

where P : [0,∞)→ [0,∞) is a given function with the following properties:

P ∈ C1 ([0,∞)) , P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (2.28)

0 <
5
3
P (Z)− P ′(Z)Z

Z
< c for all Z ≥ 0, (2.29)

lim
Z→∞

P (Z)

Z5/3
= p∞ > 0. (2.30)

The component a
3
ϑ4 represents the effect of the ”equilibrium” radiation pres-

sure ((see Ducomet, Feireisl, Nečasová , 2011) for motivations and (Feireisl, No-
votný , 2009) for details). Essentially, these hypotheses are implications of general
principles of thermodynamical stability and the assumption that there is at least
one component in the plasmatic mixture behaving in the degenerate regime as a
Fermi gas (we may think of it in most cases as of an electron gas). The constant
a is the Stefan-Boltzmann constant.

According to Maxwell’s relation (2.14) and statistical kinetic theory, the in-
ternal energy density e is

e(%, ϑ) =
3

2
%−1ϑ5/2P

(
%ϑ−3/2

)
+ aϑ4%−1, (2.31)
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and the associated specific entropy reads

s(%, ϑ) = M
(
%ϑ−3/2

)
+

4a

3
ϑ3%−1, (2.32)

with a function M satisfying by (2.29)

M ′(Z) = −3

2

5
3
P (Z)− P ′(Z)Z

Z2
< 0.

Additional entropy for the photon gas out of equilibrium is not introduced.
The transport coefficients µ, η, and κM are continuously differentiable func-

tions of their respective variables admitting a common temperature scaling such
that there exist c1, c2, c3, c > 0

µ′ϑ

(
ϑ,
∣∣∣ ~H∣∣∣) < c3, (2.33)

c1(1 + ϑ) ≤ η
(
ϑ,
∣∣∣ ~H∣∣∣) , σ−1(%, ϑ, ~B), µ

(
ϑ,
∣∣∣ ~H∣∣∣) ≤ c2(1 + ϑ), (2.34)

κM

(
%, ϑ,

∣∣∣ ~H∣∣∣) ≤ c(1 + ϑ3), (2.35)

for any ϑ ≥ 0. We consider the magnetic permeability ζ satisfying the following
property

cks(1 + s)−k ≤ ∂ks (sζ(s)) ≤ cks(1 + s)−k, (2.36)

for any s ≥ 0 and for k = 0, 1 with ck, ck > 0. Moreover, we assume that σa, σs are
continuous functions of ν, ϑ such that there exist c4, c5, c6 > 0 and h ∈ L1(0,∞)
and it holds

0 ≤ σa(ν, ϑ), σs(ν, ϑ) ≤ c4, 0 ≤ σa(ν, ϑ)B(ν, ϑ) ≤ c5, (2.37)

σa(ν, ϑ), σs(ν, ϑ), σa(ν, ϑ)B(ν, ϑ) ≤ h(ν), (2.38)

σa(ν, ϑ), σs(ν, ϑ) ≤ c6ϑ, (2.39)

for all ν ≥ 0, ϑ ≥ 0. Relations (2.37) – (2.39) represent ”cut-off” hypotheses
neglecting the effect of radiation at large frequencies ν and small temperatures
ϑ.

The relation (2.39) is similar to coefficients which were derived by (Ripoll,
Dubroca, Duffa , 2001). The coefficients are deduced by averanging a specific
radiative intensity over the space of frequencies and are generalized versions of
the Planck mean (Ripoll, Dubroca, Duffa , 2001). The assumption (2.38) was
used in the work of Golse et al. (see Golse, Perthame , 1986; an assumption
(H4)) which gives us the boundedness with respect ν. It is not any contradiction
to (2.39).

We just recall the definitions introduced in (Ducomet, Feireisl, Nečasová ,
2011). In the weak formulation of the Navier-Stokes-Fourier system the equation
of continuity (2.10) is replaced by its renormalized version introduced in (DiPerna,
Lions , 1989) represented by the family of integral identities∫ T

0

∫
Ω

[(
%+ b(%)

)
∂tϕ+

(
%+ b(%)

)
~u · ∇xϕ+

(
b(%)− b′(%)%

)
divx~u ϕ

]
dx dt =

(2.40)

29



−
∫

Ω

(
%0 + b(%0)

)
ϕ(0, ·) dx,

to be satisfied for any ϕ ∈ C∞c ([0,∞) × Ω), and any b ∈ C∞ ([0,∞)), b′ ∈
C∞c ([0,∞)), where (2.40) implicitly includes the initial condition

%(0, ·) = %0.

Similarly, the momentum equation (2.11) is replaced by its weak version∫ T

0

∫
Ω

(%~u · ∂t~ϕ+ %~u⊗ ~u : ∇x~ϕ+ p divx~ϕ) dx dt (2.41)

=

∫ T

0

∫
Ω

S : ∇x~ϕ− %∇xΨ · ~ϕ+ ~SF · ~ϕ− ζ( ~J × ~H) · ~ϕ dx dt

−
∫

Ω

(%~u)0 · ~ϕ(0, ·) dx,

for any ~ϕ ∈ C∞c ([0, T ) × Ω;R3). For (2.41) to make sense, especially the term∫ T
0

∫
Ω
S : ∇xϕ dx dt, the field ~u must belong to a certain Bochner space with a

Sobolev space with respect to the spatial variable and we require that

~u ∈ L2(0, T ;W 1,2
0 (Ω;R3)), (2.42)

where (2.42) already includes the no-slip boundary conditions (2.23)1. Gravita-
tional potential Ψ is given by (2.26) considered on the whole space R3, where %
was extended to be zero outside Ω.

As the term S~u in the total energy balance (2.12) is not controlled on the (hy-
pothetical) vacuum zones of vanishing density, we replace (2.12) by the internal
energy equation as in (Feireisl, Novotný , 2009)

∂t(%e)+divx(%e~u)+divx~q = S : ∇x~u−p divx~u−SE+~u · ~SF +
1

σ

∣∣∣curlx ~H
∣∣∣2. (2.43)

Furthermore, dividing (2.43) by ϑ and using Maxwell’s relation (2.14), we may
rewrite (2.43) as the entropy equation

∂t (%s) + divx (%s~u) + divx

(
~q

ϑ

)
= r, (2.44)

where the entropy production rate r is

r =
1

ϑ

(
S : ∇x~u−

~q · ∇xϑ

ϑ
+

1

σ

∣∣∣curlx ~H
∣∣∣2)+

~u · ~SF − SE
ϑ

, (2.45)

where the first term rm := 1
ϑ

(
S : ∇x~u− ~q·∇xϑ

ϑ
+ 1

σ

∣∣∣curlx ~H
∣∣∣2) is the (non-nega-

tive) matter entropy production by virtue of the constitutive laws (2.15) and
(2.16). The second term on the right-hand side of (2.45) is due to the radiative
entropy rate which has not got a definite sign since it corresponds to the radiative
heating/cooling.

For the smooth fields we can get an evolution equation for the sum of the
density of the kinetic energy 1

2
% |~u|2 and the magnetic energyM( ~H) subtracting
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(2.43) from (2.12). However, generally for weak solutions we cannot exclude that
the entropy dissipation rate due to a heat exchange, internal viscous friction and
Foucault eddy currents is larger than r in compliance with the Second law of
Thermodynamics and equation (2.44) has to be replaced in the weak formulation
by the inequality∫ T

0

∫
Ω

(
%s∂tϕ+ %s~u · ∇xϕ+

~q

ϑ
· ∇xϕ

)
dx dt (2.46)

≤ −
∫

Ω

(%s)0ϕ(0, ·) dx+

∫ T

0

∫
Ω

1

ϑ

(
~q · ∇xϑ

ϑ
− S : ∇x~u−

1

σ

∣∣∣curlx ~H
∣∣∣2 − ~u · ~SF

+SE

)
ϕ dx dt,

for any ϕ ∈ C∞c ([0, T )× Ω), ϕ ≥ 0.
Since replacing equation (2.12) by inequality (2.46) would certainly result

in a formally underdetermined problem, system (2.40), (2.41), (2.46) must be
supplemented with the total energy balance

d

dt

∫
Ω

(
1

2
%(t, x) |~u(t, x)|2 + %e(%(t, x), ϑ(t, x)) + c−1

∫
S2

∫ ∞
0

I(t, x, ~ω, ν) d~ω dν

(2.47)

+M(| ~H|)− 1

2
%(t, x)Ψ(t, x)

)
dx =

∫
Ω

∫
S2

∫ ∞
0

divx (~ωI(t, x, ~ω, ν)) d~ω dν dx,

which can be rephrased as follows∫
Ω

(
1

2
%|~u|2 + %e(%, ϑ) + ER +M(| ~H|)− 1

8πG
|∇Ψ|2

)
(τ, ·) dx (2.48)

+

∫ τ

0

∫∫
∂Ω×S2
~ω·~n≥0

∫ ∞
0

I(t, x, ~ω, ν) ~ω · ~n dν d~ω dSx dt

=

∫
Ω

(
1

2%0

|(%~u)0|2 + (%e)0 + ER,0 +M(| ~H|)(0, ·)− 1

8πG
|∇Ψ0|2

)
dx,

for a. a. τ ∈ (0, T ),

where ER is given by (2.1), and

ER,0 = c−1

∫
S2

∫ ∞
0

I0(·, ~ω, ν) d~ω dν.

The transport equation (2.13) can be extended to the whole physical space
R3 provided we set

σa(x, ν, ϑ) = IΩσa(ν, ϑ), σs(x, ν, ϑ) = IΩσs(ν, ϑ),

and take the initial distribution I0(x, ~ω, ν) to be zero for x ∈ R3 \ Ω. Accordingly,
for any fixed ~ω ∈ S2, equation (2.13) can be considered a linear transport equation
defined in (0, T ) × R3, with a right-hand side cS̃. With the above mentioned
convention, extending ~u to be zero outside Ω, we may therefore assume that
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both % and I are defined on the whole physical space R3. Then the gravitational
potential Ψ is defined on the whole R3 by the Newtonian potential.

Remark: Let us mention at this point that such an extension of the transport
equation is only valid in the context of weak solutions. It would not be the
case for strong solutions for which construction of the solution using method
of characteristics would lead to a contradiction between the two problems due
to boundary conditions. (We know that I = 0 on the part of boundary where
ω ·n ≤ 0.) We can refer to the work of Bardos and it can be find in Lecture Notes
of Golse et al. (see Allaire et al. , 2015; Lemma 2.3.3).

Finally, we need to state the weak formulation of the reduced Maxwell system
(2.2), (2.6)∫ T

0

∫
Ω

(
~B · ∂t~ϕ−

(
~B × ~u+

1

σ
curlx ~H

)
· curlx~ϕ

)
dx dt = (2.49)

−
∫

Ω

~B0 · ~ϕ(0, ·) dx,

holds for any ~ϕ ∈ D([0, T )× R3,R3).

In accordance with the boundary conditions (2.24), (2.25) one also take

~B0 ∈ L2(Ω), divx ~B0 = 0 in D′(Ω), ~B0 · n|∂Ω = 0. (2.50)

Definition 2.2.1 We say that (%, ~u, ϑ, ~B, I) is a weak solution of problem
(2.10) – (2.26) iff

%0 ≥ 0 a.e. in Ω, %0 ∈ L
5
3 (Ω),

(%~u)0√
ρ0

∈ L2(Ω,R3),

(%e(%, ϑ))0 = %0e(%0, ϑ0) ∈ L1(Ω), ϑ0 > 0 a.e. in Ω, ϑ0 ∈ L∞(Ω),

Ψ0 = G(−∆)−1IΩ%0, ~B0 ∈ L2(Ω,R3), divx ~B0 = 0 in D′(Ω), ~B0 · ~n
∣∣∣
∂Ω

= 0,

I0 ≥ 0 a.e. in Ω× S2 × (0,∞),

I0 ∈ L1(R3 × S2 × (0,∞)) ∩ L∞(R3 × S2 × (0,∞)),

(%s(%, ϑ))0 = %0s(%0, ϑ0) ∈ L1
loc(Ω),

% ≥ 0, ϑ > 0 for a.a. (t, x)× Ω, I ≥ 0 a.a. in (0, T )× Ω× S2 × (0,∞),

% ∈ L∞(0, T ;L5/3(Ω)), ϑ ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

~u ∈ L2(0, T ;W 1,2
0 (Ω;R3)), ~B ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

M
(∣∣∣ ~H∣∣∣) ∈ L∞(0, T ;L1(Ω)), divx ~B(t) = 0, ~B(t) · n|∂Ω = 0, t ∈ (0, T ),

I ∈ L∞((0, T )× Ω× S2 × (0,∞)), I ∈ L∞(0, T ;L1(Ω× S2 × (0,∞)),

and (%, ~u, ϑ, ~B, I) satisfy the integral identities (2.40), (2.41), (2.46), (2.48),
and (2.49) together with the transport equation (2.13) and boundary conditions
(2.23) – (2.25) at least in the sense of traces.

The main result of the present paper can be stated as follows. Weak limits
are generally denoted with an overbar.
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Theorem 2.2.1. Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω of class
C2+α for an α > 0. Assume that the thermodynamic functions p, e, s satisfy
hypotheses (2.27) – (2.32), and that the transport coefficients η, κM , ζ, σ, µ, σa,
and σs comply with (2.33) – (2.39).

Let {%ε, ~uε, ϑε, ~Bε, Iε}ε>0 be a family of weak solutions to problem (2.10) –
(2.26) in the sense of Definition 2.2.1 such that

%ε(0, ·) ≡ %ε,0 → %0 in L5/3(Ω), (2.51)∫
Ω

(
1

2
%ε|~uε|2 + %εe(%ε, ϑε) + ER,ε +M

(∣∣∣ ~H∣∣∣)− 1

2
%Ψ

)
(0, ·) dx (2.52)

≡
∫

Ω

(
1

2%0,ε

|(%~u)0,ε|2 + (%e)0,ε + ER,0,ε +M
(∣∣∣ ~H∣∣∣)

0,ε
− 1

2
(%Ψ)0,ε

)
dx ≤ E0,∫

Ω

%εs(%ε, ϑε)(0, ·) dx ≡
∫

Ω

(%s)0,ε dx ≥ S0,

and

0 ≤ Iε(0, ·) ≡ I0,ε(·) ≤ I0, |I0,ε(x, ~ω, ν)| ≤ h(ν) for a certain h ∈ L1(0,∞).
(2.53)

Then
%ε → % in Cweak([0, T ];L5/3(Ω)),

~uε → ~u weakly in L2(0, T ;W 1,2
0 (Ω;R3)),

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)),

~Bε → ~B weakly in L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L2(Ω)),

and
Iε → I weakly-(*) in L∞((0, T )× Ω× S2 × (0,∞)),

at least for suitable subsequences, where {%, ~u, ϑ, ~B, I} is a weak solution of prob-
lem (2.10) – (2.26).

Note that a strong convergence is required only for the initial distribution
of the densities {%ε,0}ε>0 (see (2.51)), while the remaining initial data are only
bounded in suitable norms. This is due to the fact that the evolution of the
density is governed by continuity equation (2.10) having a hyperbolic character
without any smoothing effect incorporated.

2.3 Proof of Theorem 2.2.1

Following (Ducomet, Feireisl, Nečasová , 2011), the proof consists of three steps.

We establish uniform estimates on the family {%ε, ~uε, ϑε, ~Bε, Iε}ε>0 independent
of ε → 0+ first. Secondly, we observe that the extra forcing terms in (2.41),
(2.46) due to radiation are bounded in suitable Lebesgue norms. In particular,
the analysis of the macroscopic variables %ε, ~uε, ϑε is essentially the same as
in the case of the Navier-Stokes-Fourier system presented in (Feireisl, Novotný
, 2009). Consequently, as in (Ducomet, Feireisl, Nečasová , 2011) the proof of
Theorem 2.2.1 reduces to the study of the transport equation (2.13) governing
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the time evolution of the radiation intensity Iε and Maxwell’s system (2.2) and
(2.6). In the last step we introduce an approximation scheme similar to that used
in (Feireisl, Novotný , 2009; Chapter 3) and sketch the main ideas of a complete
proof of the existence of global-in-time weak solutions to problem (2.10) – (2.26).

2.3.1 Uniform bounds

Uniform (a-priori) bounds follow immediately from the total energy balance and
the entropy production equation.

The total energy balance (2.47), combined with hypotheses of Theorem 2.2.1
gives

ess sup
t∈(0,T )

‖√%ε~uε‖L2(Ω;R3) ≤ c, (2.54)

ess sup
t∈(0,T )

‖%εe(%ε, ϑε)‖L1(Ω) ≤ c, (2.55)

ess sup
t∈(0,T )

‖ER,ε‖L1(Ω) ≤ c, (2.56)

ess sup
t∈(0,T )

∥∥∥M(∣∣∣ ~Hε

∣∣∣)∥∥∥
L1(Ω)

≤ c, (2.57)

and
ess sup

t∈(0,T )

‖ ~Bε‖L2(Ω) ≤ c. (2.58)

Thus, as the internal energy contains the radiation component proportional
to ϑ4 (cf. (2.27)), we deduce from (2.55) that

ess sup
t∈(0,T )

‖ϑε‖L4(Ω) ≤ c, (2.59)

and, by virtue of hypotheses (2.27) – (2.30),

ess sup
t∈(0,T )

‖%ε‖L5/3(Ω) ≤ c. (2.60)

This crucial uniform estimate we get ”for free” by the proportionality of pressure
and internal energy density of the fluid part of the internal energy and by the
assumption that we deal with a component behaving like a Fermi gas (cf. (Feireisl,
Novotný , 2009; Chapter 2))

%e ≥ aϑ4 +
3

2
p∞%

5
3 . (2.61)

Since the quantity Iε is non-negative, we have from (2.13)

1

c
∂tIε + ~ω · ∇xIε ≤ σa(ν, ϑε)B(ν, ϑε) + σs(ν, ϑε)

1

4π

∫
S2
Iε(·, ~ω, ·) d~ω ≤ (2.62)

c5 + c4

∫
S2
Iε(·, ~ω, ·) d~ω,
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as the coefficients σs, σa are non-negative and bounded by (2.37). Thus we deduce
a uniform bound

0 ≤ Iε(t, x, ν, ~ω) ≤ c(T )(1 + sup
x∈Ω, ν≥0,~ω∈S2

I0,ε) ≤ c(T )(1 + I0) for any t ∈ [0, T ]

(2.63)
by (2.53) with a certain non-negative function c(t).

Cut-off hypothesis (2.38) together with (2.63) yield

‖SE,ε‖L∞((0,T )×Ω) + ‖~SF,ε‖L∞((0,T )×Ω;R3) ≤ c. (2.64)

Moreover, due to (2.39) it holds∥∥∥∥SE,εϑε

∥∥∥∥
L∞((0,T )×Ω)

+

∥∥∥∥∥ ~SF,εϑε

∥∥∥∥∥
L∞((0,T )×Ω;R3)

≤ c. (2.65)

As the viscosity coefficients satisfy (2.33) – (2.34), we get

‖%ε~uε‖2
L2((0,T ),L1(Ω)) +

∫ T

0

∫
Ω

1

ϑε
Sε : ∇x~uε dx dt ≥

c1

∥∥∥∥∇x~uε +∇T
x~uε −

2

3
divx~uεI

∥∥∥∥2

L2((0,T )×Ω;R3×3)

+ ‖%ε~uε‖2
L2((0,T ),L1(Ω))

≥ c7‖~uε‖2
L2(0,T ;W 1,2

0 (Ω;R3))
,

where we have used a variant of the Korn-Poincaré inequality ((see Feireisl, No-
votný , 2009; Chapter 2, Proposition 2.1)) and c7 depends only on the uniform
bounds of % and c1.

On the other hand, in accordance with (2.65) by Hölder’s inequality∣∣∣∣∫ T

0

∫
Ω

1

ϑε
~uε · ~SF,ε dx dt

∣∣∣∣ ≤ c‖~uε‖L1((0,T )×Ω;R3).

Then the entropy inequality (2.46) (with positive production terms, the rest
estimated by (2.65)) yields the uniform bounds for Ω bounded

‖~uε‖L2(0,T ;W 1,2
0 (Ω;R3)) ≤ c, (2.66)

‖∇xϑε‖L2((0,T )×Ω) ≤ c, (2.67)∥∥∥∥ 1

ϑεσε

∣∣∣curlx ~Hε

∣∣∣2∥∥∥∥
L1((0,T )×Ω)

≤ c, (2.68)

upon testing with approximations of the test function ϕ = IΩ(x)I[0,T ](t) and
passing to the limit. Moreover we have∥∥∥curlx ~Hε

∥∥∥
L2((0,T )×Ω;R3)

≤ c. (2.69)

Finally we summarize the lemmas from (Duvaut, Lions , 1976; Chapter 7)

concerning the (linearized) equation for the evolution of magnetic field ~B (2.49):
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• The boundary condition expressing continuity of the tangential component
of the electric field (2.25)1 is automatically satisfied by the weak formulation
(2.49).

• The boundary condition expressing continuity of the normal component of
the magnetic field (2.25)2 is satisfied once we choose ~Bε,0 · ~n = 0.

• The same is true for the condition of solenoidality (2.3) once we guarantee

divx ~Bε,0 = 0 in D′(Ω).

• We have got a Hodge-type estimate∥∥∥ ~Bε

∥∥∥
W 1,2(Ω,R3)

≤ c

(∥∥∥curlx ~Bε

∥∥∥
L2(Ω,R3)

+
∥∥∥divx ~Bε

∥∥∥
L2(Ω)

+

∥∥∥ ~Bε · ~n
∥∥∥
W

1
2 ,2(∂Ω)

)
≤ c

∥∥∥curlx ~Bε

∥∥∥
L2(Ω,R3)

≤ c,

meaning that we have got a uniform estimate of the magnetic induction∥∥∥ ~Bε

∥∥∥
L2(0,T ;W 1,2(Ω,R3))

≤ c, (2.70)

and also for the magnetic field∥∥∥ ~Hε

∥∥∥
L2(0,T ;W 1,2(Ω,R3))

≤ c. (2.71)

To estimate the pressure functions p(%ε, ϑε) globally we start with the obser-
vation that estimates (2.60), (2.66) imply that the sequences {%ε~uε}ε>0, {%ε~uε ⊗
~uε}ε>0 are bounded in Lp((0, T )×Ω) for a certain p > 1, namely p = 45

43
. Similarly,

combining (2.59), (2.66), (2.67), we get

{Sε}ε>0 bounded in Lp((0, T )× Ω;R3×3) for a certain p > 1, namely p =
34

23
.

