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ERGODICITY AND PARAMETER ESTIMATES FOR
INFINITE-DIMENSIONAL FRACTIONAL ORNSTEIN-UHLENBECK

PROCESS

BOHDAN MASLOWSKI AND JAN POSPÍŠIL

Abstract. Existence and ergodicity of a strictly stationary solution for linear stochastic evolu-
tion equations driven by cylindrical fractional Brownian motion are proved. Ergodic behaviour

of non-stationary infinite-dimensional fractional Ornstein-Uhlenbeck processes is also studied.

Based on these results, strong consistency of suitably defined families of parameter estimators is
shown. The general results are applied to linear parabolic and hyperbolic equations perturbed

by a fractional noise.

1. Introduction

The theory of stochastic equations in infinite dimensional spaces (or stochastic partial differen-
tial equations) driven by fractional Brownian motion is still at a very early stage. Linear stochastic
equations in a Hilbert space with a cylindrical fractional Brownian motion are considered by Dun-
can, Maslowski and Pasik-Duncan in [4] and [6] where some results on the continuity and space
regularity of sample paths are given and large time behaviour of solutions is investigated. In [5],
similar analysis is carried out for bilinear equations. The same type of equations is investigated by
Tindel, Tudor and Viens in [27], where a fractional Feynman-Kac formula is obtained. Grecksch
and Anh [8] consider a semi-linear stochastic parabolic equation with additive noise term and prove
existence and uniqueness of the solution. Semilinear evolution equations with a covariance type
fractional Brownian motion with a non-additive noise term are studied by Maslowski and Nualart
in [14] and Nualart and Vuillermot in [16], where existence, uniqueness and pathwise regularity are
established. Hu, Oksendal and Zhang [11] treat the elliptic equation (the Poisson problem) and
the heat equation with multiparameter fractional Gaussian noise (cf. also [9], where the stochastic
heat equations with a multiplicative fractional noise is dealt with). Maslowski and Schmalfuss [15]
show the existence of pathwise exponentially stable random fixed point for semilinear dissipative
systems. The linear wave equation perturbed by fractional noise is studied by Caithamer [2].

The problem of parameter estimation for infinite dimensional stochastic equations has been
studied also only recently. There exist several methods mainly of statistical origin. One of them
is the maximum likelihood estimates method used by Huebner and Rozovskii in [12] to estimate
parameters from a continuous observation of a solution to stochastic parabolic equations driven
by Wiener process. Khasminskii and Milstein studied in [13] the estimation of the linearised drift
for nonlinear SDEs. Estimation for some stochastic equations based on discrete observations was
presented by Prakasa Rao in [22]. He also investigated the asymptotic properties of the maximum
likelihood estimator and the Bayes estimator of the drift parameter in stochastic equations driven
by fractional Brownian motion, see [23] and [24]. Goldys and Maslowski considered in [7] a
controlled stochastic semilinear equation with the drift depending on the unknown parameter
and with the Wiener process as the driving process. They showed that the maximum likelihood
estimator is consistent for a class of bounded predictable controls. A problem of identification of
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2 BOHDAN MASLOWSKI AND JAN POSPÍŠIL

some unknown parameters for a stochastic parabolic equation with a scalar fractional Brownian
motion was also partially mentioned in [5].

In this paper we study linear stochastic evolution equations in Hilbert spaces. The driving
process is fractional Brownian motion with Hurst parameter H ∈ (0, 1). Given separable Hilbert
spaces U and V , we consider the equation

(1)
dX(t) = AX(t) dt+ Φ dBH(t),

X(0) = x0,

where (BH(t), t ≥ 0) is a standard cylindrical fractional Brownian motion on U , A : Dom(A)→ V ,
Dom(A) ⊂ V , A is the infinitesimal generator of a strongly continuous semigroup (S(t), t ≥ 0) on
V , Φ ∈ L(U, V ) and x0 ∈ V is a random variable. The solution (Xx0(t), t ≥ 0) to (1) is defined
by the mild form,

(2) Xx0(t) = S(t)x0 + Z(t), t ≥ 0,

where (Z(t), t ≥ 0) is the convolution integral

(3) Z(t) =
∫ t

0

S(t− u)Φ dBH(u).

It is known ([4] and [5]) that the solution exists as a V -valued process under suitable conditions. If
the semigroup is exponentially stable there exists a centered Gaussian limiting measure µ∞ for the
solution. We show that if the semigroup is exponentially stable there exists a strictly stationary
solution (X x̃(t), t ≥ 0) with probability distribution µ∞ (see Theorem 3.1 for a precise statement
that extends an earlier result in [15]).

We then prove that this stationary solution is ergodic, that is,

lim
T→∞

1
T

∫ T

0

%(X x̃(t)) dt =
∫
V

%(y)µ∞(dy),

almost surely as T → ∞ for any measurable functional % : V → R such that E|%(x̃)| < ∞ (cf.
Theorem 4.6).

As a corollary we obtain a similar result for arbitrary solution, under some restrictions on the
functional %. For instance, in Theorem 4.9 we assume that % is locally Lipschitz with the Lipschitz
constant growing at most polynomially and the noise is of covariance type.

These results are employed in Section 5 where parameter-dependent equations are considered
with a multiplicative parameter in the drift. Two families of estimators are defined and, based on
the above ergodic theorems, their strong consistency is proved (Theorems 5.1 and 5.2, respectively).

Technically, some of these results are probably new even in the particular case, when the
state space is finite-dimensional. However, in this case the problem is considerably simplified.
We consider two basic examples where our general results are applied and conditions of particular
theorems are verified: Linear stochastic heat (or parabolic) equation with Dirichlet-type boundary
conditions and distributed fractional noise (Example 4.1) and an analogous problem for stochastic
wave (or hyperbolic) equation (Example 4.2).

2. Preliminaries

Let KH(t, s) for 0 ≤ s ≤ t ≤ T be the kernel function

KH(t, s) = cH(t− s)H− 1
2 + cH

(
1
2
−H

)∫ t

s

(u− s)H− 3
2

(
1−

( s
u

) 1
2−H

)
du

where

cH =

[
2HΓ

(
H + 1

2

)
Γ
(

3
2 −H

)
Γ (2− 2H)

] 1
2

,

where Γ(·) is the gamma function and H ∈ (0, 1).
Following [1] and [3], we will define a stochastic integral of a deterministic V -valued function

with respect to a scalar fractional Brownian motion (βH(t), t ∈ R).
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Let K∗H : E → L2([0, T ], V ) be the linear operator given by

K∗Hϕ(t) := ϕ(t)KH(T, t) +
∫ T

t

(ϕ(s)− ϕ(t))
∂KH

∂s
(s, t) ds

for ϕ ∈ E where E is the linear space of V -valued step functions on [0, T ] and

ϕ(t) =
n−1∑
i=1

xi1[ti,ti+1)(t)

where xi ∈ V , i ∈ {1, . . . , n− 1} and 0 = t1 < · · · < tn = T .
Setting ∫ T

0

ϕdβH :=
n∑
i=1

xi
(
βH(ti+1)− βH(ti)

)
it follows directly that

E

∣∣∣∣∣
∫ T

0

ϕdβH

∣∣∣∣∣
2

V

= |K∗Hϕ|
2
L2([0,T ],V ) .

Let (H, | · |H, 〈·, ·, 〉H) be the Hilbert space obtained by the completion of the pre-Hilbert space E
with respect to the inner product

〈ϕ,ψ〉H := 〈K∗Hϕ,K∗Hψ〉L2([0,T ],V )

for ϕ,ψ ∈ E . The stochastic integral (2) is extended to H by the isometry (2). Thus H is the
space of integrable functions and it is useful to obtain some more specific information, cf. [18] for
details on integration theory.