Moreover, {%ε∇xΨε}ε>0, { ~Jε× ~Bε}ε>0 are bounded in Lp((0, T )×Ω) for a certain
p > 1. Now, repeating the arguments of (Feireisl, Petzeltová , 2000), we observe
that the quantities

ϕ(t, x) = ψ̃(t){B[%ωε ]}α, ψ̃ ∈ D(0, T ) for sufficiently small parameters α, ω > 0

may be used as test functions in the momentum equation (2.41), where B[v] is a
suitable branch of solutions to the boundary value problem

divx

(
B[v]

)
= v − 1

|Ω|

∫
Ω

v dx, B[v]|∂Ω = 0. (2.72)

Here B is the Bogovskii operator and α denotes a convolution parameter in time
since we need to test with a continuously differentiable function.

Next we get estimates of {B[%ωε ]}α in Lq(0, T ;W 1,p(Ω,R3)) for all q ∈ [1,∞]
and p ∈ (1,∞) by {%ωε }α in Lq(0, T ;Lp(Ω,R3)) and of {B[%ωε ]}α setting the renor-
malization function in (2.40) b(%ε) := {B[%ωε ]}α. This leads to an estimate of
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the term
∫ T

0
ψ̃(t)

∫
Ω
p(%ε, ϑε){B[%ωε ]}α dx dt by eight integrals resulting from the

momentum equation (2.41). We omit most details which can the reader find in
(Feireisl, Novotný , 2009; Chapter 2). Let us just note that the ”worst” term
arises from the time derivative which we a-priori do not control in a Lebesgue
space and therefore we partially integrate in time and estimate it as follows∣∣∣∣−∫ T

0

ψ̃(t)

∫
Ω

%ε~uε · ∂t{B[%ωε ]}α dx dt

∣∣∣∣ ≤ ∥∥∥ψ̃∥∥∥
C(0,T )

‖%ε~uε‖L∞(0,T ;L
5
4 (Ω,R3))

×

(2.73)

‖∂t{B[%ωε ]}α‖L1(0,T ;L5(Ω,R3)) ≤ c
∥∥∥ψ̃∥∥∥

C(0,T )
‖%ε~uε‖L∞(0,T ;L

5
4 (Ω,R3))

×{
‖{B[%ωε ]}α~uε‖L1(0,T ;L5(Ω,R3)) +∥∥[%ε ({B[%ωε ]}α)′ − {B[%ωε ]}α

]
divx~uε

∥∥
L1(0,T ;L

15
8 (Ω,R3))

}
≤ c for ω ≤ 11

18
,

by (2.60), (2.54) and (2.66) and a repeated use of Hölder’s inequality and Sobolev
embedding. ”New terms” in comparison to (Feireisl, Novotný , 2009; Chapter 2)
are estimated as follows∣∣∣∣−∫ T

0

ψ̃(t)

∫
Ω

%ε∇xΨε · {B[%ωε ]}α dx dt

∣∣∣∣ ≤ c
∥∥∥ψ̃∥∥∥

C(0,T )
‖∇ψε‖L∞(0,T ;L

15
4 (Ω))

×

(2.74)

‖%ωε ‖L1(0,T ;L
15
7 (Ω))

‖%ε‖L∞(0,T ;L
5
3 (Ω))

≤ c for ω ≤ 7

9
,∣∣∣∣∫ T

0

ψ̃(t)

∫
Ω

~SF,ε · {B[%ωε ]}α dx dt

∣∣∣∣ ≤ c
∥∥∥ψ̃∥∥∥

C(0,T )

∥∥∥~SF,ε∥∥∥
L∞((0,T )×Ω;R3)

× (2.75)

‖%ωε ‖L1(0,T ;L1+δ(Ω)) ≤ c for small δ > 0 and ω <
5

3

and∣∣∣∣−∫ T

0

ψ̃(t)

∫
Ω

σ(%ε, ϑε, ~Bε)
(
~Eε + ~uε × ~Bε

)
× ~Bε · {B[%ωε ]}α dx dt

∣∣∣∣ ≤ c× (2.76)

∥∥∥ψ̃∥∥∥
C(0,T )

∥∥∥curlx ~Hε

∥∥∥
L2((0,T )×Ω;R3)

‖%ωε ‖L 15
8 (0,T ;L

15
8 (Ω))

∥∥∥ ~Bε

∥∥∥
L

10
3 ((0,T )×Ω;R3)

≤ c

for ω ≤ 8

9
.

The resulting (uniform in ε) estimate reads∫ T

0

∫
Ω

p(%ε, ϑε)%
ω
ε dx dt < c, (2.77)

where ω ≤ min
{

5
3
, 8

9
, 7

9
, 55

102
, 11

18
, 2

27

}
= 2

27
, in particular, we can arrive at the

following regularity by upper bounds for pressure in the non-degenerate region
(for small Z in the sense of (2.28)) and in the degenerate region, respectively and
homogeneous regularity of temperature by (2.59) ‖ϑε‖L 17

3 ((0,T )×Ω)
≤ c

{p(%ε, ϑε)}ε>0 is bounded in Lp((0, T )× Ω) for a p > 1, namely p =
47

45
. (2.78)
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2.3.2 Weak sequential stability

We sketch the principal part of the proofs and focus mainly on the issues related
to weak sequential stability of quantities related to radiation and magnetic field
that require new ideas. In particular, we examine in details the extra terms in
the entropy balance equation (2.46).

2.3.2.1 Weak (sequential) stability of macroscopic thermodynamic
quantities

After the uniform estimates on the radiation forcing terms SE,ε and ~SF,ε in (2.64),
a strong (pointwise) convergence of the macroscopic thermodynamic quantities
{%ε}ε>0, {ϑε}ε>0 can be shown exactly as in (Ducomet, Feireisl , 2006).

To begin, using the uniform bounds established in Section 2.3.1 we observe
that

%ε → % in Cw([0, T ];L
5
3 (Ω)), (2.79)

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)), (2.80)

and
log(ϑε)→ log(ϑ) weakly in L2((0, T )× Ω), (2.81)

and
~uε → ~u weakly in L2(0, T ;W 1,2

0 (Ω;R3)), (2.82)

possibly passing to suitable subsequences. Moreover, since the (weak) time deriva-
tive ∂t (%ε~uε) of momenta can be expressed by means of momentum balance (2.41)
(Lorentz force density bounded as in (2.76)), we have got

%ε~uε → %~u in Cw([0, T ];L
5
4 (Ω;R3)). (2.83)

Since our system contains quantities depending on % and ϑ in a general non-
linear way, pointwise (resp. a. e.) convergence of {%ε}ε>0, {ϑε}ε>0 must be estab-
lished in order to perform the limit ε → 0+. This step is apparently easier to
carry out for the temperature because of the uniform bounds available for ∇xϑε.

2.3.2.2 Pointwise convergence of temperature

A. e. convergence of the sequence {ϑε}ε>0 can be established essentially by the
monotonicity arguments. The main problem are possible uncontrollable time
oscillations in hypothetical zones of vacuum, here eliminated by the presence of
radiation component in the entropy inequality. More specifically, our goal is to
show that∫ T

0

∫
Ω

(
%εs(%ε, ϑε)− %εs(%ε, ϑ)

)(
ϑε − ϑ

)
dx dt→ 0 as ε→ 0+, (2.84)

which, in accordance with hypothesis (2.32), implies the desired conclusion

ϑε → ϑ in L4((0, T )× Ω), in particular, ϑεk → ϑ a. e. in (0, T )× Ω. (2.85)

In order to see (2.84), we first observe that∫ T

0

∫
Ω

%εs(%ε, ϑε)
(
ϑε − ϑ

)
dx dt→ 0 as ε→ 0 + .
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Indeed this follows by means of the Aubin-Lions compactness lemma as

ϑε − ϑ→ 0 weakly in L2(0, T ;W 1,2(Ω)),

and the (weak) time derivative ∂t(%εs(%ε, ϑε)) can be expressed by means of the
entropy inequality (2.46).

Consequently, it remains to show that∫ T

0

∫
Ω

%εs(%ε, ϑ)
(
ϑε − ϑ

)
dx dt→ 0 as ε→ 0 + . (2.86)

To see (2.86), we combine the bounds imposed on ∂tb(%ε) by the renormalized
equation (2.40), with the estimates on the temperature gradient (2.67), to deduce
that

νt,x[%ε, ϑε] = νt,x[%ε]⊗ νt,x[ϑε] a. e. in (0, T )× Ω, (2.87)

where the symbol ν[%ε, ϑε] denotes a Young measure associated to the family
{%ε, ϑε}ε>0, while ν[%ε], ν[ϑε] stand for Young measures generated by {%ε}ε>0,
{ϑε}ε>0, respectively. In order to conclude, we use the following result frequently
called Fundamental theorem of the theory of Young measures ( (see Pedregal ,
1997; Chapter 6, Theorem 6.2)):

Theorem 2.3.1. Let {~vn}∞n=1, ~vn : Q ⊂ RN → RM be a sequence of functions
bounded in L1(Q;RM), where Q is a domain in RN .

Then there exist a subsequence (not relabeled) and a parametrized family
{νy}y∈Q of probability measures on RM depending measurably on y ∈ Q with the
following property:

For any Caratheodory function Φ = Φ(y, z), y ∈ Q, z ∈ RM such that

Φ(·, ~vn)→ Φ weakly in L1(Q),

we have

Φ(y) =

∫
RM

Φ(y, z) dνy(z) for a. a. y ∈ Q.

In virtue of Theorem 2.3.1, relation (2.87) implies (2.86). We have proved the
almost everywhere convergence of the temperature claimed in (2.85). Note that
this step leans heavily on the presence of the radiative entropy flux.

2.3.2.3 Pointwise convergence of density

Although the pointwise convergence of the family of densities {%ε}ε>0 represents
one of the most delicate questions of the existence theory for the compressible
Navier-Stokes system, this step is nowadays well understood. The idea is to use
the quantities

ϕ(t, x) = ψ(t)φ(x)∇x∆
−1[IΩTk(%ε)]

as test functions in the weak formulation of momentum equation (2.41). Similarly,
we can let ε→ 0+ in (2.41) and test the resulting expression by

ϕ(t, x) = ψ(t)φ(x)∇x∆
−1[IΩTk(%ε)],

where ψ ∈ C∞c (0, T ), φ ∈ C∞c (Ω), and Tk is a cut-off function,

Tk(z) = min{z, k}.

39



In the limit for ε → 0+, this procedure yields the celebrated relation for the
effective viscous pressure discovered by (Lions , 1996, 1998), relating last two
expressions whose weak limits have not been identified yet, which reads in the
present setting as∫ T

0

∫
Ω

ψφ
(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx dt (2.88)

=

∫ T

0

∫
Ω

ψφ
(
S : R[IΩTk(%)]− S : R[IΩTk(%)]

)
dx dt,

where the ovebars denote weak limits of the composed quantities (in the appro-
priate Lebesgue spaces Lp((0, T )×Ω), for p = 47

45
and p = 34

23
, respectively, thus in

L1((0, T )× Ω) as well) and where R = Ri,j = ∂xi∆
−1∂xj is a pseudo-differential

operator with its symbol

R =
ξ ⊗ ξ
|ξ|2

((see Feireisl, Novotný , 2009; Section 3.6)). Note that the presence of the extra

term ~SF in (2.41) does not present any additional difficulty as∫ T

0

∫
Ω

ψ~SF,ε · φ∇x∆
−1[Tk(%ε)] dx dt→

∫ T

0

∫
Ω

ψ~SF · φ∇x∆
−1[Tk(%)] dx dt.

The same applies to the Lorentz force density as we can apply the Aubin-Lions
lemma due to (2.70), ∂t ~Bε ∈ L2(0, T ; [W 1,4(Ω)]∗) by (2.58), (2.66), (2.34) and
(2.68) to obtain

~Bε → ~B in L2
(
(0, T )× Ω,R3

)
(2.89)

which together with once again (2.68) leads to the identification of the weak limit

in L
5
4 ((0, T )× Ω) of the term involving the magnetic induction ~B in (2.41).

The following commutator lemma is in the spirit of Coifman and Meyer (Coif-
man, Meyer , 1975):

Lemma 2.3.1. Let w ∈ W 1,2(R3) and ~Z ∈ Lp(R3;R3) be given, with 6/5 < p <∞.
Then, for any 1 < s < 6p/(6 + p),∥∥∥R[w~Z]− wR[~Z]

∥∥∥
Wβ,s(R3;R3)

≤ c‖w‖W 1,2(R3)‖~Z‖Lp(R3;R3),

where 0 < β = 3
s
− 6+p

6p
, and c = c(p) are positive constants.

Applying Lemma 2.3.1 to the expression on the right-hand side of (2.88) and
using the (weak) compactness in time of Tk(%ε) following1 from the renormalized
equation (2.40), we obtain

p(%, ϑ)Tk(%)−
(

4

3
µ
(
ϑ,
∣∣∣ ~H∣∣∣)+ η

(
ϑ,
∣∣∣ ~H∣∣∣))Tk(%)divx~u (2.90)

= p(%, ϑ) Tk(%)−
(

4

3
µ
(
ϑ,
∣∣∣ ~H∣∣∣)+ η

(
ϑ,
∣∣∣ ~H∣∣∣))Tk(%)divx~u,

1Naturally the Tk function has to be approximated by differentiable functions first.
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cf. (Feireisl, Novotný , 2009; Section 3.7.4) with the help of (2.85) and (2.89).
Now, introducing the functions

Lk(%) =

∫ %

1

Tk(z)

z2
dz,

we deduce from renormalized equation (2.40) that∫ T

0

∫
Ω

(
%Lk(%)∂tϕ+ %Lk(%)~u · ∇xϕ− Tk(%)divx~uϕ

)
dx dt

= −
∫

Ω

%0Lk(%0)ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0, T )× Ω). It follows from (2.90) that

oscq[%ε → %] ((0, T )× Ω) (2.91)

≡ sup
k≥1

(
lim sup
ε→0

∫ T

0

∫
Ω

|Tk(%ε)− Tk(%)|q dx dt

)
<∞, ∀q ∈

(
2,

8

3

)
,

where osc is the oscillation defect measure introduced in (Feireisl , 2001). In
particular, relation (2.91) implies that the limit functions %, ~u satisfy renormalized
equation (2.40) ((see Feireisl, Novotný , 2009; Lemma 3.8)); whence∫

Ω

(
%Lk(%)− %Lk(%)

)
(τ) dx+

∫ τ

0

∫
Ω

(
Tk(%)divx~u− Tk(%)divx~u

)
dx (2.92)

=

∫ τ

0

∫
Ω

(
Tk(%)divx~u− Tk(%)divx~u

)
dx dt for any τ ∈ [0, T ].

Using once more (2.91), we can let k → ∞ in (2.92) to obtain the desired
conclusion

% log(%) = % log(%),

particularly,
%ε → % in L1((0, T )× Ω), (2.93)

(see for details Feireisl, Novotný , 2009; Section 3.7.4).
Relations (2.79) – (2.82), (2.85), (2.93), and by means of an interpolation from

(2.89) and (2.70)

~Bε → ~B in L2((0, T );Lq(Ω,R3)), 1 ≤ q < 6. (2.94)

together with the previous uniform bounds allow us to pass to the limit in
the weak formulation of the Navier-Stokes-Fourier system and the simplified
Maxwell’s system, as soon as we show convergence of the sequence {Iε}ε>0. This
will be accomplished in the forthcoming section.
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2.3.2.4 Convergence of radiation intensity

Our ultimate goal is to establish convergence of the quantities arising in the
entropy production rate by radiation

1

ϑε
SE,ε =

1

ϑε

∫ ∞
0

σa(ν, ϑε)

[∫
S2

(B(ν, ϑε)− Iε) d~ω

]
dν +

1

ϑε

∫ ∞
0

σs(ν, ϑε)

∫
S2

[
1

4π

∫
S2
Iε(t, x, ~ω, ν) d~ω − Iε(t, x, ~ω, ν)

]
d~ω dν =

1

ϑε(t, x)

∫ ∞
0

σa(ν, ϑε(t, x))

[∫
S2

(B(ν, ϑε(t, x))− Iε(t, x, ~ω, ν)) d~ω

]
dν

and

1

ϑε
~SF,ε · ~uε =

1

cϑε
~uε ·

∫ ∞
0

σs(ν, ϑε)

∫
S2
~ω

[
1

4π

∫
S2
Iε(t, x, ~ω, ν) d~ω − Iε(t, x, ~ω, ν)

]
d~ω dν +

1

cϑε(t, x)
~uε ·

∫ ∞
0

σa(ν, ϑε(t, x))

[∫
S2
~ω (B(ν, ϑε(t, x))− Iε(t, x, ~ω, ν)) d~ω

]
dν

Since ϑε → ϑ a. e. in (0, T )×Ω, the desired result follows from compactness of
the velocity averages over the sphere S2 established by Golse et al. (Golse, Lions,
Perthame, Sentis , 1988, Golse, Perthame, Sentis , 1985), see also (Bournaveas,
Perthame , 2001), and hypothesis (2.38). Specifically, we use the following result
((see Golse, Lions, Perthame, Sentis , 1988)):

Proposition 2.3.1. Let I ∈ Lq([0, T ]×Rn ×S2 ×R), ∂tI + cω · ∇xI ∈ Lq([0, T ]×
Rn×S2×R) for a certain q > 1. In addition, let I0 ≡ I(0, ·) ∈ L∞(Rn×S2×R).

Then

Ĩ(t, x, ν) ≡
∫
S2
I(t, x, ~ω, ν) d~ω

belongs to the space W s,q([0, T ]× Rn × R) for any s, 0 < s < inf{1/q, 1− 1/q},
and

‖Ĩ‖W s,q ≤ c(I0)(‖I‖Lq + ‖∂tI + cω · ∇I‖Lq).

As the radiation intensity Iε satisfies the transport equation (2.13), by virtue of
hypotheses (2.9) and (2.10) where S̃ is bounded in (Lq ∩ L∞) ([0, T )×Ω×S2×R),
a direct application of Proposition 2.3.1 yields the desired conclusion∫

S2
Iε(t, x, ~ω, ν) d~ω →

∫
S2
I(t, x, ~ω, ν) d~ω in L2((0, T )× Ω),

and ∫
S2
~ωIε(t, x, ~ω, ν) d~ω →

∫
S2
~ωI(t, x, ~ω, ν) d~ω in L2((0, T )× Ω),

for any fixed ν > 0. Consequently

1

ϑε
SE,ε →

1

ϑ
SE, (2.95)
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and
1

ϑε
~SF,ε · ~uε →

1

ϑ
~SF · ~u (2.96)

as required, and Theorem 2.2.1 is proved by convergences (2.93), (2.82), (2.85),
(2.94), (2.95) and (2.96). The entropy inequality (2.46) needsadditionally the
convergence of the initial total entropy of approximations to the initial entropy
of its limit and weak upper semicontinuity of the right-hand side of (2.46) due
to (2.16), (2.15), (2.82), (2.80). Moreover we need the positivity of the absolute
temperature ϑ. This is due to the convergences (2.81) and (2.85).

2.3.2.5 The Maxwell equation

The Maxwell system is represented by weak formulation (2.49).

We have the following convergences:

• ~Bε → ~B weakly in L2(0, T,W 1,2(Ω)),

• ~Bε → ~B strongly in L2(0, T, L2(Ω)),

• ~Jε × ~Bε → ~J × ~B weakly in Lp((0, T )× Ω;R3) ∀p ∈
[
1, 5

4

]
.

Here we factor the only nonlinear term as follows to use the uniform bound
(2.68)

1

σ
curlx ~Hε =

√
ϑεσ−1(%ε, ϑε, ~Bε)

√
1

ϑεσ(%ε, ϑε, ~Bε)
curlx ~Hε, (2.97)

and get the uniform bound in a reflexive Banach space∥∥∥σ−1(%ε, ϑε, ~Bε)curlx ~Hε

∥∥∥
L

34
23 ((0,T )×Ω)

≤ c. (2.98)

This suffices to pass to the limit in (2.49).

2.3.3 Approximating scheme and global-in-time existence

We conclude the paper by proposing an approximation scheme to be used to
prove the existence of global-in-time weak solutions to problem (2.10) – (2.26).
The scheme is essentially the same as in (Feireisl, Novotný , 2009; Chapter 3),
the extra terms are put in { }. The dependence of approximate solutions on the
parameters of approximation δ and d has been in notation suppressed.

• The continuity equation (2.10) is replaced by an “artificial viscosity” ap-
proximation

∂t%+ divx(%~u) = {d∆%}, d > 0, (2.99)

to be satisfied on (0, T ) × Ω, and supplemented by the homogeneous Neu-
mann boundary conditions

∇x% · ~n|∂Ω = 0. (2.100)

The initial distribution of the approximate densities is given through

%(0, ·) = %0,δ, (2.101)
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where

%0,δ ∈ C2,ν(Ω), ∇x%0,δ · ~n|∂Ω = 0, inf
x∈Ω

%0,δ(x) > 0, (2.102)

with a positive parameter δ > 0. We recall the requirement of the strong
convergence of initial approximations of density (2.51) supplemented addi-
tionally with the condition

|{%0,δ < %0}| → 0 + as δ → 0 + . (2.103)

• The momentum equation is replaced by a Faedo-Galerkin approximation:∫
T

0

∫
Ω

(
%~u · ∂t~ϕ+ %~u⊗ ~u : ∇x~ϕ+

(
p+ {δ

(
%Γ + %2

)
}
)

divx~ϕ
)

dx dt =∫
T

0

∫
Ω

(
{d(∇x%∇x~u)} · ~ϕ+ Sδ : ∇x~ϕ− %∇xΨ · ~ϕ− ~SF · ~ϕ

)
dx dt−∫

Ω
(%~u)0 · ~ϕ dx,

(2.104)
to be satisfied for any test function ~ϕ ∈ C1

c ([0, T ), Xn), where

Xn ⊂ C2,ν(Ω;R3) ⊂ L2(Ω;R3) (2.105)

is a finite-dimensional space of functions satisfying the no-slip boundary
conditions

~ϕ|∂Ω = ~0. (2.106)

The space Xn is endowed with the Hilbert structure induced by the scalar
product of the Lebesgue space L2(Ω;R3).