If H ∈
(

1
2 , 1
)
, then it is easily verified that H ⊃ H̃ where H̃ is the Banach space of Borel

measurable functions with the norm | · |H̃ given by

|ϕ|2H̃ :=
∫ T

0

∫ T

0

|ϕ(u)|V |ϕ(v)|V φ(u− v) du dv

where

(4) φ(u) = H(2H − 1)|u|2H−2.

It may be verified that H̃ ⊃ L1/H([0, T ], V ) and consequently H̃ ⊃ L2([0, T ], V ). If ϕ ∈ H̃ and
H > 1

2 , then

E

∣∣∣∣∣
∫ T

0

ϕdβH

∣∣∣∣∣
2

V

=
∫ T

0

∫ T

0

〈ϕ(u), ϕ(v)〉V φ(u− v) du dv.

If H ∈
(
0, 1

2

)
, then the space of integrable functions is smaller than L2([0, T ], V ). It is known

that H ⊃ Cβ([0, T ], V ) for each β > 1
2 − H (see e.g. [10] Lemma 5.20) and in particular H ⊃

H1([0, T ], V ). If H ∈
(
0, 1

2

)
, then the linear operator K∗H may be described the composition

(5) K∗Hϕ(t) = cHt
1
2−HD

1
2−H
T−

(
uH− 1

2
ϕ
)
,

where (
Dα
T−ψ

)
(t) =

1
Γ(1− α)

(
ψ(t)

(T − t)α
+ α

∫ T

t

ψ(s)− ψ(t)
(s− t)α+1

ds

)
.

is a fractional derivative and (uH−1/2ϕ)(s) = sH−1/2ϕ(s).

Definition 2.1. Let (Ω,F ,P) be a complete probability space. Let (U, | · |U , 〈·, ·, 〉U ) be a separa-
ble Hilbert space. A cylindrical process

〈
BH , ·

〉
: Ω×R×U → R on (Ω,F ,P) is called a standard

cylindrical fractional Brownian motion with Hurst parameter H ∈ (0, 1) if
(1) For each x ∈ U \{0}, 1

|x|U

〈
BH(·), x

〉
is a standard scalar fractional Brownian motion with

Hurst parameter H.
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(2) For α, β ∈ R and x, y ∈ U ,〈
BH(t), αx+ βy

〉
= α

〈
BH(t), x

〉
+ β

〈
BH(t), y

〉
a.s. P.

Note that 〈BH(t), x〉 has the interpretation of the evaluation of the functional BH(t) at x
although the process BH(·) does not take values in U .

For H = 1
2 , this is the usual definition of a standard cylindrical Wiener process in U .

We will now define the stochastic integral
∫ T

0
GdβH for an operator-valued function G : [0, T ]→

L(U, V ).

Definition 2.2. Let G : [0, T ] → L(U, V ), (en, n ∈ N) be a complete orthonormal basis in U ,
G(·)en ∈ H for n ∈ N, and BH be a standard cylindrical fractional Brownian motion in U . Let
βHn (t) :=

〈
BH(t), en

〉
for n ∈ N. Define∫ T

0

GdBH :=
∞∑
n=1

∫ T

0

Gen dβ
H
n

provided the infinite series converges in L2(Ω, V ).

Note that by condition 2 in Definition 2.1, the scalar processes (βHn (t), t ∈ R, n ∈ N) are
independent.

Next we formulate an existence and regularity results for the solution of equation (1). In what
follows, it is assumed that (S(t), t ≥ 0) is an analytic semigroup. In this case, there is a β̂ ∈ R
such that the operator β̂I − A is uniformly positive on V . For each δ ≥ 0, let us define (Vδ, | · |δ)
a Hilbert space, where Vδ = Dom

(
(β̂I −A)δ

)
with the graph norm topology such that

|x|δ =
∣∣∣(β̂I −A)δx

∣∣∣
V
.

The shift β̂ is fixed. The space Vδ does not depend on β̂ because the norms are equivalent for
different values of β̂ satisfying the positivity condition.

Proposition 2.1. Let H ∈ (0, 1). Let (S(t), t ≥ 0) be a strong continuous analytic semigroup
such that

(A1) |S(t)Φ|L2(U,V ) ≤ ct−γ , t ∈ (0, T ],

for some T > 0, c > 0 and γ ∈ [0, H). Then (Z(t), t ∈ [0, T ]) is a well-defined Vδ-valued process
in Cβ([0, T ], Vδ), a.s.-P for β + δ + γ < H, β ≥ 0, δ ≥ 0.

Proof. See [4] for H > 1/2 and [6] for H < 1/2. �

Remark 2.1. In the case H > 1/2 and δ = 0 (i.e. Vδ = V ) we may drop the assumption of
analyticity of the semigroup (S(t), t ≥ 0), cf. [4]. It may be also dropped (for H > 1/2) in the
Theorem 3.1 and Section 4.1 below.

Proposition 2.2. If (A1) is satisfied and the semigroup (S(t), t ≥ 0) is exponentially stable, i.e.
there exist constants M > 0 and ρ > 0 such that for all t ≥ 0

(A2) |S(t)|L(V ) ≤Me−ρt,

then there is a Gaussian centered limiting measure µ∞ = N (0, Q∞) for (X(t), t ≥ 0) such that

w∗ − lim
t→∞

µx0
t = µ∞

for each initial condition x0 ∈ V where µx0
t = Law(Xx0(t)) and Law(·) denotes the probability

distribution.

Proof. See [4] for H > 1/2 and [6] for H < 1/2. �
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Remark 2.2. It should be noted that for H 6= 1/2 the limiting measure is not ”invariant” in
the following sense: If the initial distribution is the limiting measure and the initial value is
stochastically independent of BH , the law for the solution does not remain the same.

The covariance Q∞ has for H > 1/2 the following form:

Q∞ =
∫ ∞

0

∫ ∞
0

S(u)QS∗(v)φ(u− v) du dv,

where φ is given by (4). The form for H < 1/2 can be specified in terms of K∗H and precise
statement can be found in [6].

3. Strictly stationary solutions

Recall that a measurable V -valued process (X(t), t ≥ 0) is said to be strictly stationary, if for
all k ∈ N and for all arbitrary positive numbers t1, t2, . . . , tk, the probability distribution of the
V k-valued random variable (X(t1 + r), X(t2 + r), . . . , X(tk + r)) does not depend on r ≥ 0, i.e.

(6) Law(X(t1 + r), X(t2 + r), . . . , X(tk + r)) = Law(X(t1), X(t2), . . . , X(tk))

for all t1, t2, . . . , tk, r ≥ 0.

Theorem 3.1. If (A1) and (A2) are satisfied, then there exists a strictly stationary solution to
(1), i.e. there exists x̃, a random variable on (Ω,F ,P), such that (X x̃(t), t ≥ 0) is a strictly
stationary process with Law(X x̃(t)) = µ∞, t ≥ 0. In particular Law(x̃) = µ∞.

Proof. For t ≥ 0 let

Z̃t :=
∫ 0

−t
S(−u)Φ dBH(u).

It is clear that Z̃t is a V -valued random variable on (Ω,F ,P) with probability law µ0
t = N (0, Qt).

Let n ∈ R. We will show that the limit

x̃ = lim
n→∞

Z̃n

exists in L2(Ω, V ) and that
X x̃(t) = S(t)x̃+ Z(t),

where Z(t) is given by (3), is a stationary solution of (1).
First we show that Z̃n is a Cauchy sequence in L2(Ω, V ).
For all n ≥ m we have

E|Z̃n − Z̃m|2V = E

∣∣∣∣∫ 0

−n
S(−u)Φ dBH(u)−

∫ 0

−m
S(−u)Φ dBH(u)

∣∣∣∣2
V

= E

∣∣∣∣∫ −m
−n

S(−u)Φ dBH(u)
∣∣∣∣2
V

.

Denoting by B̃H(u) = BH(−u) an inverse process that is also a standard cylindrical fractional
Brownian motion with stationary increments we have

E|Z̃n − Z̃m|2V = E

∣∣∣∣∫ n

m

S(u)Φ dB̃H(u)
∣∣∣∣2
V

.

First consider the case H > 1/2. We can use for example estimate (1.1.17) from [19] to show
that

E

∣∣∣∣∫ n

m

S(u)Φ dB̃H(u)
∣∣∣∣2
V

≤
∫ n

m

∫ n

m

|S(u)Φ|L2(U,V )|S(v)Φ|L2(U,V )φ(u− v) du dv

≤
∫ n

m

∫ n

m

|S(u− 1)|L(V )|S(v − 1)|L(V )|S(1)Φ|2L2(U,V )φ(u− v) du dv
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and by the exponential stability (A2)

≤
∫ n

m

∫ n

m

M2e−ρ(u−1)e−ρ(v−1)|S(1)Φ|2L2(U,V )φ(u− v) du dv

≤ c1
∫ ∞
m

∫ ∞
m

e−ρue−ρvφ(u− v) du dv

≤ c2
∫ ∞
m

v2H−1e−ρv dv.

The last integral on the right hand side tends to 0 as m → ∞ and thus (Z̃t, t ≥ 1) is Cauchy in
L2(Ω, V ).

Next consider the case H < 1/2. Using (2) and (5) we have

E

∣∣∣∣∫ n

m

S(u)Φ dB̃H(u)
∣∣∣∣2
V

=
∑
i

∫ n

m

|K∗H(S(·)Φei)(r)|2V dr

≤ c
∑
i

∫ n

m

|S(r)Φei|2V r2(H−1/2) r2(1/2−H)

(n− r)1−2H

+ r1−2H

(∫ n

r

|S(s)ΦeisH−1/2 − S(r)ΦeirH−1/2|V
(s− r)3/2−H ds

)2

dr

≤ c1
∫ n

m

|S(r)Φ|2L2(V )

(n− r)1−2H
dr︸ ︷︷ ︸

I1

+ c2
∑
i

∫ n

m

r1−2H

[∫ n

r

|S(r)Φei|V |sH−1/2 − rH−1/2|
(s− r)3/2−H ds

]2

dr︸ ︷︷ ︸
I2

+ c3
∑
i

∫ n

m

r1−2H

[∫ n

r

sH−1/2|S(s)Φei − S(r)Φei|V
(s− r)3/2−H ds

]2

dr︸ ︷︷ ︸
I3

.

From (A1) and exponential stability (A2) it follows that there exist constants c > 0, ρ > 0, γ > 1
such that

|S(r)Φ|L2(V ) ≤ ce−ρrr−γ

for r > 0. Hence

I1 ≤ c1
∫ n

m

e−2ρr

(n− r)1−2Hr2γ
dr.

By substituting λ = r −m and T = n−m we get

I1 ≤ c11e
−2ρm

∫ T

0

e−2ρλ

(T − λ)1−2H(m+ λ)2γ
dλ

≤ c12e
−2ρm

(∫ T−1

0

e−2ρλ dλ+
∫ T

T−1

1
(T − λ)1−2H

dλ

)

≤ c13e
−2ρm

(∫ ∞
0

e−2ρλ dλ+
∫ 1

0

1
s1−2H ds

)
≤ c14e

−2ρm,
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which goes to zero as m goes to infinity. Next

I2 ≤ c21

∫ n

m

|S(r)Φ|2L2(V )r
1−2H

[∫ n

r

sH−1/2 − rH−1/2

(s− r)3/2−H ds

]2

dr

≤ c22

∫ n

m

|S(r)Φ|2L2(V )r
1−2H

[
r−1+2H

]2
dr

≤ c23

∫ n

m

e−2ρr

r1−2H+2γ
dr

≤ c24

∫ ∞
m

e−2ρr dr,

which also goes to zero as m goes to infinity. Finally, by setting ki(r, s) = |S(s)Φei−S(r)Φei|V
(s−r)3/2−H , we

get

I3 ≤ c31

∫ n

m

∑
i

(∫ min(n,r+1)

r

ki(r, s) ds

)2

dr + c31

∫ n

m

∑
i

(∫ n

min(n,r+1)

ki(r, s) ds

)2

dr

= c31

∫ n

m

∑
i

(∫ min(n,r+1)

r

ki(r, s) ds

)2

dr︸ ︷︷ ︸
J1

+ c41

∫ n−1

m

∑
i

(∫ n

r+1

ki(r, s) ds
)2

dr︸ ︷︷ ︸
J2

,

which converges to zero as m goes to infinity, because

J1 ≤ c32

∫ n

m

(∫ min(n,r+1)

r

|S(s− r
2 )− S( r2 )|L(V )

(s− r)3/2−H ds

)2∑
i

|S( r2 )Φei|2V dr

= c32

∫ n

m

(∫ min(n,r+1)

r

|S(s− r
2 )− S( r2 )|L(V )

(s− r)3/2−H ds

)2

|S( r2 )Φ|2L2(V )dr,

which is for all β > 0

≤ c33

∫ n

m

e−2ρ r2

( r2 )2γ

(∫ min(n,r+1)

r

|S(s− 3r
4 )− S( r4 )|L(Vβ ,V )

(s− r)3/2−H ds

)2

|S( r4 )Φ|2L(V,Vβ)

≤ c34

∫ n

m

e−ρr

r2γ+2β

(∫ min(n,r+1)

r

ds

(s− r)3/2−H−β

)2

dr

in particular for 1/2 > β > 1/2−H

≤ c35

∫ n

m

e−ρr

r2γ+2β

(∫ 1

0

dλ

λ3/2−H−β

)2

dr

≤ c36

∫ ∞
m

e−ρr dr → 0 as m→∞.
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Also,

J2 ≤ c42

∫ n−1

m

∑
i

(∫ n

r+1

|S(s)Φei|V
(s− r)3/2−H ds

)2

dr + c42

∫ n−1

m

∑
i

(∫ n

r+1

|S(r)Φei|V
(s− r)3/2−H ds

)2

dr

≤ c43

∫ n−1

m

∑
i

(∫ n

r+1

|S(s− r)|L(V )|S(r)Φei|V
(s− r)3/2−H ds

)2

dr

+ c42

∫ n−1

m

∑
i

(∫ n

r+1

|S(r)Φei|V
(s− r)3/2−H ds

)2

dr

≤ c44

∫ n−1

m

|S(r)Φ|2L2(V )

(∫ n

r+1

ds

(s− r)3/2−H

)2

dr

≤ c45

∫ n−1

m

e−2ρr

r2γ

(∫ ∞
r+1

ds

(s− r)3/2−H

)2

dr

≤ c46

∫ n−1

m

e−2ρr

(∫ ∞
1

dλ

λ3/2−H

)2

dr

≤ c47

∫ ∞
m

e−2ρr dr → 0 as m→∞.

We have shown that (Z̃t, t ≥ 1) is Cauchy in L2(Ω, V ) for H ∈ (0, 1). There is therefore a
V -valued random variable x̃ such that Z̃t → x̃ in L2(Ω, V ). Clearly the probability distribution
for x̃ is µ∞ = N (0, Q∞) where

Q∞ = lim
t→∞

Qt.

Now we are ready to show for all k ∈ N and all arbitrary times t1, t2, . . . , tk ≥ 0

Law
(
X x̃(t1 + r), X x̃(t2 + r), . . . , X x̃(tk + r)

)
= Law

(
X x̃(t1), X x̃(t2), . . . , X x̃(tk)

)
for all r ≥ 0.

Let t ≥ 0. Then

X x̃(t) = S(t)x̃+ Z(t)

= S(t)
(

lim
n→∞

∫ 0

−n
S(−u)ΦdBH(u)

)
+
∫ t

0

S(t− u)Φ dBH(u).