We set

Sδ := Sδ
(
∇x~u, ϑ, ~H

)
=
(
µ
(
ϑ,
∣∣∣ ~H∣∣∣)+ δϑ

)(
∇x~u+∇T

x~u− 2
3
divx~u I

)
+

(
η
(
ϑ,
∣∣∣ ~H∣∣∣) divx~u

)
I.

(2.107)

• We replace the energy equation (2.12) with a modified internal energy bal-
ance

∂t(%e+ {δ%ϑ}) + divx

(
(%e+ {δ%ϑ})~u

)
− (2.108)

divx

(
κM(%, ϑ,

∣∣∣ ~B∣∣∣) + κRϑ
3 + {δ

(
ϑΓ + ϑ−1

)
}∇xϑ

)
=

Sδ : ∇x~u+
1

σ

∣∣∣curlx ~H
∣∣∣2 + ~u · ~SF +

{
dδ(Γ|%|Γ−2 + 2)|∇x%|2+
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δϑ−2 − dϑ5 + 2δϑ

[∣∣∣∣∇x~u+∇x~u
T

2

∣∣∣∣2 − 1

3
(divx~u)2

]}
− p divx~u− SE,

to be satisfied in (0, T )× Ω, together with the no-heat-flux boundary con-
dition

∇xϑ · ~n|∂Ω = 0. (2.109)

The initial condition reads

%(e+ δϑ)(0, ·) = %0,δ(e(%0,δ, ϑ0,δ) + δϑ0,δ), (2.110)

where the (approximate) temperature distribution satisfies

ϑ0,δ ∈ C1(Ω), ∇xϑ0,δ · ~n|∂Ω = 0, inf
x∈Ω

ϑ0,δ(x) > 0. (2.111)

• We add the equation for the radiative transfer

1

c
∂tI + ~ω · ∇xI = S̃ in (0, T )× Ω× S2 × (0,∞), (2.112)

together with the transparency condition (2.24).

• Finally we require satisfaction of the unmodified equation for the magnetic
induction ~B (2.49), the solenoidality condition (2.3) with approximate ini-
tial conditions

~B(0, ·) = ~B0,δ (2.113)

with ~B0,δ ∈ D(Ω,R3), divx ~B0,δ = 0 and

~B0,δ → ~B0 in L2(Ω,R3) as δ → 0+ . (2.114)

Given a family of approximate solutions {%d,δ, ~ud,δ, ϑd,δ, ~Bd,δ, Id,δ}d>0,δ>0, we
may construct a weak solution of system (2.1) – (2.26) letting successively d→ 0,
δ → 0 and using compactness arguments delineated in the previous part of this
paper. The reader may consult (Feireisl, Novotný , 2009; Chapter 3) for all
technical details. The approximate solutions can be constructed by means of a
fixed point argument applied to the couple ~u, I, similarly to (Feireisl, Novotný ,
2009; Chapter 3, Section 3.4).
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3. Introduction to limits

3.1 Introduction to (singular) limits in fluid me-

chanics

In this introduction we closely follow the book of Feireisl and Novotný (Feireisl,
Novotný , 2009) and the paper of Feireisl (Feireisl , 2010).

Typical limit problems in mathematical fluid mechanics are limit transitions
from compressible to incompressible equations when the Mach number Ma con-
vergences to zero, MHD limits when Ma or Alfvén number Al tend to zero, how-
ever often systems of mechanics are formal asymptotical limits of more complex
systems (e. g. incompressible fluids are fluids where the typical speed Uref is very
small with respect to the speed of sound c : Uref � c.) Simplified systems are often
more convenient for numerical solutions etc., but they may sometimes have also
worse mathematical properties than more complex systems. The prevailing ma-
jority of existing literature on system scalings deal with some formal asymptotic
analyses that can be still useful as we obtain for example a candidate of a limit
system for a further rigorous analysis. The class of weak solutions is sufficiently
large to capture singularities that may develop in a finite time, even though it may
be too large. Feireisl, Novotný (2009) discusses several singular limits - as tools
for convergence it discusses the Lighthill acoustic analogy known from books on
engineering and the method of decomposition to the essential and residual part
which vanishes in the limit. Lowly stratified fluids are fluids where Ma tends
to zero and simultaneously the Froude number Fr is strongly dominated by the
Mach number Ma. In this situation from the dissipation inequality (Second
Law of Thermodynamics) and the hypotheses of thermodynamical stability
by means of solution of acoustic equations with a right hand side ex-
pressed by a non-negative Borel measure we get the Oberbeck-Boussinesq
approximation even in the case of ill-prepared data when we have to get pre-
pared to the propagation of acoustic waves.

The book (Feireisl, Novotný , 2009) studies models of strongly stratified fluids
with applications in astrophysics and meteorology, e. g. a model of stellar radi-
ative zones. Strong damping of acoustic waves takes place in the case of viscous
equations with the no-slip boundary conditions. There are also such geometrical
conditions established that the velocity ~u does not exhibit oscillations in time in
the case of low Mach number. Authors are also able to get strong convergence
of ~u when Ma→ 0+ if the domain Ω is sufficiently large (especially unbounded)
with the help of estimates of Strichartz type. They also identify the singular
limits obtained by the acoustic analogy.

In the applications of fluid mechanics we usually meet compressible fluids, but
most of the theory is still devoted to incompressible models, as they are compelling
from the point of view of nonlinear differential equations. The general strategy
of the study of the singular limits is to scale the original primitive equations
expressing conservation laws of mass, momentum and energy, for example the
Navier-Stokes-Fourier system, to find out what singular regime is applicable to a
given flow, if any, to take the limit formally and identify the target system and
to take the limit rigourously knowing it; sometimes the qualitative properties of
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the target system can be applied to the primitive system if we are in a sense
“close to the target system” — an example is the result of Hagstrom and Lorenz
(Hagstrom, Lorenz , 2002), whose target system under vanishing Mach number
limit was the two dimensional incompressible Navier-Stokes system for which we
know regularity and uniqueness due to Kiselev and Ladyzhenskaya. They were
able to get the global existence of smooth solutions of slightly compressible heat-
conducting fluids (deviation of temperature and density from constants need to
be small, as well as the initial divx~u0, while ~u may be otherwise arbitrary).

In the study of the limit process solvability of the primitive equations, its
stability with respect to singular parameters and convergence towards the tar-
get system should be addressed with a focus on possible instabilities that are
important from the point of view of both mathematical and numerical analysis
and simulations. Let us emphasize that there are two different approaches to the
limits in fluid mechanics — the first one, more classical, depends on the notion
and properties of strong (or classical) solutions which need not to exist globally
in time, whereas the second one starts with weak solutions that may be globally
well-posed, but in the latter case we need initial conditions in the vicinity of the
thermodynamical equilibrium, which is not feasible for some applications.

3.1.1 Navier-Stokes-Fourier system

Let us assume that we have got a monoatomic gas satisfying the usual assumption
on the equations of state p(%, ϑ), e(%, ϑ) and the associated entropy function
s(%, ϑ) (1.53)–(1.58).

Feireisl and Petzeltová (Feireisl, Petzeltová , 1998) studied the equilibrium
figures of such a gas under the assumptions of (strong) thermodynamical stability
(1.50a), (1.50b), (1.53)3 and established that any equilibrium is given by the total
mass M :=

∫
Ω
%(x) dx and the total energy E =

∫
Ω

[%e(%, ϑ)− %Ψ(x)] dx if the
fluid occupies a domain Ω and is subjected to a potential force with a static
potential Ψ as the balance of linear momentum (1.36b) reduces for ~u ≡ ~0 to the
equlibrium of forces — an equation for the equilibrium density distribution %̃

∇xp(%̃, ϑ) = %̃∇xΨ in Ω, (3.1)

where ϑ is a constant temperature, with the help of the maximization of the total
entropy thanks to the Second Law of Thermodynamics.

The equilibrial equation (3.1) may be easily integrated with the help of the
Helmholtz function; especially in the non-physical case ϑ ≡ 0 we get from the
equation of state the so called cold pressure pc(%) = p∞%̃

5
3 with p∞ from (1.56)

and the solution

%̃
2
3 (x) =

2

5p∞
Ψ(x) + c, (3.2)

where we remind Ψ is bounded from above, p∞ > 0 for Fermi gases and c is
constant satisfying the bound

c ≤ 5p∞
2

(
M

|Ω|

) 2
3

− ‖Ψ‖1 |Ω|
−1 (3.3)

whose rhs is negative at least for M small enough and therefore there has to be
vacuum in an equilibrium figure of a sufficiently diluted fluid under the condition
of absolute zero temperature.
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Kinematics of the fluid motion is described by the usual conservation laws
in the Eulerian description, since the Lagrangian desciption is usually unfeasible
as it requires ~u ∈ L∞(0, T ;C0,1

loc (Ω)) regularity of the velocity field which is gen-
erally not known. For incompressible Navier-Stokes equation the existence and
uniqueness of Lagrangian trajectories was established by Robinson and Sadowski
(Robinson, Sadowski , 2009) under a milder assumption ~u ∈ L 6

5 (0, T ;L∞(Ω)) in
three dimensions.

Since the regularity needed for uniqueness of streamlines in the Lagrangian
description is not known, we may turn to the question of unique solvability of
equation of continuity (1.36a) — here the formal testing with 2% and an applica-
tion of the Grönwall lemma necessitates that the divergence of the velocity fields
should satisfy

divx~u ∈ L1(0, T ;L∞(Ω)) (3.4)

even in the incompressible case (see Crippa, Spinolo , 2009; p. 5), (cf. Feirei-
sl, Novotný , 2009; Appendix); this is an important regularity criterion. The
assumptions on the vector field ~u itself can be relaxed from e. g. , (see Feirei-

sl, Novotný , 2009), ~u ∈ L1
(

0, T ;W 1, 5
2 (Ω,RN)

)
to ~u ∈ L1

(
0, T ;BV (Ω,RN)

)
by fine properties of BV functions and the geometric measure theory or even to
fields ~u ∈ BVloc

(
(0, T )× RN ;RN

)
∩C

(
(0, T ;L1

loc(RN);RN
)
, (see Crippa, Spinolo

, 2009; pp. 6–7).
Let us recall the total energy balance in the case of a static potential force

(3.5), where we can discern convective (the second term) and diffusive energy
fluxes (the third term), the latter being a result of random microscopic forces
and a source of time irreversibility (cf. entropy production rate ς in (1.47))

∂t

(
%

(
e+

1

2
|~u|2 −Ψ

))
+ divx

(
%

(
e+

1

2
%|~u|2 + p

)
~u

)
+ divx (~q − S~u) = 0.

(3.5)
Therefore, the complete Navier-Stokes-Fourier system is energetically isolated

if there holds

%

(
|~u|2

2
+ e+ p

)
~u · ~n+ ~q · ~n− S~u · ~n

∣∣∣∣
∂Ω

= 0, (3.6)

which in the case of the mechanical isolation (1.6) and Navier boundary conditions
(1.7) amounts to

~q · ~n+
α

1− α
|~u|2
∣∣∣∣
∂Ω

= 0 (3.7)

The boundary condition (3.7) holds true for partial and complete slip (α ∈
[0, 1)); in the case of the no-slip conditions (1.5) (α = 1) the condition has to be
changed to just

~q · ~n|∂Ω = 0 (3.8)

as we already know.

3.1.2 Scaled Navier-Stokes-Fourier system

As we have already mentioned in the last subsection, before we take any singular
limit, we scale our system, so that characteristic numbers of flows appear; we
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distinguish two options: the constitutive scaling where we think that we observe
flows of fluids whose material properties which are bound by thermodynamic
relations attain some extreme values in the limit and the process scaling where
we scale kinematic variables like typical length or time scale or the characteristic
speed of the flow; the scaled NSF system (SNSF) is

Sr ∂t%+ divx(%~u) = 0, (3.9)

Sr ∂t(%~u) + divx(%~u⊗ ~u) +
1

Ma2
∇xp(%, ϑ) =

1

Re
divxS +

1

Fr2
%∇Ψ. (3.10)

Sr∂t (%s) + divx (%s~u) +
pref

%referef

1

Pe
divx

(
~q

ϑ

)
=

pref
%referef

ς, (3.11)

with

ς =
1

ϑ

(
Ma2

Re
S : ∇x~u−

1

Pe

~q · ∇xϑ

ϑ

)
, (3.12)

and the scaled equation for the total energy gives finally the total energy balance

Sr
d

dt

∫
Ω

(
Ma2

2
%|~u|2 +

pref
%referef

%e− Ma2

Fr2
%Ψ

)
dx = 0 (3.13)

where the non-dimensional numbers are defined by referential length Lref , the
referential time Tref , the referential speed Uref , the referential pressure pref , the
referential density %ref , the referential shear viscosity µref , the referential value of
the potential Ψref , the referential temperature ϑref , and the referential thermal
conductivity κref : the Strouhal number Sr := LrefT

−1
refUref , the Mach number

Ma := Urefp
− 1

2
ref%

1
2
ref , the Reynolds number Re := %refUrefLrefµ

−1
ref , the Froude

number Fr := UrefΨ
− 1

2
ref and the Péclet number Pe := prefLrefUrefϑ

−1
refκ

−1
ref .

3.1.3 Incompressible limits Ma = ε

3.1.3.1 Main ideas

The incompressible limits arise when we assume that the referential speed Uref
is small with respect to the speed of sound, i. e. Ma is small of order ε → 0+,
F r may be small as well: Fr = εβ, β ∈ [0, 1] and other non-dimensional numbers
(Sr,Re, Pe) are of order 1 and essentially use the scaled total dissipation (energy-
entropy) balance∫

Ω

(
ε2

2
%ε|~uε|2 +H%̃ε,ϑ

(%ε, ϑε)

)
dx (t2) + ϑςε

[
[t1, t2]× Ω

]
≤ (3.14)

∫
Ω

(
ε2

2
%ε|~uε|2 +H%̃ε,ϑ

(%ε, ϑε)

)
dx (t1),

where the shifted Helmholtz function associated with the attracting static solution
(%̃ε, ϑ, 0) is

H%̃ε,ϑ
(%, ϑ) := H(%, ϑ)− (%− %̃ε)H%(%̃ε, ϑ)−H(%̃ε, ϑ) (3.15)
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where ϑ is a constant temperature due to (3.12), Fourier’s law and a boundedness
of initial conditions (in (3.14)) (see below), %̃ε solves the simplified (3.10)

∇xp(%̃ε, ϑ) = ε2−2β %̃ε∇xΨ in Ω, (3.16)

for almost all 0 ≤ t1 ≤ t2 ≤ T.
In the sequel we assume that pref%

−1
refe

−1
ref = 1 in (3.11), (3.13), cf. the equation

for internal energy density for a monoatomic gas p = 2
3
%eref and assume we deal

with prepared data
%(0, ·) = %0,ε = %̃ε + ε%

(1)
0,ε (3.17)

ϑ(0, ·) = ϑ0,ε = ϑ+ εϑ
(1)
0,ε (3.18)

that are either ill-prepared if we assume uniform boundedness of correctors/de-

viations %
(1)
0,ε, ϑ

(1)
0,ε like ∥∥∥%(1)

0,ε

∥∥∥
Lp(Ω)

≤ c, (3.19a)∥∥∥ϑ(1)
0,ε

∥∥∥
Lp(Ω)

≤ c (3.19b)

for all p ≥ 2 or well-prepared if we assume (moreover) the convergence of the
correctors to zero

%
(1)
0,ε → 0, (3.20a)

ϑ
(1)
0,ε → 0 (3.20b)

in the same spaces and optionally

divx~u0,ε = 0; (3.21)

the ill-prepared data present obstacles to the convergence in the convective term
due to propagation of acoustic waves as can be seen from Lighthill’s acoustic
analogy that reads for the easier case of Ψ ≡ 0 (thus %̃ =: % is a constant)

ε∂trε + ω divx ~Qε = εaε, (3.22a)

ε∂t ~Qε +∇xrε = εbε, (3.22b)

where the right hand sides of the wave equation written as a system ((see Layton,
Novotný , 2010) for the barotropic case) are

aε :=
2

3
ϑ

{
divx

[
s(%, ϑ)− s(%, ϑ)

ε
%~u+

κ(ϑε)

ϑε

∇xϑε
ε

]
+
ς

ε

}
, (3.23a)

bε := divx (Sε − %ε~uε~uε) +∇x

{
2

3
ϑ
%εs(%ε, ϑε)− %s(%, ϑ)

ε2
+ (3.23b)

ϑ

3

[
5ϑ

3
2

%
P

(
%

ϑ
3
2

)
− 2M

(
%

ϑ
3
2

)]
%ε − %
ε2
− p(%ε, ϑε)− p(%, ϑ)

ε2

}
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and

rε :=
2

3
ϑ
%εs(%ε, ϑε)− %s(%, ϑ)

ε
+
ϑ

3

[
5ϑ

3
2

%
P

(
%

ϑ
3
2

)
− 2M

(
%

ϑ
3
2

)]
%ε − %
ε

,

(3.24a)

~Qε := %ε~uε, (3.24b)

and the square of the speed of propagation

ω :=
5

3

ϑ
5
2

%
P

(
%

ϑ
3
2

)
. (3.25)

In order to get a formula for the solution of the wave equation by Duhamel’s
formula, we modify the definition of the combination of the entropy and density
correctors to involve the non-negative measure ςε on the left hand side of (3.22a)
and change the right hand side of (3.22b) accordingly

r̃ε := rε +
2

3
ϑ

Σε

ε
(3.26a)

ãε := aε −
2

3
ϑ
ςε
ε

(3.26b)

b̃ε := bε +
2

3
ϑ

Σε

ε2
(3.26c)

where Σε is a measure-valued function such that ∂tΣε = −ςε and split the momen-
tum sequence ~Qε into a solenoidal and gradient part by the standard Helmholtz
decomposition ~Qε = H( ~Qε) +∇xΨε, where the “potential” Ψε satisfies the Neu-
mann problem

4Ψε = divx ~Qε in Ω, (3.27a)

∂Ψε

∂~n
= 0 on ∂Ω, (3.27b)

by definition and the wave equation in (0, T ) × Ω we get when we project the
equation (3.22b) on gradients by the orthogonal complement of the Helmholtz
projection H⊥

ε∂tr̃ε + ω 4Ψε = εãε, (3.28a)

ε∇x∂tΨε +∇xr̃ε = εH⊥
(
b̃ε

)
. (3.28b)

The right hand side of (3.28b) makes a good sense if b̃ε and r̃ε satisfy certain
compatibility conditions, for example for the complete slip (α = 0 in (1.7)); in
such a case we may write an explicit Duhamel’s formula for the potential Ψε in
terms of its initial condition Ψε(0, ·), initial condition for the corrector r̃ε(0, ·),
the right hand sides ãε and H⊥

(
b̃ε

)
; its time dependence is due to epsilons in

(3.28a)–(3.28b) of the type exp(iAεt), where Aε is a certain non-negative self-
adjoint operator on L2(Ω), in the case of zero potential Ψ = 0 it is

Aε := ε−1
√
−ω4N , (3.29)
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where ω is a constant defined in (3.25) and −ω4N is a multiple of the Laplace
operator with the homogeneous Neumann boundary condition which may have
positive eigenvalues making the potential Ψε, that is the gradient part of the
momenta ~Qε, an oscillating function in time with frequencies of order ε−1.

The rapid oscillations of ~Qε may spoil its strong convergence, however the limit
passage for small Ma is still achieved, since we extract from thermodynamical
stability of the fluid under consideration (1.50a)–(1.50b) the inequalities for the
shifted Helmholtz function (3.15)

C1(%, ϑ)
(
|%− %|2 + |ϑ− ϑ|2

)
≤ H%,ϑ(%, ϑ) (3.30)

for all (%, ϑ) ∈ OHess,

C2(%, ϑ) (%e(%, ϑ) + %|s(%, ϑ)|) ≤ H%,ϑ(%, ϑ), (3.31)

for all (%, ϑ) ∈ OHres, where OHess the set of hydrodynamical essential values is
defined as

OHess :=

{
(%, ϑ) ∈ R2 :

%

2
< % < 2%,

ϑ

2
< ϑ < 2ϑ

}
, (3.32)

and its residual counterpart

OHres := (R+)2\OHess. (3.33)

Let {%ε, ~uε, ϑε}ε>0 be a family of solutions of the scaled Navier-Stokes system.
We call Mε

ess ⊂ (0, T )× Ω the set

Mε
ess = {(t, x) ∈ (0, T )× Ω : (%ε(t, x), ϑε(t, x)) ∈ Oess} ,

and Mε
res = (0, T )×Ω\Mε

ess the corresponding residual set. To any measurable
function h we associate its decomposition into essential and residual parts

h = [h]ess + [h]res,

where [h]ess = h · IMε
ess

and [h]res = h · IMε
res
. and using coercivity bounds (3.30),

(3.31) in (3.14) we infer

ess sup
t∈(0,T )

{
‖[%ε − %]ess(t)‖2

L2(Ω) + ‖[ϑε − ϑ]ess(t)‖2
L2(Ω) + ‖[%εe(%ε, ϑε)]res(t)‖L1(Ω)+

(3.34)

‖[%εs(%ε, ϑε)]res(t)‖L1(Ω)

}
≤ Cε2,

ςε
[
[0, T ]× Ω

]
≤ Cε2, (3.35)

ess sup
t∈(0,T )

‖√%ε ~uε(t)‖L2(Ω;R3) ≤ C, (3.36)

‖~uε‖L2(0,T ;W 1,2(Ω;R3)) ≤ C, (3.37)∥∥∥∥ϑε − ϑε

∥∥∥∥
L2(0,T ;W 1,2(Ω))

≤ C (3.38)

with C independent of ε, that is why we obtain for subsequences almost every-
where convergence in (0, T )× Ω of both %ε and ϑε.
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Because densities and temperatures converge almost everywhere, it remains
to decide if this is the case also for ~uε - this need not be the case because of
acoustic waves; the convergence proof is stated e. g. in (Layton, Novotný , 2010;
pp. 20–23) and briefly is as follows: we use the Helmholtz decomposition on both
~Qε and ~uε

%ε~uε ⊗ ~uε = H⊥ (%ε~uε)⊗H (~uε) +H⊥ (%ε~uε)⊗H⊥ (~uε) +H (%ε~uε)⊗ ~uε. (3.39)

The last term in (3.39) converges to %~u ⊗ ~u weakly in L1((0, T ) × Ω;R3×3) as
~uε converges weakly to ~u in L2(0, T ;W 1,2(Ω;R3)) along (3.37) and H (%ε~uε) con-
verges strongly to %~u in L2

(
0, T ; [W 1,2(Ω;R3)]

∗)
by the Arzelà-Ascoli theorem

from (3.10) and the compact embedding L5(Ω;R3) ↪→↪→ [W 1,2(Ω;R3)]
∗
. The first

term is treated by the weak convergence H⊥ (~uε) ⇀ 0 in L2(0, T ;W 1,2(Ω;R3)) by
(3.37) and the limit in (3.9) as soon as it is rewritten as

H⊥ (%ε~uε)⊗H (~uε) = H⊥ ((%ε − %) ~uε)⊗H (~uε) + %H⊥ (~uε)⊗H (~uε) . (3.40)

The first term on the right hand side of (3.40) converges to 0 as H⊥ ((%ε − %) ~uε)

→ 0 in L2(0, T ;L
5
4 (Ω;R3)) not only weakly, but strongly as well by the strong

convergence of %ε. The second term on the right hand side of (3.40) in fact needs
the strong convergence of H (~uε) . This is indeed the case because

% (H (~uε))
2 = H ((%− %ε) ~uε) ·H (~uε) +H(%ε~uε) ·H(~uε) ⇀ %~u2 (3.41)

in L1((0, T )× Ω)

and by the de la Vallé-Poussin criterion

H (~uε)→ ~u in L1((0, T )× Ω;R3) (3.42)

and by the Kadets-Klee property of the L2−norm from (3.41) and H(~uε) ⇀ ~u in
L2(0, T ;L2(Ω;R3)). It implies

H (~uε)→ ~u in L2((0, T )× Ω;R3) (3.43)

Thus,
%H⊥ (~uε)⊗H (~uε)→ 0 in L1((0, T )× Ω;R3×3). (3.44)

It remains to settle the weak convergence of the second term in (3.39) H⊥ (%ε~uε)⊗
H⊥ (~uε) . In fact, this limit can be characterized by a measure. For the limit it
suffices to prove that divxH

⊥ (%ε~uε) ⊗ H⊥ (~uε) converges to a gradient, since
this can be immersed into the pressure term of the incompressible Navier-Stokes
system.