Since S(t) is a bounded operator on V and using the semigroup property

= lim
n→∞

∫ 0

−n
S(t− u)Φ dBH(u) +

∫ t

0

S(t− u)Φ dBH(u)

= lim
n→∞

∫ t

−n
S(t− u)Φ dBH(u).

For t, r ≥ 0 we have

X x̃(t+ r) = lim
n→∞

∫ t+r

−n
S(t+ r − u)Φ dBH(u).

Denoting by BHr (u) = BH(u− r) a process shifted in time by r,

= lim
n→∞

∫ t

−n−r
S(t− u)Φ dBHr (u)

= lim
n→∞

∫ t

−n
S(t− u)Φ dBHr (u),

because n+ r →∞ for arbitrary r ≥ 0.
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Since BH(u) and BHr (u) have stationary increments, we have for all k ∈ N and arbitrary times
t1, t2, . . . , tk,≥ 0

Law

 t1∫
−n

S(t1 − u)Φ dBHr (u),

t2∫
−n

S(t2 − u)Φ dBHr (u), . . . ,

tk∫
−n

S(tk − u)Φ dBHr (u)


= Law

 t1∫
−n

S(t1 − u)Φ dBH(u),

t2∫
−n

S(t2 − u)Φ dBH(u), . . . ,

tk∫
−n

S(tk − u)Φ dBH(u)


for all r ≥ 0. Since t1∫

−n

S(t1 − u)Φ dBHr (u),

t2∫
−n

S(t2 − u)Φ dBHr (u), . . . ,

tk∫
−n

S(tk − u)Φ dBHr (u)


−−−−→
n→∞

(
X x̃(t1 + r), X x̃(t2 + r), . . . , X x̃(tk + r)

)
in L2(Ω, V k) and t1∫

−n

S(t1 − u)Φ dBH(u),

t2∫
−n

S(t2 − u)Φ dBH(u), . . . ,

tk∫
−n

S(tk − u)Φ dBH(u)


−−−−→
n→∞

(
X x̃(t1), X x̃(t2), . . . , X x̃(tk)

)
in L2(Ω, V k), we deduce that

Law
(
X x̃(t1 + r), X x̃(t2 + r), . . . , X x̃(tk + r)

)
= Law

(
X x̃(t1), X x̃(t2), . . . , X x̃(tk)

)
.

�

4. Ergodic theorems

4.1. Ergodic theorem for a strictly stationary solution. At first we recall the famous
Birkhoff’s theorem for strictly stationary processes.

Theorem 4.1 (Birkhoff’s theorem). Let (X x̃(t), t ≥ 0) be a V -valued strictly stationary process
on (Ω,F ,P). Then for all measurable functionals % : V → R such that E|%(x̃)| < ∞ there exists
a measurable functional ξ : Ω→ R such that

(7) lim
T→∞

1
T

∫ T

0

%(X x̃
t ) dt = ξ, a.s.-P.

Proof. See e.g [25]. �

Recall that a V -valued strictly stationary process (X(t), t ≥ 0) is said to be ergodic, if ξ in (7)
does not depend on ω ∈ Ω, i.e. ξ is deterministic, and ξ = E[%(x̃)].

Lemma 4.2. Let (Y (t), t ≥ 0) be a R-valued strictly stationary centered Gaussian process and
let R(t) := E[Y (0)Y (t)] be the correlation function of the process Y (t). Then the process Y (t) is
ergodic if lim

t→∞
R(t) = 0.

Proof. See e.g [25]. �

If the semigroup (S(t), t ≥ 0) is analytic, it is well known (cf. [17]), that for all γ > 0 there
exist constants ĉγ , c̃γ > 0 such that |S(t)z − z| ≤ ĉγt

γ |z|γ and |S(t)z|γ ≤ c̃γt
−γ |z|V , where

|z|γ = |(βI −A)γz|V .
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Lemma 4.3. Let S(t) be analytic and let z ∈ V and T > 0 be arbitrary. Then for all 0 < s <
r ≤ T ,

(8) |(S∗(r)− S∗(s))z|V ≤ cγ |r − s|γ |s|−γ |z|V ,

for a constant cγ <∞.

Proof.

|(S∗(r)− S∗(s))z)|V =
∣∣(S∗(r − s

2 )− S∗( s2 )
)
S∗( s2 )z

∣∣
V

≤ ĉγ |r − s|γ
∣∣S∗( s2 )z

∣∣
γ

≤ cγ |r − s|γ |s|−γ |z|V .

�

The following two Lemmas 4.4 and 4.5 will be needed in the proof of the ergodic Theorem 4.6
below.

Lemma 4.4. Let (A1) and (A2) be satisfied. Let 0 < H < 1/2 and let z ∈ V be arbitrary. Then

lim
t→∞

E 〈x̃, z〉V

〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

= 0

Proof. Let x̃n :=
∫ 0

−n S(−r)Φ dBHr . We have that x̃n → x̃ in L2(Ω, V ) and by the Cauchy-Schwarz
inequality it follows that

E|x̃n − x̃|V ·
∣∣∣∣∫ t

0

S(t− r)Φ dBH(r)
∣∣∣∣
V

≤
{
E|x̃n − x̃|2V

}1/2

{
E

∣∣∣∣∫ t

0

S(t− r)Φ dBH(r)
∣∣∣∣2
}1/2

≤ c
{
E|x̃n − x̃|2V

}1/2
sup
t≥0

(TrQt)1/2(9)

which goes to zero as n→∞ uniformly in t. It is therefore sufficient to show that for each n ∈ N

(10) lim
t→∞

E 〈x̃n, z〉
〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

= 0.

Let n ∈ N be fixed. Then

E 〈x̃n, z〉
〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

= E

{∑
i

∫ 0

−n
〈S(−r)Φei, z〉V dβHi

}{∑
i

∫ t

0

〈S(t− r)Φei, z〉V dβHi

}
.

Since βi are stochastically independent and have stationary increments, we get

E 〈x̃n, z〉
〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

=
∑
i

E

∫ n

0

ϕi(n− r) dβHi
∫ n+t

n

ϕi(t+ n− r) dβHi ,(11)

where ϕi(r) = 〈S(r)Φei, z〉V . For a fixed i ∈ N (that is suppressed in the notation) set

ψ(r) =

{
ϕ(n− r) for r ∈ [0, n]
0 for r ∈ [n, n+ t],

χ(r) =

{
0 for r ∈ [0, n]
ϕ(t+ n− r) for r ∈ [n, n+ t].
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Then

E

∫ n

0

ϕ(n− r) dβHi
∫ n+t

n

ϕ(t+ n− r) dβHi

=
∫ n+t

0

(K∗Hψ) (s) (K∗Hχ) (s) ds,

where K∗H is the operator defined in Section 2 (with T = n+ t). Using the form (5) of the operator
K∗H we get

=
∫ n

0

(K∗Hψ) (s)
(
cHs

1/2−H
∫ n+t

n

rH−1/2ϕ(t+ n− r)
(r − s)3/2−H dr

)
ds.(12)

Note that

s1/2−H
∫ n+t

n

rH−1/2ϕ(t+ n− r)
(r − s)3/2−H dr ≤

∫ n+t

n

ϕ(t+ n− r)
(r − s)3/2−H dr

≤
∫ t

0

|ϕ(λ)|
(t+ n− s− λ)3/2−H dλ.(13)

Let us now turn back to (11). By (12) and (13) we may estimate∑
i

∫ n

0

{( |ϕi(n− s)|
(n− s)1/2−H + s1/2−H

∫ n

s

|rH−1/2ϕi(n− r)− sH−1/2ϕi(n− s)|
(r − s)3/2−H dr

)
·

·
∫ t

0

|ϕi(λ)|
(t+ n− s− λ)3/2−H dλ

}
ds

=
∫ n

0

{∑
i

|ϕi(n− s)|
(n− s)1/2−H

∫ t−1

0

|ϕi(λ)|
(t+ n− s− λ)3/2−H dλ︸ ︷︷ ︸
I

+
∑
i

|ϕi(n− s)|
(n− s)1/2−H

∫ 1

0

|ϕi(r + t− 1)|
(1 + n− s− r)3/2−H dr︸ ︷︷ ︸
II

+
∑
i

s1/2−H
∫ n

s

|rH−1/2ϕi(n− r)− sH−1/2ϕi(n− s)|
(r − s)3/2−H dr

∫ t−1

0

|ϕi(λ)|
(t+ n− s− λ)3/2−H dλ︸ ︷︷ ︸

III

+
∑
i

s1/2−H
∫ n

s

|rH−1/2ϕi(n− r)− sH−1/2ϕi(n− s)|
(r − s)3/2−H dr

∫ 1

0

|ϕi(λ+ t− 1)|
(1 + n− s− λ)3/2−H dλ︸ ︷︷ ︸

IV

}
ds.

We will now prove the convergence to zero as t→∞ for particular terms I - IV .
We have

I =
1

(n− s)1/2−H

∫ t−1

0

1
(t+ n− s− λ)3/2−H

∑
i

|ϕi(n− s)| · |ϕi(λ)| dλ

by Cauchy-Schwarz inequality

≤ 1
(n− s)1/2−H

∫ t−1

0

1
(t+ n− s− λ)3/2−H

{∑
i

ϕ2
i (n− s)

}1/2{∑
i

|ϕ2
i (λ)|

}1/2

dλ

=
1

(n− s)1/2−H

∫ t−1

0

1
(t+ n− s− λ)3/2−H |Φ

∗S∗(n− s)z| · |Φ∗S∗(λ)z| dλ
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using the estimate |Φ∗S∗(·)z| ≤ |Φ∗| · |S∗(·)z| ≤ c|S∗(·)z|

≤ c11

(n− s)1/2−H |S
∗(n− s)z|

∫ ∞
0

1
(t+ n− s− λ)3/2−H |S

∗(λ)z|1[λ≤t−1] dλ,

which converges to zero as t→∞ for each s ∈ (0, n) by dominated convergence theorem (DCT in
what follows), because |S∗(λ)z| ≤ ce−ωλ. We also have

I ≤ c12

(n− s)1/2−H |S
∗(n− s)z|

∫ ∞
0

e−ωλ dλ

≤ c13

(n− s)1/2−H ,

which is an integrable majorant, and therefore (again by DCT)
∫ n

0
I ds goes to zero. In a similar

manner we have

II ≤ c21

(n− s)1/2−H |S
∗(n− s)z|

∫ 1

0

1
(1 + n− s− r)3/2−H |S

∗(r + t− 1)z| dr

≤ c22

(n− s)1/2−H |S
∗(n− s)z|

∫ 1

0

e−ω(r+t−1)

(1 + n− s− r)3/2−H dr

which converges pointwise to zero by Levi’s theorem (for t = 1 the integrand is less than c
(n−s)3/2−H ).

We have

II ≤ c23

(n− s)1/2−H |S
∗(n− s)z|

∫ 1

0

dr

(1 + n− s− r)3/2−H

≤ c24

(n− s)1/2−H
1

(n− s)1/2−H

=
c24

(n− s)1−2H
,

which is integrable, and therefore (by DCT)
∫ n

0
II ds goes to zero. Next we have (by adding and

subtracting rH−1/2ϕi(n− s) in the numerator of the first term)

III ≤
∑
i

s1/2−H
(
|ϕi(n− s)|

∫ n

s

|rH−1/2 − sH−1/2|
(r − s)3/2−H +

∫ n

s

rH−1/2|ϕi(n− r)− ϕi(n− s)|
(r − s)3/2−H dr

)
·

·
∫ t−1

0

|ϕi(λ)|
(t+ n− s− λ)3/2−H dλ

≤ c31

∑
i

(
s1/2−H |ϕi(n− s)|s−1+2H +

∫ n

0

|ϕi(n− r)− ϕi(n− s)|
(r − s)3/2−H dr

)
·

·
∫ t−1

0

|ϕi(λ)|
(t+ n− s− λ)3/2−H dλ

≤ c32s
H−1/2

∫ t−1

0

∑
i |ϕi(n− s)| · |ϕi(λ)|

(t+ n− s− λ)3/2−H dλ+ c33

∫ n

s

∫ t−1

0

∑
i |ϕi(λ)| · |ϕi(n− r)− ϕi(n− s)|

(t+ n− s− λ)3/2−H(r − s)3/2−H dλ dr

≤ c34s
H−1/2|S∗(n− s)z|

∫ ∞
0

|S∗(λ)z|1[λ≤t−1] dλ

(t+ n− s− λ)3/2−H

+ c35

∫ ∞
0

|S∗(λ)z|1[λ≤t−1] dλ

(t+ n− s− λ)3/2−H

∫ n

s

|(S∗(n− r)− S∗(n− s))z|
(r − s)3/2−H dr.
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The first two integrals on the right hand side are identical and converge to zero as t→∞ as shown
in the above estimate of I, hence the whole right hand side tends to zero. Using the estimate (8)
we have

III ≤ c36s
H−1/2|S∗(n− s)z| 1

(n− s)1/2−H +
c37

(n− s)1/2−H

∫ n

s

cγ |r − s|γ |n− s|−γ

(r − s)3/2−H dr

≤ c36|S∗(n− s)z|
s1/2−H(n− s)1/2−H +

c38

(n− s)1−2H

which is integrable and by DCT
∫ n

0
III ds goes to zero. In a similar manner we have

IV ≤ c41s
H−1/2

∫ 1

0

∑
i |ϕi(n− s)| · |ϕi(λ+ t− 1)|

(1 + n− s− λ)3/2−H dλ

+ c42

∫ n

s

∫ 1

0

∑
i |ϕi(λ+ t− 1)| · |ϕi(n− r)− ϕi(n− s)|

(1 + n− s− λ)3/2−H(r − s)3/2−H dλ dr

≤ c43s
H−1/2|S∗(n− s)z|

∫ 1

0

|S∗(λ+ t− 1)z|
(1 + n− s− λ)3/2−H dλ

+ c44

∫ 1

0

|S∗(λ+ t− 1)z|
(1 + n− s− λ)3/2−H dλ

∫ n

s

|(S∗(n− r)− S∗(n− s))z|
(r − s)3/2−H dr

≤ c45s
H−1/2e−ω(t−1)

∫ 1

0

dλ

(1 + n− s− λ)3/2−H

+ c46e
−ωt

∫ 1

0

dλ

(1 + n− s− λ)3/2−H

∫ n

s

|(S∗(n− r)− S∗(n− s))z|
(r − s)3/2−H dr

which converges pointwise to zero as t → ∞. Using the estimate (8) we have as in the previous
case

IV ≤ c47

s1/2−H(n− s)1/2−H +
c48

(n− s)1/2−H
cγ

(n− s)1/2−H

which is integrable, and therefore by DCT
∫ n

0
IV ds tends to zero.

To recapitulate, we have proven that integral∫ n

0

(I + II + III + IV ) ds

goes to zero, i.e. we have shown (10) which completes the proof. �

Lemma 4.5. Let (A1) and (A2) be satisfied. Let 1/2 < H < 1 and let z ∈ V be arbitrary. Then

lim
t→∞

E 〈x̃, z〉V

〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

= 0

Proof. Set

R̃(t) = E

[
〈x̃, z〉V

〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

]
= E

[〈
lim
n→∞

∫ 0

−n
S(−r)Φ dBH(r), z

〉
V

〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

]
= lim
n→∞

E

[〈∫ 0

−n
S(−r)Φ dBH(r), z

〉
V

〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

]
= lim
n→∞

E

[〈∫ t

−n
ψ(r) dBH(r), z

〉
V

〈∫ t

−n
χ(r) dBH(r), z

〉
V

]
= lim
n→∞

〈
Q̂n,tz, z

〉
V
,
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where

ψ(r) =

{
S(−r)Φ for r ∈ [−n, 0)
0 for r ∈ [0, t],

χ(r) =

{
S(t− r)Φ for r ∈ [0, t]
0 for r ∈ [−n, 0).

and Q̂n,t is the covariance operator of
∫ t
−n ψ(r) dBH(r) and

∫ t
−n χ(r) dBH(r).