For the isentropic case treated in (Layton, Novotný , 2010) with γ = 5
3

in
(1.20) there is ãε ≡ 0 and for the bounded Ω case we use the Galerkin method
for the system (3.22a)–(3.22b) with a special othonormal bases in L2(Ω), namely
the complete system of orthonormal eigenfunctions of the Neumann problem for
the Laplace operator

−4Ψj,m = ΛjΨj,m in Ω, (3.45a)

∂Ψj,m

∂~n
= 0 on ∂Ω, (3.45b)
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{Ψj,m}∞,mjj=0,m=1 where m numbers the multiplicity of eigenvalues Λj that are or-
dered to form an increasing sequence of non-negative numbers. From the spec-
tral theory it is known that the least eigenvalue Λ0 = 0 and the corresponding
eigenspace spanned by ∇xΨ0,1 is the space of solenoidal functions H (L2 (Ω,R3)) .
Therefore the space H⊥ (L2 (Ω,R3)) we decompose into the direct sum of eigen-

spaces ⊕∞,mjj=0,m=1span Λ
− 1

2
j ∇xΨj,mj , where the overline denotes the closure in the

space L2 (Ω,R3) . Said briefly, we represent r̃ε as a (Fourier) series in Ψj,m and
~Qε as a series in ∇xΨj,m (of course without the first term, a multiple of Ψ0,1,
resp. ∇xΨ0,1) and denote by {·}M a linear combination formed from the series
by the truncation of the series involving eigenvalues Λj not greater than M > 0.
With this we can split H⊥ (%ε~uε) ⊗ H⊥ (~uε) into four parts and use that in the
smooth enough domains Ω the truncated series are smooth as well

H⊥ (%ε~uε)⊗H⊥ (~uε) =
{
H⊥ (%ε~uε)

}
M
⊗
{
H⊥ (~uε)

}
M

+ (3.46){
H⊥ (%ε~uε)

}
M
⊗
{
H⊥ (~uε)−

{
H⊥ (~uε)

}
M

}
+{

H⊥ (%ε~uε)−
{
H⊥ (%ε~uε)

}
M

}
⊗
{
H⊥ (~uε)

}
M

+{
H⊥ (%ε~uε)−

{
H⊥ (%ε~uε)

}
M

}
⊗
{
H⊥ (~uε)−

{
H⊥ (~uε)

}
M

}
.

The rest terms H⊥ (~uε)−
{
H⊥ (~uε)

}
M

and H⊥ (%ε~uε)−
{
H⊥ (%ε~uε)

}
M

are small
with respect to M, but with respect to ε as well. This follows from the reduction
of the latter to the former

H⊥ (%ε~uε)−
{
H⊥ (%ε~uε)

}
M

= (3.47)

H⊥ ((%ε − %) ~uε)−
{
H⊥ ((%ε − %) ~uε)

}
M

+ %
[
H⊥ (~uε)−

{
H⊥ (~uε)

}
M

]
→

% lim
ε→0+

[
H⊥ (~uε)−

{
H⊥ (~uε)

}
M

]
in L2

(
0, T ;L

5
4 (Ω;R3)

)
because of the convergence after (3.40). The other rest

term can be made arbitrarily small in [L2 ((0, T )× Ω)]
3

by choosing M large
enough in the estimate

∥∥H⊥ (~uε)−
{
H⊥ (~uε)

}
M

∥∥2

L2(Ω)
=
∑
j>0

Λj>M

Λ−1
j

mj∑
m=1

Λj
1

Λj

(~uε,∇xΨj,m)L2(Ω) ≤

(3.48)
1

M
‖divx~uε‖2

L2(Ω) .

The remaining first term in the right hand side of (3.46) tends to zero with
ε → 0+ when tested with a gradient of any solenoidal smooth compactly sup-
ported (in Ω) test function ~ϕ (converges to a gradient). This is implied by
the direct computation supported by the non-homogeneous wave equation for
∇xΦε =

{
H⊥ (%ε~uε)

}
M
. The finite linear combination for these particular func-

tions satisfies (by (3.28a)–(3.28b)) the system

ε∂tdε + ω 4Φε = 0, (3.49a)

ε∂t∇xΦε +∇xdε = ε
{
H⊥

(
b̃ε

)}
M
. (3.49b)
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1

%

∫ T

0

∫
Ω

{
H⊥ (%ε~uε)

}
M
⊗
{
H⊥ ((%ε + %− %ε) ~uε)

}
M

: ∇x~ϕ dx dt =

O(ε) +
1

%

∫ T

0

∫
Ω

{
H⊥ (%ε~uε)

}
M
⊗
{
H⊥ (%ε~uε)

}
M

: ∇x~ϕ dx dt =

1

%

3∑
j=1

3∑
k=1

∫ T

0

∫
Ω

∂kΦε∂jΦε∂jϕk dx dt+O(ε) =

− 1

2%

3∑
k=1

∫ T

0

∫
Ω

∂k |∇xΦε|2 ϕk dx dt− 1

%

3∑
k=1

∫ T

0

∫
Ω

∂kΦε4Φεϕk dx dt+O(ε) =

− 1

2%

3∑
k=1

∫ T

0

∫
Ω

∂k |∇xΦε|2 ϕk dx dt+
ε

%ω

3∑
k=1

∫ T

0

∫
Ω

∂t (dε∂kΦε)ϕk dx dt−

ε

%ω

3∑
k=1

∫ T

0

∫
Ω

dε∂t∂kΦεϕk dx dt+O(ε) =
1

2%

3∑
k=1

∫ T

0

∫
Ω

|∇xΦε|2 ∂kϕk dx dt−

ε

%ω

3∑
k=1

∫ T

0

∫
Ω

dε∂kΦε∂tϕk dx dt− ε

%ω

∫ T

0

∫
Ω

dε

{
H⊥

(
b̃ε

)}
M
· ~ϕ dx dt+

1

%ω

3∑
k=1

∫ T

0

∫
Ω

dε∂kdεϕk dx dt− ε

%ω

3∑
k=1

∫
Ω

dε(0)∂kΦε(0)ϕk(0) dx+O(ε) =

1

2%ω

∫ T

0

∫
Ω

(
ω |∇xΦε|2 − |dε|2

)
divx~ϕ dx dt− ε

%ω

∫ T

0

∫
Ω

dε∇xΦε · ∂t~ϕ dx dt−

ε

%ω

∫ T

0

∫
Ω

dε

{
H⊥

(
b̃ε

)}
M
· ~ϕ dx dt− ε

%ω

∫
Ω

dε(0)∇xΦε(0) · ~ϕ(0) dx+O(ε) =

O(ε)

as, say, ‖Φε‖W 1,2(0,T ;C2(Ω)) + ‖dε‖W 1,∞(0,T ;C2(Ω)) ≤ c by the Galerkin method with

the right hand side
∥∥∥{H⊥ (b̃ε)}

M

∥∥∥
L2(0,T ;C2(Ω))

≤ c. The desired convergence of

the convective term is achieved after taking the limit limM→∞ limε→0+ . Sofar the
demonstration of this limit procedure in (Layton, Novotný , 2010) for Ω bounded.

On large domains however the acoustic waves may be spread and damped
by dispersion, especially if the domain Ω is so large that their interference with
waves reflected from the boundary ∂Ω is negligible.

This is expressed mathematically by the assumption motivated by Kukučka
(Kukučka , 2014) for external domains

Ω = ∪∞i=1Ωε, ∂Ω ⊂ ∂Ωε, lim
ε→0+

ε infx∈Rn\Ω dist[x, ∂Ωε \ ∂Ω] =∞ (3.50)

where we may think of the domains Ωε as of intersections of Ω with closed balls of
radii growing faster than ε−1. However a theory has been elaborated that the limit
in the convective term can be achieved for larger classes of unbounded domains.

In the unbounded case by intersection with balls above Feireisl (Feireisl , 2010)
was able to combine the uniform bound (3.37) with the RAGE Theorem applied
to the evolution semigroup generated by the self-adjoint, densely defined in L2(Ω)
linear operator Aε with a compact operator given by a localization of −4N iff its
point spectrum in Ω is void. Then ∇xΨε = H⊥( ~Qε) → 0 in L2((0, T ) × Ωε;R3)
in (3.28a)–(3.28b).
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An alternative method is based on a result of Kato and enables to compute
the rate of the decay of local acoustic energy by a particular norm of the resolvent
of the operator εAε.

The rate of the decay of ∇xΨε is given by the spectrum of that operator
and the speed of propagation of acoustic waves; e. g. in the case of an exterior
domain Ω one can split the rate into a part where the so called limiting absorption
principle for the operator −4N can be applied and a part where we can utilize
a cosine Fourier transform (applied to a localized function from D(Ω)).

3.1.3.2 Some results from the literature

The fifth chapter of the book by Feireisl and Novotný (Feireisl, Novotný , 2009)
treats the limit case of lowly stratified fluids where in SNSF (3.9)–(3.13) Ma = ε,
Fr =

√
ε, Sr = Re = Pe = 1 is set. They prove under some assumptions on

the data that the target system obtained as the limit of SNSF as ε→ 0+ is the
renown and heavily used Oberbeck-Boussinesq approximation in the case of the
perfect slip boundary conditions

divx~u = 0, (3.51a)

∂t~u+ divx~u⊗ ~u+∇xΠ =
µ

%
4~u− αΘ∇xΨ, (3.51b)

%cp (∂tΘ + ~u · ∇xΘ)− κ4Θ = %αϑ∇xΨ · ~u, (3.51c)

where α := %−1 pϑ
p%

(%, ϑ) is the coefficient of (volumetric) thermal expansion, cp :=(
eϑ + %−1ϑαpϑ

)
(%, ϑ) is the specific heat of the fluid at constant pressure both

evaluated at an equilibrium (%, ϑ) (as are the transport coefficients µ and κ), Π is

an “incompressible pressure”, Θ := limε→0+ ϑ
(1)
ε is the corrector of temperature ϑ

and the potential Ψ is assumed to be Lipschitz continuous and time independent.
In astrophysics, in stellar interiors, we encounter plasmas showing various

phenomena at many length and time scales; for small length scales we may get
that the Péclet number Pe measuring the rate of thermal conduction vs. thermal
convection is very small. The sixth chapter of (Feireisl, Novotný , 2009) then
establishes the link between the primitive system SNSF (3.9)–(3.13) with Ma = ε,
Fr = ε, Pe = ε2, Sr = Re = 1 and the anelastic approximation; the case where
Ma = Fr holds for the so called strong stratification. The anelastic system
contains a non-constant limit density %̃, a second corrector to temperature Θ :=
limε→0+ ϑ

(2)
ε and the limit velocity ~u and therefore has a non-constant speed of

sound

divx%̃~u = 0, (3.52a)

∂t (%̃~u) + divx%̃~u⊗ ~u+ %̃∇xΠ = µ

(
∇x~u+∇x~u

T − 2

3
divx~u I

)
+

η∇xdivx~u−
%̃

ϑ
Θ∇xΨ, (3.52b)

∇xp(%̃, ϑ) = %̃∇xΨ, (3.52c)

−κ4Θ = %̃∇xΨ · ~u. (3.52d)

56



Donatelli and Marcati (Donatelli, Marcati , 2016) have recently proved the
convergence of weak solutions of the rescaled quantum hydrodynamics system

∂t%+ divx ~J = 0, (3.53a)

∂t ~J + divx

(
%−1 ~J ⊗ ~J

)
+
∇xp(%)

Ma2
= divx

(
%∇2

x log %
)

(3.53b)

to the unique strong local in time solution to the incompressible Euler equations
(IE) as the Mach number Ma → 0+ for the IBVP in the periodic setting for
ill-prepared, but strongly convergent initial data for the charge density %, current

density ~J and the “kinetic energy”
∣∣∣ ~J∣∣∣2 %−1. The convergence of the kinetic energy

is weak in its natural function space from a-priori estimates, but strong in its

solenoidal part H

(∣∣∣ ~J∣∣∣2 %−1

)
and in the convergence of %ε.

In the context of strong solution Alazard (Alazard , 2005) establishes hy-
potheses under which the Cauchy problem for SNSF with Sr = 1,Ψ ≡ 0 is
locally well-posed in Sobolev spaces W s,2(RN) uniformly in Pe,Re,Ma, where
s > (N + 2)/2, N ≥ 3 and the initial conditions have to be bounded in the space
W s+1,2(RN). He works with special norms for p, ~u, ϑ in those spaces, so that his
result holds for Pe = 0 or Re = 0 as well.

Similar problems as for the SNSF system arise also in the inviscid case. Here
the primitive system are the compressible Euler equations (CE). The incompress-
ible limit of CE can be regarded as the limit Ma = ε → 0+ or the limit of the
large adiabatic exponent γ →∞. Chen, Huang, Wang and Xiang (Chen et al. ,
2016) have recently proved that there is a compactness framework in the steady
CE and found that strong C1,β, β ∈ (0, 1) solutions of steady CE converge to
solutions of incompressible Euler equations (IE) as γ → ∞ in the case of full
(i. e. compressible Euler system with an equation for internal energy e) Euler
system in an infinitely long two-dimensional nozzle for a sufficiently small flow
rate. The convergence is strong, almost everywhere and towards weak solutions
of the inhomogeneous IE. In the three-dimensional, axially symmetric case they
prove the convergence of strong C1 solutions of the steady homentropic CE sys-
tem towards the weak solutions of homogeneous IE in an infinitely long nozzle
for a sufficiently small flow rate as γ →∞ once again. The convergence is strong
and almost everywhere.

The problem of propragation of acoustic waves in the incompressible limit for
full CE system is more difficult because the resulting wave equation ε2∂t (aε∂tuε)−
divx (bε∇xuε) = rε has not got constant coefficients. Métivier and Schochet
(Métivier, Schochet , 2001) gave the form of a spatial decay of aε > 0 and bε > 0
both converging in C

(
[0, T ];W s,2

loc (RN)
)

with s > (N + 2)/2 as above so that if

rε → 0 in L2
(
(0, T )× RN

)
and uε is bounded in C

(
[0, T ];W 2,2

loc (RN)
)

then uε → 0
in L2

(
0, T ;L2

loc(RN)
)
. This enables to take the incompressible limit in the context

of local in time strong solutions. The result of Métivier and Schochet was later
extended to the case of an exterior domain Ω with a compact smooth boundary by
Alazard (Alazard , 2005) who therefore got the convergence of classical solutions
to CE towards the solutions of IE with ill-prepared data in the interior of the
domain Ω. The essential point in the proof is that the convergence is actually
strong.
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3.1.4 Hydrodynamic limits Kn = ε

As we already noticed in the introduction to this thesis, hydrodynamic models
as NSF or Euler equations can be thought of as limits of kinetic models based on
variants of the Boltzmann equation.

In this context, one of the most important limits is the limit of small Knudsen
number Kn. The Knudsen number is the ratio of the mean free path l in the fluid
and the typical length Lref

Kn :=
l

Lref
. (3.54)

The limit Kn = ε clearly means that the interactions between individual particles
of the fluid are more and more common and that they become localized at the
same time. In the limit ε→ 0+ we expect to arrive at a hydrodynamical model
such as the incompressible Navier-Stokes-Fourier system for the moments of the
original rescaled Boltzmann equation.

3.1.4.1 Some results from the literature

Dimarco and Motsch (Dimarco , 2016) have recently carried out this limit for the
linearized Boltzmann equation with its right hand side given by a Bhatnagar-
Gross-Crook (BGK) operator describing random jumps of particles with their
jump rate given as a compound Poisson process in time and a new direction as
a probability density function centered at the average direction at the place of
the jump (alignment of the particle to the flow of others). The limit system is
up to multiplicative constants and projection of the force due to pressure on the
hyperplane perpendicular to the velocity of flow the homentropic CE system with
the polytropic index γ = 1.

On the other hand Briant (Briant , 2015) has studied the limit regime Sr =
Kn = ε of the linearized Boltzmann equation with Grad’s angular cut-off and a
hard potential and proved under the assumption of smallness of initial data (with
bounds independent of ε) and a special structure of the perturbation of the rhs of
the Boltzmann equation (with respect to the Maxwellian) that the limit system
is the Oberbeck-Boussinesq approximation ((3.51a)–(3.51c) with Ψ ≡ 0, % = 1,
α = 1, cp = 1) in the periodic boundary condition case. The convergence is weak,
but under an additional assumption on the regularity of the perturbation it is
also strong in a certain norm with the rate |ε log ε| iff the data are well-prepared.

3.1.5 Inviscid limits Re = 1
ε

Inviscid limits are one of the most prominent topics ı́n the mathematical fluid
dynamics. The typical question is if we can rigorously substantiate the limit tran-
sition from the Navier-Stokes equations to the Euler system when the dynamical
viscosity vanishes. This problem is one of the singularly perturbed problems as
the viscosity multiplies the term with the highest derivative in the Navier-Stokes
equations; moreover the no-slip boundary conditions (1.5) or more generally the
Navier boundary conditions (1.7) in the limit change to the impermeability condi-
tion (1.6). This is usually accompanied by the appearance of the boundary layer

of the width of order Re−
1
2 . The fluid motion in the boundary layer is governed by

the Prandtl equations, but they are ill-posed at least in two spatial dimensions
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in the Sobolev spaces after linearization around the shear profile given by the
solution to a heat equation (Gérard-Varet , 2009).

3.1.5.1 Some results from the literature

Li (Li , 2016) has recently performed the vanishing viscosity, quasineutral limit
Re → ∞, λD → 0+ in the one-dimensional bipolar compressible Navier-Stokes-
Poisson system. This system consists of the barotropic compressible Navier-
Stokes equations with the force on the right hand side given by the electrostatic
part of the Lorentz force (magnetic induction neglected) written for two species
(with a possible application in plasmas: electrons and ions) together with Gauss’s
law

λ2
Ddivx ~E = %1 − %2, (3.55)

where λD ≥ 0 is the Debye shielding length, and ~E is the vector electric field. Of
course divergence operator reduces to the derivative with respect to the spatial
variable (x). The author proves that we can choose well-prepared data — an
approximate rarefaction wave given by the solution to the Burgers equation with a
special initial condition depending on λD = εa connecting vacuum with a constant
state (%+, ~u+) such that there is a global smooth solution converging with ε→ 0+
towards a rarefaction wave solution of the compressible Euler system pointwise
(except for the origin) and uniformly except for the initial layer. Here a > 0
is a suitable power dependent on the polytropic index γ > 1, Re is selected as
ε−a| log ε|−1 and for the electric field Li chooses the initial condition ε−1E0 and
limx→∞E(x, t) = 0. The rescaled electric field E converges uniformly to 0 except
for the initial layer as well.

Sueur (Sueur , 2014) used the relative energy estimates for the NSF system
to prove the strong convergence in natural energy norms from a-priori estimates
of weak solutions to the barotropic compressible Navier-Stokes equations towards
local-in-time continuously differentiable solution of the homentropic CE system
as Re = ε→ 0+ if the initial conditions converge strongly in some similar norms
and if the viscous dissipation rate in a boundary layer whose width is proportional
to the width of Prandtl’s boundary layer tends to zero. This condition is needed
for the no-slip boundary conditions (1.5), but for the Navier boundary conditions
(1.7) it is replaced by the stipulation that the rescaled friction coefficient ε α

1−α
tends to 0 where α is the coefficient from (1.7).
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4. Low Mach and Péclet number
limit for a model of stellar
tachocline and upper radiative
zones

4.1 Introduction

Our motivation in this work is the rigorous analysis of the equations describing
parts of stars called radiative zones which are one of the most basic structures
constituting stars among cores, convection zones, photospheres and atmospheres.
Our model can be also applied to tachoclines which are transition layers between
convection and radiative zones of stars. In this context it is conjectured that
magnetic field of stars arises when the poloidal orientation of magnetic fields
changes to toroidal and that a dynamo effect is present in tachoclines (Shore ,
1992). Tachoclines are not homogeneous and stable structures and they move
steadily. In their upper parts the Péclet numbers are high (of the order 600), but
in the vicinity of the radiative part they drop below 1. Their distinctive feature
concerns rotation, näıvely speaking the convective zone behaves in this respect as
a fluid and rotates differentially, whereas the radiative zone more like a solid and
rotates as a rigid body. The origin of these rotational changes has preocuppied
astrophysicists and astronomes, particularly in connection with helioseismological
observations (Broomhall et al. , 2014)

Gravitational forces in these regions are high, however the fluid is no longer
strongly stratified as show non-dimensional numbers associated to the solar ta-
chocline. Namely the Froude number Fr measuring the strength of gravitational
interactions (see Section 4.3 below for precise definitions) is Fr = 3.11× 10−3U,
where U is the referential speed of flow in SI units. The Mach number Ma mea-
suring the compressibility is Ma = 1.49× 10−7U, i. e. the fluid is almost incom-
pressible for sufficiently slow motions and one has Fr2 ∼ Ma (Mach number is
due to high temperatures when radiation dominates). Finally Péclet number Pe
need not to be sufficiently small in the solar tachocline (we assume Ma2 = Pe),
but thermal diffusivity in giant stars can be seven orders of magnitude larger
than that of the Sun (see Garaud, Kulenthirarajah , 2015; page 22).

Notice in conclusion that our low stratification model can be applied to other
compact stellar objects, as the fraction of Fr and Ma depends on the ratio of
temperature, density and is inversely proportional to the square of characteristic
length. Therefore white dwarfs are too cold to be described by low stratification
models, but neutron stars, especially newly born, are not. Validity of classical
MHD may be restricted to their (outer) crusts though; in their superfluid cores
a quantum description is inevitable.

Let us complete this physical introduction by drawing the reader’s attention
to the fact that models in stellar physics are computationally time consuming.
Rieutord (2014) has estimated for example that modelling a single supergranule
on the Sun would require having more than power of the Sun at our disposal!
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That is why (Lignières , 1999) has initiated studies of models at small Péclet num-
ber as through the Boussinesq-Oberbeck approximation density variations with
temperature enter through the buoyancy force only and moreover temperature
can be expressed by the velocity field.

In our previous work (Donatelli, Ducomet, Nečasová , 2015) we analyzed a
thick disk model for the Mach number of order ε, ε → 0 whereas the Peclet
number was of order 1. Instead as in (Novotný, Růžička, Thäter , 2011), in the
present one we consider a model where the Peclet number is of order ε2 and the
domain is general.

The mathematical model we consider is the compressible heat conducting
MHD system (Ducomet, Feireisl , 2006) describing the motion of a viscous plasma
confined in Ω, a 3D domain, moreover as we suppose a global rotation of the
system, some new terms appear due to the change of frame and we also suppose
that the fluid exchanges energy with radiation through radiative cooling/heating
(see (Ducomet, Feireisl , 2006), (Ducomet, Kobera, Nečasová , 2014)), but neglect
radiative accelerations.

More precisely, the non-dimensional system of equations giving the evolution
of the mass density % = %(t, x), the velocity field ~u = ~u(t, x), the (divergence-

free) magnetic field ~B = ~B(x, t), and the radiative intensity I = I(x, t, ~ω, ν) as
functions of the time t ∈ (0, T ), the spatial coordinate x = (x1, x2, x3) ∈ Ω ⊂ R3,
and (for I) the angular and frequency variables (~ω, ν) ∈ S2×R+, reads as follows

∂t%+ divx(%~u) = 0 in (0, T )× Ω, (4.1)

∂t(%~u) + divx(%~u⊗ ~u) +∇xp+ 2%~χ× ~u =

divxS + %∇Ψ +
1

2
%∇x|~χ× ~x|2 +~j × ~B in (0, T )× Ω, (4.2)

∂t (%e)+divx (%e~u)+divx~q = S : ∇x~u−p divx~u+~j · ~E−SE in (0, T )×Ω, (4.3)

1

c
∂tI + ~ω · ∇xI = S in (0, T )× Ω× (0,∞)× S2. (4.4)

∂t ~B + curlx( ~B × ~u) + curlx(λ curlx ~B) = 0 in (0, T )× Ω. (4.5)

−∆Ψ = 4πG(η̃%+ g) in (0, T )× Ω. (4.6)

In the electromagnetic source terms, electric current ~j and electric field ~E are
interrelated by Ohm’s law

~j = σ( ~E + ~u× ~B),

and Ampère’s law
ζ~j = curlx ~B,

where ζ > 0 is the (constant) magnetic permeability. Moreover in (4.5) λ =
λ(ϑ) > 0 is the magnetic diffusivity of the fluid.

In (4.6) Ψ is the gravitational potential and the corresponding source term
in (4.2) is the Newton force %∇Ψ. G is the Newton constant and g is a given
function, modelling an external gravitational effect. Supposing that % is extended
by 0 outside Ω and solving (4.6), we have

Ψ(t, x) = G

∫
Ω

K(x− y)(η%(t, y) + g(y)) dy,
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where K(x) = 1
|x| , and the parameter η̃ may take the values 0 or 1: for η̃ = 1

selfgravitation is present and for η̃ = 0 gravitation only acts as an external field
(the attraction by a given massive central object, modeled by g, may prevail over
the selfgravitation, cf. (Padmanabhan , 2001)).

We also assume that the system is globally rotating at a uniform velocity χ
around the vertical direction ~e3 and we denote ~χ = χ~e3. Then Coriolis accelera-
tion term 2%~χ×~u appears in the system, together with the centrifugal force term
%∇x|~χ× ~x|2 (see Choudhuri , 1998).

We consider here the simplified model studied in (Ducomet, Nečasová , 2014)
where radiation does not appear in the momentum equation (see also Teleaga et
al. , 2006): only the source term SE is present in the energy equation

SE(t, x) =

∫
S2

∫ ∞
0

S(t, x, ~ω, ν) d~ω dν.

The symbol p = p(%, ϑ) denotes the thermodynamic pressure and e = e(%, ϑ) is
the specific internal energy, interrelated through Maxwell’s relation

∂e

∂%
=

1

%2

(
p(%, ϑ)− ϑ∂p

∂ϑ

)
. (4.7)

Furthermore, S is the Newtonian viscous stress tensor determined by

S = µ

(
∇x~u+∇T

x~u−
2

3
divx~u I

)
+ η divx~u I, (4.8)

where the shear viscosity coefficient µ = µ(ϑ) > 0 and the bulk viscosity coeffi-
cient η = η(ϑ) ≥ 0 are effective functions of the temperature. Similarly, ~q is the
heat flux given by Fourier’s law

~q = −κ∇xϑ, (4.9)

with a heat conductivity coefficient κ = κ(ϑ) > 0. Finally,

S = Sa,e + Ss, (4.10)

where
Sa,e = σa

(
B(ν, ϑ)− I

)
, Ss = σs

(
Ĩ − I

)
. (4.11)

In this formula Ĩ := 1
4π

∫
S2 I(·, ~ω) d~ω and B(ν, ϑ) = 2hν3c−2

(
e
hν
kϑ − 1

)−1

is the

radiative equilibrium function where h and k are the Planck and Boltzmann
constants, σa = σa(ν, ϑ) ≥ 0 is the absorption coefficient and σs = σs(ν, ϑ) ≥ 0
is the scattering coefficient. More restrictions on these structural properties of
constitutive quantities will be imposed in Section 4.2 below.

System (4.1) – (4.6) is supplemented with the ”no-slip, thermal isolation,
perfect conductor, no reflection, no radiative entropy flux” boundary conditions:

~u|∂Ω = 0, ~q · ~n|∂Ω = 0, ~B · ~n|∂Ω = 0, ~E × ~n|∂Ω = 0, (4.12)

I(t, x, ν, ~ω) = 0 on Γ , ~qR · ~n(x) = 0 for x ∈ ∂Ω, (4.13)

62



where ~n denotes the outer normal vector to ∂Ω, Γ− := {(x, ~ω) ∈ ∂Ω × S2 :
~ω · ~nx ≤ 0} and the radiative entropy flux ~qR will be defined in the next Section.
Similarly we define Γ+ := ∂Ω× S2 \ Γ−.

Let us mention that previous works have been achieved in the previous frame-
work but, to our knowledge, not in the case of rotating fluid with radiation (with
an exception of (Donatelli, Ducomet, Nečasová , 2015)). Among themKukučka
(2011) studied the case when Mach and Alfvén number go to zero in the case

of a bounded domain and Novotný and collaborators (Novotný, Růžička, Thäter
, 2011) investigated the problem in the case of strong stratification. Let us also
mention the works of Trivisa et al. (Kwon, Trivisa , 2011) and Wang et al. (Hu,
Wang , 2009), and related articles of Jiang et al. (Jiang, Ju, Li , 2012; 2010, Jiang
et al. , 2014).

Our work differs from theirs in that we take a larger Froude number and add
radiation and non-inertial effects.

This paper is organized as follows.
In Section 4.2, we list the principal hypotheses imposed on constitutive re-

lations, introduce the concept of weak solution to problem (4.1) – (4.13), and
state the existence result for our model. In Section 4.3 we compute the formal
asymptotics of the problem. Uniform bounds imposed on weak solutions by the
data are derived in Section 4.4. The convergence theorem is proved in Section
4.5. Existence of a solution for the target system is briefly given in the Appendix.

4.2 Hypotheses and stability result

As in (Ducomet, Feireisl, Nečasová , 2011) we consider a pressure law in the form

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+
a

3
ϑ4, a > 0, (4.14)

where P : [0,∞)→ [0,∞) is a given function with the following properties:

P ∈ C2 ([0,∞)) , P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (4.15)

0 <
5
3
P (Z)− P ′(Z)Z

Z
< c for all Z ≥ 0, (4.16)

lim
Z→∞

P (Z)

Z5/3
= p∞ > 0. (4.17)

According to Maxwell’s relation (4.7), the specific internal energy e is

e(%, ϑ) =
3

2
ϑ
ϑ3/2

%
P
( %

ϑ3/2

)
+ a

ϑ4

%
, (4.18)

and the associated specific entropy reads

s(%, ϑ) = M
( %

ϑ3/2

)
+

4a

3

ϑ3

%
, (4.19)

with

M ′(Z) = −3

2

5
3
P (Z)− P ′(Z)Z

Z2
< 0.
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To ensure positivity of the total entropy production rate, as in (Donatelli, Duco-
met, Nečasová , 2015), in this paper we explicitly introduce the entropy for the
photon gas in the sequel.

The transport coefficients µ, η, κ and λ are continuously differentiable and
Lipschitz functions of the absolute temperature with the properties,

c1(1 + ϑ) ≤ µ(ϑ), µ′(ϑ) < c2, 0 ≤ η(ϑ) ≤ c3(1 + ϑ), (4.20)

c1(1 + ϑr) ≤ κ(ϑ) ≤ c2(1 + ϑr) (4.21)

c5(1 + ϑ) < λ(ϑ) ≤ c4(1 + ϑp) (4.22)

for any ϑ ≥ 0, for a 1 ≤ p < 17
6

and r = 3.
Moreover we assume that σa, σs, B are continuous functions of ν, ϑ such that

0 < σa(ν, ϑ) ≤ c1, 0 ≤ σs(ν, ϑ), |∂ϑσa(ν, ϑ)|, |∂ϑσs(ν, ϑ)| ≤ c1, (4.23)

0 ≤ σa(ν, ϑ)B(ν, ϑ), |∂ϑ{σa(ν, ϑ)B(ν, ϑ)}| ≤ c2, (4.24)

σa(ν, ϑ), σs(ν, ϑ), σa(ν, ϑ)B(ν, ϑ) ≤ h(ν), h ∈ L1(0,∞). (4.25)

for all ν ≥ 0, ϑ ≥ 0, where c1,2,3,4,5 are positive constants.

Let us recall some definitions introduced in (Ducomet, Feireisl, Nečasová ,
2011).

• In the weak formulation of the Navier-Stokes-Fourier system the equation
of continuity (4.1) is replaced by its (weak) renormalized version (DiPerna, Lions
, 1989) represented by the family of integral identities∫ T

0

∫
Ω

[(
%+ b(%)

)
∂tϕ+

(
%+ b(%)

)
~u · ∇xϕ+

(
b(%)− b′(%)%

)
divx~u ϕ

]
dx dt

=−
∫

Ω

(
%0 + b(%0)

)
ϕ(0, ·) dx (4.26)

satisfied for any ϕ ∈ C∞c ([0, T )× Ω), and any b ∈ C∞ ([0,∞)), b′ ∈ C∞c ([0,∞)),
where (4.26) implicitly includes the initial condition %(0, ·) = %0.
• Similarly, the momentum equation (4.2) is replaced by∫ T

0

∫
Ω

(
(%~u) · ∂t~ϕ+ (%~u⊗ ~u) : ∇x~ϕ+ p divx~ϕ+ 2%~χ× ~u · ~ϕ

)
dx dt (4.27)

=

∫ T

0

∫
Ω

(
S : ∇x~ϕ−%∇xΨ·~ϕ−~j× ~B·~ϕ−

1

2
%∇x|~χ×~x|2·~ϕ

)
dx dt−

∫
Ω

(%~u)0·~ϕ(0, ·) dx

for any ~ϕ ∈ C∞c ([0, T ) × Ω;R3). As usual, for (4.27) to make sense, the field ~u
must belong to a certain Sobolev space with respect to the spatial variable and
we require that

~u ∈ L2
(
0, T ;W 1,2

0

(
Ω;R3

))
, (4.28)

where (4.28) already includes the no-slip boundary conditions (4.12).

• The magnetic equation (4.5) is replaced by∫ T

0

∫
Ω

(
~B ·∂t~ϕ−( ~B×~u+λcurlx ~B)·curlx~ϕ

)
dx dt+

∫
Ω

~B0 · ~ϕ(0, ·) dx = 0, (4.29)
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to be satisfied for any vector field ~ϕ ∈ D([0, T )× Ω;R3).
Here, according to the boundary conditions, one has to take

~B0 ∈ L2(Ω), divx ~B0 = 0 in D′(Ω), ~B0 · ~n|∂Ω = 0. (4.30)

Temam (Following 1977; Theorem 1.4), ~B0 belongs to the closure of all solenoidal
functions from D(Ω) with respect to the L2−norm.

Anticipating (see (4.42) below) we see that

~B ∈ L∞(0, T ;L2(Ω;R3)), curlx ~B ∈ L2(0, T ;L2(Ω;R3))

and we deduce from (4.29) that

divx ~B(t) = 0 in D′(Ω), ~B(t) · ~n|∂Ω = 0 for a. a. t ∈ (0, T ).

In particular, using (Duvaut, Lions , 1976; Theorem 6.1), we conclude that

~B ∈ L2(0, T ;W 1,2(Ω;R3)), divx ~B(t) = 0, ~B ·~n|∂Ω = 0 for a. a. t ∈ (0, T ). (4.31)

• From (4.2) and (4.3) we find the energy conservation law

∂t

(1

2
%|~u|2 + %e+

1

2ζ
| ~B|2

)
+ divx

(
(
1

2
%|~u|2 + %e+ p)~u+ ~E × ~B − S~u+ ~q

)
= %∇xΨ · ~u+

1

2
%∇x|~χ× ~x|2 · ~u− SE. (4.32)

As the gravitational potential Ψ is determined by equation (4.6) considered
on the whole space R3, the density % being extended to be zero outside Ω we
observe that ∫

Ω

%∇xΨ · ~u dx = − d

dt

1

2

∫
Ω

%Ψ dx,

in the same stroke

1

2

∫
Ω

%∇x|~χ× ~x|2 · ~u dx =
d

dt

1

2

∫
Ω

%|~χ× ~x|2 dx.

Denoting now by ER the radiative energy given by

ER(t, x) =
1

c

∫
S2

∫ ∞
0

I(t, x, ~ω, ν) d~ω dν, (4.33)

and integrating the radiative transfer equation (4.4), we get

∂t

∫
Ω

ER dx+

∫ ∫
∂Ω×S2, ~ω·~n≥0

∫ ∞
0

I(t, x, ~ω, ν) ~ω · ~n dν d~ω dSx dt =

∫
Ω

SE dx.

so, by using boundary conditions, we can rearrange (4.32), as follows,

d

dt

∫
Ω

(1

2
%|~u|2 + %e+

1

2ζ
| ~B|2 − 1

2
%Ψ− 1

2
%|~χ× ~x|2 + ER

)
dx

+

∫ ∫
Γ+

∫ ∞
0

I(t, x, ~ω, ν) ~ω · ~n dν d~ω dSx = 0. (4.34)
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• Finally, dividing (4.3) by ϑ and using Maxwell’s relation (4.7), we obtain the
entropy equation

∂t (%s) + divx (%s~u) + divx

(
~q

ϑ

)
= ς, (4.35)

where

ς =
1

ϑ

(
S : ∇x~u−

~q · ∇xϑ

ϑ
+
λ

ζ
|curlx ~B|2

)
− SE

ϑ
, (4.36)

where the first term ςm := 1
ϑ

(
S : ∇x~u− ~q·∇xϑ

ϑ
+ λ

ζ
|curlx ~B|2

)
is the (non-negative)

electromagnetic matter entropy production.
In order to identify the second term in (4.36), let us recall from (Balian , 2007)

the formula for the entropy of a photon gas

sR = −2k

c3

∫ ∞
0

∫
S2
ν2 [n log n− (n+ 1) log(n+ 1)] d~ω dν, (4.37)

where n = n(I) = c2I
2hν3

is the occupation number. Defining the radiative entropy
flux

~qR = −2k

c2

∫ ∞
0

∫
S2
ν2 [n log n− (n+ 1) log(n+ 1)] ~ω d~ω dν, (4.38)

and using the radiative transfer equation, we get the equation

∂ts
R + divx~q

R = −k
h

∫ ∞
0

∫
S2

1

ν
log

n

n+ 1
S d~ωdν =: ςR. (4.39)

With the identity log n(B)
n(B)+1

= −hν
kϑ

with B = B(ϑ, ν) denoting Planck’s function,

and using the definition of S, the right-hand side of (4.39) rewrites

ςR =
SE
ϑ
− k

h

∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]
σa(B− I) d~ω dν

−k
h

∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]
σs(Ĩ − I) d~ωdν,

where we used the hypothesis that the transport coefficients σa,s do not depend
on ~ω. So we obtain finally

∂t
(
%s+ sR

)
+ divx

(
%s~u+ ~qR

)
+ divx

(
~q

ϑ

)
= ς + ςR. (4.40)

and equation (4.35) is replaced in the weak formulation by the inequality∫ T

0

∫
Ω

(
(%s+ sR)∂tϕ+ %s~u · ∇xϕ+

(
~q

ϑ
+ ~qR

)
· ∇xϕ

)
dx dt (4.41)

≤ −
∫

Ω

(%s+ sR)0ϕ(0, ·) dx−
∫ T

0

∫
Ω

1

ϑ

(
S : ∇x~u−

~q · ∇xϑ

ϑ
+
λ

ζ
|curlx ~B|2

)
ϕ dx dt

−k
h

∫ T

0

∫
Ω

[∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]
σa(B− I) d~ω dν
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+

∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]
σs(Ĩ − I) d~ω dν

]
ϕ dx dt

for any ϕ ∈ C∞c ([0, T ) × Ω), ϕ ≥ 0, where the sign of all the terms in the right
hand side may be controlled.
• Since replacing equation (4.3) by inequality (4.41) would result in a formally

under-determined problem, system (4.26), (4.27), (4.41) must be supplemented
with the total energy balance∫

Ω

(
1

2
%|~u|2 + %e(%, ϑ) +

1

2ζ
| ~B|2 − 1

2
%Ψ− 1

2
%|~χ× ~x|2 + ER

)
(τ, ·) dx (4.42)

+

∫ τ

0

∫ ∫
Γ+

∫ ∞
0

I(t, x, ~ω, ν) ~ω · ~n dν d~ω dSx dt

=

∫
Ω

(
1

2%0

|(%~u)0|2 + (%e)0 +
1

2ζ
| ~B0|2 −

1

2
%0Ψ0 −

1

2
%0|~χ× ~x|2 + ER

0

)
dx,

where ER
0 is given by

ER
0 (x) =

1

c

∫
S2

∫ ∞
0

I(0, x, ~ω, ν) d~ω dν.

The transport equation (4.4), can be extended to the whole physical space R3

provided we set σa(x, ν, ϑ) = IΩσa(ν, ϑ) and σs(x, ν, ϑ) = IΩσs(ν, ϑ), where IA is
the characteristic function of a set A and take the initial distribution I0(x, ~ω, ν)
to be zero for x ∈ R3 \ Ω. Accordingly, for any fixed ~ω ∈ S2, equation (4.4) can
be viewed as a linear transport equation defined in (0, T )×R3, with a right-hand
side S. With the above mentioned convention, extending ~u to be zero outside Ω,
we may therefore assume that both % and I are defined on the whole physical
space R3.

Definition 4.2.1 We say that %, ~u, ϑ, ~B, I is a weak solution of problem (4.1)
– (4.6) iff

% ≥ 0, ϑ > 0 for a.a. (t, x)× Ω, I ≥ 0 a.a. in (0, T )× Ω× S2 × (0,∞),

% ∈ L∞(0, T ;L5/3(Ω)), ϑ ∈ L∞(0, T ;L4(Ω)),

~u ∈ L2(0, T ;W 1,2
0 (Ω;R3)),

ϑ ∈ L2(0, T ;W 1,2(Ω)),

~B ∈ L2(0, T ;W 1,2(Ω;R3)), ~B · ~n
∣∣∣
∂Ω

= 0

I ∈ L∞((0, T )× Ω× S2 × (0,∞)), I ∈ L∞(0, T ;L1(Ω× S2 × (0,∞)),

and if %, ~u, ϑ, ~B, I satisfy the integral identities (4.26), (4.27), (4.41), (4.29),
(4.42), together with the transport equation (4.4).

The stability result of (Ducomet, Kobera, Nečasová , 2014) reads now
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Theorem 4.2.1. Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that the
thermodynamic functions p, e, s satisfy hypotheses (4.14) – (4.19), and that the
transport coefficients µ, λ, κ, σa, and σs comply with (4.20) – (4.25).

Let {%ε, ~uε, ϑε, ~Bε, Iε}ε>0 be a family of weak solutions to problem (4.1) –
(4.13) in the sense of Definition 4.2.1 such that

%ε(0, ·) ≡ %ε,0 → %0 in L5/3(Ω), (4.43)∫
Ω

(
1

2
%ε|~uε|2 + %εe(%ε, ϑε) +

1

2ζ
| ~Bε|2 −

1

2
%εΨε −

1

2
%ε|~χ× ~x|2 + ER

ε

)
(0, ·) dx ≡

(4.44)∫
Ω

(
1

2%0,ε

|(%~u)0,ε|2 + (%e)0,ε + ER
0,ε +

1

2ζ
| ~B0,ε|2 −

1

2
%ε,0|~χ× ~x|2 −

1

2
%ε,0Ψε,0

)
dx≤

E0,∫
Ω

[%εs(%ε, ϑε) + sR(Iε)](0, ·) dx ≡
∫

Ω

(%s+ sR)0,ε dx ≥ S0,

and

0 ≤ Iε(0, ·) ≡ I0,ε(·) ≤ I0, |I0,ε(·, ν)| ≤ h(ν) for a certain h ∈ L1(0,∞).