Since H > 1/2, we know the form of the covariance operator

(14) Q̂n,t =
∫ t

−n

∫ t

−n
ψ(r)χ∗(s)φ(r − s) dr ds,

where φ is given by (4). Therefore

R̃(t) ≤ lim
n→∞

∫ t

0

∫ 0

−n
|Φ∗S∗(t− s)z|V |Φ∗S∗(−r)z|V φ(r − s) dr ds

and by the exponential stability (A2)

R̃(t) ≤M2|z|2V lim
n→∞

∫ t

0

∫ 0

−n
e−ρ(t−s)e−ρ(−r)φ(r − s) dr ds

≤M2|z|2V
∫ ∞

0

∫ ∞
0

e−ρse−ρrφ̂(t+ r − s) dr ds,

where

φ̂(u) =

{
φ(u) for u ≥ 0
0 for u < 0

and using the fact that φ(−u) = φ(u) for all u ∈ R. Since the function φ̂(t+ r − s) is decreasing
as t → ∞ for all s, r ∈ R, we deduce that R̃(t) goes to 0 as t → ∞ completing the proof by the
Lebesgue monotone convergence theorem. �

Theorem 4.6 (Ergodic theorem for a strictly stationary solution). Let (X x̃(t), t ≥ 0) be a V -
valued strictly stationary solution to (1). Let % : V → R be a measurable functional such that
E|%(x̃)| <∞. Then

lim
T→∞

1
T

∫ T

0

%(X x̃(t)) dt =
∫
V

%(y)µ∞(dy), a.s.-P.

Proof. Let z ∈ V be arbitrary and let (Y (t), t ≥ 0) be a R-valued process defined by

Y (t) :=
〈
X x̃(t), z

〉
V
.

Then Y (0) = 〈x̃, z〉V . We prove that the process Y (t) is ergodic. By Lemma 4.2 we have to show
that lim

t→∞
R(t) = 0.

R(t) = E[Y (0)Y (t)]

= E[〈x̃, z〉V
〈
X x̃(t), z

〉
V

]

= E

[
〈x̃, z〉V

〈
S(t)(x̃) +

∫ t

0

S(t− r)Φ dBH(r), z
〉
V

]
= E [〈x̃, z〉V 〈S(t)(x̃), z〉V ]︸ ︷︷ ︸

I

+E
[
〈x̃, z〉V

〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

]
︸ ︷︷ ︸

II

.
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We will estimate both terms separately.
The first term

E|I| = E |〈x̃, z〉V 〈S(t)(x̃), z〉V |
≤ E|S(t)x̃|V |z|2V |x̃|V

and using the exponential stability bound (A2)

≤Me−ρt|z|2V E|x̃|2V ,

which goes to 0 as t → ∞, because E|x̃|2V < ∞. The second term is for H = 1/2 equal to zero,
because x̃ and the convolution integral

∫ t
0
S(t − r)Φ dBH(r) are stochastically independent and

therefore

E[II] = E

[
〈x̃, z〉V

〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

]
= E [〈x̃, z〉V ] E

[〈∫ t

0

S(t− r)Φ dBH(r), z
〉
V

]
= 0.

For H 6= 1/2 we obtain that E[II] goes to zero as t → ∞ by Lemma 4.4 and 4.5 respectively.
Thus the process Y (t) =

〈
X x̃(t), z

〉
V

is ergodic for each z ∈ V .
Take (hn, n ∈ N) any orthonormal basis in V . Then

E 〈x̃, hn〉V = lim
T→∞

1
T

∫ T

0

〈
X x̃(t), hn

〉
V
dt = 0

on Ωn ⊂ Ω, P(Ωn) = 1. On the other hand, by Theorem 4.1

lim
T→∞

1
T

∫ T

0

X x̃(t) dt = ξ

on Ω0 ⊂ Ω, P(Ω0) = 1. Taking Ω′ =
∞⋂
n=0

Ωn, we have P(Ω′) = 1 and

0 = lim
T→∞

1
T

∫ T

0

〈
X x̃(t), hn

〉
V
dt

= lim
T→∞

〈
1
T

∫ T

0

X x̃(t) dt, hn

〉
V

=

〈
lim
T→∞

1
T

∫ T

0

X x̃(t) dt, hn

〉
V

= 〈ξ, en〉V
on Ω′. Hence 〈ξ, hn〉V = 0 for each n on Ω′, i.e. ξ = 0, a.s.-P, and it follows that X x̃(t) is
ergodic. �

4.2. Ergodic theorems for an arbitrary solution. In this section we will apply the previous
results to the solution of (1) with arbitrary initial condition.

Theorem 4.7. Let (A1) and (A2) be satisfied and let (Xx0(t), t ≥ 0) be a solution to (1). Let
% : V → R be a functional satisfying the global Lipschitz condition, i.e. there exists a constant
L > 0 such that

(15) |%(x)− %(y)| ≤ L|x− y|V
for all x, y ∈ V . Then

lim
T→∞

1
T

∫ T

0

%(Xx0(t)) dt =
∫
V

%(y)µ∞(dy), a.s.-P.

for all x0 ∈ V .
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Proof. The desired convergence can be rewritten as

lim
T→∞

∣∣∣∣∣ 1
T

∫ T

0

%
(
Xx0(t)

)
dt −

∫
V

%(y)µ∞(dy)

∣∣∣∣∣ = 0, a.s.-P,

for all x0 ∈ V . Let (X x̃(t), t ≥ 0) be a strictly stationary solution to (1). Then obviously∣∣∣∣ 1
T

∫ T

0

%
(
Xx0(t)

)
dt − 1

T

∫ T

0

%
(
X x̃(t)

)
dt

∣∣∣∣
≤ 1
T

∫ T

0

∣∣∣%(Xx0(t)
)
− %
(
X x̃(t)

)∣∣∣ dt.
We will show that the right hand side goes to zero as T → ∞. Using the Lipschitz assumption
(15) and the exponential stability bound (A2) we get

≤ L

T

∫ T

0

∣∣Xx0(t)−X x̃(t)
∣∣
V
dt

=
L

T

∫ T

0

|S(t)(x0 − x̃)|V dt

≤ L

T
|x0 − x̃|V

∫ T

0

Me−ρt dt,

which goes to zero as T →∞ completing the proof. �

The global Lipschitz continuity of % is a rather restrictive condition. We may relax it (cf.
Theorem 4.9 below) for Φ ∈ L2(U, V ) which corresponds to the important case when the driving
process is, in fact, a genuine V -valued fractional Brownian motion.

Definition 4.1. Let Q be a nonnegative, self-adjoint, trace class operator on V . A V -valued
Gaussian process (BHQ (t), t ∈ R) on (Ω,F ,P) is called a fractional Brownian motion of covariance
type with Hurst parameter H ∈ (0, 1) and covariance Q (or simply a fractional Q-Brownian motion
with Hurst parameter H) if

(1) EBHQ (t) = 0 for all t ∈ R,

(2) Cov(BHQ (t), BHQ (s)) =
1
2

(|t|2H + |s|2H − |t− s|2H)Q, for all s, t ∈ R,

(3) (BHQ (t), t ∈ R) has V -valued, continuous sample paths a.s.-P.

Let (BH(t), t ∈ R) be a standard cylindrical fractional Brownian motion in U . Let Φ ∈ L2(U, V )
and set Q = ΦΦ∗. Then there exists (see e.g. [19], Proposition 1.1.1) a Q-covariance fractional
Brownian motion (BHQ (t), t ∈ R) such that for all z ∈ V〈

BHQ (t), z
〉
V

=
〈
BH(t),Φ∗z

〉
, a.s.-P.

Moreover, the solution (X x̃0(t), t ≥ 0) of (1) is a.s.-P identical with the solution to

(16)
dX(t) = AX(t) dt+ dBHQ (t),

X(0) = x0.

We recall some a.s.-P growth estimates and a representation of the solution to equation (16)
that have been proved in [15].

Lemma 4.8. Let Φ ∈ L2(U, V ). Then

(17)
∫ t

0

S(t− r) dBHQ (r) = A

∫ t

0

S(t− r)BHQ (r) dr +BHQ (t), a.s.-P,

for t ≥ 0. Let moreover δ ∈ (0, H). Then for any ω ∈ Ω, ε > 0 there exists a constant k(ω, ε, δ)
such that

(18) |BHQ (t+ ·)−BHQ (t)|Cδ([0,1],V ) + |BHQ (t)|V ≤ εt2 + k(ω, ε)

for t ∈ R.
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Proof. Both statements are proved in [15] (cf. Lemmas 2.4 and 2.6 for (18) and Proposition 3.1
for (17)). In [15], only the case H > 1/2 is considered; however, for H < 1/2 the proof of (18)
remains unchanged and the proof of (17) works after a small modificaton taking into account the
different form of covariance of the solution. �

Theorem 4.9. Let (A1) and (A2) be satisfied and let (Xx0(t), t ≥ 0) be a solution to (1) with
Φ ∈ L2(U, V ). Let % : V → R be a functional satisfying the following local Lipschitz condition: let
there exist real constants K > 0 and m ≥ 0 such that

(19) |%(x)− %(y)| ≤ K|x− y|V (1 + |x|mV + |y|mV )

for all x, y ∈ V . Then

(20) lim
T→∞

1
T

∫ T

0

%(Xx0(t)) dt =
∫
V

%(y)µ∞(dy), a.s.-P.

Proof. Let (X x̃(t), t ≥ 0) be a strictly stationary solution to (1). Then obviously∣∣∣∣ 1
T

∫ T

0

%
(
Xx0(t)

)
dt − 1

T

∫ T

0

%
(
X x̃(t)

)
dt

∣∣∣∣
≤ 1
T

∫ T

0

∣∣∣%(Xx0(t)
)
− %
(
X x̃(t)

)∣∣∣ dt.
We will show that the right hand side goes to zero as T →∞. Using the local Lipschitz assumption
(19) we get

1
T

∫ T

0

∣∣∣%(Xx0(t)
)
− %
(
X x̃(t)

)∣∣∣ dt
≤ K

T

∫ T

0

∣∣Xx0(t)−X x̃(t)
∣∣
V

(
1 + |Xx0(t)|mV + |X x̃(t)|mV

)
dt

≤ K

T

∫ T

0

|S(t)(x0 − x̃)|V
(

1 + |S(t)x0 + Z(t)|mV + |S(t)x̃+ Z(t)|mV
)
dt

≤ K

T

∫ T

0

|S(t)|L(V )|x0 − x̃|V |z|V
(

1 + c1|S(t)|mL(V ) (|x0|mV + |x̃|mV ) + c2|Z(t)|mV
)
dt

and in virtue of the exponential stability bound (A2)

≤ KM

T
|x0 − x̃|V |z|V

∫ T

0

e−ρt
(

1 + c1Me−ρmt (|x0|mV + |x̃|mV ) + c2|Z(t)|mV
)
dt

≤ c3
T

∫ T

0

e−ρt
(

1 + c4e
−ρmt + c2|Z(t)|mV

)
dt.(21)

We need the last term on the right hand side to go to zero as T →∞. By Lemma 4.8 we have

|Z(t)|V ≤
∣∣∣∣A∫ t

0

S(t− r)BHQ (r) dr
∣∣∣∣
V

+ |BHQ (t)|V

≤
∣∣∣∣A∫ t−1

0

S(t− r)BHQ (r) dr
∣∣∣∣
V

+
∣∣∣∣A∫ 1

0

S(1− s)BHQ (s+ t− 1) ds
∣∣∣∣
V

+ |BHQ (t)|V .(22)

The condition (A2) and analyticity of the semigroup (S(t), t ≥ 0) yield∣∣∣∣A ∫ t−1

0

S(t− r)BHQ (r) dr
∣∣∣∣
V

≤ c5
∫ t−1

0

e−ρ(t−r)

(t− r)
|BHQ (r)|V dr

≤ c5
∫ t−1

0

e−ρ(t−r)|BHQ (r)|V dr

≤ εt2 + k1,(23)
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for each ε > 0 and random constant k1 = k1(ω, ε), ω ∈ Ω, by Lemma 4.8. Also, for each δ ∈ (0, H)
there is a constant k2 = k2(δ) such that∣∣∣∣A ∫ 1

0

S(1− s)BHQ (s+ t− 1) ds
∣∣∣∣
V

≤
∣∣∣∣A ∫ 1

0

S(1− s)(BHQ (s+ t− 1)−BHQ (t− 1)) ds
∣∣∣∣
V

+
∣∣∣∣A∫ 1

0

S(1− s)BHQ (t− 1) ds
∣∣∣∣
V

≤ k2

(
|BHQ (·+ t− 1)−BHQ (t− 1)|Cδ([0,1],V ) + |BHQ (t− 1)|V

)
(24)

by [26], p. 44. By (22), (23), (24) and Lemma 4.8 it follows that

|Zt| ≤ k3(1 + t2), t ≥ 0,

for a constant k3 = k3(ω), ω ∈ Ω, which by (21) yields

1
T

∫ T

0

|%(Xx0(t)− %(X x̃(t)| dt ≤ k4

T

∫ T

0

e−ρmt(1 + t2)m dt

for a random constant k4 = k4(ω), ω ∈ Ω, which tends to zero as T → ∞. Now (20) follows by
Theorem 4.6. �

Example 4.1. Consider the initial boundary value problem for stochastic parabolic equation

(25)

∂u

∂t
(t, x) = [Lu](t, x) + ξ(t, x), (t, x) ∈ R+ ×D,

u(0, x) = u0(x), x ∈ D,
u(t, x) = 0, t ∈ R+, x ∈ ∂D,

where D ⊂ Rd is a bounded domain with a smooth boundary, L is a second order uniformly elliptic
operator on D and η is a noise process that is the formal time derivative of a space dependent
fractional Brownian motion.

To provide a rigorous meaning to (25), we rewrite the parabolic system as an infinite dimensional
stochastic differential equation

(26) dX(t) = AX(t) dt+ Φ dBH(t)

for t ≥ 0 where the space V is L2(D), A = L|Dom(A) generates an exponentially stable strong
continuous analytic semigroup (S(t), t ≥ 0) on V with Dom(A) = H2(D) ∩ H1

0 (D), U = V and
the noise ξ is modelled as the formal derivative Φ(dBH/dt), (BH(t), t ≥ 0) is a standard cylindrical
fractional Brownian motion in U and Φ ∈ L(V ).

If Φ ∈ L2(V ), which corresponds to the case where the fractional Brownian motion in (26) is
of Q-covariance type, then it follows from Proposition 2.1 that there is a Vδ continuous solution
to (26) for δ < H.