Then
%ε → % in Cweak([0, T ];L5/3(Ω)),

~uε → ~u weakly in L2(0, T ;W 1,2
0 (Ω;R3)),

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)),

~Bε → ~B weakly in L2(0, T ;W 1,2(Ω;R3)), ~B · ~n
∣∣∣
∂Ω

= 0

and
Iε → I weakly-(*) in L∞((0, T )× Ω× S2 × (0,∞)),

at least for suitable subsequences, where {%, ~u, ϑ, ~B, I} is a weak solution of prob-
lem (4.1) – (4.13).

4.3 Formal scaling analysis

In order to identify the appropriate limit regime we perform a general scaling,
denoting by Lref , Tref , Uref , ρref , ϑref , pref , eref , µref , λref , κref , the reference
hydrodynamical quantities (length, time, velocity, density, temperature, pressure,
energy, viscosity, conductivity), by Iref , νref , σa,ref , σs,ref , the reference radiative
quantities (radiative intensity, frequency, absorption and scattering coefficients),
by χref the reference rotation velocity, and by ζref , Bref the reference electrody-
namic quantities (permeability and magnetic induction).

We also assume the compatibility conditions pref ≡ ρreferef , νref =
kϑref
h
, Iref

=
2hν3ref
c2

, λ̃ =
λref

LrefUref
and we denote by Sr :=

Lref
TrefUref

, Ma :=
Uref√
pref/ρref

, Re :=

UrefρrefLref
µref

, P e :=
UrefprefLref
ϑrefκref

, F r :=
Uref√

GρrefL
2
ref

, C := c
Uref

, the Strouhal,

Mach, Reynolds, Péclet, Froude and “infrarelativistic” dimensionless numbers
corresponding to hydrodynamics, by Ro :=

Uref
χrefLref

the Rossby number, by
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Al :=
Urefρ

1/2
ref ζ

1/2
ref

Bref
the Alfven number and by L := Lrefσa,ref , Ls :=

σs,ref
σa,ref

, P :=
2k4ϑ4ref

h3c3 ρref eref
, various dimensionless numbers corresponding to radiation.

Using these scalings and using carets to symbolize renormalized variables we
get

S =
Iref
Lref

Ŝ,

where

Ŝ = Lσ̂a
(
B(ν̂, ϑ̂)− Î

)
+ LLsσ̂s

(
1

4π

∫
S2
Î(·, ~ω) d~ω − Î

)
.

Omitting the carets in the following, we get first the scaled equation for I, in the
region (0, T )× Ω× (0,∞)× S2

Sr

C
∂tI + ~ω · ∇xI = s = Lσa (B − I) + LLsσs

(
1

4π

∫
S2
I d~ω − I

)
, (4.45)

where we used the same notation B for the dimensionless Planck function B(ν, ϑ)

=
ν3

e
ν
ϑ − 1

.

Denoting also by ER =
∫
S2
∫∞

0
I dν d~ω, the (renormalized) radiative energy,

by ~FR =
∫
S2
∫∞

0
I~ω dν d~ω, the renormalized radiative momentum, by

sE =
∫
S2
∫∞

0
s dν d~ω, the renormalized radiative energy source, by

~sR = −
∫∞

0

∫
S2 ν

2 [n log n− (n+ 1) log(n+ 1)] d~ωdν, the renormalized
radiative entropy with n = n(I) = I

ν3
, by ~qR =

−
∫∞

0

∫
S2 ν

2 [n log n− (n+ 1) log(n+ 1)] ~ω d~ω dν, the renormalized radiative en-
tropy flux, and taking the first moment of (4.45) with respect to ~ω, we get first
an equation for ER

Sr

C
∂tE

R +∇x · ~FR = sE. (4.46)

The continuity equation is now

Sr ∂t%+ divx(%~u) = 0, (4.47)

and the momentum equation reads

Sr ∂t(%~u) + divx(%~u⊗ ~u) +
1

Ma2
∇xp(%, ϑ) +

2

Ro
%~χ× ~u =

1

Re
divxS +

1

Fr2
%∇Ψ +

1

2Ro2
%∇x|~χ× ~x|2 +

1

Al2
~j × ~B. (4.48)

The balance of internal energy rewrites

Sr ∂t

(
%e+

1

C
ER

)
+ divx

(
%e~u+ ~FR

)
+

1

Pe
divx~q =

Ma2

Re
S : ∇x~u− p divx~u+

Sr
Ma2

Al2
~j · ~E,

and we get the balance of matter (fluid) entropy

Sr∂t (%s) + divx (%s~u) +
1

Pe
divx

(
~q

ϑ

)
= ς, (4.49)
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with

ς =
1

ϑ

(
Ma2

Re
S : ∇x~u−

1

Pe

~q · ∇xϑ

ϑ
+
Ma2

Al2
λ

ζ
|curlx ~B|2

)
− SE

ϑ
,

and the balance of radiative entropy

Sr

C
∂ts

R + divx~q
R = ςR, (4.50)

with

ςR = PL
∫ ∞

0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]
σa(I −B) d~ω dν

+PLLs
∫ ∞

0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]
σs(I − Ĩ) d~ω dν +

SE
ϑ
.

The scaled equation for the electromagnetic field is

Sr ∂t ~B + curlx( ~B × ~u) + curlx(λ̃ curlx ~B) = 0. (4.51)

The scaled equation for total energy gives finally the total energy balance

Sr
d

dt

∫
Ω

(
Ma2

2
%|~u|2 + %e+

1

C
ER +

Ma2

2Al2
1

ζ
| ~B|2 − 1

2

Ma2

Fr2
%Ψ

−1

2

Ma2

Ro2
%|~χ× ~x|2

)
dx+

∫ ∞
0

∫
Γ+

I ~ω · ~n dΓ+dν = 0. (4.52)

In the sequel we analyze the asymptotic regime defined by

Ma = ε, Al = ε, Fr = ε1/2, C = ε−1, P e = ε2

where ε > 0 is small and we put Sr = 1, Re = 1, Ro = 1, P = 1, L = Ls = 1 in
the previous system. Plugging this scaling into the previous system gives

ε∂tI + ~ω · ∇xI = σa (B − I) + σs

(
1

4π

∫
S2
I d~ω − I

)
, (4.53)

∂t%+ divx(%~u) = 0, (4.54)

∂t(%~u) + divx(%~u⊗ ~u) +
1

ε2
∇xp(%, ϑ) + 2%~χ× ~u = divxS +

1

ε
%∇Ψ+ (4.55)

1

2
%∇x|~χ× ~x|2 +

1

ε2
~j × ~B,

∂t
(
%e+ εER

)
+divx

(
%e~u+ ~FR

)
+

1

ε2
divx~q = ε2S : ∇x~u−p divx~u+~j · ~E, (4.56)

∂t
(
%s+ εsR

)
+ divx

(
%s~u+ ~qR

)
+

1

ε2
divx

(
~q

ϑ

)
≥ ςε, (4.57)

with

ςε =
1

ϑ

(
ε2S : ∇x~u−

~q · ∇xϑ

ε2ϑ
+
λ

ζ
|curlx ~B|2

)
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+

∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]
σa(I −B) d~ω dν

+

∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]
σs(I − Ĩ) d~ω dν,

∂t ~B + curlx( ~B × ~u) + curlx(λ̃ curlx ~B) = 0, (4.58)

and finally

d

dt

∫
Ω

(
1

2
ε2%|~u|2 + %e+ εER +

1

2ζ
| ~B|2 − 1

2
ε%Ψ− 1

2
%ε2|~χ× ~x|2

)
dx

+

∫ ∞
0

∫
Γ+

I ~ω · ~n dΓ+dν = 0. (4.59)

To compute the limit system, we consider now the formal expansions

(I, %, ~u, ϑ, p, ~B) = (I0, %0, ~u0, ϑ0, p0, ~B0) + ε(I1, %1, ~u1, ϑ1, p1, ~B1) +O(ε2). (4.60)

• We first observe from (4.55) that %0 = const := % and ϑ0 = const := ϑ,
moreover

∇xp1 = %∇xΨ(%). (4.61)

Let us require to fix the constants in the Neumann problem for perturbations of
the temperature ∫

Ω

ϑi dx = 0 for any i ≥ 1. (4.62)

From (4.54) we derive the incompressibility condition

divx~u0 = 0, (4.63)

and
∂t%1 + divx (%~u1 + %1~u0) = 0. (4.64)

• From (4.53) we get now two stationary linear transport equations for the two
moments I0 and I1

~ω · ∇xI0 = σa,0 (B0 − I0) + σs,0

(
Ĩ0 − I0

)
, (4.65)

~ω · ∇xI1 = σa,0 (∂ϑB0ϑ1 − I1) + ∂ϑσa,0 (B0 − I0)ϑ1 + ∂ϑσs,0

(
Ĩ0 − I0

)
ϑ1 (4.66)

+σs,0

(
Ĩ1 − I1

)
,

where Ĩ := 1
4π

∫
S2 I d~ω, σa,0 = σa(ν, ϑ0), σs,0 = σs(ν, ϑ0) and B0 = B(ν, ϑ0).

• The limit momentum equation reads

% (∂t~u0 + divx(~u0 ⊗ ~u0))+∇xΠ+2%~χ×~u0 = divxS(~u0)+
1

ζ
curlx ~B1× ~B1+ ~F , (4.67)

where µ0 = µ(ϑ0) is used in S(~u0), ~F = %1∇xΨ(%) and Π is an effective pressure
for which it holds ∇xΠ = 1

2
%∇x|~χ × ~x|2 + %∇xΠ(%1) + p%,%(%, ϑ)%1∇x%1. Here
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we set ϑ1 = 0 which is consistent with the O(ε−1)−order of the internal energy
equation (4.56) and the additional zero mean of ϑ− ϑ0 requirement.

• The limit magnetic field ~B1 solves

∂t ~B1 + curlx( ~B1 × ~u0) + curlx(λ curlx ~B1) = 0, (4.68)

for λ = λ̃(ϑ0).
• At the lowest order (O(ε0)) the energy equation (4.56) gives

κ∆ϑ2 = sE0 (4.69)

where −sE0 =
∫∞

0

∫
S2 σa,0 (I0 −B0) d~ω dν and κ = κ(ϑ).

• At the order (O(ε)) we simplify the energy equation (4.56). Observing
that from (4.61) we have

∂%p(%, ϑ)D%1 + %~u0 · ∇xΨ(%) = 0, (4.70)

where D := ∂t + ~u0 · ∇x, and from (4.64)

%divx~u1 = −D%1,

and after (4.66)

SE1 = −
∫ ∞

0

∫
S2
σa,0I1 d~ω dν,

and simplifying by (4.7) we end up with

∂t%1 + divx(%1~u0) = −α
(
κ4ϑ3 +

∫ ∞
0

∫
S2
σa,0I1 d~ω dν

)
,

where α := %

ϑ
∂θp(%, ϑ).

Putting

~U = ~u0, Θ = ϑ3, ~B = ~B1, % = %0, ϑ = ϑ0, µ = µ(ϑ0), σa = σa,0, σs = σs,0,

B = B0, D(~U) =
1

2

(
∇~u0 +∇T~u0

)
,

and

G =

∫∞
0

∫
S2 σa,0 (I0 −B0) d~ω dν

κ

we observe that the solution of the equation (4.65) is up to the boundary condition
(4.12)2 I0 = B0 which in turn entails that the equation for ϑ2 turns in Ω into the
Laplace homogeneous equation (G = 0) and therefore ϑ2 = 0 and we obtain the
limit system in (0, T )× Ω

divx~U = 0, (4.71)

%(∂t~U + divx(~U ⊗ ~U)) + ∇xΠ = divx(2µ D(~U)) +
1

ζ
curlx ~B × ~B + ~F (4.72)

∂t ~B + curlx( ~B × ~U) + curlx(λ curlx ~B) = 0, (4.73)

divx ~B = 0, (4.74)
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−∆Θ =
1

ακ
~U · ∇xr̃ −

1

κ

∫ ∞
0

σa

∫
S2
I1 d~ω dν + h̃(t) (4.75)

~ω · ∇xI1 = −σaI1 + σs

(
Ĩ1 − I1

)
, (4.76)

together with the Boussinesq relation (4.61)

∇xr̃ =
%∇xΨ(%)

∂%p(%, ϑ)
, (4.77)

where r̃ := %1− % and h̃ is an undetermined function which allows satisfaction of
(4.81)2.

We finally consider the boundary conditions

~U |∂Ω = 0, ∇Θ · ~n|∂Ω = 0, ~B · ~n|∂Ω = 0, curlx ~B × ~n|∂Ω = 0 (4.78)

for (4.71)-(4.75) and

I1(x, ν, ~ω) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0 (4.79)

for (4.76), and the initial conditions

~U |t=0 = ~U0, ~B|t=0 = ~B0. (4.80)

Moreover, we endow the system (4.71) – (4.77) with the additional conditions

divx ~B0 = 0,

∫
Ω

Θ dx = 0. (4.81)

For this system we have the following existence result (see the Appendix for a
short proof).

Theorem 4.3.1. Let Ω ⊂ R3 be a bounded Lipschitz domain.
For any T > 0 the initial-bounday value problem (4.71) - (4.81) has at least

one weak solution
(~U,Θ, ~B, I1) such that

1.
~U ∈ L∞(0, T ;H(Ω)) ∩ L2(0, T ;U(Ω)),

~B ∈ L∞(0, T ;V(Ω)) ∩ L2(0, T ;W(Ω)),

2.

Θ ∈ L∞((0, T ;W 2,2(Ω)) ∩ L2((0, T ;W q,2(Ω)) for any q <
5

2
,

3.
I1 ∈ L∞((0, T )× Ω× S2 × R+),

with
~ω · ∇xI1 ∈ Lp((0, T )× Ω× S2 × R+),

for any p > 1 and any ~ω ∈ S2.

The remaining part of the paper is devoted to the proof of the convergence of
the primitive system (4.1)–(4.13) to the target system (4.71)–(4.81).
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4.4 Global existence for the primitive system

and uniform estimates

For the system (4.1)–(4.13) we prepare the initial data as follows

%(0, ·) = %0,ε = %+ ε%
(1)
0,ε,

~u(0, ·) = ~u0,ε,

ϑ(0, ·) = ϑ0,ε = ϑ+ ε3ϑ
(3)
0,ε,

I(0, ·, ·, ·) = I0,ε = I + εI
(1)
0,ε ,

~B(0, ·) = B0,ε = ε ~B
(1)
0,ε ,

(4.82)

where % > 0, ϑ > 0, I > 0 are spacetime constants and
∫

Ω
%

(1)
0,ε dx = 0 =

∫
Ω
ϑ

(3)
0,ε dx

for any ε > 0.
From Theorem 4.2.1 we get immediately (by combining the approximating

schemes introduced in (Ducomet, Feireisl, Nečasová , 2011) and (Ducomet, Fei-
reisl , 2006)) the existence of a weak solution to the radiative MHD system (4.1)

– (4.13) (%ε, ~uε, ϑε, Iε, ~Bε).

Theorem 4.4.1. Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that the
thermodynamic functions p, e, s satisfy hypotheses (4.14) – (4.19), and that the
transport coefficients µ, λ, κ, σa, σs and the equilibrium function B comply with
(4.20) – (4.25). Let the initial data (%0,ε, ~u0,ε, ϑ0,ε, I0,ε, ~B0,ε) be given by (4.82),

where (%
(1)
0,ε, ϑ

(3)
0,ε, I

(1)
0,ε , ~B

(1)
0,ε ) are uniformly bounded measurable functions.

Then for any ε > 0 small enough (in order to maintain positivity of %0,ε and

ϑ0,ε), there exists a weak solution (%ε, ~uε, ϑε, Iε, ~Bε) to the radiative Navier-Stokes
system (4.1) – (4.11) for (t, x, ~ω, ν) ∈ (0, T ) × Ω × S2 × R+, supplemented with
the boundary conditions (4.12) – (4.13) and the initial conditions (4.82).

More precisely we have

• ∫ T

0

∫
Ω

%εb(%ε) (∂tφ+ ~uε · ∇xφ) dx dt

=

∫ T

0

∫
Ω

β(%ε)divxuε φ dx dt−
∫

Ω

%0,εb(%0,ε) φ(0, ·) dx, (4.83)

for any β such that β ∈ (L∞ ∩ C) ([0,∞)) , b(%) = b(1)+
∫ %

1
β(z)
z2

dz and any

φ ∈ C∞c ([0, T )× Ω),

• ∫ T

0

∫
Ω

(
%ε~uε · ∂t~ϕ+ %ε~uε ⊗ ~uε : ∇x~ϕ+

pε
ε2

divx~ϕ− 2%ε~χ× ~uε · ~ϕ
)

dx dt

=

∫ T

0

∫
Ω

(
Sε : ∇x~ϕ−

1

ε
%ε∇xΨε·~ϕ−

1

ε2
(~jε× ~Bε)·~ϕ−

1

2
ε2%ε∇x|~χ×~x|2·~ϕ

)
dx dt

−
∫

Ω

%0,ε~u0,ε · ~ϕ(0, ·) dx, (4.84)

for any ~ϕ ∈ C∞c ([0, T ) × Ω;R3) with pε = p(%ε, ϑε), Sε = S(~uε, ϑε), and
~jε = 1

ζ
curlx ~Bε,
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• ∫
Ω

(
ε2

2
%ε|~uε|2 + %εeε + εER

ε +
1

2ζ
| ~Bε|2 −

1

2
ε%εΨε −

1

2
%εε

2|~χ× ~x|2
)

dx dt

+

∫ T

0

∫ ∞
0

∫
Γ+

~ω · ~nxIε(t, x, ~ω, ν) dΓ+ dν dt

=

∫
Ω

(
ε2

2
%0,ε|~u0,ε|2 + %0,εe0,ε + εER

0,ε +
1

2ζ
| ~B0,ε|2 −

1

2
ε%0,εΨ0,ε− (4.85)

−1

2
ε2%0,ε|~χ× ~x|2

)
dx,

for a. a. t ∈ (0, T ) with eε = e(%ε, ϑε), Ψε = Ψ(%ε), Ψ0,ε = Ψ(%0,ε) and
ER
ε (t, x) =

∫∞
0

∫
S2 Iε(t, x, ~ω, ν) d~ω dν

• ∫ T

0

∫
Ω

(
~Bε·∂t~ϕ−( ~Bε×~uε+λεcurlx ~Bε)·curlx~ϕ

)
dx dt+

∫
Ω

~B0,ε·~ϕ(0, ·) dx = 0,

(4.86)
for any vector field ~ϕ ∈ D([0, T )× R3,R3), with λε = λ̃(ϑε).

• ∫ T

0

∫
Ω

((
%εsε + εsRε

)
∂tϕ+

(
%εsε~uε + ~qRε

)
· ∇xϕ

)
dx dt+∫ T

0

∫
Ω

~qε
ε2ϑε

· ∇xϕ dx dt+
〈
ςmε + ςRε ;ϕ

〉
[M;C]([0,T )×Ω)

=

−
∫

Ω

(
((%s)0,ε + εsR0,ε)ϕ(0, ·)

)
dx, (4.87)

where

ςmε ≥
1

ϑε

(
ε2Sε : ∇x~uε −

~qε · ∇xϑε
ε2ϑε

+
λε
ζ

∣∣∣curlx ~Bε

∣∣∣2) ,
and

ςRε ≥
∫ ∞

0

∫
S2

1

ν

[
log

n(Iε)

n(Iε) + 1
− log

n(Bε)

n(Bε) + 1

]
σaε(Bε − Iε) d~ω dν

+

∫ ∞
0

∫
S2

1

ν

[
log

n(Iε)

n(Iε) + 1
− log

n(Ĩε)

n(Ĩε) + 1

]
σsε(Ĩε − Iε) d~ω dν,

for any ϕ ∈ C∞c ([0, T )×Ω) with ςmε ∈M+([0, T )×Ω) and ςRε ∈M+([0, T )×
Ω), and with σaε = σa(ν, ϑε), σsε = σs(ν, ϑε), Bε = B(ν, ϑε), ~qε = κ(ϑε)
∇xϑε, sε = s(%ε, ϑε), s

R
ε = sR(Iε), ~q

R
ε = ~qR(Iε) and

Ĩε := 1
4π

∫
S2 Iε(t, x, ~ω, ν) d~ω,

• ∫ T

0

∫
Ω

∫ ∞
0

∫
S2

(ε∂tψ + ~ω · ∇xψ) Iε d~ω dν dx dt
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+

∫ T

0

∫
Ω

∫ ∞
0

∫
S2

[
σaε (Bε − Iε) + σsε

(
Ĩε − Iε

)]
ψ d~ω dν dx dt,

= −
∫

Ω

∫ ∞
0

∫
S2
εI0,εψ(0, x, ~ω, ν) d~ω dν dx+

∫ T

0

∫
Γ+

∫ ∞
0

Iε~ω·~nxψ dΓ+ dν dt,

(4.88)
for any ψ ∈ C∞c ([0, T )× Ω× S2 × R+).

4.4.1 Uniform estimates

We recall from (Feireisl, Novotný , 2009) the necessary definitions in the formalism
of essential and residual sets ((see Ducomet, Nečasová , 2014)).

Given three numbers % ∈ R+, ϑ ∈ R+ and E ∈ R+ we define OHess the set of
hydrodynamical essential values

OHess :=

{
(%, ϑ) ∈ R2 :

%

2
< % < 2%,

ϑ

2
< ϑ < 2ϑ

}
, (4.89)

and ORess the set of radiative essential values

ORess :=

{
ER ∈ R :

E

2
< ER < 2E

}
, (4.90)

with Oess := OHess ∪ ORess, and their residual counterparts

OHres := (R+)2\OHess, ORres := R+\ORess, Ores := (R+)3\Oess. (4.91)

Let
{
%ε, ~uε, ϑε, ~Bε, Iε

}
ε>0

be a family of solutions of the scaled radiative Navier-

Stokes system given in Theorem 4.4.1. We call Mε
ess ⊂ (0, T )× Ω the set

Mε
ess =

{
(t, x) ∈ (0, T )× Ω :

(
%ε(t, x), ϑε(t, x), ER

ε (t, x)
)
∈ Oess

}
,

and Mε
res = (0, T )× Ω\Mε

ess the corresponding residual set.
To any measurable function h we associate its decomposition into essential

and residual parts
h = [h]ess + [h]res,

where [h]ess = h · IMε
ess

and [h]res = h · IMε
res
.

Denoting by Hϑ the Helmholtz function for matter

Hϑ(%, ϑ) = %e− ϑ%s,

and for radiation
HR

ϑ(I) = ER − ϑsR,

and using (4.87) we rewrite (4.85) as∫
Ω

(
ε2

2
%ε|~uε|2 +Hϑ(%ε, ϑε) + εHR

ϑ(Iε) +
1

2ζ
| ~Bε|2 −

1

2
ε%εΨε −

1

2
ε2%ε|~χ× ~x|2

)
dx

+

∫ T

0

∫ ∞
0

∫
Γ+

Iε(t, x, ~ω, ν) ~ω · ~nx dΓ dν dt+ ϑ
(
ςmε + ςRε

) [
[0, T ]× Ω

]
=
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∫
Ω

(
ε2

2
%0,ε|~u0,ε|2 + %0,εe0,ε + εER

0,ε +
1

2ζ
| ~B0,ε|2 −

1

2
ε%0,εΨ0,ε −

1

2
ε2%0,ε|~χ× ~x|2

)
dx.

Observing that the total mass is a constant of motion M =
∫

Ω
%ε dx = %|Ω| and

using Hardy-Littlewood-Sobolev inequality, we get ε
2

∫
Ω
%εΨε dx ≤

Gε
2
CM2/3‖%ε‖4/3

L4/3(Ω)
. By virtue of (4.14) and (4.18) we have also %εe(%ε, ϑε) ≥

aϑ4
ε + 3p∞

2
%

5/3
ε , so we have got the lower bound∫

Ω

[
Hϑ(%ε, ϑε)−

1

2
ε%εΨε

]
dx ≥ c

∫
Ω

Hϑ(%ε, ϑε) dx,

for ε small and a c(ε) < 1 and we deduce finally the dissipation energy-entropy
inequality∫

Ω

(
ε2

2
%ε|~uε|2 +Hϑ(%ε, ϑε)− (%ε − %)∂%Hϑ(%, ϑ)−Hϑ(%, ϑ) +

1

2ζ
| ~Bε|2−

ε2

2
%ε|~χ× ~x|2 + εHR

ϑ(Iε)

)
dx

+

∫ T

0

∫ ∞
0

∫
Γ+

Iε(t, x, ~ω, ν) ~ω · ~nx dΓ dν dt+ ϑ
(
ςmε + ςRε

) [
[0, T ]× Ω

]
≤

C

∫
Ω

(
ε2

2
%0,ε|~u0,ε|2 +Hϑ(%0,ε, ϑ0,ε)− (%0,ε − %)∂%Hϑ(%, ϑ)−Hϑ(%, ϑ)+

1

2ζ
| ~B0,ε|2 + εHR

ϑ(I0,ε)

)
dx. (4.92)

Now, according to in (Ducomet, Nečasová , 2014; Lemma 4.1) (see Feireisl, Novot-
ný , 2009) we have the following properties for material and radiative Helmholtz
functions.

Lemma 4.4.1. Let % > 0 and ϑ > 0 two given constants and let

Hϑ(%, ϑ) = %e− ϑ%s,

and
HR

ϑ(I) = ER − ϑsR.
Let Oess and Ores be the sets of essential and residual values introduced in (4.89)
– (4.91).

There exist positive constants Cj = Cj(%, ϑ) for j = 1, · · ·, 8 such that

1.

C1

(
|%− %|2 + |ϑ− ϑ|2

)
≤ Hϑ(%, ϑ)− (%− %)∂%Hϑ(%, ϑ)−Hϑ(%, ϑ) ≤

C2

(
|%− %|2 + |ϑ− ϑ|2

)
, (4.93)

for all (%, ϑ) ∈ OHess,

2.
Hϑ(%, ϑ)− (%− %)∂%Hϑ(%, ϑ)−Hϑ(%, ϑ) ≥

inf
%̃,ϑ̃∈Ores

{
Hϑ(%̃, ϑ̃)− (%̃− %)∂%Hϑ(%, ϑ)−Hϑ(%, ϑ)

}
= C3, (4.94)

for all (%, ϑ) ∈ OHres,
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3.

Hϑ(%, ϑ)− (%−%)∂%Hϑ(%, ϑ)−Hϑ(%, ϑ) ≥ C4 (%e(%, ϑ) + %|s(%, ϑ)|) , (4.95)

for all (%, ϑ) ∈ OHres,

4.
C5|ER − E|2 ≤ HR

ϑ(I) ≤ C6|ER − E|2, (4.96)

for all E ∈ ORess,

5.
HR

ϑ(I) ≥ inf
Ĩ∈Ores

HR
ϑ(Ĩ) = C7, (4.97)

for all E ∈ ORres,

6.
HR

ϑ(I) ≥ C8

(
ER(I) + |sR(I)|

)
(4.98)

for all E ∈ ORres.

Using (4.92) and Lemma 4.4.1, we get the following energy estimates

Lemma 4.4.2. Suppose that the initial data satisfy

‖[%0,ε − %]ess‖2
L2(Ω) ≤ Cε2, ‖[ϑ0,ε − ϑ]ess‖2

L2(Ω) ≤ Cε2, ‖ER
0,ε − E‖2

L2(Ω) ≤ Cε,

‖ ~B0,ε‖2
L2(Ω;R3)

≤ Cε2,

and
‖√%0,ε ~u0,ε‖L2(Ω;R3) ≤ C.

Then the following estimates hold

ess sup
t∈(0,T )

|Mε
res(t)| ≤ Cε2, (4.99)

ess sup
t∈(0,T )

‖[%ε − %]ess(t)‖2
L2(Ω) ≤ Cε2, (4.100)

ess sup
t∈(0,T )

‖[ϑε − ϑ]ess(t)‖2
L2(Ω) ≤ Cε2, (4.101)

ess sup
t∈(0,T )

‖[ER
ε − E]ess(t)‖2

L2(Ω) ≤ Cε, (4.102)

ess sup
t∈(0,T )

‖[%εe(%ε, ϑε)]res(t)‖L1(Ω) ≤ Cε2, (4.103)

ess sup
t∈(0,T )

‖[%εs(%ε, ϑε)]res(t)‖L1(Ω) ≤ Cε2, (4.104)

ess sup
t∈(0,T )

‖[ER(Iε)]res(t)‖L1(Ω) ≤ Cε, (4.105)

ess sup
t∈(0,T )

‖[sR(Iε)]res(t)‖L1(Ω) ≤ Cε. (4.106)(
ςmε + ςRε

) [
[0, T ]× Ω

]
≤ Cε2, (4.107)

78



ess sup
t∈(0,T )

∥∥∥∥∥ ~Bε(t)

ε

∥∥∥∥∥
L2(Ω;R3)

≤ C, (4.108)

ess sup
t∈(0,T )

‖√%ε ~uε(t)‖L2(Ω;R3) ≤ C. (4.109)

ess sup
t∈(0,T )

∫
Ω

(
[%ε]

5
3
res + [ϑε]

4
res

)
(t) dx ≤ Cε2, (4.110)

‖~uε‖L2(0,T ;W 1,2(Ω;R3)) ≤ C, (4.111)∥∥∥∥ϑε − ϑε2

∥∥∥∥
L2(0,T ;W 1,2(Ω))

≤ C, (4.112)

∥∥∥∥ log(ϑε)− log(ϑ)

ε2

∥∥∥∥
L2(0,T ;W 1,2(Ω))

≤ C, (4.113)∥∥∥∥∥ ~Bε

ε

∥∥∥∥∥
L2(0,T ;W 1,2(Ω;R3))

≤ C. (4.114)

Proof: Estimate (4.99) follows from (4.94). Bounds (4.100), (4.101) and
(4.102) follow from (4.93) and (4.96). Estimates (4.103) and (4.104) follow from
(4.95). Bounds (4.105) and (4.106) follow from (4.98). Estimates (4.107), (4.108)
and (4.109) follow from the dissipation energy-entropy inequality (4.92). Bound
(4.110) follows from (4.103) and (4.18) (cf. a lower bound for %e before (4.92)).

From (4.107) we see that∥∥∥∥∇x~uε +∇T
x~uε −

2

3
divx~uεI

∥∥∥∥
L2(0,T ;L2(Ω;R3×3))

≤ C. (4.115)

From (4.20), (4.109) and (4.115) we get (4.111). Details can be found in (Duco-
met, Kobera, Nečasová , 2014) and (Feireisl, Novotný , 2009). From (4.107) we
get ∥∥∥∥∇x

(
ϑε
ε2

)∥∥∥∥
L2(0,T ;L2(Ω;R3))

+

∥∥∥∥∇x

(
log ϑε
ε2

)∥∥∥∥
L2(0,T ;L2(Ω;R3))

≤ C,

which, using Poincaré inequality, gives (4.112) and (4.113). Finally by (4.22),
(4.36) and (4.107) one gets∥∥∥∥∥curlx ~Bε

ε

∥∥∥∥∥
L2(0,T ;L2(Ω;R3))

≤ C,

and (4.114) follows by using (Duvaut, Lions , 1976; Theorem 6.1).
Our goal in the next Section will be to prove that the incompressible system

(4.71)-(4.80) is the limit of the primitive system (4.83)-(4.88) in the following
sense

Theorem 4.4.2. Let Ω ⊂ R3 be a bounded domain of class C2,ν . Assume that
the thermodynamic functions p, e, s satisfy hypotheses (4.14) – (4.19) with P ∈
C1 ([0,∞)) ∩ C2(0,∞), and that the transport coefficients µ, η, κ, λ, σa, σs and
the equilibrium function B comply with (4.20) – (4.25).
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Let (%ε, ~uε, ϑε, ~Bε, Iε) be a weak solution of the scaled system (4.1) – (4.11)
for (t, x, ~ω, ν) ∈ [0, T ]×Ω×S2×R+, supplemented with the boundary conditions
(4.12) – (4.13) and initial conditions

(%0,ε, ~u0,ε, ϑ0,ε, ~B0,ε, I0,ε) given by

%ε(0, ·) = %+ ε%
(1)
0,ε, ~uε(0, ·) = ~u0,ε, ϑε(0, ·) = ϑ+ ε3ϑ

(3)
0,ε, Iε(0, ·) = I + εI

(1)
0,ε ,

~Bε(0, ·) = ε ~B
(1)
0,ε ,

where % > 0, ϑ > 0, I > 0 are constants in (0, T )× Ω and∫
Ω

%
(1)
0,ε dx = 0,

∫
Ω

ϑ
(3)
0,ε dx = 0,

∫
Ω

I
(1)
0,ε dx = 0,

∫
Ω

~B
(1)
0,ε dx = 0 for all ε > 0.

Assume that 

%
(1)
0,ε → %

(1)
0 weakly − (∗) in L∞(Ω),

~u0,ε → ~U0 weakly − (∗) in L∞(Ω;R3),

ϑ
(3)
0,ε → ϑ

(3)
0 weakly − (∗) in L∞(Ω),

I
(1)
0,ε → I

(1)
0 weakly − (∗) in L∞(Ω× S2 × R+),

~B
(1)
0,ε → ~B

(1)
0 weakly − (∗) in L∞(Ω;R3).

Then
ess sup

t∈(0,T )

‖%ε(t)− %‖L 5
3 (Ω)
≤ Cε, (4.116)

and up to subsequences

~uε → ~U weakly in L2(0, T ;W 1,2(Ω;R3)), (4.117)

ϑε − ϑ
ε3

=: ϑ(3)
ε → Θ weakly in L

4
3 (0, T ;W 1, 4

3 (Ω)) (4.118)

Iε → I = B0 weakly in L2(0, T ;L2(Ω× S2 × R+)), (4.119)

~Bε

ε
= ~B(1)

ε → ~B weakly in L2(0, T ;W 1,2(Ω;R3)), (4.120)

and

Iε − I
ε

= I(1)
ε → I1 weakly in L2(0, T ;L2(Ω× S2 × R+)), (4.121)

where (~U,Θ, ~B, I1) solves the system (4.71)-(4.76).

4.5 Proof of Theorem 4.4.2

Let us first quote the following result of (Ducomet, Nečasová , 2014), (see Feireisl,
Novotný , 2009).
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Proposition 4.5.1. Let {%ε}ε>0, {ϑε}ε>0, {Iε}ε>0 be three sequences of non-nega-
tive measurable functions such that[

%(1)
ε

]
ess
→ %(1) weakly − (∗) in L∞(0, T ;L2(Ω)),[

ϑ(1)
ε

]
ess
→ ϑ(1) weakly − (∗) in L∞(0, T ;L2(Ω)),[

I(1)
ε

]
ess
→ I(1) weakly − (∗) in L∞(0, T ;L2(Ω)), a. e. in S2 × R+,

where

%(1)
ε =

%ε − %
ε

, ϑ(1)
ε =

ϑε − ϑ
ε

, I(1)
ε =

Iε − I
ε

.

Suppose that
ess sup

t∈(0,T )

|Mε
res(t)| ≤ Cε2. (4.122)

Let G,GR ∈ C1(Oess) be given functions. Then

[G(%ε, ϑε)]ess −G(%, ϑ)

ε
→ ∂G(%, ϑ)

∂%
%(1) +

∂G(%, ϑ)

∂ϑ
ϑ(1),

weakly − (∗) in L∞(0, T ;L2(Ω)), and if we denote[
GR(Iε)

]
ess

:=
[
GR(Iε(·, ·, ~ω, ν))

]
ess

= GR(Iε) · IMε
ess
, for a. a. (~ω, ν) ∈ S2 × R+,

we have got [
GR(Iε)

]
ess
−GR(I)

ε
→ ∂G(I)

∂I
I(1),

weakly − (∗) in L∞(0, T ;L2(Ω)), a. e. in S2 × R+.
Moreover if G,GR ∈ C2(Oess) then∥∥∥∥ [G(%ε, ϑε)]ess −G(%, ϑ)

ε
− ∂G(%, ϑ)

∂%

[
%(1)
]
ess
− ∂G(%, ϑ)

∂ϑ

[
ϑ(1)
]
ess

∥∥∥∥
L∞(0,T ;L1(Ω))

≤

Cε,

and ∥∥∥∥∥
[
GR(Iε)

]
ess
−GR(I)

ε
− ∂G(I)

∂I

[
I(1)
]
ess

∥∥∥∥∥
L∞(0,T ;L1(Ω))

≤ Cε,

for a. a. (~ω, ν) ∈ S2 × R+.

Clearly, this result provides us with the convergence properties (4.116) –
(4.117), (4.120) – (4.121). The convergence of radiative intensity (4.119) follows
from (4.105), (4.102), and the linearity of (4.53), cf. the section 4.5.2 Radia-
tive transfer equation. The equilibrium Planck function B0 does not satisfy the
boundary condition (4.13)1 however since it is isotropic; therefore has to be mod-
ified at the boundary ∂Ω. The last convergence (4.118) is postponed to Section
4.5.3.

To conclude the proof of Theorem 4.4.2, let us prove that the limit quantities
(~U,Θ, ~B, I1) solve the target system (4.71)-(4.76).

As a number of terms in the equations of our model are similar to those of
the radiative Navier-Stokes-Fourier analyzed in (Ducomet, Nečasová , 2014) we
only focus on the new contributions.
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4.5.1 Continuity and Momentum equations

For the continuity equation, one expects that in the low Mach number limit, it
reduces to the incompressibility constraint. In fact, from Lemma 4.4.2 we know
that

∫ T
0
‖~uε(t)‖2

W 1,2(Ω;R3)
dt ≤ C so passing to the limit after possible extraction

of a subsequence, we deduce that

~uε → ~U weakly in L2(0, T ;W 1,2(Ω;R3)). (4.123)

In the same stroke %ε → %, weakly in L∞(0, T ;L5/3(Ω;R3)). So we can pass to

the limit in the weak continuity equation (4.83) which gives
∫ T

0

∫
Ω
~U ·∇xφ dx dt =

0 for all φ ∈ D((0, T )× Ω), which rewrites

divx~U = 0, a.e. in (0, T )× Ω, ~U
∣∣∣
∂Ω

= 0,

provided ∂Ω is regular.
For the momentum equation one knows that due to possible strong time oscil-

lations of the gradient component of velocity, one has only %ε~uε ⊗ ~uε → %~U ⊗ ~U
weakly in L2(0, T ;L

30
29 (Ω;R3)). However one can show by the analysis in (Feireisl,

Novotný , 2009) that one can pass to the limit in the convective term and obtain∫ T

0

∫
Ω

% ~U ⊗ ~U : ∇x
~φ dx dt→

∫ T

0

∫
Ω

% ~U ⊗ ~U : ∇x
~φ dx dt.

According to the hypotheses on the pressure law, the temperature ϑε is bounded
in L∞((0, T );L4(Ω))∩L2(0, T ;L6(Ω)), which implies that Sε → µ(ϑ)(∇x

~U+∇T
x
~U)

weakly in L
34
23 (0, T ;L

34
23 (Ω;R3)).

So taking a divergence free test vector field ~φ in (4.84), we have∫ T

0

∫
Ω

(
%ε~uε · ∂t~φ+ %ε~uε ⊗ ~uε : ∇x

~φ− 2%ε~χ× ~uε · ~φ
)

dx dt

=

∫ T

0

∫
Ω

(
Sε : ∇x

~φ−%ε − %
ε
∇xΨε·~φ−

1

ζ

curlx ~Bε

ε
×
~Bε

ε
·~φ−1

2
ε2%ε∇x|~χ×~x|2·~φ

)
dx dt

−
∫

Ω

%0,ε~u0,ε · ~φ(0, ·) dx. (4.124)

Moreover, using (4.29) together with estimates (4.108), (4.114) and Aubin-Lions
lemma we get

~Bε

ε
→ ~B weakly in L2(0, T ;W 1,2(Ω;R3)) and strongly in L2(0, T ;Lq(Ω,R3)),

(4.125)

1

ζ

curlx ~Bε

ε
×
~Bε

ε
→ 1

ζ
curlx ~B × ~B weakly in L

5
4 ((0, T )× Ω;R3),

for any 1 ≤ q < 6.
Then passing to the limit and using (4.117)-(4.121), we get∫ T

0

∫
Ω

(
%~U · ∂t~φ+ %~U ⊗ ~U : ∇x

~φ− 2%~χ× ~U · ~φ
)

dx dt =
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∫ T

0

∫
Ω

(
µ(ϑ)

(
∇x

~U +∇T
x
~U
)

: ∇x
~φ− %1∇xΨ(%) · ~φ− 1

ζ
curlx ~B × ~B · ~φ

)
dx dt−∫

Ω

%~U0 · ~φ dx,

provided that ~u0,ε → ~U0 weakly-∗ in L∞(Ω;R3).
Moreover as in (Feireisl, Novotný , 2009), the formal relation between %(1)

and % is recovered by multiplying the momentum equation by ε. One gets, using
Proposition 4.5.1 and passing to the limit ε→ 0,∫ T

0

∫
Ω

(
∇xp

(1) − %∇xΨ(%)
)
· ~ϕ dx dt = 0, (4.126)

which is the weak formulation of

∂%p(%, ϑ)∇x%
(1) + ∂ϑp(%, ϑ)∇xϑ

(1) − %∇xΨ(%) = 0. (4.127)

This rewrites as
∂%p(%, ϑ)∇x%1 − %∇xΨ(%) = 0, (4.128)

once we establish that ϑ(1) = ϑ1 = ϑ2 = 0 in the section 4.5.3. That means we
have got an explicit formula for %1

%1 =
%Ψ(%)

∂%p(%, ϑ)
+ h(t), (4.129)

where h is an undetermined function.

4.5.2 Radiative transfer equation

Using the L∞ bound shown in (Ducomet, Kobera, Nečasová , 2014) for Iε, based
on the initial data bound (4.82), it is clear that Iε → I0 weakly in L2((0, T ) ×
Ω×S2×R+), and we have also by virtue of (4.112) ϑε ⇀ ϑ in L2(0, T ;W 1,2(Ω)).

By using the cut-off hypotheses (4.23), (4.25) and the same notation for any
time-independent test function ψ ∈ C∞c (Ω × S2 × R+), we can pass to the limit
in (4.88) and we get∫

Ω

∫ ∞
0

∫
S2
~ω · ∇xψ I0 d~ω dν dx+

∫
Ω

∫ ∞
0

∫
S2

[
σa(ν, ϑ)

(
B(ν, ϑ)− I0

)
+

σs(ν, ϑ)
(
Ĩ0 − I0

)]
ψ d~ω dν dx =

∫
Γ+

∫ ∞
0

I0 ~ω · ~nx ψ dΓ dν,

which is the weak formulation of the stationary problem

~ω · ∇xI0 = S0, (4.130)

with the boundary condition

I0 = 0 on Γ−, (4.131)

where S0 = σa(ν, ϑ)
(
B(ν, ϑ)− I0

)
+σs(ν, ϑ)

(
Ĩ0 − I0

)
. The solution of (4.130) –

(4.131) is the function equal to B(ν, ϑ) = B0 in Ω and 0 on Γ−. This solution is
unique at least for a particular type of domains thanks to the linearity of (4.130).
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Subtracting from (4.88) and dividing by ε gives∫ T

0

∫
Ω

∫ ∞
0

∫
S2

(ε∂tψ + ~ω · ∇xψ)
Iε − I0

ε
d~ω dν dx dt+

∫ T

0

∫
Ω

∫ ∞
0

∫
S2

[
Sε − S0

ε

]
ψ d~ω dν dx dt =

−
∫

Ω

∫ ∞
0

∫
S2
ε
I0,ε − I0

ε
ψ(0, x, ~ω, ν) d~ω dν dx+∫ T

0

∫
Γ+

∫ ∞
0

~ω · ~nx
Iε − I0

ε
ψ dΓ dν dt,

for any ψ ∈ C∞c ([0, T ) × Ω × S2 × R+), with Sε − S0 := S(Iε) − S(I0). From
Proposition 4.5.1, we get

Sε − S0

ε
→ S1 := ∂ϑ(σaB)(ν, ϑ)ϑ(1) − ∂ϑσa(ν, ϑ)ϑ(1)I0 − σa(ν, ϑ)I1+

∂ϑσs(ν, ϑ)ϑ(1)Ĩ0 + σs(ν, ϑ)Ĩ1 − ∂ϑσs(ν, ϑ)ϑ(1)I0 − σs(ν, ϑ)I1 =

−σa(ν, ϑ)I1 + σs(ν, ϑ)
(
Ĩ1 − I1

)
weakly-* in L∞(0, T ;L2(Ω× S2 × R+)) with I1 := I(1).