An interesting case occurs if it is only assumed that Φ ∈ L(V ) so that (BH(t), t ≥ 0) is only
a standard cylindrical fractional Brownian motion. By standard estimates on the Green function
for dx/dt = Ax it follows that

|S(t)|L2(V ) ≤ ct−d/4

for t ∈ (0, T ], c > 0 and d is the dimension of the underlying space. It follows from Proposition
2.1 with γ = d/4 that if

d/4 < H

then the condition (A1) is satisfied and hence there is a β-Hölder continuous solution in Vδ if
β + δ ∈ [0, H − d/4). It is well known that the semigroup (S(t), t ≥ 0) is exponentially stable
on V , so (A2) is satisfied and there is a limiting measure. If the standard cylindrical fractional
Brownian motion in (26) is replaced by a standard cylindrical Wiener process, that is H = 1/2,
then a V -valued solution exists only if d = 1.

The above analysis shows that the conditions (A1) and (A2) are satisfied and hence by Theorems
3.1 and 4.6 there exists a strictly stationary solution to (26) that is ergodic. If Φ ∈ L2(V ), Theorem
4.9 may be applied as well, which shows the ergodic behaviour of solutions with arbitrary initial
condition.
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Example 4.2. Consider the initial boundary value problem for stochastic hyperbolic equation

(27)

∂2u

∂t2
(t, x) + a

∂u

∂t
(t, x) = Lu(t, x) + ξ(t, x), (t, x) ∈ R+ ×D,

∂u

∂t
(0, x) = u1(x), x ∈ D,

u(0, x) = u2(x), x ∈ D,
u(t, x) = 0, (t, x) ∈ R+ × ∂D,

where D, L and ξ satisfy the conditions in Example 4.1 and a ≥ 0 is a real constant parameter.
We rewrite the hyperbolic system (27) as an infinite dimensional stochastic differential equation

(28)
dX(t) = AX(t) dt+ Φ dBH(t)

X(0) = x0 = (u1, u2).

Let Λ = L|Dom(Λ), Dom(Λ) = H1
0 (D) ∩H1(D), Dom(A) = Dom(Λ)×Dom(−Λ)1/2 and

A =
(

0 I
Λ −aI

)
It is well known that A generates a strongly continuous semigroup in the space V = Dom(−Λ)1/2×
L2(D). Let (BH(t), t ≥ 0) be a standard cylindrical fractional Brownian motion with Hurst
parameter H ∈ (1/2, 1) and

Φ =
(

0 0
0 Q

1/2
2

)
,

where Q
1/2
2 is a Hilbert-Schmidt operator on L2(D). It follows from Proposition 2.1 that the

solution of (28) exists and has V -continuous sample paths.
If a > 0 then the semigroup (S(t), t ≥ 0) is exponentially stable and by Theorems 3.1 and 4.6

there exists a strictly stationary solution to (28) that is ergodic (cf. also Remark 2.1).

5. Parameter estimates based on ergodicity

In this section we present the results on parameter estimation in infinite dimensional equations
that are based on the ergodic theorems proved in the previous section.

Consider the linear equation

(29)
dX(t) = αAX(t) dt+ Φ dBH(t),

X(0) = x0,

where α > 0 is a real constant parameter, (BH(t), t ≥ 0) is a standard cylindrical fractional
Brownian motion in U and U is a separable Hilbert space, A : Dom(A) → V , Dom(A) ⊂ V , A
is the infinitesimal generator of an exponentially stable (strongly continuous) analytic semigroup
(S(t), t ≥ 0) on the separable Hilbert space V , Φ ∈ L2(U, V ) and x0 ∈ V .

The operator αA is the infinitesimal generator of the semigroup (Sα(t), t ≥ 0). Obviously
Sα(t) = S(αt) for all t ≥ 0. The semigroup (Sα(t), t ≥ 0) is also exponentially stable and there is
a limiting measure µα∞ = N (0, Qα∞).

For H > 1/2 we have

Qα∞ =
∫ ∞

0

∫ ∞
0

Sα(u)QS∗α(v)φ(u− v) du dv

=
1
α2

∫ ∞
0

∫ ∞
0

S(u)QS∗(v)φ
(u
α
− v

α

)
du dv

=
1
α2H

Q∞,

where Q∞ corresponds to the case α = 1 (cf. Remark 2.2).
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For H < 1/2 and x, y ∈ V we have

〈Qα∞x, y〉V = lim
T→∞

〈QαTx, y〉V

= lim
T→∞

∞∑
n=1

E

〈∫ T

0

Sα(r)Φhn dβHn (r), x

〉
V

〈∫ T

0

Sα(r)Φhn dβHn (r), y

〉
V

= lim
T→∞

∫ T

0

∞∑
n=1

〈K∗H(Sα(·)Φhn)(r), x〉V 〈K
∗
H(Sα(·)Φhn)(r), x〉V dr.

Using the representation (5) and a simple substitution theorem we also arrive at

〈Qα∞x, y〉V =
1
α2H

〈Q∞x, y〉V

for all x, y ∈ V and therefore

Qα∞ =
1
α2H

Q∞.

For H = 1/2 this equality is obvious.
Based on the above results, some strongly consistent families of estimators of the parameter α

may be proposed.

Theorem 5.1. Let (A1) and (A2) be satisfied and let (Xx0(t), t ≥ 0) be a V -valued solution
to (29) with Φ ∈ L2(U, V ). Let z ∈ V be arbitrary and let the limiting measure µ∞ exists with
covariance Q∞ such that

〈Q∞z, z〉V > 0.

Define

α̂T :=

(
〈Q∞z, z〉V

1
T

∫ T
0
| 〈Xx0(t), z〉V |2 dt

) 1
2H

.

Then
lim
T→∞

α̂T = α, a.s.-P.

Proof. Let z ∈ V be arbitrary. Let % : V → R, %(y) = 〈y, z〉2V , y ∈ V . Then all the conditions of
Theorem 4.9 are satisfied with m = 1 and

lim
T→∞

1
T

∫ T

0

%
(
Xx0(t)

)
dt = lim

T→∞

1
T

∫ T

0

| 〈Xx0(t), z〉V |
2 dt

=
∫
V

| 〈y, z〉V |
2 µ∞(dy)

= 〈Qα∞z, z〉V

=
1
α2H

〈Q∞z, z〉V , a.s.-P,

which completes the proof. �

Theorem 5.2. Let (A1) and (A2) be satisfied and let (Xx0(t), t ≥ 0) be a V -valued solution to
(29) with Φ ∈ L2(U, V ), Φ 6= 0. Define

α̂T :=

(
TrQ∞

1
T

∫ T
0
|Xx0(t)|2V dt

) 1
2H

.

Then
lim
T→∞

α̂T = α.
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Proof. Let % : V → R, %(y) = |y|2V , y ∈ V . Then all the conditions of Theorem 4.9 are satisfied
with m = 1 and

lim
T→∞

1
T

∫ T

0

%(Xx0(t)) dt = lim
T→∞

1
T

∫ T

0

|Xx0(t)|2V dt

=
∫
V

|Xx0(t)|2V dµ∞

= TrQα∞

=
1
α2H

TrQ∞.

It remains to check that TrQ∞ 6= 0. If we admit that TrQ∞ = 0 then obviously the strictly
stationary solution X x̃ = 0, a.s.-P, i.e. x̃ = 0, a.s.-P, and

∫ t
0
S(t− r)Φ dBH(r) = 0, a.s.-P, for each

t ≥ 0. It is easy to see that it contradicts the condition Φ 6= 0. �

Remark 5.1. Theorems 5.1 and 5.2 may be applied to the equation from Example 4.1 where the
operator L depends on a parameter α > 0, L(α) = αL.

One observation path is sufficient to get a consistent almost sure estimate for T → ∞. If we
have more observations, we can propose similar estimates using mean values (see e.g. [19]). Some
examples in parameter estimation including numerical simulations can be found in [20] and [21].
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[20] J. Posṕı̌sil, Numerical approaches to parameter estimates in stochastic differential equations driven by frac-

tional Brownian motion, Proceedings of the Programms and algorithms of numerical mathematics 13, 2006,

Prague.
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