Passing to the limit we find the limit equation based on the assumption I
(1)
0,ε →

I
(1)
0 weakly-* in L∞(Ω× S2 × R+)∫

Ω

∫ ∞
0

∫
S2
~ω · ∇xψ I1 d~ω dν dx+

∫
Ω

∫ ∞
0

∫
S2
S1ψ d~ω dν dx =

∫
Γ+

∫ ∞
0

I1 ~ω · ~nx ψ dΓ dν, (4.132)

using the same notation for any time-independent test function ψ ∈ C∞c (Ω×S2×
R+) which is the weak formulation of the stationary problem

~ω · ∇xI1 = S1, (4.133)

with the boundary condition

I1 = 0 on Γ−. (4.134)

4.5.3 Entropy balance

First of all we analyze the weak limit of (4.87), then we subtract it from (4.87)
and divide by ε as in the last section. We follow the ideas of (Feireisl, Novotný ,
2009) and (Kukučka , 2014).

The most obvious convergence in (4.87) is in the entropy production rate
measures. By virtue of (4.107) it holds〈

ςmε + ςRε ;ϕ
〉

[M;C]([0,T )×Ω)
→ 0 as ε→ 0+, (4.135)
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and
1

ε

〈
ςmε + ςRε ;ϕ

〉
[M;C]([0,T )×Ω)

→ 0 as ε→ 0+ . (4.136)

We split the heat flux term into residual and essential parts as follows:

−
∫ T

0

∫
Ω

~qε
ε2ϑε

· ∇xϕ dx dt

=

∫ T

0

∫
Ω

κ([ϑε]res)

[ϑε]res

∇xϑε
ε2
·∇xϕdx dt+

∫ T

0

∫
Ω

κ([ϑε]ess)

[ϑε]ess

∇xϑε
ε2
·∇xϕdx dt. (4.137)

The first term on the rhs vanishes in the limit. The argument is as follows:
Firstly, from (4.107), (4.36) and (4.21) we get an exact estimate∫ T

0

∫
Ω

ϑε

∣∣∣∣∇x
ϑε − ϑ
ε2

∣∣∣∣2 dx dt ≤ c. (4.138)

From (4.112) we know that
∥∥∥ϑε−ϑε ∥∥∥

L2(0,T ;W 1,2(Ω))
≤ c, thus

ϑε → ϑ in L2(0, T ;W 1,2(Ω)) (4.139)

strongly. On the residual set we now apply the Sobolev embedding and in-
terpolate (4.139) with the information in (4.110). (Similarly we get ϑ

(1)
ε →

0 in L2(0, T ;W 1,2(Ω)) as well.) This leads to the convergence

[ϑε]res → [ϑ]res = 0 in L
14
3 (0, T ;L

14
3 (Ω)), (4.140)

meaning that the first integral in (4.137) converges. With the intention that its
limit is zero we apply (4.21) and split the integral into two parts. The second
part, namely,∫ T

0

∫
Ω

(
[ϑε]

3
2
res − ϑ

3
2 + ϑ

3
2

)√
[ϑε]res∇x

ϑε
ε2
· ∇xϕ dx dt (4.141)

converges to zero as ε→ 0 with the rate ε2 by the Poincaré inequality∥∥∥ϑ 3
2
ε − ϑ

3
2

∥∥∥
L2(0,T ;L2(Ω))

≤ c
∥∥∥√ϑε∇xϑε

∥∥∥
L2(0,T ;L2(Ω))

≤ Cε2 (4.142)

by (4.138), (4.99) and (4.110). The first part, namely,∫ T

0

∫
Ω

[1]res ϑ
−1
ε ∇x

ϑε
ε2
· ∇xϕ dx dt (4.143)

converges to zero as ε→ 0 with the rate ε by Cauchy-Schwarz inequality, (4.113)
and (4.99). The second term on the rhs of (4.137) converges by virtue of (4.138)
and (4.139), at least for a subsequence, to∫ T

0

∫
Ω

κ(ϑ)ϑ
−1∇xϑ2 · ∇xϕ dx dt. (4.144)
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For the convergence of the initial entropies in (4.87) we use Proposition 4.5.1 and
we get

−
∫

Ω

{(
[(%s)0,ε]ess − %s(%, ϑ)

ε
+ ε

[
sR0,ε
]
ess
− sR(I)

ε

)
ϕ(0, ·)

}
dx

→ −
∫

Ω

%
(
∂%s(%, ϑ)%

(1)
0

)
φ(0, ·) dx. (4.145)

In particular
[(%s)0,ε]ess → %s(%, ϑ) ε→ 0+, (4.146)[

sR0,ε
]
ess
→ sR(I) ε→ 0+, (4.147)

weakly-(*) in L∞ (0, T ;L2(Ω)) .
Residual parts of the initial conditions disappear thanks to the L∞ weak star

convergences of the initial data in Theorem 4.4.2 for ε sufficiently small.
For the convergence in advective part of the entropy balance (4.87) we use

(4.139) and the fact that
%ε → % ε→ 0+ (4.148)

in L∞(0, T ;L
5
3 (Ω)). This allows to make the limit of entropy to a constant for a

subsequence

s(%ε, ϑε)→ s(%, ϑ) ε→ 0+ a. e. in (0, T )× Ω. (4.149)

The convergence of entropy of a photon gas follows from Proposition 4.5.1 as

ε

[
sRε
]
ess
− sR

ε
→ 0, (4.150)

sRε → sR (4.151)

weakly-(*) in L∞(0, T ;L2(Ω)) as ε → 0+ according to (4.106) and (4.99) again.
The convergence of the next term containing %εsε~uε is again split into two terms,
first one on the residual, second one on the essential set. For the second one we
use again Proposition 4.5.1, the first one∫ T

0

∫
Ω

[%εsε(%ε, ϑε)]res ~uε · ∇xϕ dx dt (4.152)

converges to 0 just in L1((0, T )× Ω) as ε→ 0+ because of the estimates (4.99),
(4.104), (4.110).

While the convergence of the equilibrial radiative entropy flux can be readily
improved, e. g. to the space L

12
11 ((0, T )×Ω) because of the Gibbs’ relation between

specific entropy and energy, cf. (4.18) and (4.19), the integral with the material
entropy flux part does not seem to have a right regularity to be meaningful.
However, we can use usual cut-off functions TK(z) := min(K, z), choose K large

enough, e. g. K = ε−
1
6 and split the integral into two parts∫ T

0

∫
Ω

|[%εsε(%ε, ϑε)]res| |~uε| |∇xϕ| dx dt =
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∫ T

0

∫
Ω

|[%εsε(%ε, ϑε)]res|Tε− 1
6

(|~uε|) |∇xϕ| dx dt+∫ T

0

∫
Ω

|[%εsε(%ε, ϑε)]res|
[
|~uε| − Tε− 1

6
(|~uε|)

]
|∇xϕ| dx dt.

The first part converges to 0 by (4.104), the second one is of order O(ε) by Sobolev
embedding, estimate (4.99) and Markov-Chebyshev inequality. The limiting part
of this estimate is the first part, where the need to improve the regularity the
material part of the entropy flux faces the problem that we have not got generally
a better estimate than (4.104).

Previous works (Novotný, Růžička, Thäter , 2011), (Kukučka , 2014), (Fei-
reisl, Novotný , 2009) rely on the closedness of the equation of state to the
ideal gas law so that %εsε is estimated essentially by %ε| log %ε|, ϑ3

ε and %ε| log ϑε|,
the last one being the most restrictive, leading to the convergence in (4.152) in

L2(0, T ;L
30
29 (Ω)). Without such an assumption we would estimate the entropy

by %2
ε~uε which is not tractable in view of (4.110). Nevertheless, in our case of

low stratification we do not need to identify the limit of the entropy flux on the
essential set since it vanishes after an integration by parts.

After (4.139) and (4.148)∫ T

0

∫
Ω

[%εsε(%ε, ϑε)]ess ~uε·∇xϕ dx dt→
∫ T

0

∫
Ω

%s(%, ϑ)~U ·∇xϕ dx dt = 0. (4.153)

The last term contains the nonequlibirial radiative entropy flux ~qRε . Let us recall

~qRε = ~qR(Iε) = −
∫ ∞

0

∫
S2
ν2 {nε log nε − (nε + 1) log(nε + 1)} ~ω d~ω dν,

with nε = n(Iε) = Iε
ν3

. We claim

Jε :=

∫ T

0

∫
Ω

~qRε · ∇xϕ dx dt→
∫ T

0

∫
Ω

~q
R · ∇xϕ dx dt =: J0 (4.154)

because of the convergence on the essential set Mε
ess that follows from (4.161)

and on the residual set Mε
res we use (4.106). Collecting now all the afore-

mentioned convergences in this section we readily get the weak formulation of
(4.69). With (4.62) we see that ϑ2 ≡ 0 and search for ∇xΘ = ∇xϑ3 := w −
lim

L
4
3 ((0,T )×Ω),ε→0+

∇x
ϑε−ϑ
ε3

.

Let us realize that we can extract from (4.107) the bound∫ T

0

∫
Ω

ϑr−2
ε

|∇x(ϑε − ϑ)|2

ε4
dx dt < c (4.155)

with a constant c independent of ε. Therefore
∣∣∣∇x(ϑε−ϑ)

ε3

∣∣∣ is bounded in L
4
3 ((0, T )×

Ω) and Θ exists.
We subtract equation (4.87) from its limit and divide by ε∫ T

0

∫
Ω

{
%ε

sε − s
ε

(∂tϕ+ ~uε · ∇xϕ) +
sRε − sR

ε
ε∂tϕ+

~qRε − ~qR
ε

· ∇xϕ

}
dx dt+
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∫ T

0

∫
Ω

κ(ϑε)

ϑε
∇x

ϑε
ε3
· ∇xϕ dx dt+

1

ε

〈
ςmε + ςRε ;ϕ

〉
[M;C]([0,T ]×Ω)

=

−
∫

Ω

{(
%0,ε

s0,ε − s
ε

+ ε
sR0,ε − sR0

ε

)
ϕ(0, ·)

}
dx. (4.156)

We claim that all the terms in (4.156) are uniformly bounded, especially

κ(ϑε)

ϑε
∇x

ϑε − ϑ
ε3

→ κ(ϑ)

ϑ
∇xϑ3, (4.157)

weakly in L
6r+16
6r+15 ((0, T )× Ω;R3) which gives for r = 3 the summability with the

exponent of 34
33
. To show this we restrict ourselves to the residual setMε

res, since
on the essential set Mε

ess the boundedness is easy. For the set Aε := {(t, x) :
|∇xϑε(t, x)| < 1} we use the estimates (4.99), (4.110) with Hölder’s inequality
and r ∈ [3, 5]

K0 :=

∫
Mε

res∩Aε

∫ ∣∣∣∣[ϑε]r−1
res ∇x

ϑε
ε3

∣∣∣∣ dx dt ≤ ε−3

∫ ∫
Mε

res

ϑr−1
ε dx dt ≤

Tε−3‖ [ϑε]res ‖
r−1
L4(Ω)ess sup

t∈(0,T )

‖IMε
res(t)‖L 4

5−r (Ω)
≤ Cε−3ε

r−1
2 ε2 = Cε

r−3
2 ≤ c

(4.158)
with c independent of ε. In the opposite case (the complement of this set inMε

res)
we estimate as follows

K1 :=

∫
Mε

res\Aε

∫ ∣∣∣∣[ϑε]r−1
res ∇x

ϑε
ε3

∣∣∣∣ dx dt =

∫
Mε

res\Aε

∫ ∣∣∣∣∣ [ϑε] r4+ 1
2

res |∇xϑε|−
1
2 ϑ

3
4
r− 3

2
ε

|∇xϑε|
3
2

ε3︸ ︷︷ ︸
∈L

4
3 (Mε

res\Aε)

∣∣∣∣∣ dx dt ≤

∫
T

0

∫
Ω

∣∣∣∣∣[ϑε] r4+ 1
2

res ϑ
3
4
r− 3

2
ε

|∇xϑε|
3
2

ε3

∣∣∣∣∣ dx dt < c (4.159)

provided [ϑε]
r
4

+ 1
2

res is uniformly bounded in L4 ((0, T )× Ω) , that is [ϑε]
r+2
res is uni-

formly bounded in the space L1 ((0, T )× Ω) . However we know that [ϑε]res is
bounded in L∞ (0, T ;L4(Ω)) ∩ Lr (0, T ;L3r(Ω)) as in (Feireisl, Novotný , 2009).

By interpolation we get [ϑε]res is uniformly bounded in Lr+
8
3 ((0, T )× Ω) and

that is why K1 converges; moreover when we reiterate the same argument with a
s−power of its integrand, we obtain the bound s ≤ 6r+16

6r+15
for Hölder’s inequality.

Similarly to (Feireisl, Novotný , 2009), using Proposition 4.5.1 and energy
estimates, we see that

%ε
sε − s
ε
→ %

(
∂%s(%, ϑ)%(1) + ∂ϑs(%, ϑ)ϑ(1)

)
= %%1∂%s(%, ϑ)

weakly-∗ in L∞(0, T ;L2(Ω;R3)), and remind (4.136), (4.150), (4.106), (4.99) and
(4.145).
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Moreover the advective part weakly converges according to Proposition 4.5.1
again

%ε
sε − s
ε

~uε → %
(
∂%s(%, ϑ)%(1) + ∂ϑs(%, ϑ)ϑ(1)

)
~U = %∂%s(%, ϑ)%1

~U,

weakly in L2(0, T ;L3/2(Ω;R3)). This allows to pass to the limit in all terms of
(4.156) except the nonequilibrial radiative entropy flux term∫ T

0

∫
Ω

~qRε − ~qR
ε

· ∇xϕ dx dt. (4.160)

Let us compute the limit of ~qRε −~qR
ε

.
Applying once more Proposition 4.5.1 with GR(I) = n(I) log n(I) − (n(I) +

1) log(n(I) + 1) and integrating on S2 × R+, we find

~qRε − ~qR
ε

→
∫ ∞

0

∫
S2

1

ν
log

n(I) + 1

n(I)
~ω I(1) d~ω dν,

weakly-∗ in L∞(0, T ;L2(Ω;R3)) on the essential setMε
ess and as log

[
n(I)+1

n(I)

]
= ν

ϑ
,

we have got
~qRε − ~qR

ε
→ 1

ϑ
~FR(I(1)),

with the radiative momentum ~FR(I(1)) =
∫∞

0

∫
S2 ~ω I(1) d~ω dν. So∫ T

0

∫
Ω

(
~qRε − ~qR

ε

)
· ∇xϕ dx dt→

∫ T

0

∫
Ω

divx ~F
R(I(1))

ϑ
ϕ dx dt. (4.161)

by the Proposition 4.5.1 , (4.106) and (4.99) on Mε
res. As we have got from

(4.133)

divx ~F
R =

∫ ∞
0

∫
S2

[
∂ϑσa(ν, ϑ)

(
B(ν, ϑ)− I0

)
ϑ(1)+

σa(ν, ϑ)
(
∂ϑB(ν, ϑ)ϑ(1) − I1

)]
d~ω dν,

the limit contribution in (4.156) becomes∫ T

0

∫
Ω

∫ ∞
0

∫
S2

−σa(ν, ϑ)I1(t, x, ~ω, ν)

ϑ
ϕ d~ω dν dx dt.

Gathering all of these terms, we find the limit equation for entropy

%∂%s(%, ϑ)

∫ T

0

∫
Ω

%1

(
∂tφ+ ~U · ∇xφ

)
dx dt+

κ

ϑ

∫ T

0

∫
Ω

∇xΘ · ∇xϕ dx dt−

1

ϑ

∫ T

0

∫
Ω

∫ ∞
0

σa(ν, ϑ)

∫
S2
I1(t, x, ~ω, ν)ϕd~ω dν dx dt =

−%∂%s(%, ϑ)

∫
Ω

%
(1)
0 ϕ(0, ·) dx.

Using (4.128) we easily verify that we finally obtained the thermal equation (4.75)
once we take the Maxwell relation ∂ϑp = ∂%s into account.
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4.5.4 Maxwell equation

From (4.123) and (4.125) we get

~Bε

ε
× ~u→ ~B × ~U weakly in Lq(0, T ;Lq(Ω,R3)) for q ∈

[
1,

5

3

)
,

and

λ̃(ϑε) curlx
~Bε

ε
→ λ curlx ~B weakly in L

34
6p+17 (0, T, L

34
6p+17 (Ω,R3)).

Then it is easy to pass to the limit in (4.86), realizing that 34
6p+17

> 1 for 1 ≤ p <
17
6

.
This last step ends the proof of Theorem 4.4.2.

4.A Appendix: Proof of Theorem 4.3.1

1. Consider now the linearly coupled problem for the remaining equations

divx~U = 0, (4.A.1)

∂t~U + (~U ·∇x)~U + ∇xΠ−µ∆~U +
1

ζ
∇x

(
~B2

2

)
− 1

ζ
( ~B ·∇x) ~B = ~F , (4.A.2)

∂t ~B + (~U · ∇x) ~B + ( ~B · ∇x)~U − λ∆ ~B = 0, (4.A.3)

divx ~B = 0, (4.A.4)

−4Θ = ~U · ~β − 1

κ

∫ ∞
0

σa

∫
S2
I1 d~ω dν + h̃ (4.A.5)

~ω · ∇xI1 + σaI1 − σs
(
Ĩ1 − I1

)
= 0, (4.A.6)

where ~β ∈ (L∞(Ω))3, together with the boundary conditions

~U |∂Ω = 0, ∇Θ · ~n|∂Ω = 0, ~B · ~n|∂Ω = 0, curlx ~B × ~n|∂Ω = 0 (4.A.7)

for (4.A.1)-(4.A.5) and

I1(x, ν, ~ω) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0 (4.A.8)

for (4.A.6), and the initial conditions

~U |t=0 = ~U0, ~B|t=0 = ~B0. (4.A.9)

We first consider the solution (~U, ~B, I1) of the “radiative-MHD problem”

divx~U = 0, (4.A.10)

∂t~U + (~U · ∇x)~U + ∇xΠ− µ∆~U =
1

ζ
curlx ~B × ~B + ~F , (4.A.11)

∂t ~B + (~U · ∇x) ~B + ~B · ∇x
~U − λ∆ ~B = 0, (4.A.12)
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divx ~B = 0, (4.A.13)

~ω · ∇xI1 + σaI1 − σs
(
Ĩ1 − I1

)
= 0, (4.A.14)

with
~U |∂Ω = 0, ~B · ~n|∂Ω = 0, curlx ~B × ~n|∂Ω = 0,

and

~U |t=0 = ~U0, ~B|t=0 = ~B0, I1(x, ν, ~ω) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0.

The MHD part has a weak solution ~U ∈ L2(0, T ;U(Ω)), ~B ∈ L2(0, T ;W(Ω))
thanks to an extension of the Leray-Hopf Theorem (see Sermange, Temam
, 1983). Moreover the stationary radiative equation (4.A.14) also has got a
weak solution I1 ∈ L2((0, T )× Ω× S2 × R+) according to (Bardos et al. ,
1988; Theorem 1 and Proposition 2).

Then we consider the solution Θ of the stationary diffusion equation

−∆Θ = ~U · ~β − 1

κ

∫ ∞
0

σa

∫
S2
I1 d~ω dν + h̃ (4.A.15)

with
∇Θ · ~n|∂Ω = 0.

subject to
∫

Ω
Θ dx = 0 for all times. It admits a weak solution Θ ∈

L∞((0, T ;W 2,2(Ω)) ∩ L2((0, T ;W q,2(Ω)) ∀q < 5
2
, thanks to classical ellip-

tic regularity theory and due to regularity of the rhs due to (Golse, Lions,
Perthame, Sentis , 1988).

Since the ”radiative-MHD problem” does not depend on the temperature
perturbation Θ the proof is complete.
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Conclusion

In this thesis we study a model in radiative magnetohydrodynamics, which de-
scribes astrophysical plasmas. The model consists of the fundamental mass bal-
ance (2.10), momentum balance (2.11), the total energy balance (2.48) and an
entropy equation/inequality (2.44), (2.45), the Maxwell system in the magne-
tohydrodynamical approximation (2.2)–(2.6) and the radiative transfer equation
(2.13), (2.17) – (2.19).

We establish the existence of weak (renormalized) solutions to this system in
the Theorem (2.2.1). Its proof is based on the theory developed in (Lions , 1996,
1998) and (Feireisl, Novotný , 2009) and on a velocity averaging lemma (Golse,
Lions, Perthame, Sentis , 1988).

Then we investigate a particular limit of small Péclet, Mach, Froude and Alf-
vén numbers of the rescaled Navier-Stokes-Fourier system (4.47), (4.48), (4.49),
(4.50), (4.51), (4.52). We identify the limit system (4.71), (4.72), (4.73), (4.74),
(4.75), (4.76) with a Boussinesq-type relation (4.77). We establish the existence
of a weak solution to the limit system in Theorem (4.3.1) and finally prove weak
convergence of weak solutions to the primitive system towards weak solutions to
the limit system in Theorem (4.4.2) for well-prepared data. All this is achieved
for boundary conditions expressing mechanical and energetical isolation and a
contact with a perfect conductor. The radiation may not enter the domain Ω.
The essential role in the theory plays the entropy inequality. This time not all
terms in the entropy production are non-negative, but thanks to some cut-off
assumptions can be estimated at the right hand side.

The subject of (singular) limits in fluid mechanics is an active research field
and with similar methods various other limit regimes can be tackled.
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Ducomet, Bernard, Nečasová, Šárka. Global weak solutions to the 1D com-
pressible Navier-Stokes equations with radiation. Communications in Mathe-
matical Analysis, 8 (2010), 23–65.
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List of Abbreviations

— BBGKY Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy

— BGK Bhatnagar-Gross-Crook equation or operator

— CE compressible Euler system

— EOS equation of state

— IBVP initial boundary value problem

— IE incompressible Euler system

— lhs left hand side

— LTE local thermodynamical equilibrium

— MHD magnetohydrodynamics

— NSF Navier-Stokes-Fourier system

— rhs right hand side

— RTE radiative transfer equation

— SNSF scaled Navier-Stokes-Fourier system
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